
Chapter 1

JavaTM Management Extensions (JMXTM)
Specification, version 1.4

FinalRelease

November 9, 2006

2 Java Management Extensions Specification, version 1.4 • November 9, 2006

JavaTM Management Extensions (JMXTM) Specification, version 1.4
Status: Final Release
Release: November 9, 2006

Copyright 2006 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license
(without the right to sublicense), under Sun’s applicable intellectual property rights to view, download, use and reproduce the
Specification only for the purpose of internal evaluation. This includes (i) developing applications intended to run on an
implementation of the Specification, provided that such applications do not themselves implement any portion(s) of the Specification,
and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or written
communications which discuss the Specification provided that such excerpts do not in the aggregate constitute a significant portion
of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-exclusive, non-transferable,
worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable copyrights or, subject to
the provisions of subsection 4 below, patent rights it may have covering the Specification to create and/or distribute an Independent
Implementation of the Specification that: (a) fully implements the Specification including all its required interfaces and functionality;
(b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages,
classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by the Specification
or Specifications being implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly
conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose (including, for example,
modifying the Specification, other than to the extent of your fair use rights, or distributing the Specification to third parties). Also, no
right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted hereunder. Java, and
Java-related logos, marks and names are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular "pass
through" requirements in any license You grant concerning the use of your Independent Implementation or products derived from
it. However, except with respect to Independent Implementations (and products derived from them) that satisfy limitations (a)-(c)
from the previous paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under Sun’s
applicable intellectual property rights; nor (b) authorize your licensees to make any claims concerning their implementation’s
compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed by all
technically feasible implementations of the Specification, such license is conditioned upon your offering on fair, reasonable and non-
discriminatory terms, to any party seeking it from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your
patent rights which are or would be infringed by all technically feasible implementations of the Specification to develop, distribute
and use a Compliant Implementation.

b. With respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2, whether or not their
infringement can be avoided in a technically feasible manner when implementing the Specification, such license shall terminate with
respect to such claims if You initiate a claim against Sun that it has, in the course of performing its responsibilities as the Specification
Lead, induced any other entity to infringe Your patent rights.

c. Also with respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2 above, where the
infringement of such claims can be avoided in a technically feasible manner when implementing the Specification such license, with
respect to such claims, shall terminate if You initiate a claim against Sun that its making, having made, using, offering to sell, selling
or importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the Specification
that neither derives from any of Sun’s source code or binary code materials nor, except with an appropriate and separate license from
Sun, includes any of Sun’s source code or binary code materials; "Licensor Name Space" shall mean the public class or interface
declarations whose names begin with "java", "javax", "com.sun" or their equivalents in any subsequent naming convention adopted
Chapter 3

by Sun through the Java Community Process, or any recognized successors or replacements thereof; and "Technology Compatibility
Kit" or "TCK" shall mean the test suite and accompanying TCK User’s Guide provided by Sun which corresponds to the Specification
and that was available either (i) from Sun’s 120 days before the first release of Your Independent Implementation that allows its use
for commercial purposes, or (ii) more recently than 120 days from such release but against which You elect to test Your implementation
of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act outside the scope of the
licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE
SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does
not represent any commitment to release or implement any portion of the Specification in any product. In addition, the Specification
could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION, EVEN
IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You will indemnify, hold
harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification; (ii) the use or
distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later versions or releases of any
Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompanying documentation shall be only
as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree that such
Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully
paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use
without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for
the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee
agrees to comply strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to
export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written
communications, proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any
quote, order, acknowledgment, or other communication between the parties relating to its subject matter during the term of this
Agreement. No modification to this Agreement will be binding, unless in writing and signed by an authorized representative of each
party.

Rev. April, 2006

Sun/Final/Full
4 Java Management Extensions Specification, version 1.4 • November 9, 2006

Contents

1. Introduction to the JMX Specification 21

1.1 Benefits of the JMX Architecture 21

1.2 Scope of this Specification 23

1.2.1 Reference Implementation 23

1.2.2 Compatibility Test Suite 23

1.2.3 JMX APIs as part of the Java Platform 24

1.3 Architectural Overview 24

1.3.1 Instrumentation Level 25

1.3.2 Agent Level 26

1.3.3 Distributed Services Level 27

1.4 Component Overview 28

1.4.1 Components of the Instrumentation Level 28

1.4.1.1 Managed Beans (MBeans) 28

1.4.1.2 Notification Model 29

1.4.1.3 MBean Metadata Classes 30

1.4.2 Components of the Agent Level 30

1.4.2.1 MBean Server 30

1.4.2.2 Agent Services 31

1.5 JMX Remote API 32

1.6 What Has Changed 32

1.6.1 Changes to the JMX Specification (JSR 3) 33

1.6.2 Changes to the JMX Remote Specification (JSR 160) 35

Part I. JMX Instrumentation Specification

2. MBean Instrumentation 39

2.1 Definition 39

2.1.1 Public Management Interface 40
Chapter Contents 5

2.1.2 MBean Public Constructor 40

2.2 Standard MBeans 41

2.2.1 MBean Interface 42

2.2.1.1 The MyClass Example MBean 43

2.2.2 Lexical Design Patterns 44

2.2.2.1 Attributes 44

2.2.2.2 Operations 45

2.2.2.3 Case Sensitivity 46

2.3 Dynamic MBeans 46

2.3.1 DynamicMBean Interface 47

2.3.2 Behavior of Dynamic MBeans 49

2.3.2.1 Coherence 49

2.3.2.2 Dynamics 49

2.4 Inheritance Patterns 50

2.5 JMX Notification Model 54

2.5.0.1 Notification Type 54

2.5.1 Notification Class 55

2.5.2 NotificationBroadcaster and NotificationEmitter
Interfaces 56

2.5.3 NotificationListener Interface 57

2.5.4 NotificationFilter Interface 58

2.6 Attribute Change Notifications 58

2.6.1 AttributeChangeNotification Class 59

2.6.2 AttributeChangeNotificationFilter Class 59

2.7 MBean Metadata Classes 60

2.7.1 MBeanInfo Class 61

2.7.2 MBeanFeatureInfo Class 62

2.7.3 MBeanAttributeInfo Class 63

2.7.4 MBeanConstructorInfo Class 63

2.7.5 MBeanOperationInfo Class 64

2.7.6 MBeanParameterInfo Class 64
6 Java Management Extensions Specification, version 1.4 • November 9, 2006

2.7.7 MBeanNotificationInfo Class 65

3. Open MBeans 67

3.1 Overview 67

3.2 Basic Data Types 68

3.2.1 Representing Complex Data 70

3.2.1.1 CompositeData Interface and Support Class 70

3.2.1.2 TabularData Interface and Support Class 71

3.2.2 Open Type Descriptions 71

3.3 Open MBean Metadata Classes 72

3.3.1 OpenMBeanInfo Interface and Support Class 73

3.3.2 OpenMBeanOperationInfo and OpenMBeanConstructorInfo
Interfaces and Support Classes 74

3.3.3 OpenMBeanParameterInfo and OpenMBeanAttributeInfo
Interfaces and Support Classes 75

3.4 Summary of Open MBean Requirements 76

4. Model MBeans 77

4.1 Overview 77

4.1.1 Generic Notifications 79

4.1.2 Interaction with Managed Resources 80

4.1.3 Interaction with Management Applications 81

4.2 Model MBean Metadata Classes 81

4.2.1 Descriptor Interface 81

4.2.2 DescriptorAccess Interface 83

4.2.3 ModelMBeanInfo Interface 84

4.2.4 ModelMBeanInfo Implementation 85

4.2.5 ModelMBeanAttributeInfo Implementation 88

4.2.6 ModelMBeanConstructorInfo Implementation 89

4.2.7 ModelMBeanOperationInfo Implementation 89

4.2.8 ModelMBeanNotificationInfo Implementation 90
Chapter Contents 7

4.3 Model MBean Specification 90

4.3.1 ModelMBean Interface 91

4.3.2 ModelMBean Implementation 92

4.3.3 DynamicMBean Implementation 93

4.3.4 PersistentMBean Interface 95

4.3.5 ModelMBeanNotificationBroadcaster Interface 96

4.3.6 ModelMBeanNotificationBroadcaster Implementation 97

4.4 Descriptors 97

4.4.1 Attribute Behavior 98

4.4.2 Notification Logging Policy 98

4.4.3 Persistence Policy 99

4.4.4 Behavior of Cached Values 100

4.4.5 Protocol Map Support 100

4.4.6 Export Policy 101

4.4.7 Visibility Policy 101

4.4.8 Presentation Behavior 102

4.5 Predefined Descriptor Fields 102

4.5.1 MBean Descriptor Fields 102

4.5.2 Attribute Descriptor Fields 104

4.5.3 Operation Descriptor Fields 105

4.5.4 Notification Descriptor Fields 106

Part II. JMX Agent Specification

5. Agent Architecture 111

5.1 Overview 111

5.2 JMX Compliant Agent 113

5.3 Protocol Adaptors and Connectors 113

6. Foundation Classes 115

6.1 ObjectName Class 115
8 Java Management Extensions Specification, version 1.4 • November 9, 2006

6.1.1 Domain Name 116

6.1.2 Key Property List 116

6.1.3 String Representation of Names 117

6.1.4 Pattern Matching 117

6.1.4.1 Pattern Matching Examples 118

6.2 ObjectInstance Class 119

6.3 Attribute and AttributeList Classes 119

6.4 JMX Exceptions 119

6.4.1 JMException Class and Subclasses 120

6.4.2 JMRuntimeException Class and Subclasses 121

6.4.3 Description of JMX Exceptions 122

6.4.3.1 JMException Class 123

6.4.3.2 ReflectionException Class 123

6.4.3.3 MBeanException Class 123

6.4.3.4 OperationsException Class 123

6.4.3.5 InstanceAlreadyExistsException Class 123

6.4.3.6 InstanceNotFoundException Class 124

6.4.3.7 InvalidAttributeValueException Class 124

6.4.3.8 AttributeNotFoundException Class 124

6.4.3.9 IntrospectionException Class 124

6.4.3.10 MalformedObjectNameException Class 124

6.4.3.11 NotCompliantMBeanException Class 124

6.4.3.12 ServiceNotFoundException Class 124

6.4.3.13 MBeanRegistrationException Class 124

6.4.3.14 JMRuntimeException Class 125

6.4.3.15 RuntimeOperationsException Class 125

6.4.3.16 RuntimeMBeanException Class 125

6.4.3.17 RuntimeErrorException Class 125

7. MBean Server 127

7.1 Role of the MBean Server 127
Chapter Contents 9

7.1.1 MBean Server Factory 127

7.1.2 MBean Server Permission Checking 128

7.1.3 Registration of MBeans 129

7.1.3.1 MBean Registration Control 129

7.1.4 Operations on MBeans 131

7.1.5 MBean Proxies 132

7.2 MBean Server Delegate MBean 132

7.3 Remote Operations on MBeans 133

7.4 MBean Server Notifications 134

7.5 Queries 135

7.5.1 Scope of a Query 135

7.5.2 Query Expressions 136

7.5.2.1 Methods of the Query Class 137

7.5.2.2 Query Expression Examples 139

7.5.3 Query Exceptions 139

7.5.3.1 BadAttributeValueExpException Class 140

7.5.3.2 BadStringOperationException Class 140

7.5.3.3 BadBinaryOpValueExpException Class 140

7.5.3.4 InvalidApplicationException Class 140

7.6 MBeanServerConnection Interface 140

7.7 Changing the MBean Server Implementation 141

8. Advanced Dynamic Loading 143

8.1 Overview of M-Lets 143

8.2 The MLET Tag 144

8.3 The M-Let Service 146

8.3.1 Loading MBeans From a URL 146

8.3.2 Class Loader Functionality 147

8.3.2.1 Native libraries 147

8.4 The Class Loader Repository 148

8.4.1 How to Add Loaders to the Class Loader Repository 148
10 Java Management Extensions Specification, version 1.4 • November 9, 2006

8.4.2 Order of Loaders in the Class Loader Repository 149

8.4.3 M-Let Delegation to the Class Loader Repository 149

8.4.3.1 New Semantics in the JMX 1.2 Specification 150

8.5 Using the Correct Class Loader for Parameters 152

8.5.1 getClassLoaderFor 153

8.5.2 getClassLoader and getClassLoaderRepository 153

9. Monitoring 155

9.1 Overview 155

9.1.1 Types of Monitors 155

9.2 MonitorNotification Class 156

9.2.1 Common Monitor Notification Types 157

9.3 CounterMonitor Class 158

9.3.1 Counter Monitor Notification Types 159

9.4 GaugeMonitor Class 160

9.4.1 Gauge Monitor Notification Types 161

9.5 StringMonitor Class 162

9.5.1 String Monitor Notification Types 163

9.6 Implementation of the Monitor MBeans 163

10. Timer Service 165

10.1 Timer Notifications 165

10.1.1 TimerNotification Class 166

10.1.2 Adding Notifications to the Timer 166

10.1.3 Receiving Timer Notifications 167

10.1.4 Removing Notifications From the Timer 167

10.2 Starting and Stopping the Timer 168

11. Relation Service 169

11.1 The Relation Model 169

11.1.1 Terminology 170
Chapter Contents 11

11.1.2 Example of a Relation 170

11.1.3 Maintaining Consistency 171

11.1.4 Implementation 172

11.1.4.1 External Relation Types 173

11.1.4.2 External Relations 174

11.2 Relation Service Classes 175

11.2.1 RelationService Class 177

11.2.2 RelationNotification Class 179

11.2.3 MBeanServerNotificationFilter Class 179

11.3 Interfaces and Support Classes 179

11.3.1 RelationType Interface 181

11.3.2 RelationTypeSupport Class 181

11.3.3 Relation Interface 182

11.3.3.1 Specified Methods 182

11.3.3.2 Maintaining Consistency 183

11.3.4 RelationSupport Class 184

11.4 Role Description Classes 184

11.4.1 RoleInfo Class 185

11.4.2 Role Class 186

11.4.3 RoleList Class 186

11.4.4 RoleUnresolved Class 187

11.4.5 RoleUnresolvedList Class 187

11.4.6 RoleResult Class 187

11.4.7 RoleStatus Class 188

12. Security 189

12.1 Permissions 189

12.1.1 MBeanServerPermission 190

12.1.2 MBeanPermission 191

12.1.2.1 MBeanPermission Target 191

12.1.2.2 MBeanPermission Actions 193
12 Java Management Extensions Specification, version 1.4 • November 9, 2006

12.1.2.3 Unchecked MBean Server Methods 196

12.1.2.4 Permission Checking for Queries 196

12.1.2.5 Permission Checking for getDomains 197

12.1.2.6 Permission Checking for getAttributes and
setAttributes 198

12.1.3 MBeanTrustPermission 198

12.2 Policy File Examples 199

Part III. JMX Remote API Specification

13. Connectors 205

13.1 Sessions and Connections 206

13.2 Connection Establishment 206

13.3 MBean Server Operations Through a Connection 207

13.4 Adding Remote Listeners 208

13.4.1 Filters and Handbacks 208

13.4.2 Removing Listeners 209

13.4.3 Notification Buffer 210

13.4.4 Getting Notifications From the Notification Buffer 211

13.5 Concurrency 212

13.6 Normal Termination 212

13.7 Abnormal Termination 213

13.7.1 Detecting Abnormal Termination 213

13.8 Connector Server Addresses 214

13.9 Creating a Connector Client 214

13.9.1 JMXConnectorFactory 215

13.9.2 Connection Stubs 215

13.9.3 Finding a Server 216

13.10 Creating a Connector Server 216

13.10.1 Publishing a Server 218

13.11 Class Loading 218
Chapter Contents 13

13.11.1 Class Loading on the Client End 219

13.11.2 Class Loading on the Server End 219

13.12 Connector Server Security 221

13.12.1 Subject Delegation 222

13.12.2 Access Control Context 222

14. RMI Connector 225

14.1 RMI Transports 225

14.2 Mechanics of the RMI Connector 225

14.2.1 Wrapping the RMI Objects 228

14.2.2 RMIConnection 228

14.2.3 Notifications 229

14.3 How to Connect to an RMI Connector Server 229

14.4 Basic Security With the RMI Connector 230

14.4.1 How Security Affects the RMI Connector Protocol 230

14.4.2 Achieving Real Security 231

14.5 Protocol Versioning 232

15. Generic Connector 233

15.1 Pluggable Transport Protocol 233

15.2 Pluggable Object Wrapping 234

15.3 Generic Connector Protocol 235

15.3.1 Handshake and Profile Message Exchanges 236

15.3.2 MBean Server Operation and Connection Message Exchanges 239

15.3.3 Security Features in the JMXMP Connector 241

15.3.3.1 TLS Profile 242

15.3.3.2 SASL Profile 242

15.3.4 Protocol Violations 242

15.3.5 Protocol Versioning 243

15.3.6 Properties Controlling Client and Server 244

15.3.6.1 Global Properties of the Generic Connector 244
14 Java Management Extensions Specification, version 1.4 • November 9, 2006

15.3.6.2 TLS Properties 244

15.3.6.3 SASL Properties 245

16. Defining a New Transport 247

17. Bindings to Lookup Services 249

17.1 Terminology 249

17.2 General Principles 250

17.2.1 JMXServiceURL Versus JMXConnector Stubs 250

17.2.2 Lookup Attributes 251

17.3 Using the Service Location Protocol 254

17.3.1 SLP Implementation 254

17.3.2 SLP Service URL 254

17.3.3 SLP Lookup Attributes 254

17.3.4 Code Templates 254

17.3.4.1 Discovering the SLP Service 255

17.3.4.2 Registering a JMX Service URL With SLP 256

17.3.4.3 Looking up a JMX Service URL With SLP 257

17.4 Using the Jini Network Technology 258

17.4.1 Jini Networking Technology Implementation 258

17.4.2 Service Registration 258

17.4.3 Using JMX Remote API Connector Stubs 259

17.4.4 Jini Lookup Service Attributes 260

17.4.5 Code Templates 260

17.4.5.1 Discovering the Jini Lookup Service 261

17.4.5.2 Registering a JMX Remote API Connector Stub With the
Jini Lookup Service 262

17.4.5.3 Looking up a JMX Connector Stub From the Jini Lookup
Service 263

17.5 Using the Java Naming and Directory Interface (LDAP Backend) 264

17.5.1 LDAP Schema for Registration of JMX Connectors 265

17.5.2 Mapping to Java Objects 267
Chapter Contents 15

17.5.3 Structure of the JMX Remote API Registration Tree 267

17.5.4 Leasing 268

17.5.5 Code Templates 268

17.5.5.1 Discovering the LDAP Server 268

17.5.5.2 Registering a JMXServiceURL in the LDAP server 269

17.5.5.3 Looking up a JMX Service URL From the LDAP Server
271

17.6 Registration With Standards Bodies 272

18. Summary of Environment Parameters 273

A. Service Templates 277

A.1 Service Template for the service:jmx Abstract Service Type 277

A.2 Service Template for the service:jmx:jmxmp Concrete Service Type 279

A.3 Service Template for the service:jmx:rmi Concrete Service Type 280

A.4 Service Template for the service:jmx:iiop Concrete Service Type 282

B. Non-standard environment parameters 285
16 Java Management Extensions Specification, version 1.4 • November 9, 2006

Preface
This document provides an introduction to the Java™ Management extensions (JMX™)
and then gives the JMX instrumentation, agent, and distributed services
specifications that define these extensions. It is not intended to be a programming
guide or a tutorial, but rather a comprehensive specification of the architecture,
design patterns and programming interfaces for these components.

The complete JMX specification is composed of this document and the
corresponding API documentation generated by the Javadoc™ tool, that completely
defines all programming objects.

Who Should Use This Book
The primary focus of this specification is to define the extensions to the Java
programming language for all actors in the software and network management field.
Also, programmers who want to build devices, applications, or implementations
that conform to JMX will find this specification useful as a reference guide.

Before You Read This Book
This specification assumes a working knowledge of the Java programming language
and of the development environment for the Java programming language. It is
essential to understand the Java Develoment Kit (JDKTM) software and be familiar
with system or network management. A working knowledge of the JavaBeansTM

model is also helpful.

All object diagrams in this book use the Unified Modeling Language (UML) for
specifying the objects in the Java programming language that comprise the JMX
specification. This allows a visual representation of the relation between classes and
their components. For a complete description of UML see:

http://www.rational.com/uml/resources/documentation/

How This Book Is Organized
Chapter 1 “ provides an overview of the scope and goals of the JMX specification. It
explains the overall management architecture and presents the main components.

Part I “JMX Instrumentation Specification”
Chapter Preface 17

Chapter 2 “MBean Instrumentation presents standard and dynamic MBeans, their
characteristics and design patterns, their naming scheme, the notification model and
the MBean metadata classes.

Chapter 3 “Open MBeans” presents the open MBean components and their Java
classes.

Chapter 4 “Model MBeans presents the model MBean concept and the Java classes
on which it relies.

Part II “JMX Agent Specification”

Chapter 5 “Agent Architecture presents the architecture of the JMX agent and its
components.

Chapter 6 “Foundation Classes defines the foundation classes used by the interfaces
of the JMX agent components.

Chapter 7 “MBean Server defines the MBean server and the methods available to
operate on managed objects, including queries that retrieve specific managed
objects.

Chapter 8 “Advanced Dynamic Loading defines advanced class-loading features,
including the m-let (management applet) service that loads classes and libraries
dynamically from a URL over the network.

Chapter 9 “Monitoring defines the monitoring service that observes the value of an
attribute in MBeans and signals when thresholds are reached.

Chapter 10 “Timer Service defines the timer service that provides scheduling
capabilities.

Chapter 11 “Relation Service defines the relation service that creates relation types
and maintains relations between MBeans based on these types.

Chapter 12 “Security defines the permissions that are used to control access to
MBeans.

Part III “JMX Remote API Specification”.

Chapter 13 “Connectors defines the connectors added to the JMX specification by
JMX Remote API.

Chapter 14 “RMI Connector defines the standard JMX Remote API connector.

Chapter 15 “Generic Connector defines an optional generic connector.

Chapter 16 “Defining a New Transport defines how other transport protocols can be
implemented.
18 Java Management Extensions Specification, version 1.4 • November 9, 2006

Chapter 17 “Bindings to Lookup Services defines how to register connectors with
existing lookup services.

Chapter 18 “Summary of Environment Parameters lists the environment
parameters used with JMX Remote API.

Appendix A “Service Templates

Appendix B “Non-standard environment parameters

Related Information
The model MBeans specification in Chapter 4 “Model MBeans, as well as the model
MBean Reference Implementation and compatibility test cases, are based on an
initial contribution from IBM.

The security specification in Chapter 12 “Security was developed in conjunction
with Hewlett Packard and IBM.

The definitive specification for all Java objects and interfaces of the JMX specification
is the API documentation generated by the Javadoc tool for these classes. It is
available online as part of the Java Platform, Standard Edition (Java SE)
documentation at the following URL:

http://java.sun.com/j2se/1.6.0/docs/api/

A number of Java Specification Requests (JSRs) developed through the Java
Community ProcessSM make use of, or are related to the JMX specification:

■ JSR 000018 - JAIN OAM API Specification

■ JSR 000022 - JAIN SLEE API Specification

■ JSR 000077 - J2EETM Management Specification

■ JSR 000151 - J2EE 1.4 Specification

■ JSR 000160 - Java Management Extensions (JMX) Remoting

■ JSR 000174 - Monitoring and Management Specification for the Java Virtual
Machine

■ JSR 000176 - J2SE 1.5 (Tiger) Release Content

■ JSR 000255 - JMX Specification, version 2.0 (which will define the next version of
this specification)

■ JSR 000262 - Web Services Connector for JMX Agents

http://java.sun.com/products/JavaManagement
Chapter Preface 19

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of literals and the
underlined text of URLs
(Universal Resource Locators).

Set the value of the name descriptor.
See the http://java.sun.com web site

AaBbCc123 The names of interfaces, classes,
fields or methods in the Java
programming language.

The Timer class implements the
TimerMBean interface.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must implement this interface.
20 Java Management Extensions Specification, version 1.4 • November 9, 2006

1

Introduction to the
JMX Specification

The Java Management extensions (also called the JMX specification) define an
architecture, the design patterns, the APIs, and the services for application and
network management and monitoring in the Java programming language. This
chapter introduces all these elements, presenting the broad scope of these
extensions. The JMX specification provides Java developers across all industries with
the means to instrument Java code, create smart Java agents, implement distributed
management middleware and managers, and smoothly integrate these solutions into
existing management and monitoring systems. In addition, the JMX specification is
referenced by a number of Java APIs for existing standard management and
monitoring technologies.

It should be noted that, throughout the rest of the present document, the concept of
management refers to both management and monitoring services.

The JMX architecture is divided into three levels:

■ Instrumentation level
■ Agent level
■ Distributed services level

This chapter gives an introduction to each of these levels and describes their basic
components.

1.1 Benefits of the JMX Architecture
Through an implementation of the JMX specification, the JMX architecture provides
the following benefits:
Chapter 1 21

● Enables Java applications to be managed without heavy investment

The JMX architecture relies on a core managed object server that acts as a
management agent and can run on most Java-enabled devices. This allows Java
applications to be manageable with little impact on their design. A Java application
simply needs to embed a managed object server and make some of its functionality
available as one or several managed beans (MBeans) registered in the object server;
that is all it takes to benefit from the management infrastructure.

JMX provides a standard way to enable manageability for any Java based
application, service or device. For example, Enterprise JavaBeans™ (EJB)
applications can conform to the JMX architecture to become manageable.

● Provides a scalable management architecture

Every JMX agent service is an independent module that can be plugged into the
management agent, depending on the requirements. This component-based
approach means that JMX solutions can scale from small footprint devices to large
telecommunications switches and beyond.

The JMX specification provides a set of core agent services. Additional services will
be developed by conformant implementations, as well as by the integrators of the
management solutions. All these services can be dynamically loaded, unloaded, or
updated in the management infrastructure.

● Integrates existing management solutions

JMX smart agents are capable of being managed through HTML browsers or by
various management protocols such as SNMP and WBEM. The JMX API are open
interfaces that any management system vendor can leverage.

● Leverages existing standard Java technologies

Whenever needed, the JMX specification will reference existing Java specifications
such as Java Naming and Directory Interface™ (JNDI), Java Database Connectivity
API (JDBC™), Java Transaction Services (JTS), or others.

● Can leverage future management concepts

The APIs of the JMX specification can implement flexible and dynamic management
solutions, through the Java programming language, that can leverage emerging
technologies. For example, JMX solutions can use lookup and discovery services and
protocols such as Jini™ network technology, Universal Plug’n’Play (Upnp), and the
Service Location Protocol (SLP).

In a demonstration given by Sun Microsystems, Jini network technology provides
spontaneous discovery of resources and services on the network, that are then
managed by through a JMX application. The combination of these two capabilities is
called the Sun Spontaneous Management™ Software.
22 Java Management Extensions Specification, version 1.4 • November 9, 2006

● Defines only the interfaces necessary for management

The JMX API is not designed to be a general purpose distributed object system.
Although it provides a number of services designed to fit into a distributed
environment, these are focused on providing functionality for managing networks,
systems, and applications.

1.2 Scope of this Specification
The JMX specification defines an architecture for management and a set of APIs that
describe the components of this architecture. These APIs cover functionality, both on
the manager and on the agent side, that compliant implementations will provide to
the developer of management applications.

This JMX specification document addresses all three levels of the management
architecture. These parts are:

■ The instrumentation specification
■ The agent specification
■ The distributed services specification

1.2.1 Reference Implementation
The reference implementation (RI) is the first working application of the JMX
specification, as mandated by the Java Community Process for defining extensions to
the Java programming language. The RI for both the instrumentation and agent
specifications has been developed by Sun Microsystems, Inc., in its role as the JMX
specification lead.

As of version 1.3 of the JMX API, there is no separately-available RI for the
specification. The RI is part of the RI for version 6 of the Java Platform, Standard
Edition (Java SE) , codenamed “Mustang”.

1.2.2 Compatibility Test Suite
The compatibility test suite (CTS) for the JMX specification will check the conformance
of JMX implementations. It is also mandated by the Java Community Process. The
CTS verifies that applications claiming to conform to a specific part of JMX follow
every point of the specification. The CTS for both the instrumentation and agent
specifications has been developed by Sun Microsystems, Inc., in its role as the JMX
specification lead.
Chapter 1 Introduction to the JMX Specification 23

Because the classes defined by the JMX specification are optional packages of the
Java platform, the CTS is implemented as a Technology Compatibility Kit (TCK) that
is run by the JavaTest™ software.

Each part of the JMX specification can identify mandatory and optional components.
A JMX-compliant implementation must provide all mandatory services, and can
provide any subset of the optional services, but those it does provide must conform
to the specification.

When claiming JMX compliance, implementations list the optional services they
support, and are tested by the CTS against their statement of conformance. This
requires some modularity in the way the CTS can be run against various
implementations that implement a number of subsets of the specification.

1.2.3 JMX APIs as part of the Java Platform
As of version 5.0 of the Java 2 Platform, Standard Edition (the J2SETM platform),
codenamed “Tiger”, the JMX API and JMX Remote API are part of the core platform.
“Tiger” contains version 1.2 of the JMX API and version 1.0 of the JMX Remote API.
The versions of those APIs covered by this document (version 1.4 of each API) are
included in version 6 of the Java Platform, Standard Edition (also known as Java SE),
codenamed “Mustang”, the successor to “Tiger”.

It is possible to replace the implementations of either or both of the JMX and JMX
Remote APIs in “Tiger” with implementations of the APIs covered by this document.
Such a replacement must pass the CTS for each API replaced.

The specification for MXBeans defines certain behavior when the annotation
@java.beans.ConstructorProperties appears. Since this annotation does not
exist in the “Tiger” platform, the behavior in question does not happen there.

1.3 Architectural Overview
This section describes each part of the JMX specification and its relation to the
overall management architecture:

■ Instrumentation level
■ Agent level
■ Distributed services level
■ Additional management protocol APIs

FIGURE 1-1 shows how the key components of the JMX architecture relate to one
another within the three levels of the architectural model. These components are
introduced in the following subsections and further discussed in the “Component
Overview” on page 28.
24 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 1-1 Relationship Between the Components of the JMX Architecture

1.3.1 Instrumentation Level
The instrumentation level provides a specification for implementing JMX manageable
resources. A JMX manageable resource can be an application, an implementation of a
service, a device, a user, and so forth. It is developed in Java, or at least offers a Java
wrapper, and has been instrumented so that it can be managed by JMX-compliant
applications.

The instrumentation of a given resource is provided by one or more Managed Beans,
or MBeans, that are either standard or dynamic. Standard MBeans are Java objects
that conform to certain design patterns derived from the JavaBeans™ component
model. Dynamic MBeans conform to a specific interface that offers more flexibility at
runtime. For further information, see “Managed Beans (MBeans)” on page 28.

Resource 1
(MBean)

Distributed
Services Level

Java virtual machine (host1)

Resource 2
(MBean)

MBean
Server

Current JMX specification

Future phases of the JMX specification

JMX-compliant
Management Application Web Browser

Agent Level

Instrumentation
Level

JMX
Manager

CIM/WBEM
API

SNMP
Manager API

Additional
Management
Protocol APIs

TMN
Manager API

Proprietary Management
Application

(host2)

PAC C

Agent
Services
(as MBeans)

Connectors and Protocol Adaptors

C

Separate JSRs
Chapter 1 Introduction to the JMX Specification 25

The instrumentation of a resource allows it to be manageable through the agent level
described in the next section. MBeans do not require knowledge of the JMX agent
with that they operate.

MBeans are designed to be flexible, simple, and easy to implement. Developers of
applications, services, or devices can make their products manageable in a standard
way without having to understand or invest in complex management systems.
Existing objects can easily be evolved to produce standard MBeans or wrapped as
dynamic MBeans, thus making existing resources manageable with minimum effort.

In addition, the instrumentation level also specifies a notification mechanism. This
allows MBeans to generate and propagate notification events to components of the
other levels.

Because the instrumentation level consists of design patterns and Java interfaces, the
reference implementation can only provide an example of the different MBeans and
of their notification mechanism.

However, the compatibility test suite for the instrumentation level will check that
MBeans being tested conform to the design patterns and implement the interfaces
correctly.

JMX manageable resources are automatically manageable by agents compliant with
the JMX specification. They can also be managed by any system that is not compliant
with the JMX specification that supports the MBean design patterns and interfaces.

1.3.2 Agent Level
The agent level provides a specification for implementing agents. Management
agents directly control the resources and make them available to remote
management applications. Agents are usually located on the same machine as the
resources they control, although this is not a requirement.

This level builds upon and makes use of the instrumentation level, to define a
standardized agent to manage JMX manageable resources. The JMX agent consists of
an MBean server and a set of services for handling MBeans. In addition, a JMX agent
will need at least one communications adaptor or connector. The MBean server
implementation and the agent services are mandatory in an implementation of the
specification.

The JMX agent can be embedded in the machine that hosts the JMX manageable
resources when a Java Virtual Machine (JVM) is available in that machine. Likewise,
the JMX agent can be instantiated into a mediation/concentrator element when the
managed resource only offers a proprietary (non-Java) environment. Otherwise, a
JMX agent does not need to know which resources it will serve: any JMX
manageable resource can use any JMX agent that offers the services it requires.
26 Java Management Extensions Specification, version 1.4 • November 9, 2006

Managers access an agent’s MBeans and use the provided services through a
protocol adaptor or connector, as described in the next section. However, JMX agents
do not require knowledge of the remote management applications that use them.

JMX agents are implemented by developers of management systems, who can build
their products in a standard way without having to understand the semantics of the
JMX manageable resources, or the functions of the management applications.

The agent compatibility test suite will check that agents being tested conform to the
interfaces and functionality set forth in the agent specification. Agents that have
been successfully tested against the agent CTS are qualified as JMX agents.

JMX agents run on the Java 2 Platform, Standard Edition (the J2SETM platform)
version 1.3 or above, and on certain profiles of the Java 2 Platform, Micro Edition
(the J2METM platform). JMX agents that implement version 1.3 of the JMX
specification must run on version 5.0 or above of the J2SE platform.

JMX agents will be automatically compatible with JMX distributed services, and can
also be used by any non-JMX compliant systems or applications that support JMX
agents.

1.3.3 Distributed Services Level
The distributed services level provides the interfaces for implementing JMX
managers. This level defines management interfaces and components that can
operate on agents or hierarchies of agents. These components can:

■ Provide an interface for management applications to interact transparently with
an agent and its JMX manageable resources through a connector

■ Expose a management view of a JMX agent and its MBeans by mapping their
semantic meaning into the constructs of a data-rich protocol (for example the
hypertext mark-up language (HTML) or the simple network management
protocol (SNMP))

■ Distribute management information from high-level management platforms to
numerous JMX agents

■ Consolidate management information coming from numerous JMX agents into
logical views that are relevant to the end user’s business operations

■ Provide security

Management components cooperate with one another across the network to provide
distributed, scalable management functions. Customized Java-based management
functions can be developed on top of these components to deploy a management
application.
Chapter 1 Introduction to the JMX Specification 27

The combination of the manager level with the other agent and instrumentation
levels provides a complete architecture for designing and developing complete
management solutions. The Java Management extensions technology brings unique
facilities to such solutions, such as portability, on-demand deployment of
management functionality, dynamic and mobility services, and security.

1.4 Component Overview
The key components of each architectural level are listed below and discussed in the
subsequent sections.

■ Instrumentation level

■ MBeans (standard, dynamic, open, and model MBeans)
■ Notification model
■ MBean metadata classes

■ Agent level

■ MBean server
■ Agent services

1.4.1 Components of the Instrumentation Level
The key components of the instrumentation level are the Managed Bean (MBean)
design patterns, the notification model, and the MBean metadata classes.

1.4.1.1 Managed Beans (MBeans)

An MBean is a Java object that implements a specific interface and conforms to
certain design patterns. These requirements formalize the representation of the
resource’s management interface in the MBean. The management interface of a
resource is the set of all necessary information and controls that a management
application needs to operate on the resource.

The management interface of an MBean is represented as:

■ Valued attributes that can be accessed

■ Operations that can be invoked

■ Notifications that can be emitted (see “Notification Model” on page 29)

■ The constructors for the MBean’s Java class
28 Java Management Extensions Specification, version 1.4 • November 9, 2006

MBeans encapsulate attributes and operations through their public methods and
follow the design patterns for exposing them to management applications. For
example, a read-only attribute in a standard MBean will have just a getter method,
whereas a getter and a setter methods implement read-write access.

Any objects that are implemented as an MBean and registered with the agent can be
managed from outside the agent’s Java virtual machine. Such objects include:

■ The resources your application manages
■ Value-added services provided to help manage resources
■ Components of the JMX infrastructure that can be managed

Other JMX components, such as agent services, are specified as fully instrumented
MBeans, which allows them to benefit from the JMX infrastructure and offer a
management interface.

The JMX architecture does not impose any restrictions on where compiled MBean
classes are stored. They can be stored at any location specified in the classpath of the
agent’s JVM, or at a remote site if class loading is used (see Chapter 8 “Advanced
Dynamic Loading” on page 143).

The JMX specification defines four types of MBean: standard, dynamic, open and
model MBeans. Each of these corresponds to a different instrumentation need:

■ Standard MBeans are the simplest to design and implement, their management
interface is described by their method names. MXBeans are a kind of Standard
MBean that uses concepts from Open MBeans to allow universal manageability
while simplifying coding.

■ Dynamic MBeans must implement a specific interface, but they expose their
management interface at runtime for greatest flexibility.

■ Open MBeans are dynamic MBeans that rely on basic data types for universal
manageability and that are self describing for user-friendliness.

■ Model MBeans are also dynamic MBeans that are fully configurable and self
described at runtime; they provide a generic MBean class with default behavior
for dynamic instrumentation of resources.

1.4.1.2 Notification Model

The JMX specification defines a generic notification model based on the Java event
model. Notifications can be emitted by MBean instances, as well as by the MBean
server. This specification describes the notification objects and the broadcaster and
listener interfaces that notification senders and receivers must implement.

This specification includes services that allow distribution of this notification model,
thus allowing a management application to listen to MBean events and MBean
server events remotely.
Chapter 1 Introduction to the JMX Specification 29

1.4.1.3 MBean Metadata Classes

The instrumentation specification defines the classes that are used to describe the
management interface of an MBean. These classes are used to build a standard
information structure for publishing the management interface of an MBean. One of
the functions of the MBean server at the agent level is to provide the metadata of its
MBeans.

The metadata classes contain the structures to describe all the components of an
MBean’s management interface: its attributes, operations, notifications and
constructors. For each of these, the metadata includes a name, a description and its
particular characteristics. For example, one characteristic of an attribute is whether it
is readable, writable or both; a characteristic of an operation is the signature of its
parameter and return types.

The different types of MBean extend the metadata classes to provide additional
information. Through this inheritance, the standard information will always be
available and management applications that know how to access the subclasses can
obtain the extra information.

1.4.2 Components of the Agent Level
The key components in the agent level are the MBean server, a registry for objects in
the instrumentation level, and the agent services that enable a JMX agent to
incorporate management intelligence for more autonomy and performance.

1.4.2.1 MBean Server

The managed bean server, or MBean server for short, is a registry for objects that are
exposed to management operations in an agent. Any object registered with the
MBean server becomes visible to management applications. However, the MBean
server only exposes an MBean’s management interface, never its direct object
reference.

Any resource that you want to manage from outside the agent’s Java virtual machine
(JVM) must be registered as an MBean in the server. The MBean server also provides
a standardized interface for accessing MBeans within the same JVM, giving local
objects all the benefits of manipulating manageable resources. MBeans can be
instantiated and registered by:

■ Another MBean
■ The agent itself
■ A remote management application (through the distributed services)
30 Java Management Extensions Specification, version 1.4 • November 9, 2006

When you register an MBean, you must assign it a unique object name. A
management application uses the object name to identify the object on which it is to
perform a management operation. The operations available on MBeans include:

■ Discovering the management interface of MBeans
■ Reading and writing their attribute values
■ Performing operations defined by the MBeans
■ Getting notifications emitted by MBeans
■ Querying MBeans based on their object name or their attribute values

The MBean server relies on protocol adaptors and connectors to make the agent
accessible from management applications outside the agent’s JVM. Each adaptor
provides a view through a specific protocol of all MBeans registered in the MBean
server. For example, an HTML adaptor could display an MBean on a Web browser.
The view provided by protocol adaptors is necessarily different for each protocol
and none are addressed in this phase of the JMX specification.

Connectors provide a manager-side interface that handles the communication
between manager and agent. Each connector will provide the same remote interface
though a different protocol. When a remote management application uses this
interface, it can connect to an agent transparently through the network, regardless of
the protocol.

Adaptors and connectors make all MBean server operations available to a remote
management application. For an agent to be managed, it must include at least one
protocol adaptor or connector. However, an agent can include any number of these,
allowing it to be managed by multiple managers, through different protocols.

1.4.2.2 Agent Services

Agent services are objects that can perform management operations on the MBeans
registered in the MBean server. By including management intelligence into the
agent, JMX helps you build more powerful management solutions. Agent services
are often MBeans as well, allowing them and their functionality to be controlled
through the MBean server. The JMX specification defines the following agent
services:

■ Dynamic class loading through the management applet (m-let) service retrieves
and instantiates new classes and native libraries from an arbitrary network
location.

■ Monitors observe the numerical or string value of an attribute of several MBeans
and can notify other objects of several types of changes in the target.

■ Timers provide a scheduling mechanism based on a one-time alarm-clock
notification or on a repeated, periodic notification.

■ The relation service defines associations between MBeans and enforces the
cardinality of the relation based on predefined relation types.
Chapter 1 Introduction to the JMX Specification 31

All the agent services are mandatory in a JMX-compliant implementation.

1.5 JMX Remote API
The JMX Remote API was defined by JSR 160. For convenience of presentation, this
document combines the specification of Maintenance Review 2 of JSR 160 with the
specification of Maintenance Review 4 of JSR 3. Formally, Parts I and II of this
document are defined by JSR 3, while Part III and the appendices are defined by JSR
160. For simplicity, the same version number 1.3 is used for the two specifications.
The ongoing JSR 255 is defining version 2.0 of the JMX Specification, which will
integrate the JMX Remote API into the JMX API. As such, it will merge the
specifications originally defined by JSRs 3 and 160.

The principal goals of the JMX Remote API are interoperability, transparency, security,
and flexibility.

The API is interoperable because it completely defines the standard protocols that are
used between client and server, so that two different implementations of the
standard can communicate.

The API is transparent because it exposes an API to the remote client that is as close
as possible to the API defined by the JMX specification for access to instrumentation
within the agent.

The API is secure because it builds on the Java technology standards for security,
namely the Java Secure Socket Extension (JSSE), the Simple Authentication and
Security Layer (SASL), and the Java Authentication and Authorization Service
(JAAS). These standards enable connnections between clients and servers to be
private and authenticated and allow servers to control what operations different
clients can perform.

The API is flexible because, in addition to the required protocol, it provides ways for
new transport protocols to be added and new implementations of the existing
protocols to be substituted.

1.6 What Has Changed
This document merges and updates two previous specifications, namely JMX
Instrumentation and Agent Specification, v1.2, December 2002, and JMX Remote API
Specification, v1.0, October 2003. This section lists the major changes to these two
specifications.

All changes to either specification are marked in the text with change bars.
32 Java Management Extensions Specification, version 1.4 • November 9, 2006

1.6.1 Changes to the JMX Specification (JSR 3)
■ The JMX API has been generified. For example, MBeanServer.queryNames

previously returned a Set, while now it returns a Set<ObjectName>.

■ The MXBeans feature, introduced in J2SE 5.0 for the java.lang.management
package, has been generalized so that users can create their own MXBeans.

■ Descriptors, previously only supported for Model MBeans, are now supported for
all types of MBean.

■ Information about legal types that was previously only available with Open
MBeans can now be expressed through Descriptors with any type of MBean.

■ A parent of DescriptorAccess called DescriptorRead has been added and
is implemented by the various MBean*Info classes.

■ A second, immutable implementation of the Descriptor interface called
ImmutableDescriptor has been added.

■ A number of new conventional Descriptor items (“fields”) are documented in
the API specification for the Descriptor interface.

■ Predefined Descriptor field names have corresponding string constants in the
new class called JMX.

■ A new annotation DescriptorKey can be used to add information to the
Descriptors for a Standard MBean (or MXBean) via annotations in its Java
interface.

■ The method Descriptor.getFieldValues(String...) and the
constructor DescriptorSupport(String...) previously took a String[]
parameter.

■ The Descriptor interface defines an equals method and specifies how array
values are compared.

■ The order the returned array is sorted with is clarified for
Descriptor.getFieldValues(null).

■ Exception wrapping for Descriptor.setField and
Descriptor.setFields is specified.

■ A new class javax.management.JMX has been added to house constants and
static methods.

■ Notification handling has been updated, as follows:

■ New constructors have been added to NotificationBroadcasterSupport
that specify the MBeanNotificationInfo[] that will be returned by
getNotificationInfo().

■ The threading model for NotificationBroadcasterSupport has been
specified explicitly and a constructor with an Executor parameter added to
allow changing it.

■ The behavior when a filter or listener in
NotificationBroadcasterSupport throws an exception is specified.
Chapter 1 Introduction to the JMX Specification 33

■ A new class, javax.management.StandardEmitterMBean, is a subclass of
javax.management.StandardMBean that is a NotificationEmitter.

■ ObjectName has been modified, as follows:

■ Wildcards * and ? can appear in the value of a key property for matching. New
methods isPropertyValuePattern() and
isPropertyValuePattern(String property) tell whether a given
ObjectName has such a wildcard.

■ New ObjectName constants are added for the name of the MBean Server
Delegate and for a wildcard that matches all ObjectNames.

■ ObjectName implements Comparable<ObjectName>.

■ The text forbidding the invocation of getters and setters as if they were operations
was confusing in the previous version of this specification.

■ Standard MBeans support covariant return types in MBean interfaces.

■ MBeanServer.isInstanceOf semantics for Dynamic MBeans have been
clarified.

■ Various small changes have been applied to the Model MBean specification, as
follows:

■ The value and displayName fields in Model MBean Descriptors are optional
but the previous version of this specification did not show them in italics.

■ RequiredModelMBean.setAttribute should throw an exception if there is
no setMethod and no currencyTimeLimit, because the setAttribute call
would have no effect in this case.

■ The role field in ModelMBeanOperationInfo Descriptors is optional.

■ The value of the targetType Descriptor field is case insensitive but was
omitted from the explicit list of case-insensitive fields.

■ The targetType Descriptor field is not included in the serial form of a
DescriptorSupport instance.

■ ModelMBeanInfoSupport.clone is explicitly shallow (does not clone the
contained ModelMBeanAttributeInfoSupport etc).

■ New OnUnregister value for the persistPolicy field of a Descriptor.

■ DescriptorSupport(String[],Object[]) forbids null parameters - this
was previously ambiguous.

■ Open MBeans have been updated as follows:

■ Open MBeans can reference arrays of primitive type. An ArrayType object can
be constructed that represents such an array.

■ In the constructor ArrayType(int dimension, OpenType<?>
elementType), the elementType parameter can now be an ArrayType
instance.

■ CompositeDataSupport.equals compares arrays element-by-element.
34 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ TabularDataSupport.entrySet() specifies the key in the returned Set is
wrapped into a List.

■ The impact of an MBeanOperationInfo can be UNKNOWN.

■ The Monitor Service supports complex types when the monitored attribute looks
like “a.b.c”.

■ Monitor tasks are specified to run within the access control context of the caller of
Monitor.start().

■ Inconsistencies in the specification for past dates in the Timer Service have been
resolved.

■ The MLetContent class has been made public.

■ The RelationNotification constructor now allows the source to be either a
RelationService instance or an ObjectName.

■ RelationService.addRelationType rejects a null relation name.

■ The RelationSupport specification has been clarified regarding
RoleNotFoundException thrown from setRole and
IllegalArgumentException thrown from setRoles.

■ A new query, Query.isInstanceOf, has been added.

■ Proxies constructed with MBeanServerInvocationHandler no longer forward
the methods hashCode(), toString(), and equals(Object) to the proxied
MBean, unless they are explicitly declared in the proxy interface.

■ The API documentation now clearly specified the serialVersionUID of all
serializable classes and calls for queries to be serialized using standard non-public
classes.

1.6.2 Changes to the JMX Remote Specification (JSR
160)
■ JMXConnector interface extends java.io.Closeable.

■ JMX connection provider exception handling clarified.

■ Serialized form of RMIConnector class included spurious clientNotifID field.

■ Added JMXAddressable interface to get the address to which a connector client
is connected.
Chapter 1 Introduction to the JMX Specification 35

36 Java Management Extensions Specification, version 1.4 • November 9, 2006

I JMX Instrumentation Specification
Chapter 37

38 Java Management Extensions Specification, version 1.4 • November 9, 2006

2

MBean Instrumentation

The instrumentation level of the JMX specification defines how to instrument
resources in the Java programming language so that they can be managed. Resources
developed according to the rules defined in this chapter are said to be JMX
manageable resources.

The Java objects that implement resources and their instrumentation are called
managed beans, or MBeans. MBeans must follow the design patterns and interfaces
defined in this part of the specification. This ensures that all MBeans provide the
instrumentation of managed resources in a standardized way.

MBeans are manageable by any JMX agent, but they can also be managed by non-
compliant agents that support the MBean concept.

This part of the specification is primarily targeted at developers of applications or
devices that want to provide management capabilities to their resources.

Developers of applications and devices are free to choose the granularity of objects
that are instrumented as MBeans. An MBean might represent the smallest object in
an application, or it could represent the entire application. Application components
designed with their management interface in mind can typically be written as
MBeans. MBeans can also be used as wrappers for legacy code without a
management interface or as proxies for code with a legacy management interface.

2.1 Definition
An MBean is a concrete Java class that includes the following instrumentation:

■ The implementation of its own corresponding MBean interface
or an implementation of the DynamicMBean interface

■ Optionally, an implementation of the NotificationBroadcaster interface
Chapter 2 MBean Instrumentation 39

A class that implements its own MBean interface is referred to as a standard MBean.
This is the simplest type of instrumentation available when developing new JMX
manageable resources. An MBean that implements the DynamicMBean interface
specified in this chapter is known as a dynamic MBean, because certain elements of
its instrumentation can be controlled at runtime.

Which interface the MBean implements determines how it will be developed, not
how it will be managed. JMX agents provide the abstraction for handling both types
of instrumentation transparently. In fact, when both types of MBean are being
managed in a JMX agent, management applications handle them in a similar
manner.

The Java class of a standard MBean exposes the resource to be managed directly
through its attributes and operations. Attributes are internal entities that are exposed
through getter and setter methods. Operations are the other methods of the class
that are available to managers. All these methods are defined statically in the MBean
interface and are visible to an agent through introspection. This is the most
straightforward way of making a new resource manageable.

When developing a Java class from the DynamicMBean interface, attributes and
operations are exposed indirectly through method calls. Instead of introspection,
JMX agents must call one method to find the name and nature of attributes and
operations. Then when accessing an attribute or operation, the agent calls a generic
getter, setter or invocation method whose argument is the name of the attribute or
operation. Dynamic MBeans enable you to rapidly instrument existing resources and
other legacy code objects you want to manage.

2.1.1 Public Management Interface
It is not a requirement for an MBean of any type to be a public Java class. However,
to be manageable, an MBean must have a public management interface. This public
management interface is the MBean’s own interface in the case of a standard MBean,
or the DynamicMBean interface, in the case of a dynamic MBean.

2.1.2 MBean Public Constructor
The Java class of an MBean, whether standard or dynamic, can optionally be of a
public class and have one or more public constructors. An MBean must be of a
public concrete class with a public constructor if it is to be instantiated by a JMX
agent on demand from a management application.
40 Java Management Extensions Specification, version 1.4 • November 9, 2006

An MBean can have any number of constructors, to allow an agent to perform an
instantiation. An MBean can also optionally have any number of public constructors,
all of which are available to a management application through a JMX agent that can
instantiate this MBean class.

Public constructors of an MBean can have any number of arguments of any type. It
is the developer’s and administrator’s responsibility to guarantee that the classes for
all argument types are available to the agent and manager when instantiating an
MBean.

An MBean can omit all constructors and rely on the default constructor which the Java
compiler provides automatically in such a case. The default constructor takes no
arguments and is public if the class is public. The Java compiler does not provide a
default public constructor if any other constructor is defined.

CODE EXAMPLE 2-1 shows a simple MBean example with two constructors, one of
which is the public constructor.

2.2 Standard MBeans
To be manageable through a JMX agent, a standard MBean explicitly defines its
management interface. The management interface defines the handles on the
resource that are exposed for management. An MBean’s interface is made up of the
methods it makes available for reading and writing its attributes and for invoking its
operations.

CODE EXAMPLE 2-1 Constructors of the Simple MBean Example

public class Simple {

private int state = 0;

// Default constructor only accessible from subclasses
//
protected Simple() {
}

// Public constructor: this class is an MBean candidate
//
public Simple (int s) {

state = s;
}
...

}

Chapter 2 MBean Instrumentation 41

Standard MBeans rely on a set of naming rules, called design patterns, that must be
observed when defining the interface of their Java object. These naming rules define
the concepts of attributes and operations inspired by the JavaBeans™ component
model. However, the actual design patterns for the JMX architecture take into
consideration the inheritance scheme of the MBean, as well as lexical design patterns
to identify the management interface. As a result, the design patterns for MBeans are
specific to the JMX specification.

The management interface of a standard MBean is composed of:

■ Its constructors: only the public constructors of the MBean class are exposed
■ Its attributes: the properties that are exposed through getter and setter methods
■ Its operations: the remaining methods exposed in the MBean interface
■ Its notifications: the notification objects and types that the MBean broadcasts

As described in “MBean Public Constructor” on page 40, constructors are an
inherent component of an MBean. The attributes and operations are methods of an
MBean, but they are identified by the MBean interface, as described below. The
notifications of an MBean are defined through a different interface: see “JMX
Notification Model” on page 54.

The process of inspecting the MBean interface and applying these design patterns is
called introspection. The JMX agent uses introspection to look at the methods and
superclasses of a class, determine if it represents an MBean that follows the design
patterns, and recognize the names of both attributes and operations.

2.2.1 MBean Interface
The Java class of a standard MBean must implement a Java interface that is named
after the class. This interface mentions the complete signatures of the attribute and
operation methods that are exposed. A management application can access these
attributes and operations. A management application cannot access methods of the
MBean’s Java class that are not listed in this interface.

The name of an MBean’s Java interface is formed by adding the MBean suffix to the
MBean’s fully-qualified Java class name. For example, the Java class MyClass would
implement the MyClassMBean interface; the Java class com.example.MyClass
would implement the com.example.MyClassMBean interface. The interface of a
standard MBean is referred to as its MBean interface.

By definition, the Java class of an MBean must implement all the methods in its
MBean interface. How it implements these methods determines its response to
management operations. An MBean can also define any other methods, public or
otherwise, that do not appear in its MBean interface.
42 Java Management Extensions Specification, version 1.4 • November 9, 2006

The MBean interface can list methods defined in the MBean, as well as methods that
the MBean inherits from its superclasses. This enables MBeans to extend and
instrument classes whose Java source code is inaccessible.

A standard MBean can also inherit its management interface if one of its
superclasses implements a Java interface named after itself (the superclass). For
example, if MySuperClass is an MBean and MyClass extends MySuperClass then
MyClass is also an MBean. The same is true if MySuperClass is a dynamic MBean;
MyClass would also be dynamic. If MyClass does not implement a MyClassMBean
interface, then it will have the same management interface as MySuperClass.
Otherwise, MyClass can redefine its management interface by implementing its
own MyClassMBean interface.

In this case, MyClassMBean defines the management interface, and any
management interface of MySuperClass is ignored. However, interfaces can also
extend parent interfaces, and all methods in the inheritance tree are also considered.
Therefore, MyClassMBean can extend MySuperClassMBean, allowing MyClass to
extend the management interface of its parent. For more information about how an
MBean inherits its management interface, see “Inheritance Patterns” on page 50.

Having to define and implement an MBean interface is the main constraint put on a
standard MBean for it to be a JMX manageable resource.

As of the JMX 1.2 specification, the javax.management.StandardMBean class can
be used to define standard MBeans with an interface whose name is not necessarily
related to the class name of the MBean.

2.2.1.1 The MyClass Example MBean

CODE EXAMPLE 2-2 gives a basic illustration of the explicit definition of the
management interface for an MBean named MyClass. Among the public methods it
defines, getHidden and setHidden will not be part of the management interface
because they do not appear in the MyClassMBean interface.

CODE EXAMPLE 2-2 MyClassMBean interface and MyClass Example

public interface MyClassMBean {
public int getState();
public void setState(int s);
public void reset();

}

Chapter 2 MBean Instrumentation 43

2.2.2 Lexical Design Patterns
The lexical patterns for attribute and operation names rely on the method names in
an MBean interface. They enable a JMX agent to identify the names of attributes and
operations exposed for management in a standard MBean. They also allow the agent
to make the distinction between read-only, write-only and read-write attributes.

2.2.2.1 Attributes

Attributes are the fields or properties of the MBean that are in its management
interface. Attributes are discrete, named characteristics of the MBean that define its
appearance or its behavior, or are characteristics of the managed resource that the
MBean instruments. For example, an attribute named ipackets in an MBean
representing an Ethernet driver could be defined to represent the number of
incoming packets.

Attribute names must begin with a character for which
Character.isJavaIdentifierStart is true. The remaining characters in the
name must also be true for Character.isJavaIdentifierPart.

public class MyClass implements MyClassMBean {
private int state = 0;
private String hidden = null;

public int getState() {
return(state);

}
public void setState(int s) {

state = s;
}
public String getHidden() {

return(hidden);
}
public void setHidden(String h) {

hidden = h;
}
public void reset() {

state = 0;
hidden = null;

}
}

44 Java Management Extensions Specification, version 1.4 • November 9, 2006

Attributes are always accessed via method calls on the object that owns them. For
readable attributes, there is a getter method to read the attribute value. For writable
attributes, there is a setter method to allow the attribute value to be updated.

The following design pattern is used to identify attributes:

If a class definition contains a matching pair of getAttributeName and
setAttributeName methods that take and return the same type, these methods define
a read-write attribute called AttributeName. If a class definition contains only one of
these methods, the method defines either a read-only or write-only attribute.

The AttributeName cannot be overloaded, that is, there cannot be two setters or a
getter and setter pair for the same name that operate on different types. An object
with overloaded attribute names is not a compliant MBean. The AttributeType can be
of any Java type, including array types, provided that this type is valid in the
MBean’s runtime context or environment.

When the type of an attribute is an array type, the getter and setter methods operate
on the whole array. The design patterns do not include any getter or setter method
for accessing individual array elements. If access to individual elements of arrays is
needed, it must be implemented through MBean operations.

In addition, for boolean type attributes, it is possible to define a getter method using
the following design pattern:

To reduce redundancy, only one of the two getter methods for boolean types is
allowed. An attribute can have either an isAttributeName method or a
getAttributeName method, but not both in the same MBean.

2.2.2.2 Operations

Operations are the actions that a JMX manageable resource makes available to
management applications. These actions can be any computation that the resource
exposes, and they can also return a value.

In a standard MBean, an operation is a Java method specified in its interface and
implemented in the class itself. Any method in the MBean interface that does not fit
an attribute design pattern is considered to define an operation.

public AttributeType getAttributeName();
public void setAttributeName(AttributeType value);

public boolean isAttributeName();
Chapter 2 MBean Instrumentation 45

A typical usage is shown in CODE EXAMPLE 2-2 on page 43 where the MBean exposes
the reset method to reinitialize its exposed attributes and private fields. Simple
operations can also be written to access individual elements of an indexed array
attribute.

2.2.2.3 Case Sensitivity

All attribute and operation names derived from these design patterns are case-
sensitive. For example, this means that the methods getstate and setState
define two attributes, one called state that is read-only, and one called State that
is write-only.

While case sensitivity applies directly to component names of standard MBeans, it is
also applicable to all component names of all types of MBeans, standard or dynamic.
In general, all names of classes, attributes, operations, methods, and internal
elements defined in the JMX specification are case sensitive, whether they appear as
data or as functional code when they are manipulated by management operations.

2.3 Dynamic MBeans
Standard MBeans are ideally suited for straightforward management structures,
where the structure of managed data is well defined in advance and unlikely to
change often. In such cases, standard MBeans provide the quickest and easiest way
to instrument manageable resources. When the data structures are likely to evolve
often over time, the instrumentation must provide more flexibility, such as being
determined dynamically at runtime. Dynamic MBeans bring this adaptability to the
JMX specification and provide an alternative instrumentation with more elaborate
management capabilities.

Dynamic MBeans are resources that are instrumented through a predefined interface
that exposes the attributes and operations only at runtime. Instead of exposing them
directly through method names, dynamic MBeans implement a method that returns
all attributes and operation signatures. For example, this information could be
determined by reading an XML file at runtime.

Because the names of the attributes and operations are determined dynamically,
these MBeans provide great flexibility when instrumenting existing resources. An
MBean that implements the DynamicMBean interface provides a mapping for
existing resources that do not follow standard MBean design patterns. Instead of
introspection, JMX agents call the method of the MBean that returns the name of the
attributes and operations it exposes.
46 Java Management Extensions Specification, version 1.4 • November 9, 2006

When managed through a JMX agent, dynamic MBeans offer all the same
capabilities that are available through standard MBeans. Management applications
that rely on JMX agents can manipulate all MBeans in exactly the same manner
regardless of their type.

2.3.1 DynamicMBean Interface
For a resource object to be recognized as a dynamic MBean by the JMX agent, its
Java class or one of its superclasses must implement the DynamicMBean public
interface.

The DynamicMBean interface is defined by the UML diagram in FIGURE 2-1 below.
Each of the methods it defines is described in the following subsections.

FIGURE 2-1 Definition of the DynamicMBean Interface

getMBeanInfo Method

This method returns an MBeanInfo object that contains the definition of the
MBean’s management interface. Conceptually, dynamic MBeans have both attributes
and operations, only they are not exposed through method names. Instead, dynamic
MBeans expose attribute names and types and operation signatures through the
return value of this method at runtime.

This method returns an MBeanInfo object that contains a list of attribute names and
their types, a list of operations and their parameters, and other management
information. This type and its constituent classes are further described in “MBean
Metadata Classes” on page 60.

DynamicMBean

getMBeanInfo(): MBeanInfo
getAttribute(attribute:String): Object
getAttributes(attributes:String[]): AttributeList
setAttribute(attribute:Attribute): void
setAttributes(attributes:AttributeList): AttributeList
invoke(actionName:String,

params:Object[],
signature:String[]): Object

«Interface»
Chapter 2 MBean Instrumentation 47

getAttribute and getAttributes Methods

These methods take an attribute name and a list of attribute names, respectively, and
return the value of the corresponding attribute(s). These are like a standard getter
method, except the caller supplies the name of the attribute requested. It is up to the
implementation of the dynamic MBean to map the exposed attribute names correctly
to their values through these methods.

The classes that are used to represent attribute names and values and lists of names
and values are described in “Attribute and AttributeList Classes” on
page 119. These data types are also used by the setAttribute methods below.

setAttribute and setAttributes Methods

These methods take attribute name-value pairs and, like standard setter methods,
they write these values to the corresponding attribute. When setting several
attributes at a time, the list of attributes for which the write operation succeeded is
returned. When setting only one attribute, there is no return value and any error is
signaled by raising an exception. Again, it is up to the implementation of the
dynamic MBean to map the new values correctly to the internal representation of
their intended attribute target.

invoke Method

The invoke method lets management applications call any of the operations
exposed by the dynamic MBean. Here the caller must provide the name of the
intended operation, the objects to be passed as parameters, and the types for these
parameters. By including the operation signature, the dynamic MBean
implementation can verify that the mapping is consistent between the requested
operation and that which is exposed. It can also choose between methods that have
the same name but different signatures (overloaded methods), though this is not
recommended.

If the requested operation is successfully mapped to its internal implementation, this
method returns the result of the operation. The calling application will expect to
receive the return type exposed for this operation in the MBeanInfo method.
48 Java Management Extensions Specification, version 1.4 • November 9, 2006

2.3.2 Behavior of Dynamic MBeans
When registered in a JMX agent, a dynamic MBean is treated in exactly the same
way as a standard MBean. Typically, a management application will first obtain the
management interface through the getMBeanInfo method, to have the names of the
attributes and operations. The application will then make calls to getters, setters and
the invoke method of the dynamic MBean.

In fact, the interface for dynamic MBeans is very similar to that of the MBean server
in the JMX agent (see “Role of the MBean Server” on page 127). A dynamic MBean
provides the management abstraction that the MBean server provides for standard
MBeans. This is why management applications can manipulate both kinds of MBean
without distinction: the same management operations are applied to both.

In the case of the standard MBean, the MBean server uses introspection to find the
management interface and then call the operations requested by the manager. In the
case of the dynamic MBean, these tasks are taken over by the dynamic MBean’s
implementation. In effect, the MBean server delegates the self description
functionality to the getMBeanInfo method of a dynamic MBean.

2.3.2.1 Coherence

With this delegation comes the responsibility of ensuring coherence between the
dynamic MBean’s description and its implementation. The MBean server does not
test or validate the self description of a dynamic MBean in any way. Its developer
must guarantee that the advertised management interface is accurately mapped to
the internal implementation. For more information about describing an MBean, see
“MBean Metadata Classes” on page 60.

From the manager’s perspective, how the dynamic MBean implements the mapping
between the declared management interface and the returned attribute values and
operation results is not important; it only expects the advertised management
interface to be available. This gives much flexibility to the dynamic MBean to build
more complex data structures, expose information that it can gather off-line, or
provide a wrapper for resources not written in the Java programming language.

2.3.2.2 Dynamics

Because the management interface of a dynamic MBean is returned at runtime by
the getMBeanInfo method, the management interface itself can be dynamic. That
is, subsequent calls to this method might not describe the same management
interface. It should be noted that the getMBeanInfo method is allowed to vary.
Chapter 2 MBean Instrumentation 49

Therefore, truly dynamic MBeans, in which you can change the MBean interface, are
possible, though they can only be managed by proprietary management applications
designed specifically to handle them.

Truly dynamic MBeans of this sort can only be used in limited circumstances,
because in general there is no way for a management application to notice that the
interface has changed. Developers implementing such systems should consider how
they work when more than one management application is connected to the system.
Race conditions also need to be considered: for instance, if the MBean sends a
notification to say that its interface has changed, at the same time a management
application might be performing an operation on the MBean based on its old
interface.

The descriptor field (see page 60) immutableInfo can be used to declare explicitly
whether the management interface of an MBean will change over its lifetime.

2.4 Inheritance Patterns
The introspection of an MBean is the process that JMX agents use to determine its
management interface. This algorithm is applied at runtime by a JMX compliant
agent, but it is described here because it determines how the inheritance scheme of
an MBean influences its management interface.

When introspecting a standard MBean, the management interface is defined by the
design patterns used in its MBean interface. Because interfaces can also extend
parent interfaces, all public methods in the inheritance tree of the interface are also
considered. When introspecting a dynamic MBean, the management interface is
given through the DynamicMBean interface. In either case, the algorithm determines
the names of the attributes and operations that are exposed for the given resource.

The introspection algorithm used is the following:

1. If MyClass is an instance of the DynamicMBean interface, then the return value
of its getMBeanInfo method will list the attributes and operations of the
resource. In other words, MyClass is a dynamic MBean.

2. If the MyClass MBean is an instance of a MyClassMBean interface, then only the
methods listed in, or inherited by, the interface are considered among all the
methods of, or inherited by, the MBean. The design patterns are then used to
identify the attributes and operations from the method names in the
MyClassMBean interface and its ancestors. In other words, MyClass is a
standard MBean.
50 Java Management Extensions Specification, version 1.4 • November 9, 2006

3. If MyClass is an instance of the DynamicMBean interface, then MyClassMBean is
ignored. If MyClassMBean is not a public interface, it is not a JMX manageable
resource. If the MBean is an instance of neither MyClassMBean nor
DynamicMBean, the inheritance tree of MyClass is examined, looking for the
nearest superclass that implements its own MBean interface.

a. If there is an ancestor called SuperClass that is an instance of
SuperClassMBean, the design patterns are used to derive the attributes and
operations from SuperClassMBean. In this case, the MBean MyClass then
has the same management interface as the MBean SuperClass. If
SuperClassMBean is not a public interface, it is not a JMX manageable
resource.

b. When there is no superclass with its own MBean interface, MyClass is not a
Standard MBean.

4. If none of the above conditions applies and MyClass implements an MXBean
interface, then MyClass is an MXBean and its attributes and operations are
determined by the MXBean interface as detailed in the API documentation for
javax.management.MXBean.

As a general rule, the management interface is defined either by the DynamicMBean
interface, if the MBean is an instance of DynamicMBean, or by the MBean class or
the nearest ancestor that implements its own MBean interface. If neither the class nor
any of its superclasses follows the rules for a standard or dynamic MBean, it is not a
JMX manageable resource and the JMX agent will raise an MBean error (see “JMX
Exceptions” on page 119). Similarly, an MBean interface implemented by a standard
MBean must be public.

These rules do not exclude the rare case of a class that inherits from a standard
MBean but is itself a dynamic MBean because it implements the DynamicMBean
interface. On the other hand, a class that inherits from a dynamic MBean is always a
dynamic MBean, even if it follows the rules for a standard MBean.

Standard MBean Inheritance

For standard MBeans, the management interface can be built up through inheritance
of both the class and its interface. This is shown in the following examples, where
the class fields a1, a2, and so on, stand for attributes or operations recognized by the
design patterns for standard MBeans. Various combinations of these example cases
are also possible.
Chapter 2 MBean Instrumentation 51

FIGURE 2-2 Standard MBean Inheritance (Case 1)

FIGURE 2-3 Standard MBean Inheritance (Case 2)

FIGURE 2-4 Standard MBean Inheritance (Case 3)

FIGURE 2-5 Standard MBean Inheritance (Case 4)

AMBean

a1
a2

A

a1
a2
a3

In the simplest case, class A
implements class AMBean,
which therefore defines the
management interface for A:
{a1, a2}.

«implements»

AMBean

a1
a2

A

a1
a2
a3

B

b1
b2

If class B extends A without
defining its own MBean
interface, then B is also an
MBean. B has the same

«implements»

«extends»

management interface as
A: {a1, a2}

AMBean

a1
a2

A

a1
a2
a3

B

b1
b2

BMBean

b2
If class B does implement
the BMBean interface, then
this defines the only
management interface
considered: {b2}.

«implements» «implements»

«extends»

AMBean

a1
a2

A

a1
a2
a3

B

b1
b2

BMBean

b2
The BMBean interface and all
interfaces it extends make up
the management interface
for the elements which B
defines or inherits: {a1, a2, b2}.

«implements» «implements»

«extends»

«extends»

Whether or not A implements
AMBean makes no difference
with regards to B.
52 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 2-6 Standard MBean Inheritance (Case 5)

Dynamic MBean Inheritance

Like standard MBeans, dynamic MBeans can also inherit their instrumentation from
a superclass. However, the management interface cannot be composed from the
inheritance tree of the dynamic MBean class. Instead, the management interface is
defined in its entirety by the getMBeanInfo method or the nearest superclass
implementation of this method.

In the same way, subclasses can also redefine getters, setters and the invoke
method, thus providing a different behavior for the same management interface. It is
the MBean developer’s responsibility that the subclass’ implementation of the
attributes or operations matches the management interface that is inherited or
exposed.

FIGURE 2-7 Dynamic MBean Inheritance

AMBean

a1
a2

B

b1
b2

BMBean

b2
The class B must implement
all methods defined in or
inherited by the BMBean
interface. If it does not inherit
them, it must implement them

«implements»

«extends»

a1
a2

explicitly: {a1, a2, b2}.

DynamicMBean

getMBeanInfo
getters/setters

C

If class D extends C without
redefining the getMBeanInfo
method, then D is a dynamic
MBean with the same manage-
ment interface. However, D

«implements»

«extends»

overrides the getter and setter
methods of C, thus providing

invoke

getMBeanInfo
getters/setters

invoke

D

getters/setters a different implementation of
the same attributes.
Chapter 2 MBean Instrumentation 53

2.5 JMX Notification Model
The management interface of an MBean allows its agent to perform control and
configuration operations on the managed resources. However, such interfaces
provide only part of the functionality necessary to manage complex, distributed
systems. Most often, management applications need to react to a state change or to a
specific condition when it occurs in an underlying resource.

This section defines a model that allows MBeans to broadcast such management
events, called notifications. Management applications and other objects register as
listeners with the broadcaster MBean. The MBean notification model of JMX enables a
listener to register only once and still receive all the different events that might occur
in the broadcaster.

The JMX notification model relies on the following components:

■ A generic event type, Notification, that can signal any type of management
event. The Notification event can be used directly, or can be subclassed,
depending on the information that needs to be conveyed with the event.

■ The NotificationListener interface, which needs to be implemented by
objects requesting to receive notifications sent by MBeans.

■ The NotificationFilter interface, which needs to be implemented by objects
that act as a notification filter. This interface lets notification listeners provide a
filter to be applied to notifications emitted by an MBean.

■ The NotificationBroadcaster interface, which needs to be implemented by
each MBean that emits notifications. This interface allows listeners to register
their interest in the notifications emitted by an MBean.

■ The NotificationEmitter interface, that extends
NotificationBroadcaster to allow more control when removing listeners.

By using a generic event type, this notification model allows any one listener to
receive all types of events from a broadcaster. The filter is provided by the listener to
specify only those events that are needed. Using a filter, a listener only needs to
register once to receive all selected events of an MBean.

Any type of MBean, standard or dynamic, can be either a notification broadcaster, a
notification listener, or both at the same time. Notification filters are usually
implemented as callback methods of the listener itself, but this is not a requirement.

2.5.0.1 Notification Type

The type of a notification, not to be confused with its Java class, is the
characterization of a generic notification object. The type is assigned by the
broadcaster object and conveys the semantic meaning of a particular notification.
54 Java Management Extensions Specification, version 1.4 • November 9, 2006

The type is given as a String field of the Notification object. This string is
interpreted as any number of dot-separated components, allowing an arbitrary, user-
defined structure in the naming of notification types.

All notification types prefixed by “JMX.” are reserved for the notifications emitted
by the components of the JMX infrastructure defined in this specification, such as
JMX.mbean.registered. Otherwise, notification broadcasters are free to define all
the types they use when naming the notifications they emit. Usually, MBeans will
use type strings that reflect the nature of their notifications within the larger
management structure in which they are involved.

For example, a vendor who provides JMX manageable resources as part of a
management product might prefix all its notification types with VendorName.
FIGURE 2-8 below shows a tree representation of the structure induced by the dot
notation in notification type names.

FIGURE 2-8 Structure of Notification Type Strings

2.5.1 Notification Class
The Notification class extends the java.util.EventObject base class and
defines the minimal information contained in a notification. It contains the following
fields:

■ The notification type, a string expressed in a dot notation similar to Java properties,
for example: vendorName.resourceA.eventA1

■ A sequence number, a serial number identifying a particular instance of notification
in the context of the notification broadcaster

JMX.mbean.registered
JMX.mbean.unregistered
...

VendorName.event1
VendorName.resourceA.eventA1
VendorName.resourceA.eventA2
...

JMX

mbean ...

registered

unregistered

VendorName

resourceA ...

eventA1

eventA2

event1
Chapter 2 MBean Instrumentation 55

■ A time stamp, indicating when the notification was generated

■ A message contained in a string, which could be the explanation of the notification
for displaying to a user

■ User data is used for whatever other data the notification broadcaster will
communicate to its listeners

Notification broadcasters use the notification type to indicate the nature of the event
to their listeners. Additional information that needs to be transmitted to listeners is
placed in the message or in the user data fields.

In most cases, this information is sufficient to allow broadcasters and listeners to
exchange instances of the Notification class. However, subclasses of the
Notification class can be defined when additional semantics are required within
the notification object.

2.5.2 NotificationBroadcaster and
NotificationEmitter Interfaces
This interface specifies three methods that MBeans acting as notification
broadcasters must implement:

■ getNotificationInfo - Gives a potential listener the description of all
notifications this broadcaster can emit. This method returns an array of
MBeanNotificationInfo objects, each of which describes a notification. For
more information about this class, see “MBeanNotificationInfo Class” on
page 65.

■ addNotificationListener - Registers a listener’s interest in notifications sent
by this MBean. This method takes a reference to a NotificationListener
object, a reference to a NotificationFilter object, and a handback object.

The handback object is provided by the listener upon registration and is opaque
to the broadcaster MBean. The implementation of the broadcaster interface must
store this object and return its reference to the listener with each notification. This
handback object can allow the listener to retrieve context information for use
while processing the notification.

The same listener object can be registered more than once, each time with a
different handback object. This means that the handleNotification method of
this listener will be invoked several times, with different handback objects.

The MBean has to maintain a table of listener, filter and handback triplets.
When the MBean emits a notification, it invokes the handleNotification
method of all the registered NotificationListener objects, with their
respective handback object.
56 Java Management Extensions Specification, version 1.4 • November 9, 2006

If the listener has specified a NotificationFilter when registering as a
NotificationListener object, the MBean will invoke the filter’s
isNotificationEnabled method first. Only if the filter returns an affirmative
(true) response will the broadcaster then call the notification handler.

■ removeNotificationListener - Unregisters the listener from a notification
broadcaster. If a listener has been registered several times with this broadcaster,
all entries corresponding to the listener will be removed.

Any type of MBean can implement the NotificationBroadcaster interface. This
might lead to a special case of a standard MBean that has an empty management
interface: its role as a manageable resource is to be a broadcaster of notifications. It
must be a concrete class, and it must implement an MBean interface, which in this
case defines no methods. The only methods in its class are those implementing the
NotificationBroadcaster interface. This MBean can be registered in a JMX
agent, and its management interface only contains the list of notifications that it may
send.

Instead of NotificationBroadcaster, an MBean can implement its subinterface
NotificationEmitter, introduced in version 1.2 of the JMX specification. It is
recommended that new code use NotificationEmitter rather than
NotificationBroadcaster. NotificationEmitter adds a second
removeNotificationListener method that specifies the filter and handback
values for the listener to be removed. If the listener is registered more than once with
different filter and handback values, only a matching one is removed.

Instead of implementing NotificationBroadcaster or NotificationEmitter,
an MBean can inherit from the standard JMX class
NotificationBroadcasterSupport. This class manages a list of listeners,
modified by the addNotificationListener and
removeNotificationListener methods. Its sendNotification method sends
a notification to all listeners in the list whose filters accept it.

2.5.3 NotificationListener Interface
This interface must be implemented by all objects interested in receiving
notifications sent by any broadcaster. It defines a unique callback method,
handleNotification, which is invoked by a broadcaster MBean when it emits a
notification.

Besides the Notification object, the listener’s handback object is passed as an
argument to the handleNotification method. This is a reference to the same
object that the listener provided upon registration. It is stored by the broadcaster and
returned unchanged with each notification.
Chapter 2 MBean Instrumentation 57

Because all notifications are characterized by their type string, notification listeners
only implement one handler method for receiving all notifications from all potential
broadcasters. This method then relies on the type string, other fields of the
notification object and on the handback object to determine the broadcaster and the
meaning of the notification.

2.5.4 NotificationFilter Interface
This interface is implemented by objects acting as a notification filter. It defines a
unique method, isNotificationEnabled, which will be invoked by the
broadcaster before it emits a notification. This method takes the Notification
object that the broadcaster intends to emit and, based on its contents, returns true
or false, indicating whether or not the listener will receive this notification.

The filter object is provided by the listener when it registers for notifications with the
broadcaster, so each listener can provide its own filter. The broadcaster must apply
each listener’s filter, if defined, before calling the handleNotification method of
the corresponding listener.

Listeners rely on the filter to screen all possible notifications and only handle the
ones in which they are interested. An object can be both a listener and a filter by
implementing both the NotificationListener and the NotificationFilter
interfaces. In this case, the object reference will be given for both the listener and the
filter object when registering it with a broadcaster.

2.6 Attribute Change Notifications
This section introduces a specific family of notifications, the attribute change
notifications, that allows management services and applications to be notified
whenever the value of a given MBean attribute is modified.

In the JMX architecture, the MBean has the full responsibility of sending
notifications when an attribute change occurs. The mechanism for detecting changes
in attributes and triggering the notification of the event is not part of the JMX
specification. The attribute change notification behavior is therefore dependent upon
the implementation of each MBean’s class.

MBeans are not required to signal attribute changes, but if they need to do so within
the JMX architecture, they rely on the following components:

■ A specific event class, AttributeChangeNotification, which can signal any
attribute change event.

■ A specific filter support, AttributeChangeNotificationFilter, which
allows attribute change notification listeners to filter the notifications depending
on the attributes of interest.
58 Java Management Extensions Specification, version 1.4 • November 9, 2006

Otherwise, attribute change notification broadcasters and listeners are defined by the
same interfaces as in the standard notification model. Any MBean sending attribute
change notifications must implement the NotificationBroadcaster interface, as
described in the “JMX Notification Model” on page 54. Similarly, the
NotificationListener interface must be implemented by all objects interested in
receiving attribute change notifications sent by an MBean.

2.6.1 AttributeChangeNotification Class
The AttributeChangeNotification class extends the Notification class and
defines the following additional fields:

■ The name of the attribute that has changed

■ The type of the attribute that has changed

■ The old value of the attribute

■ The new value of the attribute

When implementing the attribute change notification model, broadcaster MBeans
must use this class when sending notifications of attribute changes. They can also
send other Notification objects for other events. The additional fields of this class
provide the listener with information about the attribute that has changed. The
notification type of all attribute change notifications must be
jmx.attribute.change. This type is defined by the static string
ATTRIBUTE_CHANGE declared in this class.

2.6.2 AttributeChangeNotificationFilter Class
The AttributeChangeNotificationFilter class implements the
NotificationFilter interface and defines the following additional methods:

■ enableAttribute - Enables notifications for the given attribute name.

■ disableAttribute - Filters out notifications for the given attribute name.

■ disableAllAttributes - Effectively disables all attribute change notifications.

■ getEnabledTypes - Returns a list of all attribute names that are currently
enabled for receiving notifications

Notification listeners observing certain attributes for changes can instantiate this
class, configure the set of “enabled” attributes and use this object as the filter when
registering as a listener with a known attribute change broadcaster. The attribute
change filter allows the listener to receive attribute change notifications only for
those attributes that are desired.
Chapter 2 MBean Instrumentation 59

2.7 MBean Metadata Classes
This section defines the classes that describe an MBean. These classes are used both
for the introspection of standard MBeans and for the self description of all dynamic
MBeans. These classes describe the management interface of an MBean in terms of
its attributes, operations, constructors and notifications.

The JMX agent exposes all its MBeans, regardless of their type, through the MBean
metadata classes. All clients, whether management applications or other local
MBeans viewing the management interface of an MBean, need to be able to interpret
these objects and their constructs. Certain MBeans might provide additional data by
extending these classes (see “Open Type Descriptions” on page 71 and “Model
MBean Metadata Classes” on page 81).

In addition to providing an internal representation of any MBean, these classes can
be used to construct a visual representation of any MBean. One approach to
management is to present all manageable resources to an operator through a
graphical user interface. To this end, the complete description of all MBeans includes
a descriptive text for each of their components. How this information is displayed is
completely dependent upon the application that manages the MBean and is outside
the scope of this specification.

The following classes define an MBean’s management interface; they are referred to
collectively as the MBean metadata classes throughout this document:

■ MBeanInfo - lists the attributes, operations, constructors and notifications
■ MBeanFeatureInfo - superclass for the following classes
■ MBeanAttributeInfo - describes an attribute
■ MBeanConstructorInfo - describes the signature of a constructor
■ MBeanOperationInfo - describes the signature of an operation
■ MBeanParameterInfo - describes a parameter of an operation or constructor
■ MBeanNotificationInfo - describes a notification

All of these classes include a descriptor, which is a collection of (key,value) pairs
where the key is a string. Several keys are predefined by the JMX specification. For
example, the units key can be added in the descriptor for an attribute to express
what units the value of the attribute is in. Descriptors are further defined in
Section 4.4 “Descriptors” on page 97, and in the API documentation for
javax.management.Descriptor. For a Standard MBean, the contents of the
descriptor can be supplied by annotations in the Standard MBean interface, as
described in the API documentation for javax.management.DescriptorKey.

The following UML diagram shows the relationship between these classes as well as
the components of each. Each class is fully described in the subsequent sections.
60 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 2-9 The MBean Metadata Classes

2.7.1 MBeanInfo Class
This class is used to fully describe an MBean: its attributes, operations, its
constructors, and the notification types it can send. For each of these categories, this
class stores an array of metadata objects for the individual components. If an MBean
has no component in a certain category, for example no notifications, the
corresponding method returns an empty array.

Each metadata object is a class that contains information that is specific to the type of
component. For example, attributes are characterized by their type and read-write
access, and operations by their signature and return type. All components have a
case-sensitive name and a description string.

MBeanOperationInfo MBeanNotificationInfo

MBeanAttributeInfo

MBeanInfo

getClassName(): String
getNotifications(): MBeanNotificationInfo[]
getAttributes(): MBeanAttributeInfo[]
getConstructors(): MBeanConstructorInfo[]
getOperations(): MBeanOperationInfo[]
getDescription(): String
getDescriptor(): Descriptor

getType(): String
isReadable(): boolean
isWritable(): boolean
isIs(): boolean

getReturnType(): String
getSignature(): MBeanParameterInfo[]
getImpact(): int

UNKNOWN: int {frozen}
ACTION: int {frozen}
INFO: int {frozen}
ACTION_INFO: int {frozen}

getNotifTypes(): String[]

MBeanConstructorInfo

getSignature(): MBeanParameterInfo[]

MBeanParameterInfo

getType(): String

0..*

MBeanFeatureInfo

getName(): String
getDescription(): String
getDescriptor(): Descriptor

0..*

0..*

0..*

0..*0..*
Chapter 2 MBean Instrumentation 61

Besides the array of metadata objects for each component category, the MBeanInfo
class has three descriptive methods. The getClassName method returns a string
containing the Java class name of this MBean. The getDescription method is used
to return a string describing the MBean that is suitable for displaying to a user in a
GUI. It describes the MBean’s overall purpose or functionality. The getDescriptor
method returns the descriptor for this MBean as a whole.

In the case of a standard MBean, the information contained in the MBeanInfo class
is provided by the introspection mechanism of the JMX agent. Introspection can
determine the components of the MBean, but it cannot provide a qualitative
description. The introspection of standard MBeans provides a simple generic
description string for the MBeanInfo object and all its components. Therefore, all
standard MBeans will have the same description. The StandardMBean class
provides a way to add custom descriptions while keeping the convenience of the
standard MBean design patterns.

For dynamic MBeans, it is the developer’s responsibility to ensure that the
description strings for the MBeanInfo object and all its components provide correct
and useful information about the MBean.

2.7.2 MBeanFeatureInfo Class
This class is not directly returned by an MBeanInfo object, but it is the parent of all
the other component metadata classes. All the subsequent objects subclass
MBeanFeatureInfo and inherit its three methods, getName, getDescription,
and getDescriptor.

The getName method returns a string with the name of the component. This name is
case-sensitive and identifies the given component within the MBean. For example, if
an MBean interface exposes the getstate method, it will be described by an
MBeanAttributeInfo object whose inherited getName method will return
“state”.

The getDescription method returns a string that provides a human readable
explanation of a component. In the case of dynamic MBeans, this string must be
provided by the developer. For example, this string must be suitable for displaying
to an operator through the user interface of a management application.

The getDescriptor method returns a descriptor containing arbitrary extra
information about the component.
62 Java Management Extensions Specification, version 1.4 • November 9, 2006

2.7.3 MBeanAttributeInfo Class
The MBeanAttributeInfo class describes an attribute in the MBean’s management
interface. An attribute is characterized by its type and by how it is accessed.

The type of an attribute is the Java class that is used to represent it when calling its
getter or setter methods. The getType method returns a string containing the fully
qualified name of this class. The format of this string is identical to that of the string
returned by the getName method of the java.lang.Class class.

For a complete description of this format, please see the API documentation
generated by the Javadoc tool for the java.lang.Class class in the Java 2 platform
standard edition (J2SE) online documentation. As an example, an array of
java.util.Map type is represented as the string “[Ljava.util.Map;”, and a
two-dimensional array of bytes is represented as the string “[[B”. Non-array objects
are simply given as their full package name, such as “java.util.Map”.

MBean access is either readable, writable or both. Read access implies that a
manager can get the value of this attribute, and write access that it can set its value:

■ The isReadable method will return true if this attribute has a getter method in
its MBean interface or if the getAttribute method of the DynamicMBean
interface will succeed with this attribute’s name as the parameter; otherwise it
will return false.

■ The isWritable method will return true if this attribute has a setter method in
its MBean interface or if the setAttribute method of the DynamicMBean
interface will succeed with this attribute’s name as a parameter; otherwise it will
return false.

■ The isIs method will return true if this attribute has a boolean type and a
getter method with the is prefix (versus the get prefix); otherwise it will return
false. Note that this information is only relevant for a standard MBean.

See “Lexical Design Patterns” on page 44 for the definition of getter and setter
methods in standard MBeans.

Note – By this definition, the access information does not take into account any read
or write access to an attribute’s internal representation that an MBean developer
might provide through one of the operations.

2.7.4 MBeanConstructorInfo Class
MBean constructors are described solely by their signature: the order and types of
their parameters. This class describes a constructor and contains one method,
getSignature, that returns an array of MBeanParameterInfo objects. This array
has no elements if the given constructor has no parameters. Elements of the
Chapter 2 MBean Instrumentation 63

parameter array are listed in the same order as constructor parameters, and each
element gives the type of its corresponding parameter (see “MBeanParameterInfo
Class” on page 64).

2.7.5 MBeanOperationInfo Class
The MBeanOperationInfo class describes an individual operation of an MBean.
An operation is defined by its signature, return type, and its impact.

The getImpact method returns an integer that can be mapped using the static
fields of this class. Its purpose is to communicate the impact this operation will have
on the managed entity represented by the MBean. A method described as INFO will
not modify the MBean, it is a read-only method that only returns data. An ACTION
method has some effect on the MBean, usually a write operation or some other state
modification. The ACTION_INFO method has both read and write roles.

The UNKNOWN value is reserved for the description of all operations of a standard
MBean, as introspected by the MBean server.

Impact information is very useful for making decisions on which operations to
expose to users at different times. It can also be used by some security schemes. It is
the dynamic MBean developer’s responsibility to assign the impact of each method
in its metadata object correctly and consistently. Indeed, the difference between
“information” and “action” is dependent on the design and usage of each MBean.

The getReturnType method returns a string containing the fully qualified class
name of the Java object returned by the operation being described. The format of this
string is identical to that of the string returned by the getName method of the
java.lang.Class class, as described by the API documentation generated by the
Javadoc tool in the J2SE online documentation.

The getSignature method returns an array of MBeanParameterInfo objects
where each element describes a parameter of the operation. The array elements are
listed in the same order as the operation’s parameters, and each element gives the
type of its corresponding parameter (see below).

2.7.6 MBeanParameterInfo Class
The MBeanParameterInfo class is used to describe a parameter of an operation or
of a constructor. This class gives the class type of the parameter and also extends the
MBeanFeatureInfo class to provide a name and description.
64 Java Management Extensions Specification, version 1.4 • November 9, 2006

As in the “MBeanAttributeInfo Class” on page 63, the getType method returns a
string containing the fully qualified name of this class. The format of this string is
identical to that of the string returned by the getName method of the
java.lang.Class class, as described by the API documentation generated by the
Javadoc tool in the J2SE online documentation.

2.7.7 MBeanNotificationInfo Class
The MBeanNotificationInfo class is used to describe the notifications that are
sent by an MBean. This class extends the MBeanFeatureInfo class to provide a
name and a description. The name must give the fully qualified class name of the
notification objects that are actually broadcast.

The getNotifTypes method returns an array of strings containing the notification
types that the MBean can emit. The notification type is a string containing any
number of elements in dot notation, not the name of the Java class that implements
this notification. As described in “JMX Notification Model” on page 54, a single
notification class can be used to send several notification types. All these types are
returned in the string array returned by this method.
Chapter 2 MBean Instrumentation 65

66 Java Management Extensions Specification, version 1.4 • November 9, 2006

3

Open MBeans

This chapter defines a way of instrumenting resources to which MBeans must
conform if they are to be “open” to the widest range of management applications.
These MBeans are called open MBeans.

In version 1.0 of the JMX specification, open MBeans were incompletely specified
and could not be implemented. In version 1.1, open MBeans were completely
specified but were optional in implementations. As of version 1.2, open MBeans are
a mandatory part of any JMX implementation.

3.1 Overview
The goal of open MBeans is to provide a mechanism that will allow management
applications and their human administrators to understand and use new managed
objects when they are discovered at runtime. These MBeans are called “open”
because they rely on small, predefined set of universal Java types and they advertise
their functionality.

Management applications and open MBeans are thus able to share and use
management data and operations at runtime without requiring the recompilation,
reassembly or expensive dynamic linking of management applications. In the same
way, human operators can intelligently use the newly discovered managed object
without having to consult additional documentation. Thus, open MBeans contribute
to the flexibility and scalability of management systems.

Open MBeans are particularly useful where the management application does not
necessarily have access to the Java classes of the agent. By using only standard, self
describing types, agents and management applications can interoperate without
having to share application-specific classes.

In addition, because the set of open MBean data-types is fixed, and does not include
self referential types or subclassing, open MBeans are accessible even when the
connection between the management application and the agent does not support
Java serialization. An important case of this is when the management application is
in a language other than Java.
Chapter 3 Open MBeans 67

To provide its own description to management applications, an open MBean must be
a dynamic MBean (see “Dynamic MBeans” on page 46). Beyond the DynamicMBean
interface, there is no corresponding “open” interface that must be implemented.
Instead, an MBean earns its “openness” by providing a descriptively rich metadata
and by using only certain predefined data types in its management interface.

An open MBean has attributes, operations, constructors and possibly notifications
like any other MBeans. It is a dynamic MBean with the same behavior and all the
same functionality. It also has the responsibility of providing its own description.
However, all the object types that the MBean manipulates, its attribute types, its
operation parameters and return types, and its constructor parameters, must belong
to the set defined in “Basic Data Types” on page 68 below. It is the developer’s
responsibility to implement the open MBean fully using these data types exclusively.

An MBean indicates whether it is open or not through the MBeanInfo object it
returns. Open MBeans return an OpenMBeanInfo object, a subclass of MBeanInfo.
Other component metadata classes are also subclassed and it is the developer’s
responsibility to describe the open MBean fully using the proper classes. If an
MBean is marked as open in this manner, it is a guarantee that a management
application compliant with the JMX specification can immediately make use of all
attributes and operations without requiring additional classes.

Because open MBeans are also dynamic MBeans and provide their own description,
the MBean server does not check the accuracy of the OpenMBeanInfo object (see
“Behavior of Dynamic MBeans” on page 49). The developer of an open MBean must
guarantee that the management interface relies on the basic data types and provides
a rich, human-readable description. As a rule, the description provided by the
various parts of an open MBean must be suitable for displaying to a user through a
Graphical User Interface (GUI).

3.2 Basic Data Types
In order for management applications to make use immediately of MBeans without
recompilation, reassembly, or dynamic linking, all MBean attributes, method return
values, and method arguments must be limited to a universal set of data types. This
set is called the basic data types for open MBeans.

In addition, any array of the basic data types, or an array of a primitive type (for
example byte[]) can be used in open MBeans. A special class,
javax.management.openmbean.ArrayType is used to represent the definition of
single or multi-dimensional arrays in open MBeans.
68 Java Management Extensions Specification, version 1.4 • November 9, 2006

The following list specifies all data types that are allowed as scalars or as any-
dimensional arrays in open MBeans:

All the wrapper classes for the primitive types are defined and implemented in all
Java virtual machines, as are the BigDecimal, BigInteger, and Date classes. The
ObjectName class is provided by the implementation of the JMX specification. The
CompositeData and TabularData interfaces are used to define aggregates of the
basic data types and provide a mechanism for expressing complex data objects in a
consistent manner.

Because CompositeData and TabularData objects are also basic data types, these
structures can contain other composite or tabular structures and have arbitrary
complexity. A TabularData object represents a homogeneous table of
CompositeData objects, a very common structure in the management domain. The
basic data types can therefore be used alone or in combination to satisfy most data
representation requirements.

Table 1:

• java.lang.Boolean • java.lang.Float

• java.lang.Byte • java.lang.Integer

• java.lang.Character • java.lang.Long

• java.lang.Double • java.lang.Short

• boolean[] • float[]

• byte[] • int[]

• char[] • long[]

• double[] • short[]

• java.lang.String • java.lang.Void (operation return
only)

• java.math.BigDecimal • java.math.BigInteger

• java.util.Date • javax.management.ObjectName

• javax.management.openmbean.CompositeData (interface)

• javax.management.openmbean.TabularData (interface)
Chapter 3 Open MBeans 69

3.2.1 Representing Complex Data
This section presents the two non-primitive types from this specification that are
included in the set of basic data types: CompositeData and TabularData. These
two types are specified as interfaces and are supported by an implementation.

These classes represent complex data types within open MBeans. Both kinds of
objects are used to create aggregate structures that are built up from the primitive
data types and these objects themselves. This means that any JMX agent or any JMX-
compliant management application can manipulate any open MBean and use the
arbitrarily complex structures it contains.

The two interfaces and implementations provide some semantic structure to build
aggregates from the basic data types. An implementation of the CompositeData
interface is equivalent to a hash table: values are retrieved by giving the name of the
desired data item. An instance of a TabularData object contains an array of
CompositeData instances that can be retrieved individually by giving a unique key.
A CompositeData object is immutable once instantiated; you cannot add an item to
it and you cannot change the value of an existing item. Tables are modifiable, and
rows can be added or removed from existing instances.

3.2.1.1 CompositeData Interface and Support Class

The CompositeDataSupport class defines an immutable map with an arbitrary
number of entries, called data items, that can be of any type. To comply with the
design patterns for open MBeans, all data items must have a type among the set of
basic data types. Because this set also includes CompositeData objects, complex
hierarchies can be represented by creating composite types that contain other
composite types.

When instantiating the CompositeDataSupport class, the user must provide the
description of the composite data object in a CompositeType object (see “Open
Type Descriptions” on page 71). Then, all the items provided through the constructor
must match this description of the composite type. Because the composite object is
immutable, all items must be provided at instantiation time, and therefore the
constructor can verify that the items match the description. The getOpenType
method will return this description so that other objects that interact with a
CompositeData object can know its structure.

A CompositeData object associates string keys with the values of each data item.
The methods of the class then search for and return data items based on their string
key. The enumeration of all data items is also possible.
70 Java Management Extensions Specification, version 1.4 • November 9, 2006

3.2.1.2 TabularData Interface and Support Class

The TabularDataSupport class defines a table structure with an arbitrary number
of rows that can be indexed by any number of columns. Each row is a
CompositeData object, but all rows must have the same composite data description
(CompositeType). The columns of the table are headed by the names of the data
items that make up the uniform CompositeData rows. The constructor and the
methods for adding rows verify that all rows are described by the same
CompositeData instance.

The index consists of a subset of the data items in the common composite data
structure, with the requirement that this subset must be a key that uniquely
identifies each row of the table. When the table is instantiated, or when a row is
added, the methods of this class must ensure that the index can uniquely identify all
rows.

Both the description of composite object that makes up each row and the list of items
that form the index are given by the table description returned by the getOpenType
method. This method defined in the TabularData interface returns the
TabularType object that describes the table (see “Open Type Descriptions” on
page 71).

The access methods of the TabularData class take an array of objects representing
a key value that indexes one row and returns the CompositeData instance that
makes up the designated row. A row of the table can also be removed by providing
its key value. All rows of the table can also be retrieved in an enumeration.

3.2.2 Open Type Descriptions
To manipulate the basic data types, management applications must be able to
identify them. Primitive types are given by their wrapper class names and arrays can
be represented in a standard way (see the API documentation generated by the
Javadoc tool for the getName method of the java.lang.Class class). However,
the complex data types need more structure than a flat string to represent their
contents. Therefore, open MBeans rely on description classes for all the basic data
types, including special structures for describing complex data.

These description classes are collectively known as the open types because they
describe the open MBean basic data types. The abstract OpenType class is the
superclass for the specialized open type classes for each category of basic data type.
It defines common methods for providing a name for the type, giving it a
description, and specifying the actual class that is being described. For simple types,
this information can be redundant, that is the name is the same as the class name.
For composite types, this information allows the user to name each of the items in a
Chapter 3 Open MBeans 71

complex data structure. The user should also give items a meaningful description for
other users who have to manipulate a composite data instance described by this
type.

The SimpleType, ArrayType, CompositeType, and TabularType classes extend
the OpenType class to accommodate the different sorts of basic data types.

The primitive types and the ObjectName class are described by instances of the
SimpleType class when they are not used in arrays. This class does not define any
more methods than its OpenType superclass, it only defines constant fields for each
of the primitive types (and for the ObjectName class). These fields are themselves
instances of the SimpleType class where the name, description and class name are
predefined. These constants avoid having to instantiate and provide the information
for the simple types every time their description is needed.

The ArrayType class provides a description of arrays of the basic data types. It
inherits its description of the type from the OpenType class and adds the
information about the number of its dimensions. The ArrayType class can also be
used to describe arrays of primitive type such as int[].

Finally, the open type classes for composite and tabular types provide the structure
for describing these aggregate types that are specific to open MBeans. These
structures are recursive, that is, they are built up from other open type instances. For
complex structures, the name and description inherited from OpenType provide
overall information about the structure.

A CompositeType instance gives the name, description and open type object for
each item in the data structure. When associated with a CompositeData object (see
“CompositeData Interface and Support Class” on page 70), the composite type
describes the open type for each item of the composite data. This allows any
manager that needs to handle the composite data instance to understand how to
handle each of its constituent items.

Similarly, the TabularType gives the description needed to manipulate a
TabularData object (see “TabularData Interface and Support Class” on page 71).
This includes the open type instance that describes the composite structure of each
row, and the list of item names in this structure that index the table.

3.3 Open MBean Metadata Classes
To distinguish open MBeans from other MBeans, JMX provides a set of metadata
classes that are used specifically to describe open MBeans. These classes inherit from
the MBeanInfo class and its components. The MBeanInfo classes are fully
described in “MBean Metadata Classes” on page 60. The present section discusses
only those components that are particular to open MBeans.
72 Java Management Extensions Specification, version 1.4 • November 9, 2006

As of version 1.3 of this specification, an alternative to using these classes is to add
certain fields to the descriptor in a MBeanAttributeInfo, MBeanOperationInfo,
or MBeanParameterInfo. The openType field specifies the Open Type for an
attribute, parameter, or operation return value. The defaultValue, minValue,
maxValue, and legalValues fields specify default and allowed values for
attributes, parameters, and operatino return values.

The following interfaces in the javax.management.openmbean package define the
management interface of an open MBean:

■ OpenMBeanInfo - lists the attributes, operations, constructors and notifications
■ OpenMBeanOperationInfo - describes the method of an operation
■ OpenMBeanConstructorInfo - describes a constructor
■ OpenMBeanParameterInfo - describes a method parameter
■ OpenMBeanAttributeInfo - describes an attribute

For each of the above interfaces, a support class provides an implementation and
directly extends the MBean metadata class, the name of which is given by removing
the Open prefix. Each of these classes describes a category of components in an open
MBean. However, open MBeans do not have a specific metadata object for
notifications: they use the MBeanNotificationInfo class described on page 65.

Through methods inherited from their superclasses, the open MBean metadata
objects describe the management interface of an open MBean. Beyond this
description, they provide new methods for returning the extra information required
of open MBeans and to return the description of the new aggregate data types. This
description is given by the appropriate subclass of the OpenType class.

Because open MBeans are a universal way of exchanging management functionality,
their description must be rich enough for an operator to understand and use their
functionality. All the open MBean metadata classes inherit the getDescription
method that must return a non-empty string. Each component of an open MBean
must use this method to provide a description of itself, for example, the side-effects
of an operation or the significance of an attribute. All descriptions must be suitable
for displaying to a user in a GUI.

The extra information that the open MBean model allows the developer to provide is
a list of legal values and one default value for all attributes and all operation
parameters. This information allows any user to manipulate a new or unfamiliar
open MBean intelligently.

3.3.1 OpenMBeanInfo Interface and Support Class
The OpenMBeanInfoSupport class provides the main information structure for
describing an open MBean. It implements the OpenMBeanInfo interface and
extends the MBeanInfo class. Thus, it inherits the methods for specifying the class
Chapter 3 Open MBeans 73

name and overall MBean description. It also inherits the method for returning an
array of notification metadata objects, as notifications are described in the same way
as for dynamic MBeans.

However, this class overrides all other methods that describe each category of
MBean component: attributes, operations and constructors. Their new
implementation still describes all components of a given category, but they now rely
on the open MBean metadata classes. Because each of the open MBean metadata
objects subclasses the original metadata object, each method returns an array of the
subclass type to describe an open MBean. The open MBean metadata classes for each
category of component are described in the following sections.

3.3.2 OpenMBeanOperationInfo and
OpenMBeanConstructorInfo Interfaces and
Support Classes
The OpenMBeanOperationInfoSupport and OpenMBeanConstructorInfo-
Support classes implement their corresponding interface and extend the
MBeanOperationInfo and MBeanConstructorInfo classes, respectively (see
their definition on page 63). The former describes an operation of an open MBean,
and the latter describes one of its constructors.

Both of these classes override the getSignature method of their respective
superclass, again only to describe their parameters with open MBean metadata
objects. The getSignature method nominally returns an array of
MBeanParameterInfo objects, but both implementations actually return an array
of OpenMBeanParameterInfo instances whose class is described in the next
section.

The OpenMBeanOperationInfo interface specifies the getReturnOpenType
method. The open MBean metadata use this method to provide the description of
the open type class that is actually returned by the method. For example, if the
return type is actually a complex data object, this method returns either a
CompositeType or TabularType instance that describes the data structure of the
return type. When the return type is one of the Java primitive types, this information
is redundant with the result of the getReturnType method. However, by returning
the appropriate SimpleType instance, this method allows managers to treat all the
open types homogeneously.

Only the OpenMBeanOperationInfo interface specifies the getImpact method,
and in the case of open MBean, it cannot return UNKNOWN. This means that all
operations must be identified as ACTION, INFO, or ACTION_INFO when instantiating
their metadata objects. It is the open MBean developer’s responsibility to assign the
impact of each operation correctly. The getImpact method provides information to
the user about an operation’s side effects, as a complement to its self description.
74 Java Management Extensions Specification, version 1.4 • November 9, 2006

3.3.3 OpenMBeanParameterInfo and
OpenMBeanAttributeInfo Interfaces and
Support Classes
The OpenMBeanParameterInfoSupport and OpenMBeanAttributeInfo-
Support classes implement their corresponding interface extend the
MBeanParameterInfo and MBeanAttributeInfo classes, respectively (see their
definition on page 64 and page 63). The former describes one parameter of an
operation or constructor, and the latter describes an attribute of an open MBean.

Because these classes are specific to open MBeans, all parameter and attribute types
returned by the inherited getType method are necessarily one of the basic data
types. To describe the complex data types, both interfaces also specify the
getOpenType method, that returns the OpenType subclass that describes the
parameter or attribute. This allows a management application to handle all open
types, including complex data structures that must be described by ArrayType,
CompositeType or TabularType instances.

The open MBean attribute metadata inherits isReadable, isWritable, and isIs
for defining attribute access. None of these methods are overridden and therefore
have the same functionality as in the superclass.

Both classes also define the getDefaultValue and getLegalValues methods to
provide additional information about the parameter or attribute. These methods
have exactly the same functionality in each class.

The getDefaultValue method is used to indicate an optional default value for a
given parameter or attribute. At runtime, it returns an Object that must be
assignment compatible with the type named by the getType method of the same
parameter or attribute description object. The default value can be used to initialize
an attribute or to provide a parameter value when the operation’s caller has no
particular preference for some parameter. It can be null.

The getLegalValues method is used to return an optional list of permissible
values for a given parameter or attribute. It returns an Object array, the elements of
which must be assignment compatible with the type named by the getType method
of the same parameter or attribute description object. The legal values can be used to
provide the user with a list of choices when editing writable attributes or filling in
operation parameters. For readable attributes, this method provides a list of legal
values that can be expected. If a set of legal values is supplied, then the methods that
implement the DynamicMBean interface must verify that any value written to the
attribute or used for this parameter is a member of this set. If getLegalValues
returns null, then all assignment compatible values are legal.
Chapter 3 Open MBeans 75

3.4 Summary of Open MBean Requirements
To summarize, an open MBean must possess the following properties:

■ It must fully implement the DynamicMBean interface.

■ All attributes, method arguments, and non-void return values must be objects in
the set of basic data types for open MBeans, described by an instance of the
appropriate OpenType subclass.

■ The implementation of the getMBeanInfo method must return an instance of a
class that implements the OpenMBeanInfo interface. This object must fully
describes the MBean components using the open MBean metadata objects.

■ All the following methods must return valid, meaningful data (non-empty
strings) suitable for display to users:

■ OpenMBeanInfo.getDescription
■ OpenMBeanOperationInfo.getDescription
■ OpenMBeanConstructorInfo.getDescription
■ OpenMBeanParameterInfo.getDescription
■ OpenMBeanAttributeInfo.getDescription
■ MBeanNotificationInfo.getDescription

■ Instances of OpenMBeanOperationInfo.getImpact must return one of the
constant values ACTION, INFO, or ACTION_INFO. The value UNKNOWN cannot be
used.

Note – As with other dynamic MBeans, the MBean server does not verify the proper
usage of the open MBean metadata classes. It is up to the MBean developer to ensure
that all metadata for composite data and tabular data provide coherent default
values, legal values and indexes.
The developer must also ensure that all MBean components are adequately
described in a meaningful way for the intended users. This qualitative requirement
cannot be programmatically enforced.
76 Java Management Extensions Specification, version 1.4 • November 9, 2006

4

Model MBeans

A model MBean is a generic, configurable MBean that anyone can use to instrument
almost any resource rapidly. Model MBeans are dynamic MBeans that also
implement the interfaces specified in this chapter. These interfaces define structures
that, when implemented, provide an instantiable MBean with default and
configurable behavior.

Further, the Java Management extensions specify that a model MBean
implementation must be supplied as part of all conforming JMX agents. This means
that resources, services and applications can rely on the presence of a generic
template for creating manageable objects on-the-fly. Users only need to instantiate a
model MBean, configure the exposure of the default behavior, and register it in a
JMX agent. This significantly reduces the programming burden for gaining
manageability. Developers can instrument their resources according to the JMX
specification in as little as three to five lines of code.

Instrumentation with model MBeans is universal because instrumentors are
guaranteed that there will be a model MBean appropriately adapted to all
environments that implement the Java Management extensions.

4.1 Overview
The model MBean specification is a set of interfaces that provides a management
template for managed resources. It is also a set of concrete classes provided in
conjunction with the JMX agent. The JMX agent must provide an implementation
class named javax.management.modelmbean.RequiredModelMBean. This
model MBean implementation is intended to provide ease of use and extensive
default management behavior for the instrumentation.

The MBean server is a repository and a factory for the model MBean, so the
managed resource obtains its model MBean object from the JMX agent. Managed
resource developers do not have to supply their own implementation of this class.
Instead, the resource is programmed to create and configure its model MBean at
runtime, dynamically instrumenting the management interface it needs to expose.
Chapter 4 Model MBeans 77

Resources to be managed add custom attributes, operations, and notifications to the
basic model MBean object by interfacing with the JMX agent and model MBeans that
represent the resource. There can be one or more instances of a model MBean for
each instance of a resource (application, device, and so forth) to be managed in the
system. The model MBean is a dynamic MBean, meaning that it implements the
DynamicMBean interface. As such, the JMX agent delegates all management
operations to the model MBean instances.

The model MBean instances are created and maintained by the JMX agent, like other
MBean instances. The managed resource instantiating the model MBean does not
have to be aware of the specifics of the implementation of the model MBean.
Implementation differences between environments include the JVM, persistence,
transactional behavior, caching, scalability, throughput, location transparency,
remoteability, and so on. The RequiredModelMBean implementation will always be
available, but there can be other implementations of the model MBean available,
depending on the needs of the environment in which the JMX agent is installed.

For example, a JMX agent running on a Java 2 Platform, Micro Edition (J2ME™)
environment can provide a RequiredModelMBean with no persistence or
remoteability. A JMX agent running in an application server’s JVM supporting Java
2 Platform, Enterprise Edition (J2EE™) technologies can provide a
RequiredModelMBean that handles persistence, transactions, remote access,
location transparency, and security. In either case, the instrumentation programmer’s
task is the same. MBean developers do not have to provide different versions of their
MBeans for different Java environments, nor do they have to program to a specific
Java environment.

The model MBean, in cooperation with its JMX agent, will be implemented to
support its own persistence, transactionality, location transparency, and locatability,
as applicable in its environment. Instrumentation developers do not need to develop
MBeans with their own transactional and persistence characteristics. They merely
instantiate model MBeans in the JMX agent and trust that the model MBean
implementation is appropriate for the environment in which the JMX agent currently
exists.

Any implementation of the model MBean must implement the ModelMBean
interface that extends the DynamicMBean, PersistentMBean and
ModelMBeanNotificationBroadcaster interfaces. The model MBean must
expose its metadata in a ModelMBeanInfoSupport object that extends MBeanInfo
and implements the ModelMBeanInfo interface. A model MBean instance sends
attribute change notifications and generic notifications for which management
applications can listen. The model MBean has both a default constructor and a
constructor that takes a ModelMBeanInfo instance.

The model MBean information includes a descriptor for each attribute, constructor,
operation, and notification in its management interface. A descriptor is an essential
component of the model MBean. It contains dynamic, extensible, and configurable
behavior information for each MBean component. This includes, but is not limited
78 Java Management Extensions Specification, version 1.4 • November 9, 2006

to, logging policy, notification responses, persistence policy, value caching policy.
Most importantly, the descriptors of a model MBean provide the mapping between
the attributes and operations in the management interface and the actual methods
that need to be called to satisfy the get, set, or invoke request.

As of version 1.3 of this specification, descriptors are present in all MBean types, not
just Model MBeans.

Allowing methods to be associated with the attribute allows for dynamic, runtime
delegation. For example, a getAttribute("myApplStatus") call can actually
invoke the myAppl.StatusChecker method on another object that is part of the
managed resource. The object myAppl can be in this JVM, or it can be in another
JVM on this host or another host, depending on how the model MBean has been
configured through its descriptors. In this way, distributed, dynamic, and
configurable model MBeans are supported.

The ModelMBean interface extends the DynamicMBean interface. The
implementation of the DynamicMBean methods uses the policy in the descriptors to
guide how the requests are satisfied. How to do this is described in greater detail in
“DynamicMBean Implementation” on page 93.

The ModelMBean interface also extends the PersistentMBean interface specific to
model MBeans. The load and store methods of this interface are responsible for
analyzing and complying with the persistence policy in the descriptors. The
persistence policy can be specified at both the MBean level and at the attribute level.
These methods are called when appropriate by the model MBean implementation
itself and not necessarily by the managed resource or a management application.
The implementation can choose to not support any actual, direct persistence, in
which case these methods will do nothing. However, if persistence is not
implemented, an exception will be thrown.

4.1.1 Generic Notifications
The ModelMBean interface extends the ModelMBeanNotificationBroadcaster
interface. This interface defines a sendNotification method that sends any
Notification object to all registered listeners. It also overloads the
sendNotification method to accept a text message and wraps it in a notification
called Generic of type jmx.modelmbean.generic. This makes it easier for
managed resources to signal important events as well as informational events.
Finally, this interface also provides methods for sending the attribute change
notifications for which the model MBean’s implementation is responsible.
Chapter 4 Model MBeans 79

4.1.2 Interaction with Managed Resources
When a managed resource is instrumented through a model MBean, it uses the
ModelMBeanInfo interface to expose its intended management interface. At
initialization, the managed resource obtains access to the JMX agent through the
static findMBeanServer method of the MBeanServerFactory class (see “MBean
Server Factory” on page 127). The managed resource will then create or find and
reference one or more instances of the model MBean using the instantiate,
createMBean, getObjectInstance, or queryMBeans methods. The predefined
attributes that are part of the model MBean’s name are meant to establish a unique
managed resource (MBean) identity.

The managed resource then configures the model MBean object with its management
interface. This includes the custom attributes, operations, and notifications that it
needs management applications to access through the JMX agent. The resource
specific information can thus be dynamically determined at execution time. The
managed resource sets and updates any type of data as an attribute in the model
MBean whenever necessary with a single setAttribute method invocation. The
attribute is now published for use by any management system.

The model MBean has an internal caching mechanism for storing attribute values
that are provided by the management resource. Maintaining values of fairly static
attributes in the model MBean allows it to return that value without calling the
managed resource. The resource can also set its model MBean to disable caching,
meaning that the resource will be called whenever an attribute is accessed. In this
case, the managed resource is invoked and it returns the attribute values to the
model MBean. In turn, the model MBean returns these values to the MBean server,
that returns them to the request originator, usually a management application.
Because the model MBean can be persistent and is locatable, critical but transient
managed resources can retain any required counters or state information within the
JMX agent. Likewise, if persistence is supported, the managed resource’s data
survives if the JMX agent is recycled.

The model MBean implements the NotificationBroadcaster interface. One
sendNotification API call on the model MBean by the managed resource sends
notifications to all “interested” management systems. Predefined or unique
notifications can be sent for any significant event defined by a managed resource or
management system. These notifications must be documented in the
ModelMBeanNotificationInfo object. Notifications are typically sent by a
managed resource when operator intervention is required or the application’s state
is unacceptable. Notifications can also be sent based on MBean life cycle, attribute
changes, or for informative reasons. The model MBean sends attribute change
notifications whenever a custom attribute is set through the model MBean. The
managed resource can capture change requests initiated by the management system
by listening for the attribute change notification as well. The managed resource can
then choose to implement the attribute change from the model MBean into the
resource.
80 Java Management Extensions Specification, version 1.4 • November 9, 2006

4.1.3 Interaction with Management Applications
Management applications access model MBeans in the same way as they access
dynamic or standard MBeans. However, if the manager understands model MBeans
it will be able to get additional information out of the descriptors that are part of the
model MBean. This additional metadata makes it easier for an arbitrary
management console to understand and treat managed resources that are
instrumented as model MBeans. As with any MBean, the management application
will “find” the JMX agent and model MBean objects through the methods of the
MBean server.

The manager can then interact with the model MBean through the JMX agent. It
finds the available attributes and operations through the MBeanInfo provided by
the managed resource. For model MBeans, the manager finds out behavior details
about supported attributes, operations, and notifications through the
ModelMBeanInfo and Descriptor interfaces. Like any other MBean, attributes are
accessed through the getter and setter methods of the MBean server, and operations
through its invoke method. Because the model MBean is a notification broadcaster,
management notification can be added as listeners for any notifications or attribute
change notifications from the managed resource.

4.2 Model MBean Metadata Classes
The management interface of a model MBean is described by its ModelMBeanInfo
instance. The getMBeanInfo method of a model MBean (specified by the
DynamicMBean interface) must return an extension of MBeanInfo that also
supports the ModelMBeanInfo interface. The ModelMBeanInfo interface returns
arrays of ModelMBeanAttributeInfo, ModelMBeanOperationInfo,
ModelMBeanConstructorInfo, and ModelMBeanNotificationInfo instances.
These classes extend the MBean metadata classes of the same name without the
Model prefix.

The model MBean extensions of the MBean metadata classes implement the
DescriptorAccess interface. This allows replacing the Descriptor for each
attribute, constructor, operation, and notification in the management interface. The
descriptor is accessed through the metadata object for each component.

4.2.1 Descriptor Interface
A descriptor defines behavioral and runtime metadata that is specific to model
MBeans. The descriptor data is kept as a set of fields, each consisting of a name-
value pair. The Descriptor interface must be implemented by the class
representing a descriptor. The DescriptorAccess interface defines how to get and
set the Descriptor from within the model MBean metadata classes. The
Chapter 4 Model MBeans 81

Descriptor interface describes how to interact with a descriptor instance returned
by the DescriptorAccess interface. See “Predefined Descriptor Fields” on
page 102 for a discussion of the valid field names and values that must be
supported.

The JMX specification includes two standard implementations of this interface called
ImmutableDescriptor and DescriptorSupport. Most applications will use one
of these rather than implementing the Descriptor interface themselves.

Descriptor

clone(): Object
getFieldNames(): String[]
getFieldValue(fieldName: String): Object
getFieldValues(fieldNames: String[]): Object[]
getFields(): String[]
setField(fieldName: String, fieldValue: Object)
setFields(fieldNames: String[], fieldValues: Object[])
removeField(fieldName: String)
isValid(): boolean

«Interface»
82 Java Management Extensions Specification, version 1.4 • November 9, 2006

The meaning of these methods is explained in the API documentation generated by
the Javadoc tool, that accompanies this specification. A brief summary is presented
in the following table.

4.2.2 DescriptorAccess Interface
This interface must be implemented by the ModelMBeanAttributeInfo,
ModelMBeanConstructorInfo, ModelMBeanOperationInfo, and
ModelMBeanNotification classes.

TABLE 4-1 Descriptor Interface Methods

Method Description

getFieldNames Returns all the field names of the descriptor in a String array

getFieldValue(s) Finds the given field name(s) in a descriptor and returns its
(their) value.

setField(s) Finds the given field name(s) in a descriptor and sets it
(them) to the provided value.

getFields Returns the descriptor information as an array of strings,
each with the fieldName=fieldValue format. If the field
value is null then the field is defined as fieldName=.

removeFields Removes a descriptor field from the descriptor.

clone Returns a new Descriptor instance which is a duplicate of
the descriptor.

isValid Returns true if this descriptor is valid for its
descriptorType field.

toString Returns a human-readable string containing the descriptor
information.

getDescriptor(): Descriptor
setDescriptor(inDescr: Descriptor)

DescriptorAccess
«Interface»
Chapter 4 Model MBeans 83

The meaning of these methods is explained in the API documentation generated by
the Javadoc tool, that accompanies this specification. A brief summary is presented
in the following table.

4.2.3 ModelMBeanInfo Interface
The ModelMBeanInfo interface was originally defined to allow the association of a
descriptor with the model MBean, attribute, constructor, operation, and notification
metadata classes. This descriptor is used to define behavioral characteristics of the
model MBean instance. Now that descriptors are present in all types of MBean, the
principal interest of the ModelMBeanInfo interface is that it adds methods to
retrieve particular kinds of descriptors from the contained metadata objects. When
the getMBeanInfo method of the DynamicMBean interface is invoked on a model
MBean, it must return an instance of a class that implements the ModelMBeanInfo
interface.

The JMX specification includes a standard implementation of this interface called
ModelMBeanInfoSupport. Most applications will use this rather than
implementing the ModelMBeanInfo interface themselves.

TABLE 4-2 DescriptorAccess Interface Methods

Method Description

getDescriptor Returns a copy of the descriptor associated with the
metadata class

setDescriptor Replaces the descriptor associated with the metadata class
with a copy of the one passed in. This is a full replacement,
not a merge.
84 Java Management Extensions Specification, version 1.4 • November 9, 2006

4.2.4 ModelMBeanInfo Implementation
The requirements of the ModelMBeanInfo implementation are the following:

■ It must extend the MBeanInfo class.

■ It must implement the ModelMBeanInfo interface.

■ Its getAttributes, getConstructors, getOperations, and
getNotifications methods must return ModelMBeanAttributeInfo,
ModelMBeanConstructorInfo, ModelMBeanOperationInfo, and
ModelMBeanNotificationInfo arrays, respectively.

■ The ModelMBeanAttributeInfo, ModelMBeanConstructorInfo,
ModelMBeanOperationInfo, and ModelMBeanNotificationInfo classes it
returns must extend their respective MBeanAttributeInfo,
MBeanConstructorInfo, MBeanOperationInfo, and
MBeanNotificationInfo classes.

■ The ModelMBeanAttributeInfo, ModelMBeanConstructorInfo,
ModelMBeanOperationInfo, and ModelMBeanNotificationInfo classes it
returns must implement the DescriptorAccess interface. This interface
associates a configurable Descriptor object with the metadata class. The
descriptor allows the definition of behavioral policies for the MBean component.

clone(): Object
getMBeanDescriptor(): Descriptor
setMBeanDescriptor(inDescriptor: Descriptor)
getDescriptor(inDescriptorName: String, inDescriptorType: String): Descriptor
getDescriptors (inDescriptorType: String): Descriptor[]
setDescriptor(inDescriptor: Descriptor, inDescriptorType: String)
setDescriptors(inDescriptors: Descriptor[])
getAttribute(inAttrName: String): ModelMBeanAttributeInfo
getNotification(inNotifName: String): ModelMBeanNotificationInfo
getOperation(inOperName: String): ModelMBeanOperationInfo
getAttributes(): MBeanAttributeInfo[]
getNotifications(): MBeanNotificationInfo[]
getOperations(): MBeanOperationInfo[]
getConstructors(): MBeanConstructorInfo[]
getClassName(): String
getDescription(): String

ModelMBeanInfo
«Interface»
Chapter 4 Model MBeans 85

■ It is recommended that it implement the following constructors, though
implementations of the JMX specification do not have to check this:

TABLE 4-3 ModelMBeanInfo Constructors

Constructor Description

ModelMBeanInfo The default constructor that constructs
a ModelMBeanInfo with empty
component arrays and a default MBean
descriptor.

ModelMBeanInfo (with
ModelMBeanInfo)

Constructs a ModelMBeanInfo that is
a duplicate of the one passed in.

ModelMBeanInfo (with className,
description,
ModelMBeanAttributeInfo[],
ModelMBeanConstructorInfo[],
ModelMBeanOperationInfo[],
ModelMBeanNotificationInfo[])

Creates a ModelMBeanInfo with the
provided information, but the MBean
descriptor is a default one constructed
by the ModelMBeanInfo
implementation. The constructed
MBean descriptor must not be null. It
contains at least the name and
descriptorType fields. The name
should be the MBean class, as returned
by the getClassName method
inherited from MBeanInfo.

ModelMBeanInfo (with className,
description,
ModelMBeanAttributeInfo[],
ModelMBeanConstructorInfo[],
ModelMBeanOperationInfo[],
ModelMBeanNotificationInfo[],
MBeanDescriptor)

Creates a ModelMBeanInfo with the
provided information. The MBean
descriptor is verified: if it is not valid,
an exception will be thrown and a
default MBean descriptor will be set.
86 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ It must implement the following model MBean-specific methods:

■ It must implement the following methods specified in the ModelMBeanInfo
interface but identical to those of the MBeanInfo class (see “MBeanInfo Class”
on page 61):

TABLE 4-4 ModelMBeanInfo Methods

Method Description

getMBeanDescriptor Returns the MBean descriptor. This descriptor
contains default configuration and policies that
apply to the whole MBean and to its components by
default. The descriptorType field will be
“MBean”.

setMBeanDescriptor Sets the MBean descriptor. This descriptor contains
MBean-wide default configuration and policies. This
is a full replacement, no merging of fields is done.
The descriptor is verified before it is set: if it is not
valid, the change will not occur.

getDescriptor(s) Returns a descriptor from a model MBean metadata
object by name and descriptor type (as found in the
descriptorType field on the descriptor).

setDescriptor(s) Sets a descriptor in the model MBean in a model
MBean metadata object by name and descriptor type
(found in the descriptorType field on the
descriptor). Replaces the descriptor in its entirety.

getAttribute Returns a ModelMBeanAttributeInfo by name.

getOperation Returns a ModelMBeanOperationInfo by name.

getNotification Returns a ModelMBeanNotificationInfo by
name.

TABLE 4-5 ModelMBeanInfo Interface Method

Method Description

getAttributes Returns an array of all
ModelMBeanAttributeInfo objects.

getNotifications Returns an array of all
ModelMBeanNotificationInfo objects.

getOperations Returns an array of all ModeMBeanOperationInfo
objects.
Chapter 4 Model MBeans 87

4.2.5 ModelMBeanAttributeInfo Implementation

The ModelMBeanAttributeInfo must extend the MBeanAttributeInfo class
and implement the DescriptorAccess interface. The DescriptorAccess
interface adds the ability to replace the Descriptor to the base functionality from
the MBeanAttributeInfo class.

This descriptor must have a name field that matches the name given by the getName
method of the corresponding metadata object. It must have a descriptorType
with the value “attribute”. It can also contain the following defined fields:
value, default, displayName, getMethod, setMethod, protocolMap,
persistPolicy, persistPeriod, currencyTimeLimit,
lastUpdatedTimeStamp, visibility, and presentationString. See
“Attribute Descriptor Fields” on page 104 for a detailed description of each of these
fields.

The ModelMBeanAttributeInfo class must have the following constructors:

■ A constructor accepting a name, description, getter Method, and setter Method
that sets the descriptor to a default value with at least the name and
descriptorType fields set.

■ A constructor accepting a name, description, getter Method, setter Method, and a
Descriptor instance that has at least its name and descriptorType fields set.

■ A constructor accepting a name, type, description, isReadable, isWritable,
and isIs boolean parameters that sets the descriptor to a default value with at
least the name and descriptorType fields set.

■ A constructor accepting a name, description, isReadable, isWritable, and
isIs boolean parameters, and a Descriptor instance that has at least its name
and descriptorType fields set.

■ A copy constructor accepting a ModelMBeanAttributeInfo object.

getConstructors Returns an array of all
ModelMBeanConstructorInfo objects.

getClassName Returns the name of the managed resource class.

getDescription Returns the description of this model MBean
instance.

TABLE 4-5 ModelMBeanInfo Interface Method

Method Description
88 Java Management Extensions Specification, version 1.4 • November 9, 2006

4.2.6 ModelMBeanConstructorInfo Implementation

The ModelMBeanConstructorInfo must extend the MBeanConstructorInfo
class and implement the DescriptorAccess interface. The DescriptorAccess
interface adds the ability to replace the Descriptor instance to the base
functionality of the MBeanConstructorInfo class.

This descriptor must have a name field that matches the name given by the getName
method of the corresponding metadata object. It must have a descriptorType
with the value “operation” and a role of “constructor”. It can also contain the
defined fields displayName, visibility, and presentationString. See
“Operation Descriptor Fields” on page 105 for a detailed description of each of these
fields.

The ModelMBeanConstructorInfo class must have the following constructors:

■ A constructor accepting a description and Constructor object that sets the
descriptor to a default value with at least name and descriptorType fields set.

■ A constructor accepting a description, a Constructor object, and a Descriptor
instance that has at least the name and descriptorType fields set.

■ A constructor accepting a name, a description, and an MBeanParameterInfo
array that sets the descriptor to a default value with at least the name and
descriptorType fields set.

■ A constructor accepting a name, description, MBeanParameterInfo array, and a
Descriptor instance that has at least its name and descriptorType fields set.

■ A copy constructor accepting a ModelMBeanConstructorInfo object.

4.2.7 ModelMBeanOperationInfo Implementation

The ModelMBeanOperationInfo must extend the MBeanOperationInfo class
and implement the DescriptorAccess interface. The DescriptorAccess
interface adds the ability to replace the Descriptor instance to the base
functionality of the MBeanOperationInfo class.

This descriptor must have a name field that matches the name given by the getName
method of the corresponding metadata object. It must have a descriptorType
with the value “operation”. If the role field is present, it must have a value of
“operation”, “getter”, or “setter”. It can also contain the defined fields
displayName, targetObject, targetType, value, currencyTimeLimit,
lastUpdatedTimeStamp, visibility, and presentationString. See
“Operation Descriptor Fields” on page 105 for a detailed description of each of these
fields.

The ModelMBeanOperationInfo class must have the following constructors:
Chapter 4 Model MBeans 89

■ A constructor accepting a description and a Method object that sets the descriptor
to a default value with at least its name and descriptorType fields set.

■ A constructor accepting a description, a Method object, and a Descriptor
instance that at least has its name and descriptorType fields set.

■ A constructor accepting a name, description, MBeanParameterInfo array, type,
and an impact that sets the descriptor to a default value with at least the name
and descriptorType fields set.

■ A constructor accepting a name, description, MBeanParameterInfo array, type,
impact and a Descriptor instance that has at least its name and
descriptorType fields set.

■ A copy constructor accepting a ModelMBeanOperationInfo object.

4.2.8 ModelMBeanNotificationInfo Implementation

The ModelMBeanNotificationInfo must extend the MBeanNotificationInfo
class and implement the DescriptorAccess interface. The DescriptorAccess
interface adds the ability to replace the Descriptor instance to the base
functionality of the MBeanNotificationInfo class.

This descriptor must have a name field that matches the name given by the getName
method of the corresponding metadata object. It must have a descriptorType
with the value “notification”. It can also contain the defined fields
displayName, severity, messageID, log, logfile, visibility, and
presentationString. See “Notification Descriptor Fields” on page 106 for a
detailed description of each of these fields.

The ModelMBeanNotificationInfo class must have the following constructors:

■ A constructor accepting an array of notification types, a name and a description
that sets the descriptor to a default value with at least its name and
descriptorType fields set.

■ A constructor accepting an array of notification types, a name, a description, and
a Descriptor instance that has at least its name and descriptorType fields
set.

■ A copy constructor accepting a ModelMBeanNotificationInfo.

4.3 Model MBean Specification
All JMX agents must have an implementation class of a model MBean called
javax.management.modelmbean.RequiredModelMBean. The
RequiredModelMBean and any other compliant model MBean must comply with
the following requirements:
90 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ Implement the ModelMBean interface that extends the following interfaces:

■ DynamicMBean

■ PersistentMBean

■ ModelMBeanNotificationBroadcaster

■ Return an object from the getMBeanInfo method of the DynamicMBean
interface that:

■ Implements the ModelMBeanInfo interface

■ Extends MBeanInfo

■ Returns ModelMBeanAttributeInfo objects from the getAttributes
method

■ Returns ModelMBeanConstructorInfo objects from the getConstructors
method

■ Returns ModelMBeanOperationInfo objects from the getOperations
method

■ Returns ModelMBeanNotificationInfo objects from the
getNotifications method

■ Have the following constructors:

■ A default constructor having an empty parameter list

■ A constructor accepting a ModelMBeanInfo

4.3.1 ModelMBean Interface
Java technology-based resources that need to be manageable instantiate the
RequiredModelMBean or another compliant model MBean using the MBean
server's createMBean method, passing as a parameter the ModelMBeanInfo
(including its descriptors) for the ModelMBean instance. The attributes and
operations exposed via the ModelMBeanInfo for the model MBean are accessible to
other MBeans, and to management applications. Through the ModelMBeanInfo
descriptors, values and methods in the managed application can be defined and
mapped to attributes and operations of the model MBean. This mapping can be
defined during development in a file, or dynamically and programmatically at
runtime.

The ModelMBean interface extends DynamicMBean, PersistentMBean, and
ModelMBeanNotificationBroadcaster and its unique methods are defined by
the following UML diagram.
Chapter 4 Model MBeans 91

4.3.2 ModelMBean Implementation
The following sections describe how the ModelMBean interface must be
implemented by compliant model MBeans and in particular how it is implemented
by the RequiredModelMBean class. This combines both the meaning of the
methods and the implementation details.

setModelMBeanInfo (with ModelMBeanInfo)

This method creates the model MBean to reflect the given ModelMBeanInfo
interface. Sets the ModelMBeanInfo object for the model MBean to the provided
ModelMBeanInfo object. Initializes a ModelMBean instance using the
ModelMBeanInfo passed in.

The model MBean must be instantiated, but not yet registered with the MBean
server. Only after the model MBean's ModelMBeanInfo and its Descriptor objects
are customized, should the model MBean be registered with the MBean server.

setManagedResource (with ManagedResourceObject, Type)

This method sets the managed resource attribute of the model MBean to the
supplied object. Sets the instance of the object against which to execute all
operations in this model MBean management interface (metadata and descriptors).
The String field encodes the target object type of reference for the managed
resource. This can be:

ObjectReference, Handle, IOR, EJBHandle, or RMIReference. An
implementation must support ObjectReference, but need not support the other
types. It can also define implementation-specific types.

If the MBean server cannot process the given target object type, this method will
throw an InvalidTargetTypeException.If the targetObject field of an
operation’s descriptor is set and is valid, then it overrides the managed resource
setting for that operation’s invocation.

ModelMBean
«Interface»

setModelMBeanInfo(mbi: MBeanInfo)
setManagedResource(mr: Object, mr_type: String)
92 Java Management Extensions Specification, version 1.4 • November 9, 2006

4.3.3 DynamicMBean Implementation
The DynamicMBean interface defines the following methods:

■ getMBeanInfo
■ getAttribute and getAttributes
■ setAttribute and setAttributes
■ invoke

The description of these methods is given in “DynamicMBean Interface” on page 47.
Here, we define how the model MBean implementation expresses the functionality
of each method of the interface.

getMBeanInfo

This method returns the ModelMBeanInfo object that implements the
ModelMBeanInfo interface for the ModelMBean. Valid attributes, constructors,
operations, and notifications defined by the managed resource can be retrieved from
the ModelMBeanInfo with the getOperations, getConstructors,
getAttributes, and getNotifications methods.

The ModelMBeanInfo instance returns ModelMBeanOperationInfo,
ModelMBeanConstructorInfo, ModelMBeanAttributeInfo, and
ModelMBeanNotificationInfo arrays, respectively. These classes extend
MBeanOperationInfo, MBeanConstructorInfo, MBeanAttributeInfo, and
MBeanNotificationInfo, respectively. These extensions must implement the
DescriptorAccess interface that sets and returns the descriptor associated with
each of these metadata classes. The ModelMBeanInfo also maintains a descriptor
for the model MBean, referred to as the MBean descriptor.

getAttribute and getAttributes

These methods are invoked to get attribute information from this instance of the
ModelMBean implementation synchronously. Model MBeans that support attribute
value caching will perform cache checking and refreshing in this method. Model
MBean caching policy is set and values are cached in the descriptor for each
attribute. If the model MBean supports the getMethod field of the descriptor
(assignment of an operation to be invoked when a get is requested for an attribute)
then this method will invoke that operation and return its results as the attribute
value. Otherwise, if a value field is defined in the descriptor and it is not “stale” as
described below, its contents are returned. Otherwise, if no value or getMethod
descriptor fields are defined the default field is returned. If no default value is
defined then null will be returned.
Chapter 4 Model MBeans 93

If caching is supported, then the following algorithm will be used. The model
MBean will check for attribute value staleness. Staleness is determined from the
currencyTimeLimit and lastUpdatedTime fields in the descriptor for the
attribute in its ModelMBeanAttributeInfo object. If currencyTimeLimit is 0,
then the value will never be stale. If currencyTimeLimit is -1, then the value will
always be stale.

If the value in the model MBean is set and not stale, then it will return this value
without invoking any methods on the managed resource. If the attribute value is
stale, then the model MBean will invoke the operation defined in the getMethod
field of the attribute descriptor. The returned value from this invocation will be
stored in the model MBean as the current value. The lastUpdatedTime will be
reset to the current time. If a getMethod is not defined and the value is stale, then
the default from the Descriptor for the attribute will be returned.

setAttribute and setAttributes

These methods are invoked to set information for an attribute of this instance of the
ModelMBean implementation synchronously. The model MBean will invoke the
operation defined in the setMethod field of the attribute descriptor. If no
setMethod operation is defined then only the value field of the attribute’s
descriptor will be set. Invocation of this method where the new attribute value does
not match the current attribute value causes an AttributeChangeNotification
to be generated.

If caching is supported by the model MBean, the new attribute value will be cached
in the value field of the descriptor if the currencyTimeLimit field of the
descriptor is not -1. The lastUpdatedTime field will be set whenever the value
field is set.

invoke

The invoke method will execute the operation name passed in with the parameters
passed in, according to the DynamicMBean interface. The method will be invoked on
the model MBean’s managed resource (as set by the setManagedResource
method). If the targetObject field of the descriptor is set and the value of the
targetType field is valid for the implementation, then the method will be invoked
on the value of the targetObject instead. Valid values for targetType include,
but are not limited to, ObjectReference, Handle, IOR, EJBHandle, and
RMIReference.

If operation caching is supported, the response from the operation will be cached in
the value and lastUpdatedTimeStamp fields of the operation’s descriptor if the
currencyTimeLimit field in the operation’s descriptor is not -1. If invoke is
executed for a method and the value field does not contain a stale value then it will
94 Java Management Extensions Specification, version 1.4 • November 9, 2006

be returned and the associated method will not actually be executed. This is true
even if the invoke parameters are not the same as the parameters that produced the
cached value. If this is not appropriate for the operation, caching must not be used.

The RequiredModelMBean class extends these semantics. If the method name and
signature supplied to invoke correspond to a public method of the
RequiredModelMBean class itself, and that method is listed in the MBeanInfo,
then that method is invoked. Otherwise, the behaviour is as explained above.

4.3.4 PersistentMBean Interface
This interface is implemented by all model MBeans. If the model MBean is not
persistent or not responsible for its own persistence, then these methods might do
nothing. If the model MBean implementation does not support persistence, then
these methods will throw an exception. The methods of the PersistentMBean
interface are not intended to be called directly by management applications. Rather,
they are called by the required model MBean to implement the persistence policy
advertised by the MBean descriptor, to the level that it is supported by the JMX
agent’s runtime environment.

■ load

Locates the MBean in a persistent store and primes this instance of the MBean
with the stored values. Any currently set values are overwritten. This should only
be called by an implementation of the ModelMBean interface.

■ store

Writes the MBean in a persistent store. It is only called by an implementation of
the ModelMBean interface to store itself according to persistence policy for the
MBean. When used, it can be called with every invocation of setAttribute, or
on a periodic basis.

load()
store()

PersistentMBean
«Interface»
Chapter 4 Model MBeans 95

4.3.5 ModelMBeanNotificationBroadcaster
Interface
This interface extends the NotificationBroadcaster interface and must be
implemented by any MBean needing to broadcast custom, generic, or attribute
change notifications to listeners. Model MBeans must implement this interface.

In the model MBean, AttributeChangeNotifications are sent to a different set
of listeners to those to which other notifications would go. All other notifications go
to listeners who registered using the methods defined in the
NotificationBroadcaster interface. AttributeChangeNotifications are
also sent to those listeners, but in addition they are sent to listeners added using
addAttributeChangeNotificationListener.

The model MBean sends an AttributeChangeNotification to all registered
notification listeners whenever a value change for the attribute in the model MBean
occurs. By default, no AttributeChangeNotification will be sent unless a
listener is explicitly registered for them. Normally, the setAttribute on the model
MBean invokes the set method defined for the attribute on the managed resource
directly. Alternatively, managed resources can use the attribute change notification
to trigger internal actions that implement the intended effect; namely, they change
the attribute value on the model MBean.

ModelMBeanNotificationBroadcaster

addAttributeChangeNotificationListener(inListener: NotificationListener,
inAttributeName: String,
java.lang.Object inhandback: Object)

removeAttributeChangeNotificationListener(inListener: NotificationListener,
inAttributeName: String)

sendNotification(ntfyObj: Notification)
sendNotification(ntfyText: String)
sendAttributeChangeNotification(ntfyObj: AttributeChangeNotification)
sendAttributeChangeNotification(inOldValue: Attribute, inNewValue: Attribute)

«Interface»
96 Java Management Extensions Specification, version 1.4 • November 9, 2006

4.3.6 ModelMBeanNotificationBroadcaster
Implementation
The ModelMBeanNotificationBroadcaster interface extends the
NotificationBroadcaster interface for its addNotificationListener and
removeNotificationListener methods. The following methods are specific to
open MBeans.

■ addAttributeChangeNotificationListener:

Registers an object that implements the NotificationListener interface as a
listener for AttributeChangeNotifications from this MBean.

■ removeAttributeChangeNotificationListener

Removes a listener for AttributeChangeNotifications from the MBean.

■ sendAttributeChangeNotification (with
AttributeChangeNotification)

Sends the given AttributeChangeNotification object to all registered
listeners.

■ sendAttributeChangeNotification (with new and old Attributes)

Creates and sends an AttributeChangeNotification to all registered
listeners.

■ sendNotification (with Notification)

Sends the given Notification object to all registered listeners.

■ sendNotification (with String)

Creates a Notification called “generic” of type jmx.modelmbean.generic
and sends it to all registered listeners. The source of the notification is this
ModelMBean instance, sequence 1, and severity of 5 (informative).

4.4 Descriptors
The ModelMBeanInfo interface publishes metadata about the attributes, operations,
and notifications in the management interface. The model MBean descriptors contain
behavioral information and policies about the same management interface. A
descriptor consists of a set of fields, each of which is a String name and Object
value pair. They can be used to store any additional metadata about the
management information. The managed resource or management applications can
add, modify, or remove fields in any model MBean descriptor at run time.
Chapter 4 Model MBeans 97

Some standard field names are reserved and predefined in this specification to
handle common data management policies such as caching and persistence. The
descriptors also contain the names for the getter and setter operations for attributes.
This allows applications to distribute attribute support naturally across the
application, regardless of class, and to change that responsibility at runtime.

Descriptors are objects that implement the Descriptor interface. They are
accessible through the methods defined in the DescriptorAccess interface and
implemented in the ModelMBeanAttributeInfo, ModelMBeanOperationInfo,
ModelMBeanConstructorInfo, and ModelMBeanNotificationInfo classes.
Arrays of these classes are accessed through the ModelMBeanInfo instance. Each of
these returns a descriptor that contains information about the component it
describes. A managed resource can define the values in the descriptors by
constructing a ModelMBeanInfo object and using it to define its model MBean
through the setModelMBeanInfo method or through the ModelMBean constructor.

4.4.1 Attribute Behavior
For an attribute, if the descriptor in the ModelMBeanAttributeInfo for it has no
method signature associated with it, then no managed resource method can be
invoked to satisfy it. This means that for setAttribute the value is simply
recorded in the descriptor, and any attribute change notification listeners are sent an
AttributeChangeNotification. For getAttribute, the current value for the
attribute in the model MBean is simply returned from the descriptor and its value
cannot be refreshed from the managed resource. This can be useful to minimize
managed resource interruption for static resource information. The attribute
descriptor also includes policy for managing its persistence, caching, and protocol
mapping. For operations, the method signature must be defined. For notifications,
the type, identity, severity, and logging policy are defined optionally.

4.4.2 Notification Logging Policy
The model MBean will log notifications if the log field of the MBean descriptor or of
the ModelMBeanNotificationInfo descriptor is set to true. A logfile field
must also be defined with a fully qualified file name at one of these levels to indicate
where the notifications should be logged. The setting at the
ModelMBeanNotificationInfo level will take precedence over the setting at the
MBean descriptor level. If the ModelMBean implementation or the JMX agent does
not support logging, then the log and logfile fields are ignored.
98 Java Management Extensions Specification, version 1.4 • November 9, 2006

4.4.3 Persistence Policy
Persistence policies can be implemented as an option. Persistence is handled within
the model MBean. However, this does not mean that a model MBean must
implement persistence itself. Different implementations of the JMX agent can have
different levels of persistence. When there is no persistence, objects will be
completely transient in nature. In a simple implementation, the ModelMBeanInfo
can be serialized into a flat file. In a more complex environment, persistence can be
handled by the JMX agent in which the model MBean has been instantiated. If the
JMX agent is not transient and the model MBean is persistable it should support
persistence policy at the attribute level and model MBean level.

The persistence policy can switch persistence off, force persistence on checkpoint
intervals, allow it to occur whenever the model MBean is updated, or throttle the
update persistence so that it does not write out the information any more frequently
than a certain interval. If the model MBean is executing in an environment where
management operations are transactional, this should be shielded from the managed
resource. If the managed resource must be aware of the transaction, then this will
mean that the managed resource depends on a proprietary version of the JMX agent
and model MBean, for the resource to be accessible.

A ModelMBean implementation that supports persistence will attempt to prime
itself when it is registered in the MBean server, by calling the ModelMBean.load
method. This method must determine where the persistent representation of the
MBean is located, retrieve it, and initialize the model MBean. For simpler
representations, the directory and filename to be used for persistence can be defined
directly in the MBean descriptor’s persistLocation and persistName fields.
The model MBean can, through JDBC™ (Java Database Connectivity) operations,
write data to and populate the model MBeans from any number of data storage
options such as an LDAP server, a database application, a flat file, an NFS file, an
FAS file, or an internal high performance cache.

The load method allows the JMX agent to be independent and ignorant of data
locale information and knowledge. This allows the data location to vary from one
installation to another depending on how the JMX agent and managed resource are
installed and configured. It also permits managed resource configuration data to be
defined within the directory service for use by multiple managed resource instances
or JMX agent instances. In this way, data locale has no impact on the interaction
between the managed resource, its model MBean, the JMX agent, the adaptor or the
management system. As with all data persistence issues, the platform data service
characteristics can have an impact upon performance and security.

Because the persistence policy can be set at the model MBean attribute level, all or
some of the model MBean attributes can be stored by the ModelMBean. The model
MBean will detect that it has been updated and invoke its own store method. If the
model MBean service is configured to checkpoint model MBeans periodically, it will
Chapter 4 Model MBeans 99

do so by invoking the ModelMBean.store method. Like the load method, the
store method must determine where the data should reside and store it there
appropriately.

The JMX agent’s persistence setting will apply to all its model MBeans unless one of
them defines overriding policies. The model MBean persistence policy provides a
specified persistence event (update/checkpoint) and timing granularity concerning
how the designated attributes, if any, are stored. The model MBean persistence
policy will allow persistence on a “whenever updated” basis, a “periodic
checkpoint” basis, or a “never persist” basis. If no persistence policy for a model
MBean is defined, then its instance will be transient.

4.4.4 Behavior of Cached Values
The descriptor for an attribute or operation contains the cached value and default
value for the data along with the caching policy. In general, the adaptors access the
application’s ModelMBean as it is returned by the JMX agent. If the data requested
by the adaptor is current, the managed resource is not interrupted with a data
retrieval request. Therefore, direct interaction with the managed resource is not
required for each interaction with the management system. This helps minimize the
impact of management activity on runtime application resources and performance.

The attribute descriptor contains currencyTimeLimit and
lastUpdatedTimeStamp fields that are expressed in units of seconds. If the
current time is past lastUpdateTimeStamp + currencyTimeLimit, then the
attribute value is stale. If the currencyTimeLimit is -1, then the attribute value is
always stale. If the currencyTimeLimit is 0, then the attribute value is never
stale.

If a getAttribute is received for an attribute with a stale value (or no value) in the
descriptor, then:

■ If there is a getMethod for the attribute, it will be invoked and the returned
value will be recorded in the value field in the descriptor for the attribute. The
lastUpdatedTimeStamp will be reset, and the caller will be handed the new
value.

■ If there is no getMethod defined, then the default value from the default field
in the descriptor for the attribute will be returned.

4.4.5 Protocol Map Support
The model MBean’s default behavior and simple APIs satisfy the management needs
of most applications. However, the interfaces of a model MBean also allow complex
managed resource management scenarios. The model MBean APIs allow mapping of
100 Java Management Extensions Specification, version 1.4 • November 9, 2006

the application’s model MBean attributes to existing management data models, for
example, specific MIBs or CIM objects through the protocolMap field of the
descriptor. Conversely, the managed resource can take advantage of generic
mappings to MIBs and CIM objects generated by tools interacting with the JMX
agent. For example, a MIB generator can interact with the JMX agent and create a
MIB file that is loaded by an SNMP management system. The generated MIB file can
represent the resources known by the JMX agent. The applications represented by
those resources do not have to be cognizant of how the management data is mapped
to the MIB. This scenario will also work for other definition files required by
management systems.

The protocolMap field of an attribute’s descriptor must contain a reference to an
instance of a class that implements the Descriptor interface. The contents (or
mappings) of the protocolMap must be appropriate for the attribute. The entries in
the protocolMap can be updated or augmented at runtime.

4.4.6 Export Policy
If the JMX agent implementation supports operation in a multi-JMX agent
environment, then the JMX agent will need to advertise its existence and availability
with the appropriate directory or lookup service. The JMX agent might also need to
register MBeans that need to be locatable from other JMX agents without advance
knowledge about which JMX agent the MBean is currently registered with. MBeans
that need to be locatable in this type of environment define an export field in the
MBean descriptor in its ModelMBeanInfo object.

The value of the export field is the external name or object required to export the
MBean appropriately. If the JMX agent does not support interoperation with a
directory or lookup service and the export field is defined, then the field will be
ignored. If the value of the export field is F or false, or the export field is
undefined or null, then the MBean will not be exported.

4.4.7 Visibility Policy
Model MBeans in the JMX specification provide developers of managed resources
with the ability to instrument manageability that supports both their custom, stand-
alone, domain manager as well as interchangeable enterprise managers. However,
the level of detail that is available from these types of managers can be significantly
different. Enterprise managers might want to interact with higher level management
objects. Domain managers generally manage all details of the application. Most
management systems show large grain objects on a user interface screen and show
small grain objects on a detailed or advanced screen. The visibility field in the
descriptor is a hint about the level of granularity an MBean, attribute, or operation
Chapter 4 Model MBeans 101

represents. The visibility field can be used by a custom implementation of a
protocol adaptor or connector or by a management system to filter out MBeans,
attributes, or operations that it doesn’t need to represent.

The visibility field’s value is an integer ranging from 1 to 4. The largest grain is
1, for an MBean or a component that is nearly always visible. The smallest grain is
4, for an MBean or a component that is only visible in special cases. The JMX
specification does not further define these levels.

4.4.8 Presentation Behavior
A PresentationString field can be defined in any descriptor. This string is an
XML formatted string meant to provide hints to a console so that it can generate
user interfaces for a management object. A standard set of presentation fields have
not yet been defined.

4.5 Predefined Descriptor Fields
The fields in each descriptor describe standard and custom information about model
MBean components. All predefined fields for each of the descriptors are specified
below. The fields defined here are standardized so that the management
instrumentation is portable between implementations of model MBeans. More fields
can be defined in a management solution to store custom information as needed.

Field names are not case sensitive. The field descriptorType can also be referred
to as DescriptorType or DESCRIPTORTYPE. The case used when a descriptor is
created or updated is preserved. It is recommended that the form shown here be
used consistently.

Certain field values are also case insensitive. This is true for the values of the
descriptorType, persistPolicy, targetType, and log fields.

4.5.1 MBean Descriptor Fields
These are the predefined fields for the MBean descriptor. These values are valid for
the entire model MBean. These values can be overridden by descriptor fields with
the same name defined at the attribute, operation, or notification level. Optional
fields are in italics:

name - The case-sensitive name of the MBean.

descriptorType - String that always contains the value “MBean”.
102 Java Management Extensions Specification, version 1.4 • November 9, 2006

displayName - Displayable attribute name. In the absence of a value, the value of
the name field should be used instead.

persistPolicy - Defines the default persistence policy for attributes in this MBean
that do not define their own persistPolicy. Takes on one of the following values:

■ Never - The attribute is never stored. This is useful for highly volatile data or
data that only has meaning within the context of a session or execution period.

■ OnTimer - The attribute is stored whenever the model MBean’s persistence
timer, as defined in the persistPeriod field, expires.

■ OnUpdate - The attribute is stored every time the attribute is updated.

■ OnUnregister - The attribute is stored when the MBean is unregistered from
the MBean Server

■ NoMoreOftenThan - The attribute is stored every time it is updated unless the
updates are closer together than the persistPeriod. This acts as an update
throttling mechanism that helps prevent temporarily highly volatile data from
affecting performance.

■ Always - This is a synonym of OnUpdate, which is recognized for
compatibility reasons. It is recommended that applications use OnUpdate
instead. An implementation of the Descriptor interface, such as
DescriptorSupport, can choose to replace a value of “Always” for
persistPolicy by a value of “OnUpdate”.

persistPeriod - Valid only if the persistPolicy field’s value is OnTimer or
NoMoreOftenThan. For OnTimer, the attribute is stored at the beginning of each
persistPeriod starting from when the value is first set. For NoMoreOftenThan,
the attribute will be stored every time it is updated unless the persistPeriod has
not elapsed since the previous storage. The value of this field is a number of
seconds, specified as a decimal integer string.

persistLocation - The fully qualified directory where files representing the
persistent MBeans are stored (for this reference implementation). For other
implementations this value can be a keyword or value to assist the appropriate
persistence mechanism.

persistName - The filename in which this MBean is stored. This should be the
same as the MBean’s name (for this reference implementation). For other
implementations, this value can be a keyword or value to assist the appropriate
persistence mechanism.

log - A boolean where true indicates that all sent notifications are logged to a file,
and false indicates that no notification logging will be done. This setting can be
overridden for a particular notification by defining the log field in the notification
descriptor.

logFile - The fully qualified file name where notifications are logged. If logging is
true and the logFile is not defined or invalid, no logging will be performed.
Chapter 4 Model MBeans 103

currencyTimeLimit - Time period in seconds from when an attribute value is
current and not stale. If the saved value is current then that value is returned and the
getMethod (if defined) is not invoked. If the currencyTimeLimit is -1, then the
value must be retrieved on every request. If currencyTimeLimit is 0, then the
value is never stale. The value of this field is a number of seconds, specified as a
decimal integer string.

export - Its value can be any object that is serializable and contains the information
necessary to make the MBean locatable. A value of null, or a String value of F or
false, indicates that the MBean should not be exposed to other JMX Agents. A
defined value indicates that the MBean should be exposed to other JMX Agents and
also be findable when the JMX agent address is unknown. If exporting MBeans and
MBean servers is not supported, then this field is ignored.

visibility - Integer set from 1 to 4, indicating a level of granularity for the
MBean. A value of 1 is for the large grain and most frequently viewed MBeans. A
value of 4 is the smallest grain and possibly the least frequently viewed MBeans.
This value can be used by adaptors or management applications.

presentationString - XML-encoded string that describes how the attribute will
be presented.

4.5.2 Attribute Descriptor Fields
An attribute descriptor represents the metadata for one of the attributes of a model
MBean. Optional fields are in italics:

name - The case-sensitive name of the attribute.

descriptorType - A string that always contains the value “attribute”.

value - The value of this field is the object representing the current value of
attribute, if set. This is, in effect, the cached value of the attribute that will be
returned if the currencyTimeLimit is not stale.

default - An object that is to be returned if the value is not set and the
getMethod is not defined.

displayName - The displayable name of the attribute.

getMethod - Operation name from the operation descriptors to be used to retrieve
the value of the attribute from the managed resource. The returned object is saved
in the value field.

setMethod - Operation name from the operation descriptors to be used to set the
value of the attribute in the managed resource. The new value will also be saved in
the value field.
104 Java Management Extensions Specification, version 1.4 • November 9, 2006

protocolMap - The value of this field must be a Descriptor object. It contains the
set of protocol name and mapped protocol value pairs. This allows the attribute to
be associated with a particular identifier (CIM schema, SNMP MIB Oid, etc.) for a
particular protocol. This descriptor is set by the managed resource and used by the
adaptors as hints for representing this attribute to management applications.

persistPolicy - Defines the persistence policy for this attribute. If defined, this
overrides a persistPolicy in the MBean descriptor. The possible values and their
meanings are the same as for the persistPolicy in the MBean descriptor,
described on page 103.

persistPeriod - The meaning of this field is the same as for the persistPeriod
in the MBean descriptor, described on page 103.

currencyTimeLimit - The meaning of this field is the same as for the
currencyTimeLimit in the MBean descriptor, described on page 104.

lastUpdatedTimeStamp - Time stamp from when the value field was last
updated. The value of this field is a string created by code equivalent to
Long.toString(System.currentTimeMillis()).

visibility - Integer set from 1 to 4 indicating a level of granularity for the MBean
attribute. A value of 1 is for the large grain and most frequently viewed MBean
attributes. A value of 4 is the small grain and the least frequently viewed MBean
attributes. This value can be used by adaptors or management applications.

presentationString - XML-encoded string that describes how the attribute is
presented.

4.5.3 Operation Descriptor Fields
The operation descriptor represents the metadata for operations of a model MBean.
Optional fields are in italics:

name - The case-sensitive operation name.

descriptorType - A string that always contains the value “operation”.

displayName - Display name of the operation.

value - The value that was returned from the operation the last time it was
executed. This allows the caching of operation responses. Operation responses are
only cached if the currencyTimeLimit field is not -1.

currencyTimeLimit - The period of time in seconds that the value is current and
not stale. If the value is current then it is returned without actually invoking the
method on the managed resource. If the value is stale then the method is invoked.
Chapter 4 Model MBeans 105

If currencyTimeLimit is -1, then the value is always stale and is not cached. If
the currencyTimeLimit is 0, then the value is never stale. The value of this field
is a number of seconds, specified as a decimal integer string.

lastUpdatedTimeStamp - The time stamp of when the value field was updated.
The value of this field is a string created by code equivalent to
Long.toString(System.currentTimeMillis()).

visibility - Integer set from 1 to 4 indicating a level of granularity for the MBean
operation. A value of 1 is for the large grain and most frequently viewed MBean
operations. A value of 4 is the smallest grain and the least frequently viewed MBean
operations. This value can be used by adaptors or management applications.

presentationString - XML-encoded string that defines how to present the
operation, parameters, and return type to a user.

targetObject - a resource to which invocations of this method are directed. This
overrides the managed resource specified by the
ModelMBean.setManagedResource method for the MBean as a whole.

targetType - the type of the resource defined by the targetObject. Every
implementation must recognize the type ObjectReference, where calling the
MBean operation results in calling a method with the same name and parameter
types on the targetObject. Implementations can also recognize the predefined
types ObjectReference, Handle, IOR, EJBHandle, and RMIReference, as well
as implementation-defined types.

4.5.4 Notification Descriptor Fields
Notification Descriptor represents the metadata for the notifications of a model
MBean. Optional fields are in italics:

name - The case-sensitive name of the notification.

descriptorType - A string that always contains the value “notification”.

severity - Integer range of 0 to 6 interpreted as follows:

0 • Unknown, Indeterminate

1 • Non recoverable

2 • Critical, Failure

3 • Major, Severe
106 Java Management Extensions Specification, version 1.4 • November 9, 2006

messageId - ID for the notification. Usually used to retrieve text to match the ID to
minimize message size or perform client-side translation.

log - A boolean that is true if this notification is logged to a file and false if not.
There can be a default value for all notifications of an MBean by defining the log
field in the MBean descriptor.

logFile - The fully qualified file name where notifications are logged. If log is
true but the logFile is not defined or invalid, no logging will be performed. This
setting can also have an MBean-wide default by defining the logFile field in the
MBean descriptor.

presentationString - XML-encoded string that describes how to present the
notification to a user.

4 • Minor, Marginal, or Error

5 • Warning

6 • Normal, Cleared, or Informative
Chapter 4 Model MBeans 107

108 Java Management Extensions Specification, version 1.4 • November 9, 2006

II JMX Agent Specification
Chapter 109

110 Java Management Extensions Specification, version 1.4 • November 9, 2006

5

Agent Architecture

This chapter gives an overview of the Java Management extensions (JMX) agent
architecture and its basic concepts. It serves as an introduction to the JMX agent
specification.

5.1 Overview
A JMX agent is a management entity that runs in a Java Virtual Machine (JVM) and
acts as the liaison between the MBeans and the management application. A JMX
agent is composed of an MBean server, a set of MBeans representing managed
resources, a minimum number of agent services implemented as MBeans, and typically
at least one protocol adaptor or connector.

The key components in the JMX agent architecture can be further defined as follows:

■ MBeans that represent managed resources, as specified in Part I “JMX
Instrumentation Specification”

■ The MBean server, the key-stone of this architecture and the central registry for
MBeans. All management operations applied to MBeans need to go through the
MBean server.

■ Agent services that can either be components defined in this specification or
services developed by third parties. The agent service MBeans defined by the JMX
specification provide:

■ Dynamic loading services that allow the agent to instantiate MBeans using Java
classes and native libraries dynamically downloaded from the network

■ Monitoring capabilities for attribute values in MBeans; the service notifies its
listeners upon detecting certain conditions

■ A timer service that can send notifications at predetermined intervals and act as
a scheduler

■ A relation service that defines associations between MBeans and maintains the
consistency of the relation
Chapter 5 Agent Architecture 111

Remote management applications can access an agent through different protocol
adaptors and connectors. These objects are part of the agent application but they are
not part of the JMX agent specification.

FIGURE 5-1 shows how the agent’s components relate to each other and to a
management application.

FIGURE 5-1 Key Concepts of the JMX Agent Architecture

The JMX architecture allows objects to perform the following operations on a JMX
agent. These objects can either be in the agent-side application or in a remote
management application. They can:

■ Manage existing MBeans by:

■ Getting their attribute values
■ Changing their attribute values
■ Invoking operations on them

■ Get notifications emitted by any MBean

■ Instantiate and register new MBeans from:

■ Java classes already loaded into the agent JVM
■ New classes downloaded from the local machine or from the network

Java virtual machine

Java virtual machine

Monitor

Relation

Resource 1

Connector
Server

MBean Server

Agent service MBean

Connector
Client

Protocol
Adaptor Management Application

with a view of the JMX agent
through a protocol adaptor
(SNMP, for example)

JMX managed resource MBean

 Agent side Manager side

JMX-enabled
Management
Application

Resource 2
112 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ Use the agent services to implement management policies involving existing
MBeans

In the JMX architecture, all these operations are performed, either directly or
indirectly, through the MBean server of the JMX agent.

5.2 JMX Compliant Agent
All the agent components and classes described in the agent specification are
mandatory. To conform to the agent specification, a JMX agent implementation must
provide the following components:

■ The MBean server implementation

■ All the agent services:

■ Dynamic class loading
■ Monitoring
■ Timer
■ Relation

All these components are specified in this document and in the associated API
documentation generated by the Javadoc tool. The Agent Compatibility Test Suite
will check that all components are actually provided by an implementation of the
specification.

5.3 Protocol Adaptors and Connectors
Protocol adaptors and connectors make the agent accessible from remote management
applications. They provide a view through a specific protocol of the MBeans
instantiated and registered in the MBean server. They enable a management
application outside the JVM to:

■ Get or set attributes of existing MBeans
■ Perform operations on existing MBeans
■ Instantiate and register new MBeans
■ Register for and receive notifications emitted by MBeans

Connectors are used to connect an agent with a remote JMX-enabled management
application, namely, a management application developed using the distributed
services of the JMX specification. This kind of communication involves a connector
server in the agent and a connector client in the manager.

These components convey management operations transparently point-to-point over
a specific protocol. The distributed services on the manager side provide a remote
interface to the MBean server through which the management application can
Chapter 5 Agent Architecture 113

perform operations. A connector is specific to a given protocol, but the management
application can use any connector indifferently because they have the same remote
interface.

Protocol adaptors provide a management view of the JMX agent through a given
protocol. They adapt the operations of MBeans and the MBean server into a
representation in the given protocol, and possibly into a different information
model, for example SNMP.

Management applications that connect to a protocol adaptor are usually specific to
the given protocol. This is typically the case for legacy management solutions that
rely on a specific management protocol. They access the JMX agent not through a
remote representation of the MBean server, but through operations that are mapped
to those of the MBean server.

Both connector servers and protocol adaptors use the services of the MBean server to
apply the management operation they receive to the MBeans, and to forward
notifications to the management application.

For an agent to be manageable, it must include at least one protocol adaptor or
connector server. However, an agent can include any number of these, allowing it to
be managed remotely through different protocols simultaneously.

The adaptors and connectors provided by an implementation of the JMX
specification should be implemented as MBeans. This allows them to be managed as
well as to be loaded and unloaded dynamically, as needed.
114 Java Management Extensions Specification, version 1.4 • November 9, 2006

6

Foundation Classes

The foundation classes describe objects that are used as argument types or returned
values in methods of various Java Management extensions (JMX) APIs. The
foundation classes described in this chapter are:

■ ObjectName
■ ObjectInstance
■ Attribute and AttributeList
■ JMX exceptions

The following classes are also considered as foundation classes; they are described in
“MBean Metadata Classes” on page 60:

■ MBeanInfo
■ MBeanFeatureInfo
■ MBeanAttributeInfo
■ MBeanOperationInfo
■ MBeanConstructorInfo
■ MBeanParameterInfo
■ MBeanNotificationInfo

All foundation classes are included in the JMX instrumentation API so that MBeans
can be developed solely from the instrumentation specification, yet be manipulated
by a JMX agent.

6.1 ObjectName Class
An object name uniquely identifies an MBean within an MBean server. Management
applications use this object name to identify the MBean on which to perform
management operations. The class ObjectName represents an object name that
consists of two parts:

■ A domain name
■ An unordered set of one or more key properties

The components of the object name are described below.
Chapter 6 Foundation Classes 115

6.1.1 Domain Name
The domain name is a case-sensitive string. It provides a structure for the naming
space within a JMX agent or within a global management solution. The domain
name part can be omitted in an object name, as the MBean server is able to provide
a default domain. When an exact match is required (see “Pattern Matching” on
page 117), omitting the domain name will have the same result as using the default
domain defined by the MBean server.

How the domain name is structured is application-dependent. The domain name
string can contain any characters except the colon (:) that terminates the domain
name, and the asterisk (*) and question mark (?), that are wildcard characters. JMX
always handles the domain name as a whole, therefore any semantic subdefinitions
within the string are opaque to a JMX implementation.

To avoid collisions between MBeans supplied by different vendors, a useful
convention is to begin the domain name with the reverse DNS name of the
organization that specifies the MBeans, followed by a period and a string whose
interpretation is determined by that organization. For example, MBeans specified by
Sun Microsystems Inc., DNS name sun.com, would have domains such as
com.sun.MyDomain. This is essentially the same convention as for Java-language
package names.

It is recommended that the domain should not contain the string “//”, which is
reserved for future use.

6.1.2 Key Property List
The key property list allows you to assign unique names to the MBeans of a given
domain. A key property is a property-value pair, where the property does not need
to correspond to an actual attribute of an MBean.

The key property list must contain at least one key property. It can contain any
number of key properties, the order of which is not significant.

The value in a key property is an arbitrary string, except that it cannot contain any
of these characters:

:”,=*?

If strings with these special characters are required, a quoting mechanism exists. Use
ObjectName.quote to convert any string into a quoted form that is usable as a key
property value, and ObjectName.unquote to convert back to the original string.

A useful convention is to include a type property in every object name. Thus, the
set of all MBeans of type user can be matched with the pattern “*:type=user,*”.
116 Java Management Extensions Specification, version 1.4 • November 9, 2006

6.1.3 String Representation of Names
Object names are usually built and displayed using their string representation, that
has the following syntax:

[domainName]:property=value[,property=value]*

The domain name can be omitted to designate the default domain.

The canonical name of an object is a particular string representation of the object’s
name, in which the key properties are sorted in lexical order. This representation of
the object name is used in lexicographic comparisons performed to select MBeans
based on their object name.

6.1.4 Pattern Matching
Most of the basic MBean operations (for example, create, get and set attributes)
need to identify one MBean uniquely by its object name. In that case, exact matching
of the name is performed.

On the other hand, for query operations, it is possible to select a range of MBeans by
providing an object name expression. The MBean server will use pattern matching on
the names of the objects. The matching features for the name components are
described in the following sections.

Domain Name

The matching syntax is consistent with standard file globbing, namely:

■ An asterisk (*) matches any character sequence, including an empty one

■ A question mark (?) matches any one single character

Key Property List

Wildcard matching can also be performed on the values of key properties using the
same matching syntax (* and ? characters). Additionally, the list of key properties
can be incomplete and used as a pattern.

The * is also the wildcard for key properties as a whole; it replaces any number of
key properties that can take on any value. If the whole key property list is given as
*, this will match all the objects in the selected domain(s). If at least one key
property is given in the list pattern, the wildcard can be located anywhere in the
Chapter 6 Foundation Classes 117

given pattern, provided it is still a comma-separated list: “:property=value,*”
and “:*,property=value” are both valid patterns. In this case, objects having the
given key properties as subsets of their key property list will be selected.

If no wildcard is used, only object names matching the complete key property list
will be selected. Again, the list is unordered, so the key properties in the list pattern
can be given in any order.

6.1.4.1 Pattern Matching Examples

If the example MBeans with the following names are registered in the MBean server:

MyDomain:description=Printer,type=laser

MyDomain:description=Disk,capacity=2

DefaultDomain:description=Disk,capacity=1

DefaultDomain:description=Printer,type=ink

DefaultDomain:description=Printer,type=laser,date=1993

Socrates:description=Printer,type=laser,date=1993

Here are some examples of queries that can be performed using pattern matching:

■ “*:*” will match all the objects of the MBean server. A null string object or
empty string (“”) name used as a pattern is equivalent to “*:*”.

■ “:*” will match all the objects of the default domain

■ “MyDomain:*” will match all objects in MyDomain

■ “??Domain:*” will also match all objects in MyDomain

■ “*Dom*:*” will match all objects in MyDomain and DefaultDomain

■ “*:description=Printer,type=laser,*” will match the following objects:

MyDomain:description=Printer,type=laser

DefaultDomain:description=Printer,type=laser,date=1993

Socrates:description=Printer,type=laser,date=1993

■ “*Domain:description=Printer,*” will match the following objects:

MyDomain:description=Printer,type=laser

DefaultDomain:description=Printer,type=ink

DefaultDomain:description=Printer,type=laser,date=1993

■ “*Domain:description=P*,*” will match the same objects as the preceding,
since P* matches Printer but not Disk.
118 Java Management Extensions Specification, version 1.4 • November 9, 2006

6.2 ObjectInstance Class
The ObjectInstance class is used to represent the link between an MBean’s object
name and its Java class. It is the full description of an MBean within an MBean
server, though it does not allow you to access the MBean by reference.

The ObjectInstance class contains the following elements:

■ The Java class name of the corresponding MBean
■ The ObjectName registered for the corresponding MBean
■ A test for equality with another ObjectInstance

An ObjectInstance is returned when an MBean is created and is used
subsequently for querying.

6.3 Attribute and AttributeList
Classes
These classes are used to represent MBean attributes and their value. They contain
the attribute name string and its value cast as an Object instance.

JMX defines the following classes:

■ The Attribute class represents a single attribute-value pair
■ The AttributeList class represents a list of attribute-value pairs

The Attribute and AttributeList objects are typically used to convey the
attribute values of an MBean, as the result of a getter operation, or as the argument
of a setter operation.

6.4 JMX Exceptions
The JMX exceptions are the set of exceptions that are thrown by different methods of
the JMX interfaces. This section describes what error cases are encapsulated by these
exceptions.

JMX exceptions mainly occur:

■ While the MBean server or JMX agent services perform operations on MBeans

■ When the MBean code raises user defined exceptions

The organization of the defined JMX exceptions is based on the nature of the error
case (runtime or not) and on the location where it was produced (manager, agent, or
during communication).
Chapter 6 Foundation Classes 119

Only exceptions raised by the agent are within the scope of this release of the
specification. This section only describes exceptions that are thrown by the MBean
server. Agent services also define and throw particular exceptions, these are
described in their respective API documentation generated by the Javadoc tool.

6.4.1 JMException Class and Subclasses
As shown in FIGURE 6-1 the base exception class is named JMException and it
extends the java.lang.Exception class. The JMException represents all the
exceptions thrown by methods of a JMX agent implementation.

To characterize the JMException and to give information for the location of the
exception’s source, some subclass exceptions are defined. They are grouped by
exceptions thrown while performing operations in general
(OperationsException), exceptions thrown during the use of the reflection API
for invoking MBean methods (ReflectionException) and exceptions thrown by
the MBean code (MBeanException).

The ReflectionException wraps the actual core Java exception thrown when
using the reflection API. The MBeanException also wraps the actual exception
defined by the user and thrown by an MBean method.
120 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 6-1 The JMX Exceptions Object Model

6.4.2 JMRuntimeException Class and Subclasses
As shown in FIGURE 6-2 the base JMX runtime exception defined is named
JMRuntimeException and it extends the java.lang.RuntimeException class.
The JMRuntimeException represents all the runtime exceptions thrown by
methods of a JMX implementation. Like the java.lang.RuntimeException, a

java.lang.Exception

JMException

MBeanException

MBeanRegistrationException

OperationsException ReflectionException

InstanceNotFoundException

AttributeNotFoundException

InvalidAttributeValueException

ListenerNotFoundException

InstanceAlreadyExistsException

«wraps»

ClassNotFoundException

NoSuchMethodException

InstantiationException

IllegalAccessException

Any exception thrown

Core Java Exceptions

IntrospectionException

MalformedObjectNameException

NotCompliantMBeanException

by an MBean

«wraps»

«wraps»

ServiceNotFoundException
Chapter 6 Foundation Classes 121

method of a JMX implementation is not required to declare in its throws clause any
subclasses of JMRuntimeException that might be thrown during the execution of
the method but not caught.

The JMRuntimeException has three subclasses to wrap different sorts of
exceptions. The RuntimeOperationsException class wraps runtime exceptions
thrown while performing operations in the agent. The RuntimeMBeanException
class wraps runtime exceptions thrown by an MBean. Finally, the
RuntimeErrorException class is used by the MBean server to wrap Error objects
thrown by an MBean.

FIGURE 6-2 The JMX Runtime Exceptions Object Model

6.4.3 Description of JMX Exceptions
The following sections describe the exceptions thrown in the JMX specification.

java.lang.RuntimeException

JMRuntimeException

RuntimeMBeanExceptionRuntimeOperationsException RuntimeErrorException

«wraps»

IndexOutOfBoundsException

IllegalArgumentException

NullPointerException

Core Java Runtime Exceptions

«wraps»

Any runtime exception

«wraps»

thrown by an MBean
Any java.lang.Error
thrown by an MBean
122 Java Management Extensions Specification, version 1.4 • November 9, 2006

6.4.3.1 JMException Class

This class represents exceptions thrown by JMX implementations. It does not include
the runtime exceptions.

6.4.3.2 ReflectionException Class

This class represents exceptions thrown in the agent when using the java.lang.reflect
classes to invoke methods on MBeans. It “wraps” the actual
java.lang.Exception thrown.

The exception classes that can be “wrapped” in a ReflectionException include
the following:

■ ClassNotFoundException - Thrown when an application tries to load in a class
through its string name using the forName method in class “Class”.

■ InstantiationException - Thrown when an application tries to create an
instance of a class using the newInstance method in class “Class”, but the
specified class object cannot be instantiated because it is an interface or an
abstract class.

■ IllegalAccessException - Thrown when an application tries to load in a class
through its string name using the forName method in class “Class”.

■ NoSuchMethodException - Thrown when a particular method cannot be found.

6.4.3.3 MBeanException Class

This class represents “user defined” exceptions thrown by MBean methods in the
agent. It “wraps” the actual “user defined” exception thrown. This exception will be
built by the MBean server when a call to an MBean method results in an unknown
exception.

6.4.3.4 OperationsException Class

This class represents exceptions thrown in the agent when performing operations on
MBeans. It is the superclass for all the following exception classes, except for the
runtime exceptions.

6.4.3.5 InstanceAlreadyExistsException Class

The MBean is already registered in the repository.
Chapter 6 Foundation Classes 123

6.4.3.6 InstanceNotFoundException Class

The specified MBean does not exist in the repository.

6.4.3.7 InvalidAttributeValueException Class

The specified value is not a valid value for the attribute.

6.4.3.8 AttributeNotFoundException Class

The specified attribute does not exist or cannot be retrieved.

6.4.3.9 IntrospectionException Class

An exception occurred during introspection of the MBean, when trying to determine
its management interface.

6.4.3.10 MalformedObjectNameException Class

The format or contents of the information passed to the constructor does not allow a
valid ObjectName instance to be built.

6.4.3.11 NotCompliantMBeanException Class

This exception occurs when trying to register an object in the MBean server that is
not an MBean that is compliant with the JMX specification.

6.4.3.12 ServiceNotFoundException Class

This class represents exceptions raised when a requested service is not supported.

6.4.3.13 MBeanRegistrationException Class

This class wraps exceptions thrown by the preRegister and preDeregister
methods of the MBeanRegistration interface.
124 Java Management Extensions Specification, version 1.4 • November 9, 2006

6.4.3.14 JMRuntimeException Class

This class represents runtime exceptions emitted by JMX implementations.

6.4.3.15 RuntimeOperationsException Class

This class represents runtime exceptions thrown in the agent when performing
operations on MBeans. It wraps the actual java.lang.RuntimeException
thrown.

The exception classes that can be “wrapped” in a RuntimeOperationsException
include the following:

■ IllegalArgumentException - Thrown to indicate that a method has been
passed an illegal or inappropriate argument.

■ IndexOutOfBoundsException - Thrown to indicate that an index of some sort
(such as to an array, to a string, or to a vector) is out of range.

■ NullPointerException - Thrown when an application attempts to use null in
a case where an object is required.

If a method in an MBean itself throws a runtime exception, that exception will be
wrapped in a RuntimeMBeanException, not a RuntimeOperationsException.
The RuntimeOperationsException is used in two cases: when the runtime
exception occurs before the MBean is invoked (for example, an attribute name in
getAttribute is null), and by Model MBeans to wrap runtime exceptions coming
from methods invoked on the Managed Resource.

6.4.3.16 RuntimeMBeanException Class

This class represents runtime exceptions thrown by MBean methods in the agent. It
“wraps” the actual java.lang.RuntimeException exception thrown. This
exception is built by the MBean server when a call to an MBean method throws a
runtime exception. However, if the exception is already a
RuntimeOperationsException it is not wrapped further.

6.4.3.17 RuntimeErrorException Class

When a java.lang.Error occurs in the agent it must be caught and thrown again
as a RuntimeErrorException.
Chapter 6 Foundation Classes 125

126 Java Management Extensions Specification, version 1.4 • November 9, 2006

7

MBean Server

This chapter describes the Managed Bean server, or MBean server, that is the core
component of the Java Management extensions (JMX) agent infrastructure.

7.1 Role of the MBean Server
The MBean server is a registry for MBeans in the agent. The MBean server is the
component that provides the services for manipulating MBeans. All management
operations performed on the MBeans are done through the MBeanServer interface.

In general, the following kinds of MBeans are registered in an MBean server:

■ MBeans that represent managed resources for management purposes. These
resources can be of any kind: application, system, or network resources that
provide a Java interface or a Java wrapper.

■ MBeans that add management functionality to the agent. This functionality can be
fully generic, for example, providing a logging or a monitoring capability, or it
can be specific to a technology or to a domain of application. Some of these
MBeans are defined by the JMX specification, others will be provided by
management application developers.

■ Some components of the infrastructure, such as the connector servers and
protocol adaptors, can be implemented as MBeans. This allows such components
to benefit from the dynamic management infrastructure.

7.1.1 MBean Server Factory
A JMX agent has a factory class for finding or creating an MBean server through the
factory’s static methods. This allows more flexible agent applications and possibly
more than one MBean server in an agent.
Chapter 7 MBean Server 127

The MBeanServer interface defines the operations available on a JMX agent. An
implementation of the JMX agent specification provides a class that implements the
MBeanServer interface. Throughout this document, we use the term MBean server to
refer to the implementation of the MBeanServer interface that is available in an
agent.

The MBeanServerFactory is a class whose static methods return instances of the
implementation class. This object is returned as an instance of the MBeanServer
interface, thereby isolating other objects from any dependency on the MBean
server’s actual implementation class. When creating an MBean server, the caller can
also specify the name of the default domain used in the JMX agent it represents.

An agent application uses these methods to create the single or multiple MBean
servers containing its MBeans. The JMX agent specification only defines the behavior
of a single MBean server. The additional behavior required in a JMX agent
containing multiple MBean servers is outside the scope of this specification.

The factory also defines static methods for finding an MBean server that has already
been created. In this way, objects loaded into the JVM can access an existing MBean
server without any prior knowledge of the agent application.

Starting with version 5.0 of the Java 2 Platform, Standard Edition (J2SE 5.0 Platform),
every Java application has a platform MBean Server which can be obtained using
java.lang.management.ManagementFactory.getPlatformMBeanServer().
This MBean Server contains a certain number of MBeans specified by the
java.lang.management package and can also be used as a convenient way to
share application MBeans between different modules of an application.

7.1.2 MBean Server Permission Checking
Access to the MBeanServerFactory class’s static methods is controlled by the
MBeanServerPermission class. MBeanServerPermission extends basic Java
permissions, and grants access to the following MBean server operations:

■ createMBeanServer
■ findMBeanServer
■ newMBeanServer
■ releaseMBeanServer

Permission checking is covered further in Chapter 12 “Security”.
128 Java Management Extensions Specification, version 1.4 • November 9, 2006

7.1.3 Registration of MBeans
The first responsibility of the MBean server is to be a registry for MBeans. MBeans
can be registered either by the agent application, or by other MBeans. The interface
of the MBeanServer class allows two different kinds of registration:

■ Instantiation of a new MBean and registration of this MBean in a single operation.
In this case, the loading of the java class of the MBean can be done either by using
a default class loader, or by explicitly specifying the class loader to use.

■ Registration of an already existing MBean instance.

An object name is assigned to an MBean when it is registered. The object name is a
string whose structure is defined in detail in “ObjectName Class” on page 115. The
object name allows an MBean to be identified uniquely in the context of the MBean
server. This uniqueness is checked at registration time by the MBean server, which
will refuse MBeans with duplicate names.

7.1.3.1 MBean Registration Control

The MBean developer can exercise some control over registering and unregistering
of MBeans in the MBean server. This can be done in the MBean by implementing the
MBeanRegistration interface. Before and after registering and deregistering an
MBean, the MBean server checks dynamically whether the MBean implements the
MBeanRegistration interface. If this is the case, the appropriate callbacks are
invoked.

The MBeanRegistration interface is actually an API element of the JMX
instrumentation specification. It is described here because it is the implementation of
the MBean server that defines the behavior of the registration control mechanism.

Implementing this interface is also the only means by which MBeans can get a
reference to the MBeanServer with which they are registered. This means that they
have information about their management environment and become capable of
performing management operations on other MBeans.

If the MBean developer chooses to implement the MBeanRegistration interface,
the following methods must be provided:

■ preRegister - This is a callback method that the MBean server invokes before
registering the MBean. The MBean is not registered if any exception is raised by
this method. This method might throw the MBeanRegistrationException that
will be thrown again unchanged by the MBean server. Any other exception will
be caught by the MBean server, encapsulated in an
MBeanRegistrationException and thrown again.

This method can be used to:

■ Allow an MBean to keep a reference on its MBean server.
Chapter 7 MBean Server 129

■ Perform any initialization that needs to be done before the MBean is exposed
to management operations.

■ Perform semantic checking on the object name, and possibly provide a name if
the object was created without a name.

■ Get information about the environment, for example, check on the existence of
services upon which the MBean depends. When such required services are not
available, the MBean might either try to instantiate them, or raise a
ServiceNotFoundException exception.

■ postRegister - This is a callback method that the MBean server will invoke
after registering the MBean. Its boolean parameter will be true if the MBean was
registered successfully, and false if the MBean could not be registered. If
registration failed, this method can free resources allocated in preregistration.

■ preDeregister - this is a callback method that the MBean server invokes before
unregistering an MBean.

This method might throw an MBeanRegistrationException, that is thrown
again unchanged by the MBean server. Any other exception is caught by the
MBean server, encapsulated in an MBeanRegistrationException and thrown
again. The MBean is not unregistered if any exception is raised by this method.

■ postDeregister - This is a callback method that the MBean server invokes
after unregistering the MBean.

FIGURE 7-1 describes the way the methods of the MBeanRegistration are called by
the MBean server when an MBean registration or a unregistration is performed. The
methods illustrated with a thick border are MBeanServer methods, the others are
implemented in the MBean.
130 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 7-1 Calling Sequence for the MBean Registration Methods

7.1.4 Operations on MBeans
The methods of the MBeanServer interface define the following management
operations to be performed on registered MBeans:

■ Retrieve a specific MBean by its object name.
■ Retrieve a collection of MBeans, by means of pattern matching on their names,

and optionally by means of a filter applied to their attribute values. Such a filter
can be constructed by using the query expressions defined in “Queries” on
page 135.

■ Get one or several attribute value(s) of an MBean.
■ Invoke an operation on an MBean.
■ Discover the management interface of an MBean, that is, its attributes and

operations. This is what is called the introspection of the MBean.
■ Register interest in the notifications emitted by an MBean.

The methods of the MBean server are generic: they all take an object name that
determines the MBean on which the operation is performed. The role of the MBean
server is to resolve this object name reference, determine if the requested operation

preRegister(...) register
OK

postRegister(false)

Exception

OK
postRegister(true)

Registration phase

preDeregister(...) deregister
OK OK

postDeregister()

Unregistration phase

Exception

Return without registering

Exception

Return without deregistering
Chapter 7 MBean Server 131

is allowed on the designated object, and if so, invoke the MBean method that
performs the operation. If there is a result, the MBean server returns its value to the
caller.

Calling a method in the MBean server requires an appropriate permission.
Permissions are described in Chapter 12 “Security.

The detailed description of all MBean server operations is given in the API
documentation generated by the Javadoc tool.

7.1.5 MBean Proxies
As an alternative to calling the generic methods of the MBeanServer interface
directly, code that accesses a specific MBean can construct a proxy for it. A proxy is
a Java object that implements the same interface as the MBean itself. A method in
this interface on the proxy is routed through the MBean server to the MBean.

It is simpler and less error-prone to use proxies where possible rather than calling
the methods of the MBean server directly.

Proxies are constructed using the methods newMBeanProxy and newMXBeanProxy
in the class javax.management.JMX. The Javadoc for that class explains in detail
how to construct and use them.

7.2 MBean Server Delegate MBean
The MBean server defines a domain called “JMImplementation” in which one
MBean of class MBeanServerDelegate is registered. This object identifies and
describes the MBean server in which it is registered. It is also the broadcaster for
notifications emitted by the MBean server. In other words, this MBean acts as a
delegate for the MBean server that it represents.

The complete object name of this delegate object is specified by the JMX
specification, as follows: “JMImplementation:type=MBeanServerDelegate”.

The delegate object provides the following information about the MBean server, all
of which is exposed as read-only attributes of type String:

■ The MBeanServerId identifies the agent. The format of this string is not
specified, but it is intended to provide a unique identifier for the MBean server,
for example, based on the host name and a time stamp.

■ The SpecificationName indicates the full name of the specification on which
the MBean server implementation is based. The value of this attribute must be
“Java Management Extensions”.
132 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ The SpecificationVersion indicates the version of the JMX specification on
which the MBean server implementation is based. For this release, the value of
this attribute must be “1.4”.

■ The SpecificationVendor indicates the name of the vendor of the JMX
specification on which the MBean server implementation is based. The value of
this attribute must be “Sun Microsystems”.

■ The ImplementationName gives the implementation name of the MBean server.
The format and contents of this string are given by the implementor.

■ The ImplementationVersion gives the implementation version of the MBean
server. The format and contents of this string are given by the implementor.

■ The ImplementationVendor gives the vendor name of the MBean server
implementation. The contents of this string are given by the implementor.

The MBeanServerDelegate class implements the NotificationBroadcaster
interface and sends the MBeanServerNotifications that are emitted by the
MBean server. For objects to receive these notifications, they must register with the
delegate object (see “MBean Server Notifications” on page 134).

Note – The “JMImplementation” domain name is reserved for use by JMX Agent
implementations. The MBeanServerDelegate MBean cannot be unregistered from
the MBean server.

7.3 Remote Operations on MBeans
Using an appropriate connector server in the agent, a remote management
application is able to perform operations on the MBeans through the corresponding
connector client, once a connection is established.

Typically, a remote client is able to perform a subset of the operations in the
MBeanServer interface, through that interface’s parent MBeanServerConnection.
Because remote connections can fail, each method in MBeanServerConnection
declares IOException in its throws clause. See “MBeanServerConnection Interface”
on page 140.

FIGURE 7-2 shows how a management operation can be propagated from a remote
management application to the MBean on the agent side. The example illustrates the
propagation of a method for getting the “State” attribute of a standard MBean, in the
following cases:

■ The management application invokes a generic getValue method on the
connector client, that acts as a remote representation of the MBean server. This
type of dynamic invocation is typically used in conjunction with the MBean
introspection functionality that dynamically discovers the management interface
of an MBean, even from a remote application.
Chapter 7 MBean Server 133

■ The management application invokes the getState method directly on a proxy
object that is typically generated automatically from the MBean class (in the case
of a Java application). The proxy object relies on the interface of the connector
client to transmit the request to the agent and ultimately to the MBean. The
response follows the inverse return path.

FIGURE 7-2 Propagation of a Remote Operation to an MBean.

7.4 MBean Server Notifications
The MBean server will always emit notifications when MBeans are registered or
deregistered. A specific subclass of the Notification class is defined for this
purpose: the MBeanServerNotification class, that contains a list of object names
involved in the operation.

The MBean server object does not broadcast notifications itself: its unique delegate
MBean implements the NotificationBroadcaster interface to broadcast the
notifications in its place.

To register for MBean server notifications, the listener will call the
addNotificationListener method of the MBean server, as when registering for
MBean notifications, but it will provide the standardized object name of the MBean
server delegate object (see “MBean Server Delegate MBean” on page 132).

As when receiving MBean notifications, an object must implement the
NotificationListener interface to receive MBean server notifications.

Through its delegate, the MBean server emits the following two types of
notifications:

■ JMX.mbean.registered - This notification indicates that one or more MBeans
have been registered. The notification will convey the list of object names of these
MBeans.

Connector
MBean Server

Manager SideAgent Side

getState()

getState()

getAttribute(myMBeanName,

Server
Connector
Client

MyMBean Proxy Object

Interface
resembles
the MBean
Server

Interface
resembles
the MBean

MyMBean

g
e
t
A
t
t
r
i
b
u
t
e

(
m
y
M
B
e
a
n
N
a
m
e
,

(Standard MBean)

“State”)

“
S
t
a
t
e
”
)

134 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ JMX.mbean.unregistered - This notification indicates that one or more
MBeans have been unregistered. The notification conveys the list of these
MBeans’ object names .

Note – The MBean server does not send notifications when attributes of registered
MBeans change values. When implemented, this type of notification is handled
directly by the MBean, as described in “Attribute Change Notifications” on page 58.

7.5 Queries
Queries retrieve sets of MBeans from the MBean server, according to their object
name, their current attribute values, or both. The JMX specification defines the
classes that are used to build query expressions. These objects are then passed to
methods of the MBeanServer interface to perform the query.

The methods of the MBeanServer interface that perform queries are:

■ queryMBeans(ObjectName name, QueryExp query) - Returns a Set
containing object instances (object name and class name pairs) for MBeans
matching the name and query.

■ queryNames(ObjectName name, QueryExp query) - Returns a Set
containing object names for MBeans matching the name and query.

The meaning of the parameters is the same for both methods. The object name
parameter defines a pattern: the scope of the query is the set of MBeans whose object
name satisfies this pattern. The query expression is the user-defined criteria for
filtering MBeans within the scope, based on their attribute values. If either query
method finds no MBeans that are in the given scope, or that satisfy the given query
expression, or both, the returned Set will contain no elements.

When the object name pattern is null, the scope is equivalent to all MBeans in the
MBean server. When the query expression is null, MBeans are not filtered and the
result is equivalent to the scope. When both parameters are null, the result is the set
of all MBeans registered in the MBean server.

The set of all MBeans registered in the MBean server always includes the delegate
MBean, as does any count of the registered MBeans. Other queries can also return
the delegate MBean if its object name is within the scope and if it satisfies the query
expression, if any (see “MBean Server Delegate MBean” on page 132).

7.5.1 Scope of a Query
The scope is defined by an object name pattern: see “Pattern Matching” on page 117.
Only those MBeans whose object name matches the pattern are considered in the
query. The query expression must then be applied to each MBean in the scope to
Chapter 7 MBean Server 135

filter the final result of the query. If the query mechanism is properly implemented
and the user gives a relevant object name pattern, the scope of the query can greatly
reduce the execution time of the query.

It is possible for the pattern to be a complete object name, meaning that the scope of
the query is a single MBean. In this case, the query is equivalent to testing the
existence of a registered MBean with that name, or, if the query expression is not
null, testing the attribute values of that MBean.

7.5.2 Query Expressions
A query expression is built up from constraints on attribute values (such as “equals”
and “less-than” for numeric values and “matches” for strings). These constraints can
then be associated by relational operators (and, or, and not) to form complex
expressions involving several MBean attributes.

For example, the agent or the manager should be able to express a query such as:
“Retrieve the MBeans for which the attribute age is at least 20 and the attribute
name starts with G and ends with ling”.

A query expression is evaluated on a single MBean at a time, and if and only if the
expression is true, that MBean is included the query result. The MBean server tests
the expression individually for every MBean in the scope of the query. It is not
possible for a query expression to apply to more than one MBean: there is no
mechanism for defining cross-MBean constraints.

If the evaluation of the query expression for a given MBean in the scope results in an
exception, that MBean is omitted from the query result. The exception is not
propagated to the caller of queryMBeans or queryNames. Errors (subclasses of
java.lang.Error) can be propagated, however.

The following classes and interfaces are defined for developing query expressions:

■ The QueryExp interface identifies objects that are complete query expressions.
These objects can be used in a query or composed to form more complex queries.

■ The ValueExp and StringValueExp interfaces identify objects that represent
numeric and string values, respectively, for placing constraints on attribute
values.

■ The AttributeValueExp interface identifies objects that represent the attribute
involved in a constraint.

■ The Query class supports the construction of the query. It contains static methods
that return the appropriate QueryExp and ValueExp objects.
136 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ The ObjectName class (see “ObjectName Class” on page 115) implements the
QueryExp interface and can be used within queries. Usually, an ObjectName in a
query will be a pattern. When an ObjectName query expression is being
evaluated for a given MBean, the expression is true if the MBean’s name matches
the ObjectName pattern.

In practice, users do not instantiate the ValueExp and QueryExp implementation
classes directly. Instead, they rely on the methods of the Query class to return the
values and expressions, composing them together to form the final query expression.

7.5.2.1 Methods of the Query Class

The static methods of the Query class are used to construct the values, constraints,
and subexpressions of a query expression.

The following methods return a ValueExp instance that can be used as part of a
constraint, as described:

■ classattr - The result represents the class name of the MBean and can only be
used in a string constraint.

■ attr - The result represents the value of the named attribute. This result can be
used in boolean, numeric or string constraints, depending upon the type of the
attribute. Attributes can also be constrained by the values of other attributes of an
equivalent type. This method is overloaded to take a class name too: this is
equivalent to setting a constraint on the name of the MBean’s class.

If an MBean in the scope does not have an attribute with the given name, or if
there is a class name parameter and it does not match the MBean’s class, then the
MBean is omitted from the query result.

■ value - The result represents the value of the method’s argument, and it is used
in a constraint. This method is overloaded to take any one of the following types:
■ java.lang.String
■ java.lang.Number
■ int
■ long
■ float
■ double
■ boolean

In all these cases, the resulting value must be used in a constraint on an
equivalent attribute value.

■ plus, minus, times, div - These methods each take two ValueExp arguments
and return a ValueExp object that represents the result of the operation. These
operations only apply to numeric values. These methods are useful for
constructing constraints between two attributes of the same MBean.
Chapter 7 MBean Server 137

The following methods represent a constraint on one or more values. They take
ValueExp objects and return a QueryExp object that indicates if the constraint is
satisfied at runtime. This return object can be used as the query expression, or it can
be composed into a more complex expression using the logical operators.

■ gt, geq, lt, leq, eq - These methods represent the standard relational operators
between two numeric values, respectively: greater than, greater than or equals,
less than, less than or equals, and equals. The constraint is satisfied if the relation
is true with the arguments in the given order.

■ between - This method represents the constraint where the first argument is
strictly within the range defined by the other two arguments. All arguments must
be numeric values.

■ in - This method is equivalent to multiple “equals” constraints between a
numeric value argument and an array of numeric values. The constraint is
satisfied (true) if the numeric value is equal to any one of the array elements.

■ match - This method represents the equality between an attribute’s value and a
given string value or string pattern. The pattern admits wildcards (* and ?),
character sets ([Aa]), and character ranges ([A-Z]) with the standard meaning.
The attribute must have a string value, and the constraint is satisfied if it matches
the pattern.

■ initialSubString, finalSubString, anySubString - These methods
represent substring constraints between an attribute’s value and a given substring
value. The constraint is satisfied if the substring is a prefix, suffix or any substring
of the attribute string value, respectively.

■ isInstanceOf - This method represents the constraint that the MBean is an
instance of a given class, named by a string. This query type did not exist in
versions of this specification before version 1.3, so it should not be used when
interacting remotely with an agent that implements an earlier version.

A constraint can be seen as computing a boolean value and can be used as a
subexpression to the following methods. Constraints also return a QueryExp object
that can either be used in a query or as a subexpression of an even more complex
query using the same methods:

■ and - The resulting expression is the logical AND of the two subexpression
arguments. The second subexpression is not evaluated if the first one is false.

■ or - The resulting expression is the logical OR of the two subexpression
arguments. The second subexpression is not evaluated if the first one is true.

■ not - The resulting expression is the logical negation of the single subexpression
argument.
138 Java Management Extensions Specification, version 1.4 • November 9, 2006

7.5.2.2 Query Expression Examples

Using these methods, the sample query mentioned at the beginning of this section is
built as follows. When constructing constraints on string values, the asterisk (*) is a
wildcard character that can replace any number of characters, including zero.
Alternatively, the programmer can use the substring matching methods of the Query
class.

CODE EXAMPLE 7-1 Building a Query

Most queries follow the above pattern: the named attributes of an MBean are
constrained by programmer-defined values and then composed into a query across
several attributes. All exposed attributes can be used for filtering purposes, provided
that they can be constrained by numeric, boolean or string values.

It is also possible to perform a query based on the name of the Java class that
implements the MBean, using the classattr method of the Query class. (This
functionality is mostly replaced by the Query.isInstanceOf query, however.)
CODE EXAMPLE 7-2 shows how to build a query for filtering all MBeans of the
fictional class managed.device.Printer. This constraint can also be composed
with constraints on the attribute values to form a more selective query expression.

CODE EXAMPLE 7-2 Building a Query Based on the MBean Class

7.5.3 Query Exceptions
Performing queries can result in some exceptions that are specific to the filtering
methods. If the evaluation of a query for a given MBean produces one of these
exceptions, the MBean is omitted from the query result. Application code will not
see these exceptions in usual circumstances. Only if the application itself throws the
exception, or if it calls QueryExp.apply, will it see these exceptions.

QueryExp exp = Query.and(
 Query.geq(Query.attr("age"),

Query.value(20)),
 Query.match(Query.attr("name"),

Query.value("G*ling")));

QueryExp exp = Query.eq(
Query.classattr(),
Query.value(“managed.device.Printer”));
Chapter 7 MBean Server 139

7.5.3.1 BadAttributeValueExpException Class

The BadAttributeValueExpException is thrown when an invalid name for an
MBean attribute is passed to a query constructing method.

7.5.3.2 BadStringOperationException Class

This exception is thrown when an invalid string operation is passed to a method for
constructing a query.

7.5.3.3 BadBinaryOpValueExpException Class

This exception is thrown when an invalid expression is passed to a method for
constructing a query.

7.5.3.4 InvalidApplicationException Class

This exception is thrown when an attempt is made to apply a constraint with a class
name to an MBean of the wrong class.

7.6 MBeanServerConnection Interface
The JMX 1.2 specification introduced a new interface MBeanServerConnection,
the parent interface of MBeanServer. The purpose of this interface is to provide a
common type to be used for access to an MBean server regardless of whether it is
remote, namely, accessed through a connector, or local, and accessed directly as a
Java object.

The MBeanServerConnection interface is similar to MBeanServer, but with two
key differences:

■ It omits the following methods that are only appropriate for local access to the
MBean server:

■ instantiate. This method is useful to create instances of parameters to
MBean methods or constructors when they are of classes unknown to the
caller’s class loader. But a remote client’s class loader must know the classes to
be able to deserialize them.

■ registerMBean. This method registers a local object as an MBean within the
MBean server. It does not make sense to register a remote object in this way.

■ getClassLoader, getClassLoaderFor, getClassLoaderRepository.
These methods are useful for the server end of a connector. (See “Using the
Correct Class Loader for Parameters” on page 152.) Class loaders and the Class
140 Java Management Extensions Specification, version 1.4 • November 9, 2006

Loader Repository are not serializable in general, so they could not be
transmitted to a remote client. In any case, it is not appropriate for a remote
client to be able to access this information.

■ deserialize. This method returns an ObjectInputStream, that is not a
serializable class, so it could not be transmitted to a remote client. The method
is only of use to the server end of a connector, and even there it is superseded
by the getClassLoader (etc) methods.

■ Each remaining method includes java.io.IOException in its throws clause.

Application code that interacts with MBeanServerConnection works with a local
MBean server or with the client end of a connector, regardless of whether it is
connected to the server or the connector.

Because all the methods of MBeanServerConnection can throw IOException,
application code that calls them must be prepared to deal with this exception and
handle it appropriately. In the case of a local MBean server, these exceptions cannot
happen, but the code must handle them anyway. This is the price to pay for
operating the same way in both the local and remote cases.

7.7 Changing the MBean Server
Implementation
As of version 1.2 of the JMX specification, the system property
javax.management.builder.initial can be set to replace the default
implementation of the MBeanServer interface with a different implementation.
When the createMBeanServer or newMBeanServer method of the
MBeanServerFactory class is called, it consults this property. If a value exists, then
it must name a public class that is a subclass of
javax.management.MBeanServerBuilder. The class is instantiated and used to
create an MBeanServer instance.

An MBeanServerBuilder must be able to create an instance of
MBeanServerDelegate and an instance of MBeanServer. The
MBeanServerDelegate can be the standard
javax.management.MBeanServerDelegate, or a custom subclass, for example,
to override the ImplementationName attribute. The MBeanServer can be a
complete reimplementation of the MBeanServer interface, or it can build on the
standard implementation by instantiating
javax.management.MBeanServerBuilder, calling its newMBeanServer method,
and wrapping the resulting object in another MBeanServer object.
Chapter 7 MBean Server 141

142 Java Management Extensions Specification, version 1.4 • November 9, 2006

8

Advanced Dynamic Loading

This chapter describes the dynamic loading services that build on Java’s class loader
functionality to provide the ability to retrieve and instantiate MBeans using new
Java classes and possibly native libraries. The origin of these classes and libraries is
not necessarily known when the MBean server is deployed, and can include code
loaded from a remote server.

Dynamic loading is usually performed by the management applet (m-let) service
that is used to instantiate MBeans obtained from a remote URL (Universal Resource
Locator) on the network.

The Java Management extensions (JMX) specification also defines lower-level
mechanisms for class loading, that allow developers to extend the functionality of
the m-let service or to load classes without it.

This chapter describes mandatory functionality for all compliant JMX agents.

8.1 Overview of M-Lets
The m-let service allows you to instantiate and register one or more MBeans from a
remote URL, in the MBean server. The m-let service does this by loading an m-let
text file, that specifies information on the MBeans to be obtained. The information on
each MBean is specified in a tag similar to those used in XML, called the MLET tag.
The location of the m-let text file is specified by a URL. When an m-let text file is
loaded, all classes specified in MLET tags are downloaded, and an instance of each
MBean specified in the file is created and registered.

The m-let service is itself implemented as an MBean and registered in the MBean
server, so it can be used by other MBeans, by the agent application, or by remote
management applications.

The operation of the m-let service is illustrated in FIGURE 8-1.
Chapter 8 Advanced Dynamic Loading 143

FIGURE 8-1 Operation of the M-Let Service

8.2 The MLET Tag
The m-let file can contain any number of MLET tags, each for instantiating a different
MBean in a JMX agent. The MLET tag has the following syntax:

<MLET

CODE = class | OBJECT = serfile
ARCHIVE = "archivelist"
[CODEBASE = codebaseURL]
[NAME = MBeanName]
[VERSION = version]

>

[arglist]

</MLET>

classes/object1.class
classes/object2.class
classes/object3.class

object 1

object 2

object 6

object 3

CLASSPATH

Java virtual machine

MBeans created dynamically
using the m-let service

Instances of classes accessible
through the agent’s classpath

m-let service

<MLET
CODE=object6
ARCHIVE=mybean.jar
NAME="object6"

>
</MLET>

http://soft.dist/mybean.txt

http://soft.dist

http://soft.dist/mybean.jar

object6.class
object7.class
144 Java Management Extensions Specification, version 1.4 • November 9, 2006

The elements of this tag are explained below:

■ CODE = class

This attribute specifies the full Java class name, including package name, of the
MBean to be obtained. The compiled .class file of the MBean must be contained
in one of the JAR files specified by the ARCHIVE attribute. Either the CODE or the
OBJECT attribute must be present.

■ OBJECT = serfile

This attribute specifies the .ser file that contains a serialized representation of
the MBean to be obtained. This file must be contained in one of the JAR files
specified by the ARCHIVE attribute. If the JAR file contains a directory hierarchy,
this attribute must specify the path of the file within this hierarchy, otherwise a
match will not be found.

■ ARCHIVE = archiveList

This mandatory attribute specifies one or more JAR files containing MBeans or
other resources used by the MBean to be obtained. One of the JAR files must
contain the file specified by the CODE or OBJECT attribute. If archive list contains
more than one file:

■ Each file must be separated from the next one it by a comma (,)
■ The whole list must be enclosed in double quote marks ("")

All JAR files in the archive list must be stored in the directory specified by the
code base URL, or in the same directory as the m-let file, that is the default code
base when none is given.

■ CODEBASE = codebaseURL

This optional attribute specifies the code base URL of the MBean to be obtained.
It identifies the directory that contains the JAR files specified by the ARCHIVE
attribute. This attribute is used when the JAR files are not in the same directory as
the m-let text file. If this attribute is not specified, the base URL of the m-let text
file is taken as the code base URL.

■ NAME = MBeanName

This optional attribute specifies the string format of an object name to be assigned
to the MBean instance when the m-let service registers it in the MBean server.

■ VERSION = version

This optional attribute specifies the version number of the MBean and associated
JAR files to be obtained.

This version number can be used to specify whether or not the JAR files need to
be loaded from the server to update those already loaded by the m-let service.
The version must be a series of non-negative decimal integers each separated by
a decimal point (.), for example 2.14.
Chapter 8 Advanced Dynamic Loading 145

■ arglist

The optional contents of the MLET tag specify a list of one or more arguments to
pass to the constructor of the MBean to be instantiated. The m-let service looks for
a constructor with a signature that matches the types of the arguments specified
in the arglist. Instantiating objects with a constructor other than the default
constructor is limited to constructor arguments for which there is a string
representation.

Each item in the arglist corresponds to an argument in the constructor. Use the
following syntax to specify the argList:

<ARG TYPE=argumentType VALUE=argumentValue>

where:

■ argumentType is the class of the argument (for example Integer)
■ argumentValue is the string representation of the value of the argument

8.3 The M-Let Service
The classes of the m-let service are members of the javax.management.loading
package. The MLet class implements the MLetMBean, that contains the methods
exposed for remote access. This implies that the m-let service is itself an MBean and
can be managed as such.

The MLet class also extends the java.net.URLClassLoader object, meaning that
it is itself a class loader. This allows several shortcuts for loading classes without
requiring an m-let file.

8.3.1 Loading MBeans From a URL
The getMBeansFromURL methods of the m-let service perform the class loading
based on the m-let text file on a remote server. The m-let file and the class files need
to be available on the server as described in “The MLET Tag” on page 144. The two
overloaded versions of this method take the URL argument as a string or as a
java.net.URL object.

Each MLET tag in the m-let file describes one MBean to be downloaded and created
in the MBean server. When the call to a getMBeansFromURL method is successful,
the newly downloaded MBeans are instantiated in the JMX agent and registered
with the MBean server. The methods return the object instance of the MBeans that
were successfully created and a throwable object for those that were not.

Other methods of the MLet class manage the directory for native libraries
downloaded in JAR files and used by certain MBeans. See the API documentation
generated by the Javadoc tool for more details.
146 Java Management Extensions Specification, version 1.4 • November 9, 2006

8.3.2 Class Loader Functionality
The m-let service uses its class loader functionality to access the code base given in
an m-let file or given by the URL itself. This code base is then available in the m-let
service for downloading other MBeans from the same code base.

For example, an m-let file can specify a number of MLET tags to populate all the
MBeans in a JMX agent. Once the getMBeansFromURL method has been invoked to
do this, the m-let service can be used to instantiate any one of those MBeans again,
or any other class at the same code base.

This is done by passing the m-let service’s object name as a class loader parameter to
the createMBean method of the MBean server (see the corresponding API
documentation generated by the Javadoc tool). Because the code base has already
been accessed by the m-let service, its class loader functionality can access the code
base again. In this case, the information in the MLET tag is no longer taken into
account, although the parameters of the createMBean method can be used to
specify the parameters to the class constructor.

Because the createMBean methods of the MBeanServer interface take the object
name of the class loader, this functionality is also available to remote management
applications that do not have direct object references in the JMX agent.

The m-let service MBean also exposes the addURL methods for specifying a code
base without needing to access any m-let file. These methods add the code base
designated by the given URL to the class loader of the m-let service. MBean classes
at this code base can be downloaded and created in the MBean server directly
through the createMBean method, again with the m-let service given as the class
loader object.

Note – Using the class loader of the m-let service to load create classes from
arbitrary code bases or to reload classes from m-let code bases implies that the agent
application or the MBean developer has some prior knowledge of the code base
contents at runtime.

8.3.2.1 Native libraries

The m-let service acts as the class loader for any MBeans it loads. This means that if
the MBeans contain native methods, and they load a native library containing the
code for those methods using System.loadLibrary, then the m-let class loader’s
findLibrary method will be called to find the library. This method is overridden
from java.lang.ClassLoader. It will attempt to find a resource (typically an
entry in a JAR file) whose name is the name of the library, modified in a system-
dependent way. If it does find one, it will copy the contents to a file in the directory
returned by the MLet.getLibraryDirectory() method, and return the name of
the file as the result of findLibrary. This is described further in the API
specification for MLet.findLibrary.
Chapter 8 Advanced Dynamic Loading 147

Not all systems support native libraries in this way. A system that does not will
throw UnsupportedOperationException from the getLibraryDirectory and
setLibraryDirectory methods in the MLet class.

Even on systems that do support this functionality, it is better not to rely on it
because of the portability problems it poses.

8.4 The Class Loader Repository
The MBean server maintains a list of class loaders in the class loader repository. The
class loader repository is also sometimes referred to as the default loader Repository.

The class loader repository is used in the following circumstances:

■ In the createMBean and instantiate methods from the MBeanServer
interface. The class loader repository is used to find and load the class named by
the className parameter to these methods.

These methods exist in several overloaded forms. Some of the forms have an
ObjectName parameter specifying an MBean that is a class loader. The class
loader repository is not used by those forms.

■ When an m-let does not find a class in its URLs, it tries to load the class through
the class loader repository. This behavior can be disabled when the m-let is
created.

■ The method getClassLoaderRepository from the MBeanServer interface
provides a way for clients of the MBean server to access its class loader repository
directly.

If several MBean servers are created within the same Java Virtual Machine, for
example by a program that calls MBeanServerFactory.createMBeanServer
several times, each one has its own class loader repository, independently of the
others.

8.4.1 How to Add Loaders to the Class Loader
Repository
When an MBean server is created, its class loader repository contains the class loader
that was used to load the MBeanServer implementation class. Thereafter, a class
loader is added to the repository if it is registered as an MBean. If the MBean is
subsequently unregistered, it is removed from the repository.

Put another way, if an MBean is registered that is a descendant of
java.lang.ClassLoader, it is added to the class loader repository.
148 Java Management Extensions Specification, version 1.4 • November 9, 2006

If an MBean is a descendant of java.lang.ClassLoader but implements the
interface javax.management.loading.PrivateClassLoader, then it is never
added to the class loader repository.

Because the class javax.management.loading.MLet is a descendant of
java.lang.ClassLoader, m-lets are added to the class loader repository when
they are registered in the MBean server. The JMX specification includes a class
PrivateMLet that subclasses MLet and implements PrivateMLet. A
PrivateMLet behaves like an MLet in every way except that it is never added to
the class loader repository.

8.4.2 Order of Loaders in the Class Loader Repository
The order of class loaders in the repository is significant. When a class is loaded
using the repository, each class loader in turn is asked to load the class. If a loader
successully loads the class, the search stops. If a loader throws
ClassNotFoundException, the search continues with the next loader in the list. If
no loader succeeds in loading the class, the attempt results in a
ClassNotFoundException.

The first loader in the class loader repository is the one that was used to load the
MBeanServer implementation class. Thereafter, each entry is an MBean that is a
descendant of java.lang.ClassLoader. The order of these loaders is the order in
which the MBeans were registered.

More formally, an MBean m1 appears before an MBean m2 if the createMBean or
registerMBean operation that registered m1 completed before the operation that
registered m2 started. If neither operation completed before the other started, both
MBeans were registered at the same time in different threads, and the order between
m1 and m2 is indeterminate.

8.4.3 M-Let Delegation to the Class Loader Repository
An m-let is a class loader, and as such follows the standard behaviour for a class
loader when it loads a class using its loadClass method:

■ First, it sends a request to its parent class loader to load the class. The parent class
loader is specified when the m-let is created. By default, it is the system class loader.

■ If the parent class loader is unable to load the class, the m-let attempts to load it
itself through its list of URLs. The MLet class is a subclass of
java.net.URLClassLoader, and the behavior for loading a class through a list
of URLs is inherited from URLClassLoader.
Chapter 8 Advanced Dynamic Loading 149

If neither of these two attempts finds the class, the m-let attempts to load the class
through the class loader repository. We say that it delegates to the class loader
repository. Only if that attempt also fails does the m-let throw a
ClassNotFoundException.

When an m-let delegates to the class loader repository, each loader in the repository
is asked in turn to load the class. However, if the m-let is itself in the class loader
repository, the search stops as soon as the m-let is reached. That is, the m-let only
delegates to loaders that precede it in the repository.

The class loader repository can be used as a way to make common classes available
to MBeans from different sources. The common classes are placed in the repository,
and m-lets that delegate to the repository can find them. Because m-lets only
delegate to loaders that precede them in the repository, the order in which loaders
are registered is important. If m-let m1 defines classes that are used by classes in m-
let m2, then m1 must be registered before m2.

When an m-let is created, it is possible to control both whether it delegates to other
loaders via the repository, and whether other loaders delegate to it:

■ If the m-let is constructed with the Boolean delegateToCLR parameter false, then it
will not delegate to the class loader repository.

■ If the m-let is an instance of PrivateMLet, then it will not be added to the class
loader repository, so other loaders will not delegate to it.

8.4.3.1 New Semantics in the JMX 1.2 Specification

In versions of the JMX specification prior to 1.2, m-lets delegated to the complete list
of loaders in the class loader repository. That is, if an m-let did not find a class itself,
every other loader in the repository was consulted. Loaders were consulted
regardless of whether they were before or after the m-let in the repository.

This behaviour is open to a subtle problem with certain Java Virtual Machines. Note
that a class is not necessarily loaded by an explicit call to the loadClass method of
some class loader. More often, a class is loaded because it is referred to by another
class, for instance because it is the type of a field in that class, or of a parameter or
return value in a method, or it is a superclass or superinterface of the class, or one of
the methods in the class constructs an instance of it or refers to a static field or
method in it. Simplifying slightly, we can say that the exact moment when a class is
loaded cannot be predicted.

When a class c1 refers to another class A for the first time, A is loaded using c1’s class
loader. If c1 was loaded by the m-let m1, then A will also be loaded using m1.

If m1 does not find the class A through its parent class loader, or through its list of
URLs, it will delegate to the class loader repository.
150 Java Management Extensions Specification, version 1.4 • November 9, 2006

Referring to FIGURE 8-2, imagine that at the same time in another thread, a class c2,
loaded by the m-let m2, refers to the class B for the first time. Again, B will be loaded
using m2, and if m2 does not find the class itself, it will delegate to the class loader
repository.

If m1 searches through all the loaders in the repository besides itself, and m2 does
likewise, then m1 will end up sending a request to m2 to load A and m2 will end up
sending a request to m1 to load B.

A problem arises with certain Java Virtual Machine implementations that do not
allow more than one thread at a time to load a class through a given class loader.
Because thread 1 is loading class A through m1, thread 2 cannot simultaneously load
class B through m1. Because thread 2 is loading class B through m2, thread 1 cannot
simultaneously load class A through m2. Each thread must wait for the other to
finish before it can proceed, creating a classical deadlock situation.

FIGURE 8-2 Deadlock scenario for m-let delegation

The change in semantics avoids this scenario because one of the two m-lets must
appear after the other in the class loader repository. If m2 appears after m1, m1 will
never attempt to load a class using m2, because it only delegates to loaders that
appear earlier than it in the repository. So the deadlock cannot happen.

If you are prepared to run the risk of deadlock, or you are sure that a scenario such
as the above cannot happen, it is straightforward to subclass MLet and override its
loadClass method to restore the previous semantics of delegating to all the loaders
in the repository, whether before or after the m-let. However, you should remember

Thread 1

m1.loadClass(“A”)

not found locally

delegate to repository

m2.loadClass(“A”)

Thread 2

m2.loadClass(“B”)

not found locally

delegate to repository

m1.loadClass(“B”)
Chapter 8 Advanced Dynamic Loading 151

that if a class loaded by such an MLet subclass refers to another class that does not
exist, all the m-lets in the class loader repository are consulted before
ClassNotFoundException is thrown.

8.5 Using the Correct Class Loader for
Parameters
A subtle pitfall of class loading is that the class a.b.C created by the class loader cl1
is not the same as the class a.b.C created by the class loader cl2. Here, “created”
refers to the class loader that actually creates the class with its defineClass
method. If cl1 and cl2 both find a.b.C by delegating to another class loader cl3, it is
the same class.

A value of type “a.b.C created by cl1” cannot be assigned to a variable or
parameter of type “a.b.C created by cl2”. An attempt to do so will result in an
exception such as ClassCastException.

For the JMX specification, this can pose problems for the parameters of the methods
createMBean, invoke, setAttribute, and setAttributes of the MBean server.

Suppose you have an MBean with the following interface:

If the MBean server contains an instance of this MBean that was created by the class
loader cl1. At some stage, either during loading or the first time it is referenced, cl1
will load the class SomeClass.

Suppose now that you are writing a connector. At the receiving (server) end of the
connector, you get a request to invoke m on the MBean. The sender will have sent an
instance of SomeClass that you must recreate, for example, by deserializing it. If
you recreate it with any class loader other than cl1, you will get an exception when
you try to pass it to the method m.

This means that your connector server must have a way of instantiating received
objects using the correct class loader.

To this end, there are three methods in the MBeanServer interface related to class
loading:

■ getClassLoaderFor

■ getClassLoaderRepository

CODE EXAMPLE 8-1 Simple MBean interface

public interface AnMBean {
public void m(SomeClass x);

}

152 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ getClassLoader

These methods are described in the following sections.

8.5.1 getClassLoaderFor

The appropriate method for CODE EXAMPLE 8-1 on page 152 is:

public ClassLoader getClassLoaderFor(ObjectName name);

By calling this method with the ObjectName of an MBean, you can obtain the class
loader that created the MBean’s class, cl1 in our example. Then you can get the
correct class, SomeClass, using cl1.

The getClassLoaderFor method is appropriate for the invoke, setAttribute,
and setAttributes operations, because the appropriate class loader for the
parameters to these operations is the class loader of the target MBean.

The getClassLoaderFor method was introduced in version 1.2 of the JMX
specification. Previously, connector servers had to use one of the deserialize
methods in the MBeanServer interface. These methods are now deprecated.
Consequently, use getClassLoaderFor instead of

deserialize(ObjectName name, byte[] data).

8.5.2 getClassLoader and
getClassLoaderRepository

For the createMBean operation, the target MBean does not exist, because the whole
purpose of the operation is to create it. There are two classes of createMBean
operation, depending on whether there is a loaderName parameter that specifies the
name of an MBean that is a class loader to be used to load the MBean class.

■ For a createMBean operation that does not include a loaderName, the MBean
class is loaded using the class loader repository. If the constructor invoked to
create the MBean has parameters, then these should also be loaded using the class
loader repository, to avoid the problem that was explained above for invoke.
Thus, the MBeanServer interface contains a method:

public ClassLoaderRepository getClassLoaderRepository();

The method loadClass in the ClassLoaderRepository interface can be used
to load classes through the class loader repository.
Chapter 8 Advanced Dynamic Loading 153

■ For a createMBean operation that includes a loaderName, the MBean class is
loaded using the class loader that is registered as an MBean with the given name.
If the constructor has parameters, their classes should be loaded by the same class
loader. Thus, the MBeanServer interface contains a method:

public ClassLoader getClassLoader(ObjectName name);

Similar considerations apply to the instantiate methods of the MBeanServer
interface. However, these methods are not usually exposed through connectors.

The methods getClassLoader, and getClassLoaderRepository were
introduced in the JMX specification version 1.2. Previously, connector servers had to
use one of the three deserialize methods in the MBeanServer interface. These
methods are now deprecated.

Consequently, use getClassLoaderRepository instead of

deserialize(String className, byte[] data)

Also use getClassLoader instead of

deserialize(String className, ObjectName loaderName, byte[] data)
154 Java Management Extensions Specification, version 1.4 • November 9, 2006

9

Monitoring

This chapter specifies the family of monitor MBeans that allow you to observe the
variation over time of attribute values in other MBeans and emit notifications at
threshold events. Collectively they are referred to as the monitoring services.

Monitoring services are a mandatory part of agents that comply with the JMX
specification, and they must be implemented in full.

9.1 Overview
Using a monitoring service, an observed value from a given attribute in one or more
other MBeans (the observed MBeans) is monitored at intervals specified by the
granularity period. This value is either the attribute value, or a value contained within
an attribute value of complex type. For each observed MBean, the monitor derives a
second value from this observation, called the derived gauge. This derived gauge is
either the exact observed value, or optionally, the difference between two
consecutive observed values of numeric type.

A specific notification type is sent by each of the monitoring services when the value
of the derived gauge satisfies one of a set of conditions. The conditions are specified
when the monitor is initialized, or dynamically through the monitor MBean’s
management interface. Monitors can also send notifications when certain error cases
are encountered while monitoring an attribute value.

9.1.1 Types of Monitors
Information on the value of an attribute within an MBean is provided by three
different types of monitors:

■ CounterMonitor - Observes values with Java integer types (Byte, Integer,
Short, Long) that behave like a counter, namely:

■ Their value is always greater than or equal to zero.
■ They can only be incremented.
Chapter 9 Monitoring 155

■ They can roll over, and in that case a modulus value is defined.

■ GaugeMonitor - Observes values with Java integer or floating point types
(Float, Double) that behave like a gauge (arbitrarily increasing and decreasing).

■ StringMonitor - Observes values of type String.

All types of monitors extend the abstract Monitor class, that defines common
attributes and operations. The type of the observed value must be supported by the
specific monitor subclass used.

However, monitors verify the type of the object instance that is returned as the
attribute’s value, not the attribute type declared in the observed MBean’s metadata.
For example, this allows a string monitor to observe a value declared as an Object
in its metadata, as long as actual values are String instances.

Each of the monitors is also a standard MBean, allowing them to be created and
configured dynamically by other MBeans or by management applications.

9.2 MonitorNotification Class
A specific subclass of the Notification class is defined for use by all monitoring
services: the MonitorNotification class.

This notification is used to report one of the following cases:

■ One of the trigger conditions of a monitor is detected, for example, the high
threshold of a gauge is reached

■ An error occurs during an observation of the attribute, for example, the observed
MBean is no longer registered

The notification type string within a MonitorNotification instance identifies the
specific monitor event or error condition, as shown in FIGURE 9-1. The fields of a
MonitorNotification instance contain the following information:

■ The observed MBean’s object name
■ The observed attribute name, or the attribute name plus the value within a

complex-type attribute value to be observed
■ The derived gauge, namely, the last value computed from the observation
■ The threshold value or string that triggered this notification

The tree representation of all notification types that can be generated by the
monitoring services is given in FIGURE 9-1. The error types are common to all
monitors and are described below. Each of the threshold events is particular to its
monitor and is described in the corresponding section.
156 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 9-1 Tree Representation of Monitor Notification Types

9.2.1 Common Monitor Notification Types
The following notification types are common to all monitors and are emitted to
reflect error cases. The first measurement is made when the monitor is started:

■ jmx.monitor.error.mbean - Sent when one of the observed MBeans is not
registered in the MBean server. The observed object name is provided in the
notification.

■ jmx.monitor.error.attribute - Sent when the observed attribute does not
exist in one of the observed objects. The observed object name and observed attribute
name are provided in the notification.

■ jmx.monitor.error.type - Sent when the object instance of the observed
attribute value is null or not of the appropriate type for the given monitor. The
observed object name and observed attribute name are provided in the notification.

■ jmx.monitor.error.runtime - All exceptions (except the cases described
above) that occur while trying to get the value of the observed attribute are
caught by the monitor and will be reported in a notification of this type.

The following notification type is common to the counter and the gauge monitors; it
is emitted to reflect specific error cases:

■ jmx.monitor.error.threshold - Sent in case of any incoherence in the
configuration of the monitor parameters:
■ Counter monitor: the threshold, the offset, or the modulus is not of the same

type as the observed counter attribute.

jmx

monitor

counter gauge string error

mbean

attribute

type

matches

differs

high

low

threshold

runtime

threshold
Chapter 9 Monitoring 157

■ Gauge monitor: the low threshold or high threshold is not of the same type as
the observed gauge attribute.

9.3 CounterMonitor Class
A counter monitor sends a notification when the observed counter value reaches or
exceeds a comparison level known as the threshold.

The counter can roll over (also known as wrapping around) when it reaches a
maximum value. In this case, the notification is triggered every time the counter
reaches or exceeds the threshold, provided it has been observed below the threshold
since the previous notification. A counter does not necessarily roll over to zero, but
this does not affect the monitor that handles the general case.

In addition, an offset mechanism can detect counting intervals, as follows:

■ The offset mechanism is enabled whenever the monitor’s offset value is non-zero.

■ Whenever the monitor detects that the counter reaches or exceeds the threshold, a
notification is triggered and the threshold is incremented by the offset value. The
threshold is incremented by the offset value as many times as necessary for the
threshold to exceed the counter value again, but still only one notification is sent.

■ If the counter that is monitored rolls over when it reaches a maximum value, then
the modulus value needs to be set to that maximum value. The threshold will then
also “roll over” whenever it strictly exceeds the modulus value. When the
threshold “rolls over”, it is reset to the value that was specified through the latest
call to the monitor’s setInitThreshold method, before any offsets were
applied.

■ The getThreshold method of the CounterMonitor class always returns the
current value of the threshold, which includes any offset increments.

■ All incrementing or rolling over of the threshold is considered to take place
instantaneously, namely, before the count is incremented. Thus, if the granularity
period is set appropriately, the monitor triggers a threshold notification every
time the count increases by an interval equal to the offset value.

If the counter difference option is used, then the value of the derived gauge is
computed as the difference between the observed counter values for two consecutive
observations. If the counter will roll over, then the modulus must be defined when
counter difference is active. When the counter does roll over, the difference between
the observations will be negative and value of the modulus needs to be added.

The derived gauge value (V[t]) for the counter difference is calculated at time t
using the following algorithm, where GP is the granularity period:

■ While t is less than StartDate+2GP, V[t] = (Integer)0

■ If (counter[t] - counter[t-GP]) is greater than or equal to zero, then
V[t] = counter[t] - counter[t-GP]
158 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ If (counter[t] - counter[t-GP]) is negative, then
V[t] = counter[t] - counter[t-GP] + MODULUS

The counter monitor has the following constraint:

■ The threshold value, the offset value and the modulus value properties must be of
the same integer type as the observed attribute.

The operation of a counter monitor with an offset of 2 is illustrated in FIGURE 9-2.

FIGURE 9-2 Operation of the CounterMonitor

The monitor observes a counter C(t) that varies with time t. The granularity period
is GP and the comparison level is T. A CounterMonitor sends a notification when
the value of the counter reaches or exceeds the comparison (threshold) level. After
the notification has been sent, the threshold is incremented by the offset value until
the comparison level is greater than the current value of the counter.

9.3.1 Counter Monitor Notification Types
In addition to the monitor error notification types, a CounterMonitor MBean can
broadcast the following notification type:

3

7

5

Offset

granularityPeriod (GP)

eventevent event

Offset

comparison
level (T)
(threshold) t

count (C) threshold thresholdthreshold
Chapter 9 Monitoring 159

■ jmx.monitor.counter.threshold - This notification type is triggered when
the derived gauge has reached or exceeded the threshold value.

9.4 GaugeMonitor Class
A gauge monitor observes a numerical value that behaves as a gauge. A hysteresis
mechanism is provided to avoid the repeated triggering of notifications when the
gauge makes small oscillations around the threshold value. This capability is
provided by specifying threshold values in pairs; one being a high threshold value
and the other being a low threshold value. The difference between threshold values is
the hysteresis interval.

The GaugeMonitor MBean has the following structure:

■ The HighThreshold attribute defines the value that the gauge must reach or
exceed to trigger a notification that will be broadcast only if the NotifyHigh
boolean attribute is true.

■ The LowThreshold attribute defines the value that the gauge must fall to or fall
below to trigger a notification that will be broadcast only if the NotifyLow
boolean attribute is set to true.

The gauge monitor has the following constraints:

■ The threshold high value and the threshold low value properties are of the same
type as the observed attribute.

■ The threshold high value is greater than or equal to the threshold low value.

The gauge monitor has the following behavior:

■ Initially, if NotifyHigh is true and the gauge value becomes equal to or greater
than the HighThreshold value while the gauge is increasing, then the defined
notification is triggered. Subsequent crossings of the high threshold value will not
trigger further notifications until the gauge value becomes equal to or less than
the LowThreshold value.

■ Initially, if NotifyLow is true and the gauge value becomes equal to or less than
the LowThreshold value while the gauge is decreasing, then the defined
notification is triggered. Subsequent crossings of the low threshold value will not
cause further notifications until the gauge value becomes equal to or greater than
the HighThreshold value.

■ Upon creation of the gauge, if NotifyHigh is true and the gauge value is
already equal to or greater than the HighThreshold value, then the defined
notification is triggered. Similarly, if NotifyLow is true and the gauge value is
already equal to or less than the LowThreshold value, then the defined
notification is also triggered.
160 Java Management Extensions Specification, version 1.4 • November 9, 2006

If the gauge difference option is used, then the value of the derived gauge is
calculated as the difference between the observed gauge values for two consecutive
observations.

The derived gauge value (V[t]) for gauge difference is calculated at time t using
the following algorithm, where GP is the granularity period:

■ While t is less than StartDate+2GP, V[t] = (Integer)0

■ Otherwise, V[t] = gauge[t] - gauge[t-GP]

The operation of the GaugeMonitor is illustrated in FIGURE 9-3, assuming both
notification switches are true.

FIGURE 9-3 Operation of the GaugeMonitor

9.4.1 Gauge Monitor Notification Types
In addition to the monitor error notification types, a GaugeMonitor MBean can
broadcast the following notification types:

■ jmx.monitor.gauge.high - This notification type is triggered when the
derived gauge has reached or exceeded the high threshold value.

■ jmx.monitor.gauge.low - This notification type is triggered when the derived
gauge has decreased to or below the low threshold value.

P(t)
eventevent event

thresholdLowValue

thresholdHighValue

granularityPeriod

high low high
Chapter 9 Monitoring 161

9.5 StringMonitor Class
A string monitor observes a value of type String. The derived gauge in this case is
always the observed value. The string monitor is configured with a value for the
string called string-to-compare, and is able to detect the following two conditions:

■ The derived gauge matches the string-to-compare. If the NotifyMatch attribute
of the monitor is true, then a notification is sent. At the subsequent observation
times (defined by the granularity period), no other notification will be sent for as
long as the attribute value still matches the string-to-compare.

■ The value of the derived gauge differs from the string-to-compare. If the
NotifyDiffer attribute of the monitor is true, then a notification is sent. At the
subsequent observation times, no other notification will be sent for as long as the
attribute value differs from the string-to-compare.

Assuming both notifications are selected, this mechanism ensures that matches and
differs are strictly alternating, each occurring the first time the condition is observed.

The operation of the string monitor is illustrated in FIGURE 9-4. The granularity
period is GP, and the string-to-compare is “XYZ”.

FIGURE 9-4 Operation of the StringMonitor

granularityPeriod (GP)

eventevent

event

t

observed attribute

event

“XYZ” “xx” “XYZ” “yyyy”

matches

differs

matches

differs

“zzzzz”
162 Java Management Extensions Specification, version 1.4 • November 9, 2006

9.5.1 String Monitor Notification Types
In addition to the monitor error notification types, a StringMonitor MBean can
broadcast the following notification types:

■ jmx.monitor.string.matches - This notification type is triggered when the
derived gauge first matches the string to compare.

■ jmx.monitor.string.differs - This notification type is triggered when the
derived gauge first differs from the string to compare.

9.6 Implementation of the Monitor MBeans
FIGURE 9-5 provides the package diagram of the various monitor MBean classes, with
the interfaces they implement. The API documentation generated by the Javadoc
tool provides the complete description of all monitoring service interfaces and
classes.

FIGURE 9-5 The Package and Class Diagram of the Monitor MBeans

NotificationBroadcasterSupport

Monitor

CounterMonitor

GaugeMonitor

StringMonitor

CounterMonitorMBean

GaugeMonitorMBean

«Interface»
MonitorMBeanMBeanRegistration

«Interface»

«Interface»
StringMonitorMBean

«Interface»

«Interface»

javax.management.monitor
Chapter 9 Monitoring 163

164 Java Management Extensions Specification, version 1.4 • November 9, 2006

10

Timer Service

The timer service triggers notifications at specific dates and times. It can also trigger
notifications repeatedly at a constant interval. The notifications are sent to all objects
registered to receive notifications emitted by the timer. The timer service is an
MBean that can be managed, allowing applications to set up a configurable
scheduler.

Conceptually, the Timer class manages a list of dated notifications that are sent
when their date and time arrives. Methods of this class are provided to add and
remove notifications from the list. In fact, the notification type is provided by the
user, along with the date and optionally a period and the number of repetitions. The
timer service always sends the notification instances of its specific
TimerNotification class.

10.1 Timer Notifications
The timer service can manage notifications in two different ways:

■ Notifications that are triggered only once

■ Notifications that are repeated with a defined period and/or number of
occurrences

This behavior is defined by the parameters passed to the timer when the notification
is added into the list of notifications. Each of the notifications added to the timer
service is assigned a unique identifier number. Only one identifier number is
assigned to a notification, no matter how many times it is triggered.
Chapter 10 Timer Service 165

10.1.1 TimerNotification Class
A specific subclass of the Notification class is defined for use by the timer
service: the TimerNotification class. The notification type contained in instances
of the TimerNotification class is particular: it is defined by the user when the
notification is added to the timer. All notifications broadcast by the timer service are
instances of the TimerNotification class.

The TimerNotification class has a notification identifier field that uniquely
identifies the timer notification that triggered this notification instance.

10.1.2 Adding Notifications to the Timer
The timer service maintains an internal list of the dated notifications that it has been
requested to send. Notifications are added to this list using the Timer class’
addNotification methods. The methods take the following parameters, used by
the timer to create a TimerNotification object and then add it to the list:

■ type - The notification type string.

■ message - The notification’s detailed message string.

■ userData - The notification’s user data object.

■ date - The date when the notification will occur. The Timer class includes
integer constants for expressing durations in milliseconds, that can then be used
to create java.util.Date objects.

The addNotification method is overloaded and, in addition to the notification’s
parameters and date, it can take the following optional parameters:

■ period - The interval in milliseconds between notification occurrences.
Repeating notifications are not enabled if this parameter is zero or null.

■ nbOccurences [sic] - The total number of times that the notification will occur. If
the value of this parameter is zero or is not defined (null), and if the period is
not zero or null, then the notification will repeat indefinitely.

If the notification to be inserted has a date that is before the current date, the
addNotification method behaves as if the current date had been specified.
Updating the date of a timer notification that is being added does not generate any
notification events, as opposed to the sendPastNotifications mechanism that
applies when the timer is started (see “Starting and Stopping the Timer” on
page 168).

The addNotification method returns the identifier of the new timer notification.
This identifier can be used to retrieve information about the notification from the
timer or to remove the notification from the timer’s list of notifications. However,
after a notification has been added to the list of notifications, its associated
parameters cannot be updated.
166 Java Management Extensions Specification, version 1.4 • November 9, 2006

When a one-off notification (period is zero or null) occurs, it is removed from the
timer’s list of notifications.

10.1.3 Receiving Timer Notifications
The timer service MBean is a standard notification broadcaster with notification
types and times defined by the list of notifications built up through the
addNotification method. All listeners of a given timer MBean will receive all its
timer notifications. Listeners configured to listen for a specific timer notification
should specify the appropriate filter object when registering as a listener (see
“NotificationFilter Interface” on page 58).

When the timer is active and the date of a timer notification comes due, the timer
service broadcasts this notification with the given type, message, and user data,
along with the notification’s identifier within the timer. If a periodic notification has
a specified number of occurrences, that number is decremented by one. Accessing
the occurrence parameter of a timer notification always returns the remaining
number of occurrences at the time of access.

When a notification is not repeating or when it has exhausted its number of
occurrences, it is removed from the timer’s list of notifications. The methods of the
Timer class for accessing notification parameters will raise an exception if called
with the identifier of a timer notification that has been sent and removed.

10.1.4 Removing Notifications From the Timer
Timer notifications can also be removed from the list of notifications using one of the
following methods of the Timer class:

■ removeNotification - Takes a notification identifier as a parameter and
removes the corresponding notification from the list. If the specified identifier
does not exist in the list, this method throws an InstanceNotFoundException.

■ removeNotifications - Takes a notification type as a parameter and removes
all notifications from the list that were added with that type. If the specified
notification type does not correspond to any notifications in the list, this method
throws an InstanceNotFoundException.

■ removeAllNotifications - Empties the timer’s list of notifications. This
method also resets the notification identifiers, meaning that all existing identifiers
for this timer are invalid and will erroneously refer to new notifications.
Chapter 10 Timer Service 167

10.2 Starting and Stopping the Timer
The timer service, represented by an instance of the Timer class, is activated using
the start method and deactivated using the stop method. If the list of notifications
is empty when the timer is started, the timer waits for a notification to be added. No
timer notifications are triggered before the timer is started or after it is stopped.

You can determine whether the timer is running or not by invoking the timer
method isActive. The isActive method returns true if the timer is running.

If any of the notifications in the timer’s list have associated dates that have passed
when the timer is started, the timer attempts to update them. The dates of periodic
notifications are incremented by their interval period until their date is greater than
the current date. The number of increments can be limited by their defined number
of occurrences. Notifications with one-time dates preceding the start date and
notifications with a limited number of occurrences that cannot be updated to exceed
the start date are removed from the timer’s list of notifications.

When a notification is updated or removed during timer start-up, its notification is
either triggered or ignored, depending on the sendPastNotifications attribute
of the Timer class:

■ sendPastNotifications = true - All one-time notifications with a date before
the start date are broadcast, and all periodic notifications will be broadcast as
many times as they should have occurred before the start date, including those
that are removed because they cannot be updated beyond the start date.

■ sendPastNotifications = false - Notifications with a date before the start
date are ignored; if a notification is periodic, its notification date is updated but
no notifications are triggered.

Setting the sendPastNotifications flag to true can cause a flood of
notifications to be broadcast when the timer is started. The default value for this flag
is false. Setting this flag to true ensures that notification dates that occur while
the timer is stopped are not lost. The user can choose to receive them when the timer
is started again, even though they no longer correspond to their set dates.

Calling start on a Timer that has already been started, or stop on a Timer that
has already been stopped, has no effect. After a stop, the timer is in its initial state,
and it can be started again with start.
168 Java Management Extensions Specification, version 1.4 • November 9, 2006

11

Relation Service

As part of the agent specification, the Java Management extensions (JMX)
specification also defines a model for relations between MBeans. A relation is a user
defined, n-ary association between MBeans in named roles. The JMX specification
defines the classes that are used to construct an object representing a relation, and it
defines the relation service that centralizes all operations on relations in an agent.

All relations are defined by a relation type that provides information about the roles
it contains, such as their multiplicity, and the class name of MBeans that satisfy the
role. Through the relation service, users create new types and then create, update, or
remove relations that satisfy these types. The relation service also performs queries
among all relations to find related MBeans.

The relation service maintains the consistency of relations, checking all operations
and all MBean deregistrations to ensure that a relation always conforms to its
relation type. If a relation is no longer valid, it is removed from the relation service,
though its member MBeans continue to exist otherwise.

11.1 The Relation Model
A relation is composed of named roles, each of which has a value consisting of the
list of MBeans in that role. This list must comply with the role information that
defines the multiplicity and class of MBeans in the corresponding role. A set of one
or more role information definitions constitutes a relation type. The relation type is a
template for all relation instances that associate MBeans representing its roles. We
use the term relation to mean a specific instance of a relation that associates existing
MBeans according to the roles in its defining relation type.
Chapter 11 Relation Service 169

11.1.1 Terminology
The relation model in the JMX specification relies on the following terms. Here we
only define the concepts represented by a term, not the corresponding Java class.

11.1.2 Example of a Relation
Throughout this chapter we will use the example of a relation between books and
their owner.

To represent this relation in the JMX specification model, we say that Books and
Owner are roles. Books represents any number of owned books of a given MBean
class, and Owner is a book owner of another MBean class. We might define a relation
type containing these two roles and call it Personal Library, representing the
concept of book ownership.

role information Describes one of the roles in a relation. The role information gives the name
of the role, its multiplicity expressed as a single range, the name of the class
that participates in this role, read-write permissions, and a description string.

relation type The metadata for a relation, composed of a set of role information. It
describes the roles that a relation must satisfy, and it serves as a template for
creating and maintaining relations.

relation A current association between MBeans that satisfies a given relation type. A
relation can only be created and modified such that the roles of its defined
type are always respected. A relation can also have properties and methods
that operate on its MBeans.

role value The list of MBeans that currently satisfies a given role in a relation. The role
value must at all times conform to its corresponding role information.

unresolved role An unresolved role is the result of an illegal access operation on a role, as
defined by its role information. Instead of the resulting role value, the
unresolved role contains the reason for the refused operation. For example,
setting a role with the wrong class of MBean, providing a list with an illegal
cardinality, or attempting to write a read-only role will all return an
unresolved role.

support classes Internal classes used to represent relation types and relation instances. The
support classes are also exposed to simplify user implementations of relation
classes. The user’s external implementation must still rely on the relation
service to maintain the consistency of the relation model.

relation service An MBean that can access and maintain the consistency of all relation types
and all relation instances within a JMX agent. It provides query operations to
find related MBeans and their role in a relation. It is also the sole source of
notifications concerning relations.
170 Java Management Extensions Specification, version 1.4 • November 9, 2006

The following diagram represents this sample relation, as compared to the UML
modeling of its corresponding association.

FIGURE 11-1 Comparison of the Relation Models

In the JMX specification model, the relation type is a static set of roles. Relation types
can be defined at runtime, but once defined, their roles and the role information
cannot be modified. The relation instance of a given type defines the MBeans in each
role and provides operations on them, if necessary.

11.1.3 Maintaining Consistency
MBeans are related through relation instances defined by relation types in the
relation service, but the MBeans remain completely accessible through the MBean
server. Only registered MBeans, identified by their object name, can be members of a
relation. The relation service never operates on member MBeans, it only provides
their object names in response to queries.

The relation service blocks the creation of invalid relation types, for example if the
role information is inconsistent. In the same way, invalid relations cannot be created,
either because the relation type is not respected or because the object name of a
member MBean does not exist in the MBean server. The modification of a role value
is also subject to the same consistency checks.

When a relation is removed from the relation service, its member MBeans are no
longer related through the removed instance, but are otherwise unaffected. When a
relation type is removed, all existing relations of that type are first removed. The
caller is responsible for being aware of the consequences of removing a relation type.

Because relations are defined only between registered MBeans, deregistering a
member MBean modifies the relation. The relation service listens for all MBean
server notifications that indicate when a member of any relation is deregistered. The

JMX Model UML Model

«Relation Type»
Personal Library

«Role»
Owner

«Role»
Books

0..*1..1
«Personal

BooksOwner

Library»

1..1 0..*
Chapter 11 Relation Service 171

corresponding MBean is then removed from any role value where it appears. If the
new cardinality of the role is not consistent with the corresponding relation type,
that relation is removed from the relation service.

The relation service sends a notification after all operations that modify a relation
instance, either creation, update, or removal. This notification provides information
about the modification, such as the identifier of the relation and the new role values.
The notification also indicates whether the relation was internally or externally
defined (see “External Relations” on page 174).

There is a difference between the two models presented in FIGURE 11-1 on page 171.
The UML association implies that each one of the Books can only have one owner.
The relation type in the JMX specification only models a set of roles, indicating that
a relation instance has one Owner MBean and any number of MBeans in the Books
role.

The JMX specification relation model only guarantees that an MBean satisfies its
designated role, it does not allow a user to define how many relations an MBean can
appear in. This implies that the relation service does not perform inter-relation
consistency checks. These are the responsibility of the management application
when creating or modifying relation instances.

If this level of consistency is needed, the designer of a management solution must
implement the necessary verifications in the objects that use the relation service. In
our example, the designer would need to ensure that the same book MBean is not
added to more than one Personal Library relation. One way to do this is by
calling the query methods of the relation service before performing any operation.

11.1.4 Implementation
The JMX specification defines the Java classes the behavior of which implements this
relation model. Each of the concepts defined in “Terminology” on page 170 has a
corresponding Java class (see FIGURE 11-2 on page 173). Along with the behavior of
the relation service object itself, these classes determine how the relation service is
used in management solutions.

This section explains the interaction between the relation service and the support
classes. The operations and other details of all classes will be covered in further
sections. The exception classes are all subclasses of the RelationException class
and provide only a message string. The API documentation generated by the
Javadoc tool for the other classes indicates which exceptions are raised by specific
operations.

In practice, role description structures are handled outside of the relation service,
and their objects are instantiated directly by the user (see “Role Description Classes”
on page 184). Role information objects are grouped into arrays to define a relation
172 Java Management Extensions Specification, version 1.4 • November 9, 2006

type. Role objects and role lists are instantiated to pass to setters of role values. Role
results are returned by getters of role values, and their role lists and unresolved role
lists can be extracted for processing.

FIGURE 11-2 Classes of the javax.management.relation package

On the other hand, relation types and relation instances are controlled by the
relation service to maintain the consistency of the relation model. The
implementation of the JMX specification relation model provides a flexible design
whereby relation types and instances can be either internal or external to the relation
service.

Internal relation types and instances are created by the relation service and can only
be accessed through its operations. The objects representing types and relations
internally are not accessible to the user. External relation types and instances are
objects instantiated outside the relation service and added under its control. Users
can access these objects in any manner that has been designed into them, including
as registered MBeans.

11.1.4.1 External Relation Types

The relation service maintains a list of relation types that are available for defining
new relations. A relation type must be created internally or instantiated externally
and added to the relation service before it can be used to define a relation.

javax.management.relation

«relation service»
RelationService
RelationServiceMBean
RelationNotification
MBeanServerNotificationFilter

«relation support»
RelationType
RelationTypeSupport
Relation
RelationSupport
RelationSupportMBean

«role description»
RoleInfo
Role
RoleList
RoleUnresolved
RoleUnresolvedList
RoleResult
RoleStatus

«exception superclass»
RelationException

«relation type creation errors»
InvalidRoleInfoException
InvalidRelationTypeException

«relation creation errors»
InvalidRelationServiceException
RelationServiceNotRegistered-

RoleInfoNotFoundException
InvalidRoleValueException
RelationTypeNotFoundException
InvalidRelationIdException

«relation access errors»
RelationNotFoundException
RoleNotFoundException

Exception
Chapter 11 Relation Service 173

Objects representing external relation types must implement the RelationType
interface. The relation service relies on its methods to access the role information for
each of the roles defined by the external object. See “RelationTypeSupport Class”
on page 181 for the description of a class used to define external relation types.

Relation types are immutable, meaning that once they are added to the relation
service, their role definitions cannot be modified. If an external relation type exposes
methods for modifying the set of role information, they should not be invoked by its
users after the instance has been added under the control of the relation service. The
result of doing so is undefined, and consistency within the relation service is no
longer guaranteed.

The benefit of using an external relation type class is that the role information can be
defined statically, for example, in a class constructor. This allows predefined types to
be rapidly instantiated and then added to the relation service.

Once it has been added to the relation service, an external relation type can be used
to create both internal and external relations. An external relation type is also
removed from the relation service in the same way as an internal relation type, with
the same consequences (see “RelationService Class” on page 177)

11.1.4.2 External Relations

The relation service also maintains a list of the relations that it controls. Internal
relations are created through the relation service and are only accessible through its
methods. External relations are MBeans instantiated by the user and added under
the control of the relation service. They must be registered in the MBean server
before they can be added to the relation service. They are accessible both through the
relation service and through the MBean server.

An external relation object must implement the Relation interface that defines the
methods that the relation service uses to access its role values. An external relation is
also responsible for maintaining its own consistency, by only allowing access to its
role values as described by its relation type. Finally, an external relation must inform
the relation service when any role values are modified.

The relation service object exposes methods for checking role information and
updating its internal role values. The external relation object must be designed to
call these when appropriate. Failure to do so will result in an inconsistent relation
service the behavior of which is thereafter undefined.

The major benefit of external relations is the ability to provide methods that return
information about the relation’s members or even operate on the role values.
Because the external relation is also an MBean, it can choose to expose these
methods as attributes and operations.
174 Java Management Extensions Specification, version 1.4 • November 9, 2006

Returning to “Example of a Relation” on page 170, the book ownership relation can
be represented by a unary relation type containing only the role Books. The relation
would be implemented by instances of an Owner MBean that are external to the
relation service. This MBean could have an attribute such as bookCount and
operations such as buy and sell that all apply to the current members of the
relation.

See “RelationSupport Class” on page 184 for an example of an external relation.

11.2 Relation Service Classes
The relation service is implemented in the RelationService object, a standard
MBean defined by the RelationServiceMBean interface. It can therefore be
accessed and managed remotely from a management application.
Chapter 11 Relation Service 175

FIGURE 11-3 Relation Service Classes

The relation service MBean is a notification broadcaster and the only object to send
RelationNotification objects. To maintain consistency, it also listens for MBean
server notifications through an MBeanServerNotificationFilter object.

«constructor» RelationService(purgeFlag: boolean)
«operations» addRelation(relationMBeanName: ObjectName)

addRelationType(relationType: RelationType)
createRelation(relationId: String, relationTypeName: String, roleList: RoleList)
createRelationType(relationTypeName: String, roleInfos: RoleInfo[])
findAssociatedMBeans(MBeanName: ObjectName,

relationTypeName: String,
roleName: String): Map<ObjectName, List<String>>

findReferencingRelations(MBeanName: ObjectName,
relationTypeName: String,
roleName: String): Map<String, List<String>>

findRelationsOfType(relationTypeName: String): List<String>
getAllRoles(relationId: String): RoleResult
getReferencedMBeans(relationId: String): Map<ObjectName, List<String>>
getRelationTypeName(relationId: String): String
getRole(relationId: String, roleName: String): List<ObjectName>
getRoleInfo(relationTypeName: String, roleName: String): RoleInfo
getRoleInfos(relationTypeName: String): List<RoleInfo>
getRoles(relationId: String, roleNames: String[]): RoleResult
hasRelation(relationId: String): boolean
isRelation(MBeanName: ObjectName): String
isRelationMBean(relationId: String): ObjectName
purgeRelations()
removeRelation(relationId: String)
removeRelationType(relationTypeName: String)

RelationService

RelationNotification

«send»

«notification types»
RELATION_BASIC_CREATION: String {frozen}
RELATION_BASIC_REMOVAL: String {frozen}
RELATION_BASIC_UPDATE: String {frozen}
RELATION_MBEAN_CREATION: String {frozen}
RELATION_MBEAN_REMOVAL: String {frozen}
RELATION_MBEAN_UPDATE: String {frozen}

MBeanServerNotificationFilter

«use»

RelationServiceMBean
«Interface»
176 Java Management Extensions Specification, version 1.4 • November 9, 2006

11.2.1 RelationService Class
The relation service exposes methods for creating and removing relation types and
relation instances, and for accessing roles in relations. It also exposes methods for
querying the relations and their members to find related MBeans.

There are two methods to define a relation type:

■ createRelationType - Creates an internal relation type from an array of role
information objects; the relation type is identified by a name passed as a
parameter and that must be unique among all relation type names.

■ addRelationType - Makes an externally defined relation type available through
the relation service (see “RelationType Interface” on page 181).

There are also two similar methods for defining a relation. Every new relation
triggers a RelationNotification:

■ createRelation - Creates an internal relation using the given list of role values;
the relation is identified by an identifier passed as a parameter and that must be
unique among all relation identifiers.

■ addRelation - Places an external relation represented by a MBean under the
control of the relation service; the MBean must have been previously instantiated
and registered in the MBean server.

The method removeRelationType removes both internal or external relation
types. All relations of that type will be removed with the removeRelation method
(see “Maintaining Consistency” on page 171).

The removeRelation method removes a relation from the relation service,
meaning that it can no longer be accessed. Member MBeans in the roles of the
relation continue to exist. When an external relation is removed, the MBean that
implements it will still be available in the MBean server. Removing a relation
triggers a relation notification.

The relation service provides methods to access a relation type, identified by its
unique name: getRoleInfo and getRoleInfos.

It provides methods to access the relation and its role values. All access to roles is
subject to the access mode defined in the relation type and to consistency checks,
especially for setting role values: getRelationTypeName, getRole, getRoles,
getAllRoles, getReferencedMBeans, setRole and setRoles. Setting roles will
trigger a relation update notification.

There are also methods for identifying internal and external relations:

■ hasRelation - Indicates if a given relation identifier is defined.

■ isRelation - Takes an object name and indicates if it has been added as an
external relation to the service.
Chapter 11 Relation Service 177

■ isRelationMBean - Returns the object name of an externally defined relation.

The following query methods retrieve relations where a given MBean is involved:

■ findReferencingRelations - Retrieves the relations where a given MBean is
referenced.
It is possible to restrict the scope of the search by specifying the type of the
relations to look for and/or the role where the MBean is expected to be found in
the relation.
In the result, relation identifiers are mapped to a list of role names where the
MBean is referenced (an MBean can be referenced in several roles of the same
relation).

■ findAssociatedMBeans - Retrieves the MBeans associated to a given MBean in
the relation service.
It is possible to restrict the scope of the search by specifying the type of the
relations to look for and/or the role in which the MBean is expected to be found
in the relation.
In the result, the object names of related MBeans are mapped to a list of relation
identifiers where the two are associated.

The method findRelationsOfType returns the relation identifiers of all the
relations of the given relation type.

To maintain consistency, the relation service listens to the deregistration notifications
from the MBean server delegate. It will be informed when an external relation’s
MBean is unregistered, in which case the relation is removed, or when an MBean
that is a member of a relation is unregistered (see “Maintaining Consistency” on
page 171). The purgeRelations method will check all relation data for consistency
and remove all relations that are no longer valid.

Every time a relevant deregistration notification is received, the relation service
behavior depends upon the purge flag attribute:

■ If the purge flag is true, the purgeRelations method will be called
automatically.

■ When the purge flag is false, no action is taken and the relation service might be
in an inconsistent state until the purgeRelations method is called by the user.

The relation service also exposes methods that allow external relation MBeans to
implement the expected behavior, or to inform the relation service so that it can
maintain consistency:

■ checkRoleReading and checkRoleWriting - Check if a given role can be read
and updated by comparing the new value to the role information.

■ sendRelationRemovalNotification, sendRoleUpdateNotification, and
sendRelationCreationNotification - Trigger a notification for the given
event.

■ updateRoleMap - Informs the relation service that a role value has been
modified, so that it can update its internal data.
178 Java Management Extensions Specification, version 1.4 • November 9, 2006

11.2.2 RelationNotification Class
An instance of this class is created and broadcast as a notification when a relation is
created, added, updated, or removed. It defines two separate notification types for
each of these events, depending upon whether the event concerns an internal or
external relation. The static fields of this class describe all notification type strings
that the relation service can send (see FIGURE 11-3 on page 176).

The methods of this class allow the listener to retrieve information about the event:

■ getRelationId - Returns the identifier of the relation affected by this event.

■ getRelationTypeName - Returns the relation type identifier of the relation
affected by this event.

■ getObjectName - Returns the object name only if the involved relation was an
externally defined MBean.

■ getRoleName, getOldRoleValue, getNewRoleValue - Give additional
information about a role update event.

■ getMBeansToUnregister - Returns the list of object names for MBeans
expected to be unregistered due to a relation removal.

11.2.3 MBeanServerNotificationFilter Class
This class is used by the relation service to receive only those notifications
concerning MBeans that are role members or external relation instances. It filters
MBeans based on their object name, ensuring that the relation service will only
receive the deregistration notifications for MBeans of interest.

Its methods allow the relation service to update the filter when it must add or
remove MBeans in relations or representing external relations.

The filter instance used by the relation service is not exposed for management by the
relation service. This class is described here because it is available as part of the
javax.management.relation package and can be reused elsewhere.

11.3 Interfaces and Support Classes
External relation types and relation instances rely on the interfaces defined in the
following figure and can choose to extend the support classes for convenience.
Implementations of the JMX specification can also rely on these classes internally.
Chapter 11 Relation Service 179

FIGURE 11-4 Interfaces and Support Classes

«operations» getRelationTypeName(): String
getRoleInfo(roleName: String): RoleInfo
getRoleInfos(): List<RoleInfo>

«constructor» RelationTypeSupport(typeName: String, roleInfos: RoleInfo[])
«operations» getRelationTypeName(): String

getRoleInfo(roleName: String): RoleInfo
getRoleInfos(): List<RoleInfo>
#addRoleInfo(theRoleInfo: RoleInfo)

«operations» getRelationId(): String
getRelationServiceName(): ObjectName
getRelationTypeName(): String
getReferencedMBeans(): Map<ObjectName, List<String>>
getRoleCardinality(theRoleName: String): Integer
getRole(roleName: String): List<ObjectName>
getRoles(roleNames: String[]): RoleResult
getAllRoles(): RoleResult
setRole(role: Role)
setRoles(roles: RoleList): RoleResult
handleMBeanUnregistration(objName: ObjectName, roleName: String)

«constructors» RelationSupport(relId: String, relServObjName: ObjectName, relTypeName: String, roles: RoleList)
RelationSupport(relId: String, relServObjName: ObjectName, relServMBeanServer: MBeanServer,

relTypeName: String, roles: RoleList)

«describes»

0..*

RelationTypeSupport

Relation

RelationSupport

1

RelationType

RelationSupportMBean
«Interface»

«Interface»

«Interface»
180 Java Management Extensions Specification, version 1.4 • November 9, 2006

11.3.1 RelationType Interface
Any external representation of a relation type must implement the RelationType
interface to be recognized by the relation service. The methods of this interface
expose the name of the relation type and its role information (see “RoleInfo Class”
on page 185).

The relation service invokes the methods of this interface to access the relation type
name or the role information. Because a relation type is immutable, the returned
values should never change while the relation type is registered with the relation
service.

An instance of an object that implements this interface can be added as an external
relation type, using the addRelationType method of the relation service.
Providing its implementation is coherent, it can be accessed through the relation
service in the same manner as an internal relation type. In fact, internal relation
types are usually represented by an object that also implements this interface

11.3.2 RelationTypeSupport Class
This class implements the RelationType interface and provides a generic
mechanism for representing any relation type. The name of the relation type is
passed as a parameter to the class constructor.

There are two ways to define a specific relation type through an instance of the
RelationTypeSupport class:

■ Its constructor takes an array of RoleInfo objects.

■ The addRoleInfo method takes a single RoleInfo object at a time.

Role information cannot be added after an instance of this class has been used to
define an external relation type in the relation service.

Users can also extend this class to create custom relation types without needing to
rewrite the role information access methods. For example, the constructor of the
subclass can determine the RoleInfo objects to be passed to the superclass
constructor. This effectively encapsulates a relation type definition in a class that can
be downloaded and instantiated dynamically.

The implementation of the relation service will usually instantiate the
RelationTypeSupport class to define internal relation types, but these objects are
not accessible externally.
Chapter 11 Relation Service 181

11.3.3 Relation Interface
The Relation interface describes the operations to be supported by a class whose
instances are expected to represent relations. Through the methods of this interface,
the implementing class exposes all the functionality needed to access the relation.

The class that implements the Relation interface to represent an external relation
must be instrumented as an MBean. The object must be instantiated and registered
in the MBean server before it can be added to the relation service. Then, it can be
accessed either through the relation service or through whatever management
interface it exposes in the MBean server.

11.3.3.1 Specified Methods

Each relation is identified in the relation service by a unique relation identifier that is
exposed through the getRelationId method. The string that it returns must be
unique among all relations in the service at the time it is registered. The relation
service will refuse to add an external relation with a duplicate or null identifier.

In the same way, the getRelationTypeName method must return a valid relation
type name that has already been defined in the relation service. An external relation
instance must also know about the relation service object where it will be controlled:
this can be verified through the getRelationServiceName method. This method
returns an object name that is assumed to be valid in the same MBean server as the
external relation implementation.

The other methods of the Relation interface are used by the relation service to access
the roles of a relation under its control. Role values can be read or written either
individually or in bulk (see “Role Description Classes” on page 184). Individual
roles that cannot be accessed cause an exception whose class indicates the nature of
the error (see the exception classes in FIGURE 11-2 on page 173).

The methods for bulk role access follow a “best effort” policy: access to all indicated
roles is attempted and roles that cannot be accessed do not block the operation.
Those that cannot be accessed, either due to error in the input or due to the access
rights of the role, will return an unresolved role object indicating the nature of the
error (see “RoleUnresolved Class” on page 187).

The getReferencedMBeans method returns a list of object names for all MBeans
referenced in the relation, with each object name mapped to the list of roles in which
the MBean is a member.
182 Java Management Extensions Specification, version 1.4 • November 9, 2006

11.3.3.2 Maintaining Consistency

The relation service delegates the responsibility of maintaining role consistency to
the relation object. In this way, consistency checks can be performed when the roles
are accessed through methods of the external relation. However, the relation service
must be informed of any role modifications, so that it can update its internal data
structures and send notifications.

When accessing a role, either getting or setting its value, the relation instance must
verify that:

■ The relation type has the corresponding role information for the named role.

■ The role has the appropriate access rights according to its role information.

■ The role value provided for setting a role is consistent with that role’s information
with respect to cardinality and MBean class.

An implementation of the Relation interface can rely on the checkRoleReading
and checkRoleWriting methods of the relation service MBean, provided to
simplify the above verifications.

After setting a role, an external relation must call the updateRoleMap operation of
the relation service, providing the old and new role values. This allows the relation
service to update its internal data to maintain consistency.

The relation service must be informed of all new role values so that it can listen for a
unregistration notification concerning any of the member MBeans. When a member
MBean of an external relation is unregistered from the MBean server, the relation
service checks the new cardinality of the role it satisfied.

If the cardinality is no longer valid and if the purge flag is true, the relation service
removes this relation instance (see “RelationService Class” on page 177). If the
external relation is still valid, the relation service calls its
handleMBeanUnregistration method.

When called, this method removes the MBean from the role where it was referenced
(because all role members must be registered MBeans). The guarantee that the relation
service will call this method when necessary frees the external relation from having to
listen for MBean unregistrations itself. It also allows the relation implementation to
define how the corresponding role will be updated. For example, the unregistration of
an MBean in a given role could update other roles.

In this case, and in any other case where an exposed method modifies a role value, the
implementation uses its own setRole method or call the appropriate relation service
methods, such as updateRoleMap. It is the responsibility of all implementations of
the Relation interface to maintain the consistency of their relation instance, as well
as that of the relation service concerning their role values.
Chapter 11 Relation Service 183

11.3.4 RelationSupport Class
This class is a complete implementation of the Relation interface that provides a
generic relation mechanism. This class must be instantiated with a valid role list that
defines the relation instance it will represent. The constructor also requires a unique
relation identifier, and the name of an existing relation type that is satisfied by the
given role list.

In fact, the RelationSupport class implements the RelationSupportMBean that
extends the Relation interface. This implies that it is also a standard MBean whose
management interface exposes all the relation access methods. Because an external
relation must first be registered in the MBean server, external instances of the
relation support class can be managed by remote applications.

Users can also extend the RelationSupport class to take advantage of its
implementation when developing a customized external relation. Users can also
choose to extend its MBean interface to expose other attributes or operations that
access the relation. This customization must still maintain the consistency of role
access and role updating, but it can use the consistency mechanism built into the
methods of the RelationSupport class.

The relation service usually instantiates the RelationSupport class to define
internal relation instances, but these objects are not accessible externally.

11.4 Role Description Classes
The relation service accesses the roles of a relation for both reading and writing
values. The JMX specification defines the classes that are used to pass role values as
parameters and receive them as results. These classes are also used by external
relation MBeans that implement the behavior of a relation.
184 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 11-5 Role Description Classes

11.4.1 RoleInfo Class
The role information provides a metadata description of a role. It specifies:

■ The name of the role.

«constructor» RoleInfo(roleName:String, MBeanClassName: String,
isReadable: boolean, isWritable: boolean,
minDegree: int, maxDegree: int,
description: String)

:Role

«constructor» Role(name: String, referencedMBeanNames: List<ObjectName>)

:RoleInfo

{satisfies}

RoleUnresolved

«constructor» Role(name: String, referencedMBeanNames: List<ObjectName>,
problem: int)

0..*

RoleUnresolvedList

RoleList

:Relation

:RelationType

RoleStatus

1

RoleResult

0..*

0..*
«use»

1

1

{satisfies}0..*

1

1..*

1..*

LESS_THAN_MIN_ROLE_DEGREE: int {frozen}
MORE_THAN_MAX_ROLE_DEGREE: int {frozen}
NO_ROLE_WITH_NAME: int {frozen}
REF_MBEAN_NOT_REGISTERED: int {frozen}
REF_MBEAN_OF_INCORRECT_CLASS: int {frozen}
ROLE_NOT_READABLE: int {frozen}
ROLE_NOT_WRITABLE: int {frozen}

ROLE_CARDINALITY_INFINITY: int {frozen}
Chapter 11 Relation Service 185

■ The multiplicity of the role, expressed as a single closed interval between the
minimum and maximum number of MBeans that can be referenced in that role.
The RoleInfo constructor verifies that this is a proper, non-empty interval.

■ The name of the class or interface of which all members must be instances, as
determined by the MBean server’s isInstanceOf method.

■ The role access mode, that is whether the role is readable, writable, or both.

When role information is used as a parameter for a new relation type, it is the
defining information for a role. When that relation type is declared in the relation
service, for each role, the service will verify that:

■ The role information object is not null.

■ The role name is unique among all roles of the given relation type. The relation
service does not guarantee that roles with the same name in other relation types
are identical; this is the user’s responsibility.

11.4.2 Role Class
An instance of the Role class represents the value of a role in a relation. It contains
the role name and the list of object names that reference existing MBeans.

A role value must always satisfy the role information of its relation’s type. The role
name is the key that associates the role value with its defining role information.

The Role class is used as a parameter to the setRole method of both the relation
service and the Relation interface. It is also a component of the lists that are used
in bulk setter methods and for defining an initial role value. For each role being
initialized or updated, the relation service verifies that:

■ A role with the given name is defined in the relation type.

■ The number of referenced MBeans is greater than or equal to the minimum
cardinality and less than or equal to the maximum cardinality.

■ Each object name references a registered MBean that is an instance of the expected
class or interface.

11.4.3 RoleList Class
This class extends java.util.ArrayList to represent a set of Role objects.

Instances of the RoleList class are used to define initial values for a relation. When
calling the createRelation method of the relation service, roles that admit a
cardinality of 0 can be omitted from the role list. All other roles of the relation type
must have a well-formed role value in the initial role list.
186 Java Management Extensions Specification, version 1.4 • November 9, 2006

Role list objects are also used as parameters to the setRoles method of both the
relation service and the Relation interface. These methods only set the roles for
which a valid role value appears in the role list.

Finally, all bulk access methods return a result containing a RoleList object
representing the roles that were successfully accessed.

11.4.4 RoleUnresolved Class
An instance of this class represents an unsuccessful read or write access to a given
role in a relation. It is used only in the return values of role access methods of either
the relation service or of an object implementing the Relation interface.

The object contains:

■ The name of the role that could not be accessed

■ The value provided for an unsuccessful write access

■ The reason why the attempt failed, encoded as an integer value. The constants for
decoding the problem are given in the FIGURE 11-5 on page 185.

11.4.5 RoleUnresolvedList Class
This class extends java.util.ArrayList to represent a set of RoleUnresolved
objects. All bulk access methods return a result containing a RoleUnresolvedList
object representing the roles that could not be accessed.

11.4.6 RoleResult Class
The RoleResult class is the return object for all bulk access methods of both the
relation service and implementations of the Relation interface. A role result
contains a list of roles and their values, and a list of unresolved roles and the reason
each could not be accessed.

As the result of a getter, the role values contain the current value of the requested
roles. The unresolved list contains the roles that cannot be read, either because the
role name is not valid or because the role does not permit reading.

As the result of a setter, the role values contain the new value for those roles where
the operation was successful. The unresolved list contains the roles that cannot be
written, for any access or consistency reason.
Chapter 11 Relation Service 187

11.4.7 RoleStatus Class
This class contains static fields giving the possible error codes of an unresolved role.
The error codes are either related to access permissions or consistency checking. The
names of the fields identify the nature of the problem, as given in FIGURE 11-5 on
page 185.
188 Java Management Extensions Specification, version 1.4 • November 9, 2006

12

Security

A Java Management extensions (JMX) MBean server might have access to sensitive
information and might be able to perform sensitive operations. In such cases, it is
desirable to control who can access that information and who can perform those
operations. The JMX specification builds on the standard Java security model by
defining permissions that control access to the MBean server and its operations.

The security checks described in this chapter are only performed when there is a
security manager. That is, if System.getSecurityManager() returns null, then no
checks are performed.

12.1 Permissions
It is assumed that the reader has some familiarity with the Java security model. An
excellent reference is Inside Java™ 2 Platform Security by Li Gong (Addison Wesley,
1999). Documentation is also available online as part of the Java 2 platform Standard
Edition (J2SE) Standard Development Kit (SDK).

Sensitive operations require permissions. Before such an operation is performed, a
check is performed to ensure that the caller has the required permission or
permissions.

At any given point in the execution of a program, there is a current set of
permissions that a thread of execution holds. When such a thread calls a JMX
specification operation, we say that these are the held permissions.

An operation that performs a security check does so by defining a needed permission.
The operation is allowed if the held permissions imply the needed permission. That
is, at least one held permission must imply the needed permission.

A permission is a Java object that is a subclass of java.security.Permission.
This class defines the following method:

public boolean implies(Permission permission);
Chapter 12 Security 189

A held permission held implies a needed permission needed if
held.implies(needed).

For example, to call MBeanServerFactory.createMBeanServer, a thread needs
the permission

MBeanServerPermission(“createMBeanServer”)

Here are some permissions a thread can hold that imply this needed permission:

■ MBeanServerPermission(“createMBeanServer”)

■ MBeanServerPermission(“createMBeanServer,findMBeanServer”)

■ MBeanServerPermission(“*”)

■ java.security.AllPermission()

A thread that does not hold any of these permissions, or any other permission that
implies the needed one, will not be able to call createMBeanServer. An attempt to
do so will result in a SecurityException.

The JMX 1.2 specification defines three permissions:

■ MBeanServerPermission

■ MBeanTrustPermission

■ MBeanPermission

These permissions are described in the following sections.

12.1.1 MBeanServerPermission

MBeanServerPermission controls access to the static methods of the class
javax.management.MBeanServerFactory. (See “MBean Server Factory” on
page 127.) An MBeanServerPermission is constructed with a single string
argument, and the meaning of the permission object depends on this string, as
follows:

■ MBeanServerPermission(“createMBeanServer”) controls access to the
two overloaded methods MBeanServerFactory.createMBeanServer.
Holding this permission allows the creation of an MBeanServer object that is
registered in the list accessible through
MBeanServerFactory.findMBeanServer.

This permission implies the newMBeanServer permission, so holding it also
allows the creation of an MBeanServer object that is not registered in that list.

■ MBeanServerPermission(“newMBeanServer”) controls access to the two
overloaded methods MBeanServerFactory.newMBeanServer. Holding this
permission allows the creation of an MBeanServer object that is not registered in
the list accessible through MBeanServerFactory.findMBeanServer.
190 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ MBeanServerPermission(“releaseMBeanServer”) controls access to the
method MBeanServerFactory.releaseMBeanServer. Holding this
permission allows the removal of an MBeanServer object from the list accessible
through MBeanServerFactory.findMBeanServer.

■ MBeanServerPermission(“findMBeanServer”) controls access to the
method MBeanServerFactory.findMBeanServer. Holding this permission
allows you to find an MBeanServer object in the MBeanServerFactory’s list
given its identifier, and to retrieve all MBeanServer objects in the list.

As a convenience in defining permissions, two or more of these strings can be
combined in a comma-separated list. The resulting permission implies all the
operations in the list. Thus, for example, holding
MBeanServerPermission(“newMBeanServer,findMBeanServer”) is
equivalent to holding both MBeanServerPermission(“newMBeanServer”) and
MBeanServerPermission(“findMBeanServer”).

Holding MBeanServerPermission(“*”) is equivalent to holding all the
permissions in the list above.

12.1.2 MBeanPermission

MBeanPermission controls access to the methods of an MBeanServer object
returned by MBeanServerFactory.createMBeanServer or
MBeanServerFactory.newMBeanServer. (See Chapter 7 “MBean Server.)

An MBeanPermission is constructed using two string arguments. The first
argument is conventionally called the name of the permission, but we refer to it here
as the target. The second argument is the actions of the permission.

12.1.2.1 MBeanPermission Target

The target of an MBeanPermission groups together three pieces of information,
each of which can be omitted:

■ The class name. For a needed permission, this is the class name of an MBean being
accessed. Certain methods do not reference a class name, in which case the class
name is null.

For a held permission, this is either empty or a class name pattern. A class name
pattern can be a literal class name such as
javax.management.MBeanServerDelegate or a wildcard such as
javax.management.*. If the class name is empty or is an asterisk (*), the
permission covers any class name.
Chapter 12 Security 191

■ The member. For a needed permission, this is the name of the attribute or
operation being accessed. For MBeanServer methods that do not reference an
attribute or operation, the member is null.

For a held permission, this is either the name of an attribute or operation that can
be accessed, or it is empty or an asterisk (*), that covers any attribute or
operation.

■ The object name. For a needed permission, this is the ObjectName of the MBean
being accessed. (See “ObjectName Class” on page 115.) For operations that do
not reference a single MBean, it is null.

For a held permission, this is the ObjectName of the MBean or MBeans that can
be accessed. It can be an object name pattern, that covers all MBeans with names
matching the pattern; see “Pattern Matching” on page 117. It can also be empty,
covering all MBeans regardless of their name.

If the domain part of the ObjectName in a held permission is empty, it is not
replaced by a default domain, because the permission could potentially apply to
several MBean servers with different domains.

A held MBeanPermission only implies a needed permission if all three items
match.

If a needed permission has a null class name, the class name is not relevant for the
action being checked, so a held permission will match regardless of its class name.

If a held permission has an empty class name, this means that the permission covers
any class name, so a needed permission will match no matter what its class name is.

The same rules apply to the member and the object name.

The three items in the target are written as a single string using the syntax:

className#member[objectName]

Any of the three items can be omitted, but at least one must be present.

Any of the three items can be the character “-”, representing a null item. A null item
is not the same as an empty item. An empty class name, for example, in a held
permission is the same as “*” and implies any class name. A null class name in a
needed permission is implied by any class name. A needed permission never has an
empty class name, and usually a held permission never has a null class name.

The following are some examples of targets with their meanings:

■ com.example.Resource#Name[com.example.main:type=resource]

This represents access to the attribute or operation called Name of the MBean
whose object name is com.example.main:type=resource and whose class
name is com.example.Resource.

■ com.example.Resource[com.example.main:type=resource]

com.example.Resource#*[com.example.main:type=resource]
192 Java Management Extensions Specification, version 1.4 • November 9, 2006

These both mean the same thing, namely access to any attribute or operation of
the MBean with this object name and class name.

■ #Name[com.example.main:type=resource]

*#Name[com.example.main:type=resource]

These both mean the same thing, namely access to the attribute or operation
called Name of the MBean with the given object name, regardless of its class
name.

■ [com.example.main:type=resource]

This represents access to the MBean with the given object name, regardless of its
class name, and regardless of what attributes or operations can be referenced.

■ [com.example.main:*]

This represents access to any MBean with an object name that has the domain
com.example.main.

■ com.example.Resource#Name

This represents access to the attribute or operation called Name in any MBean
with a class name of com.example.Resource.

12.1.2.2 MBeanPermission Actions

The actions string of an MBeanPermission represents one or more methods from
the MBeanServer interface. Not all methods in that interface are possible values for
the actions string. The complete list is as follows:

■ addNotificationListener
■ getAttribute
■ getClassLoader
■ getClassLoaderFor
■ getClassLoaderRepository
■ getMBeanInfo
■ getObjectInstance
■ instantiate
■ invoke
■ isInstanceOf
■ queryMBeans
■ queryNames
■ registerMBean
■ removeNotificationListener
■ setAttribute
■ unregisterMBean

For a needed permission, the actions string will always contain exactly one of these
strings.
Chapter 12 Security 193

For a held permission, it can contain one of these strings, or a comma-separated list
of strings. Holding an MBeanPermission with actions “invoke,instantiate” is
equivalent to holding two MBeanPermissions, one with actions “invoke” and the
other with actions “instantiate”, each having the same target as the original.

A held permission can also have “*” as its actions string, which covers all actions.

The meanings of the different actions are summarized in the table below, as well as
the risks associated with granting these permissions to potentially malicious code.

TABLE 12-1 MBeanPermission actions

Action Meaning when held with className, member, objectName

addNotificationListe
ner

Add a notification listener to an MBean with a class name matching
className and with an object name matching objectName. Granting
this permission to malicious code could alter the behavior of
notification broadcasters (see “NotificationBroadcaster and
NotificationEmitter Interfaces” on page 56), by adding listeners that
block forever or that throw exceptions.

getAttribute Get the value of an attribute member from an MBean with a class
name matching className and with an object name matching
objectName.

getClassLoader Get a class loader object with a class name matching className and
that is registered in the MBean server with an object name that
matches objectName. Granting this permission to malicious code
could alter the behavior of the class loader. For example, if the class
loader is an m-let (see “Class Loader Functionality” on page 147),
malicious code could add to its list of URLs.

getClassLoaderFor Get the class loader that was used to load an MBean object with a
class name matching className and with an object name matching
objectName. Granting this permission to malicious code carries
similar risks to those for getClassLoader.

getClassLoaderReposi
tory

Get a reference to the MBean server’s class loader repository (see
“The Class Loader Repository” on page 148). Granting this
permission to malicious code allows it to load classes through these
loaders, including over the network if the class loader repository
contains URLClassLoaders, or something similar.

getDomains See ObjectName domains in which MBeans are registered if they
match objectName.

getMBeanInfo Get the MBeanInfo of an MBean with a class name matching
className and with an object name matching objectName. (See
“MBean Metadata Classes” on page 60.)
194 Java Management Extensions Specification, version 1.4 • November 9, 2006

getObjectInstance Get the ObjectName and class name of an MBean with a class
name matching className and with an object name matching
objectName. Holding this permission allows the discovery of the
class name of any MBean, provided that its ObjectName and class
name match objectName and className.

instantiate Instantiate a Java class whose name matches className, using one of
the class loader possibilities offered by the overloaded
instantiate methods of the MBeanServer interface. This
permission is also needed by the createMBean methods. Granting
this permission to malicious code allows it to load classes through
those loaders, including over the network if there is a
URLClassLoader or something similar.

invoke Invoke the method member from an MBean with a class name
matching className and with an object name matching objectName.

isInstanceOf Determine whether an MBean with a class name matching
className and with an object name matching objectName is an
instance of any named Java class.

queryMBeans Discover the names and classes of MBeans whose class names
match className and whose object names match objectName, and
apply queries to them. (See “Queries” on page 135.) Holding this
permission implies the corresponding queryNames permission.

queryNames Discover the names of MBeans whose class names match className
and whose object names match objectName.

registerMBean Register MBeans whose class names match className under object
names that match objectName. This permission is needed for the
registerMBean and createMBean methods of the MBean server.
Granting this permission to malicious code could allow it to register
a rogue MBean in the place of a legitimate one, especially if it also
has the unregisterMBean permission.

removeNotificationLi
stener

Remove a notification listener from an MBean with a class name
matching className and with an object name matching objectName.
The impact of granting this permission is limited, because malicious
code can only remove listeners it references. But the forms of
removeNotificationListener that identify the listener with an
ObjectName would be vulnerable to malicious code with this
permission.

setAttribute Set the value of an attribute member in an MBean with a class name
matching className and with an object name matching objectName.

unregisterMBean Unregister an MBean with a class name matching className and
with an object name matching objectName.

TABLE 12-1 MBeanPermission actions

Action Meaning when held with className, member, objectName
Chapter 12 Security 195

12.1.2.3 Unchecked MBean Server Methods

The following MBean server methods are not subject to permission checks:

■ isRegistered - Code can always discover whether an MBean with a given
name exists. Without the queryMBeans or queryNames permission, however, it
cannot find out the names of MBeans it does not already know about.

The reason that this operation is not subject to a permission check is that it would
generate a SecurityException if the MBean existed but its class name was not
covered by the user’s permissions, while it would generate an
InstanceNotFoundException if the MBean did not exist, regardless of what
class names are covered by the user’s permissions. Generating a
SecurityException would therefore be equivalent to admitting that the
MBean does indeed exist, so the permission checking would serve no purpose.

Though it is possible to refine the permission checking semantics for this case, the
isRegistered method is not considered sufficiently sensitive to justify it.

■ getMBeanCount - Code can always discover how many MBeans there are.
Again, this is not considered sufficiently sensitive to justify defining a permission
check for it.

■ getDefaultDomain - Code can always discover the MBean server’s default
domain.

12.1.2.4 Permission Checking for Queries

The queryMBeans and queryNames actions for MBeanPermission allow control
of which MBeans are visible to queries. A queryMBeans operation proceeds as
follows:

1. The held permissions are checked to see if they imply
MBeanPermission(“-#-[-]”, “queryMBeans”)
If not, a SecurityException is thrown.

If the held permissions include any queryMBeans permission, this implies the
permission shown here. The exception will only be thrown if there are no
queryMBeans permissions in the caller’s set.

Without this check, if the policy that grants permissions is accidentally configured
without queryMBeans permissions, then all queries would return an empty set,
with no indication that the reason had anything to do with security. The check
described here helps avoid this confusion.

2. The ObjectName parameter to queryMBeans, that is typically an object name
pattern, is used to select a set of MBeans to which the query applies. If the
parameter is null, all MBeans are selected.
196 Java Management Extensions Specification, version 1.4 • November 9, 2006

3. For each MBean in the set, an MBeanPermission is constructed where the actions
parameter is “queryMBeans” and the target parameter contains the class name
and object name of the MBean. If the held permissions do not imply this
permission, the MBean is eliminated from the set.

4. For each MBean in the remaining set, the QueryExp parameter to queryMBeans
is used to decide whether it is included in the final set.

The rules for the queryNames operation are exactly the same as just stated, but with
queryMBeans replaced by queryNames.

With these rules in place, the permissions held by a thread completely govern the set
of MBeans that thread can see through queries.

It is important that MBeans that are not covered by the held permissions be
eliminated from the set before the query is executed. In other words, step 3 must
happen before step 4. Otherwise, malicious code could implement the QueryExp
interface to save each MBean in the selected set somewhere.

12.1.2.5 Permission Checking for getDomains

The getDomains permission filters the information about MBean names that is
visible to a thread, in a similar fashion to queryMBeans and queryNames. The
thread’s held permissions should imply :

MBeanPermission(“-#-[-]”, “getDomains”)

Otherwise, the MBeanServer.getDomains() method throws a
SecurityException. Otherwise, the MBean server first gets the list of domains
that would be returned if there were no security checks, and for each domain d in
the list, it checks that the held permissions imply:

MBeanPermission(“-#-[d:x=x]”, “getDomains”)

Otherwise, the domain is eliminated from the list.

The x=x is an artifact of the way ObjectName works. An implementation can use
any other key=value possibility instead, but there must be one.

When defining held permissions, for instance in a security policy file, the
getDomains permission should always either omit the ObjectName or supply an
ObjectName pattern with just a * in the key properties, such as “*:*”,
“com.example.*:*”, or “com.example.visible:*”.
Chapter 12 Security 197

12.1.2.6 Permission Checking for getAttributes and
setAttributes

A similar scheme to the one for queries is used for the getAttributes and
setAttributes operations. A getAttributes operation proceeds as follows:

1. The held permissions are checked to see if they imply
MBeanPermission(“className#-[objectName]”, “getAttribute”)
where className and objectName are the class name and object name of the MBean
being accessed. If not, a SecurityException is thrown.

If the held permissions allow getAttribute on any attribute of the MBean, they
will imply the permission shown here. Only if getAttribute is not allowed for
any attributes in the MBean will the exception be thrown.

Without this check, if no attributes are accessible to the caller, an empty
AttributeList would be returned, with no indication that the reason had
anything to do with security.

2. For each attribute attr in the list given to the getAttributes operation, the
permission
MBeanPermission(“className#attr[objectName]”, “getAttribute”)
is constructed. If the held permissions do not imply this permission, the attribute
is eliminated from the list.

3. The getAttributes operation then works on the attributes remaining in the
list.

The rules for the setAttributes operation are exactly the same as just stated, but
with getAttribute(s) replaced by setAttribute(s).

12.1.3 MBeanTrustPermission

This permission represents “trust” in a signer or codesource. If a signer or
codesource is granted this permission, it is considered a trusted source for MBeans.
Only MBeans from trusted sources can be registered in the MBean server.

In conjunction with MBeanPermission, MBeanTrustPermission enables fine-
grained control of which MBeans are registered in the MBean server. The
registerMBean action of MBeanPermission controls what entities can register
MBeans. MBeanTrustPermission controls what MBeans they can register.

An MBeanTrustPermission is constructed with a single string argument. In this
version of the JMX specification, the argument can have two possible values:

■ “register”

■ “*”
198 Java Management Extensions Specification, version 1.4 • November 9, 2006

Both values have the same meaning, but if in a future version of the JMX
specification other possibilities are added, “*” will cover all of them.

The details of the MBeanTrustPermission check are illustrated in the following
example.

Let c be the Java class of an MBean to be registered in the MBean server via its
createMBean or registerMBean methods, and let p be a permission constructed
as follows:

p = new MBeanTrustPermission(“register”);

Then, for the createMBean or registerMBean to succeed, the following
expression must be true:

c.getProtectionDomain().implies(p)

Otherwise, a SecurityException is thrown.

12.2 Policy File Examples
The following are some examples of how the permissions described in the previous
sections can be granted using the standard Java policy file syntax.

The simplest MBean access policy is to grant all signers and codebases access to all
MBeans:

Here is a more restrictive policy that grants the code in appl1.jar the permission to
get the MBean server’s class loader repository:

grant {
permission javax.management.MBeanPermission “*”, “*”;

};

grant codeBase “file:${user.dir}${/}appl1.jar” {
permission javax.management.MBeanPermission ““,
“getClassLoaderRepository”;

};
Chapter 12 Security 199

Here is a policy that grants the code in appl2.jar the permission to call the
isInstanceOf and getObjectInstance operations for MBeans from any class,
provided they are registered in the domain “d1”:

Here is a policy that grants the code in appl3.jar the permission to find MBean
servers, and to call the queryNames operation but restricting the returned set to
MBeans in the domain “JMImplementation”:

If the MBean server has MBeans with names in other domains, for example an
MBean registered as “com.example.main:type=user,name=gorey”, they will
never appear in the result of a queryNames executed by code in appl3.jar.

Here is a policy that grants the code in appl4.jar the permission to create and
manipulate MBeans of class “com.example.Foo” under any object name:

The first permission ignores the object name. The operation or attribute name is not
required by these two actions.

The second permission, however, uses the member part for the “invoke” action and
ignores it for the “add/removeNotificationListener” actions.

grant codeBase “file:${user.dir}${/}appl2.jar” {
permission javax.management.MBeanPermission “[d1:*]”,
“isInstanceOf, getObjectInstance”;

};

grant codeBase “file:${user.dir}${/}appl3.jar” {
permission javax.management.MBeanServerPermission
“findMBeanServer”;
permission javax.management.MBeanPermission
“JMImplementation:*”, “queryNames”;

};

grant codeBase “file:${user.dir}${/}appl4.jar” {
permission javax.management.MBeanPermission
“com.example.Foo”, “instantiate, registerMBean”;
permission javax.management.MBeanPermission
“com.example.Foo#doIt”,
“invoke,addNotificationListener,removeNotificationListener”;

};
200 Java Management Extensions Specification, version 1.4 • November 9, 2006

Here is a policy that allows MBeans to be registered no matter where they come
from. (A thread that registers MBeans must also have the appropriate
MBeanPermissions.)

Here is a policy that only trusts MBeans signed by “Gorey”:

grant {
permission javax.management.MBeanTrustPermission “register”;

};

grant signedBy “Gorey” {
permission javax.management.MBeanTrustPermission “register”;

};
Chapter 12 Security 201

202 Java Management Extensions Specification, version 1.4 • November 9, 2006

III JMX Remote API Specification
Chapter 203

204 Java Management Extensions Specification, version 1.4 • November 9, 2006

13

Connectors

The JMX specification defines the notion of connectors. A connector is attached to a
JMX API MBean server and makes it accessible to remote Java technology-based
clients. The client end of a connector exports essentially the same interface as the
MBean server.

A connector consists of a connector client and a connector server.

A connector server is attached to an MBean server and listens for connection
requests from clients.

A connector client takes care of finding the server and establishing a connection with
it. A connector client will usually be in a different Java Virtual Machine1 (JVMTM)
from the connector server, and will often be running on a different machine.

A given connector server can establish many concurrent connections with different
clients.

A given connector client is connected to exactly one connector server. A client
application can contain many connector clients connected to different connector
servers. There can be more than one connection between a given client application
and a given server.

Many different implementations of connectors are possible. In particular, there are
many possibilities for the protocol used to communicate over a connection between
client and server. This standard defines a standard protocol based on Remote
Method Invocation (RMI) that must be supported by every conformant
implementation. It also defines an optional protocol based directly on TCP sockets,
called the JMX Messaging Protocol (JMXMP). An implementation of this standard
can omit the JMXMP connector.

1. The terms "Java virtual machine" and "JVM" mean a virtual machine for the Java platform.
Chapter 13 Connectors 205

13.1 Sessions and Connections
A distinction is made between a session and a connection. A connector client sees a
session. During the lifetime of that session, there can be many successive connections
to the connector server. In the extreme case, there might be one connection per client
request, for example if the connector uses a stateless transport such as the user
datagram protocol (UDP) or the Java Message Service (JMS).

A session has state on the client, notably its listeners (see Section 13.4 “Adding
Remote Listeners” on page 208). A session does not necessarily have state on the
server, and for the two connectors defined by this specification, it does not.

A connection does not necessarily have state on the client or server, although for the
two connectors defined here it does.

FIGURE 13-1 A Session Can Contain Many Successive Connections

In FIGURE 13-1 three connections are opened and closed over the lifetime of a single
session.

13.2 Connection Establishment
In FIGURE 13-2, a connector client connects to a connector server with the address
"service:jmx:jmxmp://host1:9876". A successful connection request returns
the client end of the connection to the connector client.
206 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 13-2 Connector Client and Server Communicate to Make a Connection

13.3 MBean Server Operations Through a
Connection
From the client end of a connection, user code can obtain an object that implements
the MBeanServerConnection interface. This interface is very similar to the
MBeanServer interface that user code would use to interact with the MBean server
if it were running in the same Java Virtual Machine.

MBeanServerConnection is the parent interface of MBeanServer. It contains all
the same methods except for a small number of methods only appropriate for local
access to the MBean server. All of the methods in MBeanServerConnection
declare IOException in their "throws" clause in addition to the exceptions declared
in MBeanServer.

Because MBeanServer extends MBeanServerConnection, client code can be
written that works identically whether it is operating on a local MBean server or on
a remote MBean server through a connector.

In FIGURE 13-3, the operation getMBeanInfo("a:b=c") on the
MBeanServerConnection in a remote client is translated into a getMBeanInfo
request that is sent to the server end of the connection via the connector protocol.
The server reacts to this request by performing the corresponding operation on the
local MBean server, and sends the results back to the client. If the operation
succeeds, the client’s getMBeanInfo call returns normally. If the operation
produces an exception, the connector arranges for the client’s getMBeanInfo call to
receive the same exception. If there is a problem in the communication of the
request, the client’s getMBeanInfo call will get an IOException.
Chapter 13 Connectors 207

FIGURE 13-3 An Operation on the Client Results in the Same Operation on the MBean
Server

13.4 Adding Remote Listeners
One of the operations in the MBeanServerConnection interface is the
addNotificationListener operation. As in the local case, this operation
registers a listener for the notifications emitted by a named MBean. A connector will
arrange for the notifications to be sent from the server end of a connection to the
client end, and from there to the listener.

The details of how notifications are sent depend on the connector protocol. The two
connectors defined in this specification use a stateless notification buffer, as described in
Section 13.4.3 “Notification Buffer” on page 210.

13.4.1 Filters and Handbacks
The addNotificationListener method in the MBeanServerConnection
interface has four parameters: the object name, the listener, the filter, and the handback.
The object name specifies which MBean to add the listener to. The listener is the
object whose handleNotification method will be called when a notification is
emitted by the MBean. As described in Section 13.4 “Adding Remote Listeners” on
page 208, this listener object is local to the client.

The optional filter selects which notifications this listener is interested in. A given
connector can execute the filter when the notification arrives at the client, or it can
transmit the filter to the server to be executed there. Executing the filter on the
server is much more efficient because it avoids sending a notification over the
network only to have it discarded on arrival. Filters should be designed so that they
208 Java Management Extensions Specification, version 1.4 • November 9, 2006

work whether they are run on the client or on the server. In particular, a filter should
be an instance of a serializable class known to the server. Section 13.11 “Class
Loading” on page 218, describes class loading in more detail.

The connectors defined by this standard execute filters on the server.

To force filtering to be done on the client, the filtering logic can be moved to the
listener.

The optional handback parameter to addNotificationListener is an arbitrary
object that will be given to the listener when the notification arrives. This allows the
same listener object to be registered with several MBeans. The handback can be used
to determine the appropriate context when a notification arrives. The handback
object remains on the client - it is not transmitted to the server and does not have to
be serializable.

The MBeanServerConnection interface also has an
addNotificationListener variant that specifies the listener as an ObjectName,
the name of another MBean that is to receive notifications. With this variant, both the
filter and the handback are sent to the remote server.

13.4.2 Removing Listeners
In general, a listener that has been added with the following method is uniquely
identified for a given name by the triple (listener,filter,handback):

addNotificationListener(ObjectName name,
NotificationListener listener,
NotificationFilter filter,
Object handback)

It can subsequently be removed either with the two-parameter
removeNotificationListener, specifying just listener, or with the four-
parameter removeNotificationListener that has the same parameters.

A problem arises with the four-parameter method in the remote case. The filter
object that is deserialized in the removeNotificationListener method is not
generally identical to the filter object that was deserialized for
addNotificationListener. Since notification broadcaster MBeans usually check
for equality in the (listener,filter,handback) triple using identity rather than the
equals method, it would not in general be possible to remove just one
(listener,filter,handback) triple remotely.

The standard connectors avoid this problem by using listener identifiers. When a
connector client adds a (listener,filter,handback) triple to an MBean, the connector
server returns a unique identifier for that triple on that MBean. When the connector
client subsequently wants to remove the triple, it uses the identifier rather than
passing the triple itself. To implement the two-parameter
Chapter 13 Connectors 209

removeNotificationListener form, the connector client looks up all the triples
that had the same listener and sends a removeNotificationListener request
with the listener identifier of each one.

This technique has the side-effect that a remote client can remove a triple even from
an MBean that implements NotificationBroadcaster but not
NotificationEmitter. A local client of the MBeanServer interface cannot do
this.

13.4.3 Notification Buffer
The two connectors defined by this specification handle notifications and listeners as
follows. Every connector server has a notification buffer. Conceptually, this is a list of
every notification ever emitted by any MBean in the MBean server that the connector
server is attached to. In practice, the list is of finite size, so when necessary the oldest
notifications are discarded.

Entries in the notification buffer consist of a Notification object and an
ObjectName. The ObjectName is the name of the MBean that emitted the
notification.

For every MBean that can send notifications (implements the
NotificationBroadcaster interface), the connector server registers a listener
that adds each notification to the notification buffer. The connector server tracks the
creation of MBeans, and when a new NotificationBroadcaster MBean is
created, the listener is added to it.

Entries in the notification buffer have sequence numbers. Sequence numbers are
positive. A later notification always has a greater sequence number than an earlier
one. Sequence numbers are not necessarily contiguous, but the notification buffer
always knows what the next sequence number will be.

FIGURE 13-4 shows a connector server with its notification buffer. The notification
buffer has saved four notifications, with sequence numbers 40 to 43. The next
notification will have sequence number 44.

The client state of a session includes the sequence number of the next notification
that the client has not yet seen. In FIGURE 13-4, the client of session 1 has not yet seen
the notifications starting with number 41. The client of session 2 has seen all
notifications, so the next notification it will see will have the next available sequence
number, 44.
210 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 13-4 Notification Buffer Saves Notifications From All MBeans

When a new session is created, the client asks for the next sequence number that will
be used. It is only interested in notifications with that number or greater, not the
arbitrarily old notifications that are already present.

A notification buffer has no state related to the connector server. So an
implementation can use the same notification buffer for more than one connector
server.

13.4.4 Getting Notifications From the Notification Buffer
Conceptually, a connector client receives notifications by sending a fetch-notifications
request to the connector server. The request looks like this:

“Give me the notifications starting with sequence number that match
my filters.”

Here, is the next sequence number the client expects to see. In FIGURE 13-4, is 41
for session 1 and 44 for session 2.

“My filters” means the ObjectName and NotificationFilter values for every
addNotificationListener operation that has been done on the connector client.
This filter list is either sent with every fetch-notifications request, or it is maintained as
part of the state of a connection. The latter approach is followed in the two protocols
defined by this specification, because the filter list is potentially very big.

The fetch-notifications request will wait until one of the following conditions is met:

s

s s
Chapter 13 Connectors 211

■ There is at least one notification in the buffer that matches the client’s criteria,
namely that has a sequence number at least and matches the client’s filters.

■ A timeout specified by the client is reached.

■ The connector server decides to terminate the operation, typically because of a
timeout of its own.

The result of the fetch-notifications call includes the following information:

■ Zero or more notifications that matched the client’s criteria. The result does not
have to include all available notifications. It may be limited to a maximum
number, for example. But if there are notifications, they will be the earliest
available ones.

■ A sequence number that is the number the client should use in its next fetch-
notifications call. This is the sequence number of the first notification that matched
the caller’s criteria but was not included in the result, or it is the next available
sequence number if all matched notifications were included.

■ A sequence number that is the smallest sequence number of a notification still
in the buffer. If , it is possible that notifications the client was interested in
have been lost. It is not certain, however, because the notifications between and

might not have matched the caller’s filters.

This information is encapsulated in the NotificationResult class from the API.

As an example, suppose that in FIGURE 13-4 the notifications 41 and 43 match the
filters for session 1. Its fetch-notifications call will have and can return
immediately with notifications 41 and 43, , and . No notifications have
been lost () and the next fetch-notifications will have .

13.5 Concurrency
A JMX Remote API connector must support concurrent requests. If a thread calls a
potentially slow operation like invoke on the client end of a connector, another
thread should not be forced to wait for that operation to complete before performing
an operation.

13.6 Normal Termination
Either end of a session can terminate the session at any time.

If the client terminates a session, the server will clean up any state relative to that
client. If there are client operations in progress when the client terminates the
session, then the threads that invoked them will receive an IOException.

s

n

f
f s>

s
f

s 41=
n 44= f 40=

f s≤ s 44=
212 Java Management Extensions Specification, version 1.4 • November 9, 2006

If the server terminates a session, the client will get an IOException for any remote
operations that were in progress and any remote operations subsequently attempted.

It is not specified what happens to MBean server operations that are running when
the remote session that caused them is closed. Typically, they will run to completion,
since in general there is no reliable way to stop them.

13.7 Abnormal Termination
The client end of a session can detect that the server end has terminated abnormally.
This might happen for example because the JVM software that the server was
running in exited, or because the machine it was running on crashed. The connector
protocol (or its underlying transport) might also determine that the server is
unreachable, because communication to it has not succeeded for a certain period of
time. This can happen if there is a physical or configuration problem with the
network.

In all of these cases, the client can terminate the session. The behavior seen by code
using the client should be the same as if the server had terminated the session
normally, except that the details of the exception seen by the client might differ.

Similarly, the server end of a session, or a connection within a session, can detect
that the client end has terminated abnormally or become unreachable. It should
behave as if the client had terminated the connection normally, except that the
notification of connection termination indicates a failure.

13.7.1 Detecting Abnormal Termination
Transport protocols such as TCP usually have built-in detection of abnormal
termination. When a Java Virtual Machine exits, any TCP connections it had are
explicitly closed by the TCP protocol, meaning that the other end of the connection
is informed promptly that the connection has been closed. But when a machine
crashes or the network connection fails, this is detected less promptly. For example,
TCP will only notice that a connection is broken if an attempt is made to write on it,
and even then it will typically only signal the problem after a timeout on the order
of minutes. Connectors should close connections that receive errors, but an
additional mechanism is needed if connections are mostly idle or if the time to detect
a failed connection is too long.

For the two connectors defined by this specification, an implementation is not
required to detect failure promptly. However, the following approach is
recommended:

1. A fetch-notifications call from the client should be terminated with zero
notifications if none arrive within a certain period.
Chapter 13 Connectors 213

2. A connector server should close a connection that has not received any client
requests (including fetch-notifications) for a certain time.

3. A client should specify a timeout in each fetch-notifications call. If the call does not
return after the timeout (plus some margin for delays) then the client should close
the connection.

This approach is based on the assumption that a client will always do a new fetch-
notifications call shortly after the previous one returns. So case 2 never happens for a
working connection.

If a session has no listeners, there is no need for it to do a fetch-notifications call. In
this case, a server that follows the approach detailed here will close idle connections.
The client will re-open the connection the next time it needs to do an operation on it.

13.8 Connector Server Addresses
A connector server usually has an address, which clients can use to establish
connections to the connector server. Some connectors can provide alternative ways
to establish connections, such as through connection stubs (see Section 13.9.2
“Connection Stubs” on page 215).

When a connector server has an address, this address is usually described by the
class JMXServiceURL. The API documentation for that class and for the standard
connectors explains the semantics of these addresses.

A user-defined connector can choose to use another address format, but it is
recommended to use JMXServiceURL where possible.

An example of a connector server address is shown below:

service:jmx:jmxmp://host1:9876

All JMXServiceURL addresses begin with "service:jmx:". The following jmxmp
indicates the connector to use, in this case the JMXMP Connector (see Chapter 15
“Generic Connector”). host1 and 9876 are respectively the host and the port on
which the connector server is listening.

13.9 Creating a Connector Client
A connector client is represented by an object that implements the JMXConnector
interface. There are two ways in which a connector client can be created:

■ Using an address, as covered in Section 13.9.1 “JMXConnectorFactory” on
page 215

■ Using a connection stub, as covered in Section 13.9.2 “Connection Stubs” on
page 215
214 Java Management Extensions Specification, version 1.4 • November 9, 2006

Which way an application uses depends mainly on the infrastructure that is used to
find the connector server to which the client wants to connect.

13.9.1 JMXConnectorFactory
If the client has the address (JMXServiceURL) of the connector server to which it
wants to connect, it can use the JMXConnectorFactory to make the connection.
This is the usual technique when the client has found the server through a text-based
discovery or directory service such as SLP.

For example, an application app1 that includes an MBean server might export that
server to remote managers as follows:

1. Create a connector server cServer

2. Get cServer ’s address addr, either by using the JMXServiceURL that was
supplied to its constructor to tell it what address to use, or by calling
cServer.getAddress()

3. Put the address somewhere the management applications can find it, for example
in a directory or in an SLP service agent

A manager can start managing app1 as follows:

1. Retrieve addr from where it was stored in step 3 above

2. Call JMXConnectorFactory.connect(addr)

13.9.2 Connection Stubs
An alternative way for a client to connect to a server is to obtain a connector stub. A
connector stub is a JMXConnector object generated by a connector server. It is
serializable so that it can be transmitted to a remote client. A client that retrieves a
connector stub can then call the stub’s connect method to connect to the connector
server that generated it.

For example, an application app1 that includes an MBean server might export that
server to remote managers as follows:

1. Create a connector server cServer

2. Obtain a connector stub cStub by calling cServer.toJMXConnector

3. Put the stub somewhere the management applications can find it, for example in
a directory, in the JiniTM lookup service, or in an HTTP server

A manager can start managing app1 as follows:
Chapter 13 Connectors 215

1. Retrieve cStub from where it was stored in step 3 above

2. Call cStub.connect to connect to the remote MBean server through cServer

In some circumstances, a connector server might not have all the information needed
to generate a connector stub that any client can use. The details of connection might
depend on the client’s environment. In such cases, the connector stub would need to
be generated by a third party, for example by administrative tools that know the
relevant details of the client and server environments.

13.9.3 Finding a Server
Chapter 17 “Bindings to Lookup Services”, defines how an agent based on JMX
technology can register its connector servers with existing lookup and discovery
infrastructures, so that a JMX Remote API client can create or obtain a
JMXConnector object to connect to the advertised servers. In particular, that
chapter provides the following information:

■ Section 17.3 “Using the Service Location Protocol” on page 254, describes how a
client can retrieve a JMX service URL from SLP, and use it to connect to the
corresponding server

■ Section 17.4 “Using the Jini Network Technology” on page 258, describes how a
client can retrieve a connector stub from the Jini lookup service (LUS) and connect
to the corresponding server

■ Section 17.5 “Using the Java Naming and Directory Interface (LDAP Backend)” on
page 264, describes how a client can retrieve a JMX service URL from the
Lightweight Directory Access Protocol (LDAP) directory, and use it to connect to
the corresponding server

13.10 Creating a Connector Server
A connector server is represented by an object of a subclass of
JMXConnectorServer. The usual way to create a connector server is through the
JMXConnectorServerFactory. Using a JMXServiceURL provided as a
parameter, the factory determines what class to instantiate, in a way similar to the
JMXConnectorFactory described in Section 13.9.1 “JMXConnectorFactory” on
page 215.

A connector server can also be created by instantiating a subclass of
JMXConnectorServer explicitly.

To be useful, a connector server must be attached to an MBean server, and it must be
active.
216 Java Management Extensions Specification, version 1.4 • November 9, 2006

A connector server can be attached to an MBean server in one of two ways. Either
the MBean server to which it is attached is specified when the connector server is
constructed, or the connector server is registered as an MBean in the MBean server
to which it is attached.

A connector server does not have to be registered in an MBean server. It is even
possible, though unusual, for a connector server to be registered in an MBean server
different from the one to which it is attached.

CODE EXAMPLE 13-1 shows how to create a connector server that listens on an
unspecified port on the local host. It is attached to the MBean server mbs but not
registered in it:

The address that the connector server is actually listening on, including the port
number that was allocated, can be obtained by calling cs.getAddress().

CODE EXAMPLE 13-2 shows how to do the same thing but with a connector server that
is registered as an MBean in the MBean server to which it is attached:

CODE EXAMPLE 13-1 Creating a Connector Server attached to an MBean Server

MBeanServer mbs = MBeanServerFactory.createMBeanServer();
 JMXServiceURL addr = new JMXServiceURL("jmxmp", null, 0);
 JMXConnectorServer cs =
 JMXConnectorServerFactory.newJMXConnectorServer(addr, null, mbs);
 cs.start();

CODE EXAMPLE 13-2 Creating a Connector Server Registered in an MBean Server

MBeanServer mbs = MBeanServerFactory.createMBeanServer();
JMXServiceURL addr = new JMXServiceURL("jmxmp", null, 0);
JMXConnectorServer cs =
 JMXConnectorServerFactory.newJMXConnectorServer(addr, null, null);
ObjectName csName = new ObjectName(":type=cserver,name=mycserver");
mbs.registerMBean(cs, csName);
cs.start();
Chapter 13 Connectors 217

13.10.1 Publishing a Server
Chapter 17 “Bindings to Lookup Services” defines how an agent can publish its
connector servers with existing lookup and discovery infrastructures, so that a JMX
Remote API client that does not know about such a server can find it and connect to
it. In particular, that section provides the following information:

■ Section 17.3 “Using the Service Location Protocol” on page 254, describes how an
agent registers the JMX service URL of a connector server with SLP, so that a JMX
Remote API client can retrieve it and use it to connect to the server

■ Section 17.4 “Using the Jini Network Technology” on page 258, describes how an
agent registers the connector stub of a connector server with the Jini lookup
service, so that a JMX Remote API client can retrieve this stub and connect to the
server

■ Section 17.5 “Using the Java Naming and Directory Interface (LDAP Backend)” on
page 264, describes how an agent registers the JMX Service URL of a connector
server in an LDAP directory, so that a JMX Remote API client can retrieve this
URL and use it to connect to the server.

13.11 Class Loading
Every non-primitive Java object has a class, and every class has a class loader. A
subtle pitfall of class loading is that the class a.b.C created by the class loader cl1 is
not the same as the class a.b.C created by the class loader cl2. Here, "created" refers
to the class loader that actually creates the class with its defineClass method. If
cl1 and cl2 both find a.b.C by delegating to another class loader cl3, it is the same
class.

A value of type "a.b.C created by cl1" cannot be assigned to a variable or parameter
of type "a.b.C created by cl2". An attempt to do so will result in an exception such
as ClassCastException.

When one end of a connection receives a serialized object from the other end, it is
important that the object be deserialized with the right class loader. This section
explains the rules for determining the class loader to use in every case.

These rules for class loading are needed when the types of attributes, or of operation
parameters and return values, are application-specific Java types. To avoid having to
deal with these rules, it is a good idea to use only standard types defined by the Java
platform or by the JMX and JMX Remote APIs. The types defined for Open MBeans
in the JMX API allow arbitrarily complex data structures to be described without
requiring application-specific types. An important side-effect is that interoperation
with non-Java clients is greatly simplified.
218 Java Management Extensions Specification, version 1.4 • November 9, 2006

These rules are also needed when application-specific notification filters are applied.
(See Section 13.4.1 “Filters and Handbacks” on page 208.) To avoid having to
manage class-loading rules, consider using only the three standard notification filter
types from the JMX API, NotificationFilterSupport ,
MBeanServerNotificationFilter, and
AttributeChangeNotificationFilter. An alternative is to filter in the client’s
listener, though this can increase network traffic with notifications that are discarded
as soon as they are received.

13.11.1 Class Loading on the Client End
A connector client can specify a default class loader when making a connection to a
server. This class loader is used when deserializing objects received from the server,
whether they are returned values from MBeanServerConnection methods,
exceptions thrown by those methods, or notifications emitted by MBeans to which
the client is listening.

The default class loader is the value of the attribute
jmx.remote.default.class.loader from the JMXConnector environment.
The JMXConnector first looks for this attribute in the environment Map that was
supplied when the JMXConnector was connected. If there was none, or the
attribute is not found, it then looks in the environment Map that was supplied at
creation time. If there was none, or the attribute is not found, then the default class
loader is the context class loader
(Thread.currentThread().getContextClassLoader()) that was in place
when the JMXConnector was connected. It is not specified what happens if the
default class loader determined by these rules is null.

If the value of the jmx.remote.default.class.loader attribute is not a class
loader, then the attempt to connect the JMXConnector gets an
IllegalArgumentException.

Note – serialization: When a JMXConnector is serialized, the environment Map
that was supplied when the JMXConnector was created is lost: the Map is not
serialized because it is expected to contain objects, like class loaders, which are not
serializable. As a consequence, when a specific default class loader is required for a
JMXConnector, it is recommended always to specify it in the Map supplied when
connecting.

13.11.2 Class Loading on the Server End
The class loader to be used when deserializing parameters received from the client
depends on the operation. Sometimes the appropriate class loader is the one that
belongs to the target MBean, because that MBean might have parameter types that
Chapter 13 Connectors 219

are not defined by the JMX API or the JMX Remote API. Sometimes the appropriate
class loader is one configured during the creation of the connector server, because
the connector server is intended to be used with a particular management
application. Such an application might define its own subclasses of MBean
parameter types, or it might define its own NotificationFilter classes for
listeners. An MBean being managed cannot be expected to anticipate every
notification filter that a management application might want to use, so it does not
make sense to use only the MBean’s class loader to deserialize notification filters
with listeners being added to the MBean.

Like a connector client, a connector server has a default class loader that is determined
when the connector server is started. The default class loader is determined as
follows:

■ If the connector server’s environment map contains the attribute
jmx.remote.default.class.loader, the value of that attribute is the default
class loader

■ If the environment map contains the attribute
jmx.remote.default.class.loader.name, the value of that attribute is the
ObjectName of an MBean that is the default class loader. This allows a connector
server to be created with a class loader that is a management applet (m-let) in the
same MBean server

■ If neither of the above attributes is defined, the default class loader is the thread’s
context class loader at the time when the JMXConnectorServer was started

If both jmx.remote.default.class.loader and
jmx.remote.default.class.loader.name are defined, or if the value of
jmx.remote.default.class.loader is not a ClassLoader, or if the value of
jmx.remote.default.class.loader.name is not an ObjectName that names a
ClassLoader, the attempt to start the connector server gets an
IllegalArgumentException.

For certain operations that interact with a single "target" MBean, M, objects are
deserialized using M’s extended class loader. This is a class loader that loads each class
X, as follows:

1. The class loader that loaded or is loading M is asked to load X

2. If that fails with a ClassNotFoundException, the default class loader is asked
to load X

3. If step 1 fails with an exception other than ClassNotFoundException, or if
step 2 fails with any exception, that exception is the result of loading X

The rules for deserialization of MBeanServerConnection operations are as
follows:

■ The parameters to setAttribute, and setAttributes are deserialized using
the target MBean’s extended class loader
220 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ The Object array in invoke is deserialized using the target MBean’s extended
class loader

■ The Object array in the createMBean forms that have one is deserialized using
the target MBean’s extended class loader. Here, "the class loader that loaded or is
loading M" is the class loader described in the API documentation for the
particular createMBean form. In the case of the form that uses the Class Loader
Repository, it is a class loader that always delegates to that repository

■ The QueryExp in the queryNames and queryMBeans operations is deserialized
using the default class loader

■ The NotificationFilter and the Object handback in the
addNotificationListener and removeNotificationListener operations
(all forms) are deserialized using the target (notification broadcaster) MBean’s
extended class loader

Remaining parameters are of type String (which is a final class known to the
bootstrap class loader), String[], or ObjectName.

If a user-defined subclass of ObjectName is sent from client to server, it is not
specified how it is deserialized, so this is not guaranteed to work in general.

13.12 Connector Server Security
Connector servers typically have some way of authenticating remote clients. For the
RMI connector, this is done by supplying an object that implements the
JMXAuthenticator interface when the connector server is created. For the JMXMP
connector, this is done using SASL.

In both cases, the result of authentication is a JAAS Subject representing the
authenticated identity. Requests received from the client are executed using this
identity. With JAAS, you can define what permissions the identity has. In particular,
you can control access to MBean server operations using the MBeanPermission
class. For this to work, though, you must have a SecurityManager.

If a connector server does not support authentication or is not set up with
authentication, then client requests are executed using the same identity that created
the connector server.

As an alternative to JAAS, you can control access to MBean server operations by
using an MBeanServerForwarder. This is an object that implements the
MBeanServer interface by forwarding its methods to another MBeanServer object,
possibly performing additional work before or after forwarding. In particular, the
object can do arbitrary access checks. You can insert an MBeanServerForwarder
between a connector server and its MBean server using the method
setMBeanServerForwarder.
Chapter 13 Connectors 221

13.12.1 Subject Delegation
Any given connection to a connector server has at most one authenticated Subject.
This means that if a client performs operations as or on behalf of several different
identities, it must establish a separate connection for each one.

However, the two standard connectors also support the notion of subject delegation. A
single connection is established between client and server using an authenticated
identity, as usual. With each request, the client specifies a per-request Subject. The
request is executed using this per-request identity, provided that the authenticated
per-connection identity has permission to do so. That permission is specified with
the permission SubjectDelegationPermission.

For each delegated Subject, the client obtains an MBeanServerConnection from
the JMXConnector for the authenticated Subject. Requests using this
MBeanServerConnection are sent with the delegated Subject.
MBeanServerConnection objects for any number of delegated identities can be
obtained from the same JMXConnector and used simultaneously.

13.12.2 Access Control Context
MBean Server operations on behalf of a remote client are executed in an access
control context (see java.security.AccessControlContext) where checked
permissions must be held both by the authenticated Subject (or delegated
Subject) and by the Subject that created the connector server. Without the latter
check, an entity that had permissions to create a connector server but not some other
permissions might be able to obtain those other permissions by creating a connector
server and sending requests to it.

If the Subject that created the connector server has a
SubjectDelegationPermission for every Principal in the authenticated (or
delegated) Subject, then its permissions are not checked for MBean Server
operations. This means that there are two ways to configure the permissions of the
connector server creator. Either it must have all the permissions that any remote
client will need for its operations; or it must have a
SubjectDelegationPermission for every Principal that a remote client will
authenticate or delegate.

Suppose a security context (subject and/or codebase and/or code signers), say
creator, makes a JMXConnectorServer. Later, a connection arrives and is
authenticated with the Principal remote. An MBeanServer.getAttribute
operation is performed over the connection, and needs to access a file. This means
that the permissions being checked are MBeanPermission and FilePermission.
The operation will succeed if either of the following conditions is true:
222 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ both remote and creator have the MBeanPermission and the FilePermission,
or

■ remote has the MBeanPermission and the FilePermission, and creator has
SubjectDelegationPermission(remote).

A policy file for the second case might look like this:

 grant codebase "file:/agent.jar" {

 permission javax.management.remote.SubjectDelegationPermission

 "javax.management.remote.JMXPrincipal.remote";

 }

 grant principal javax.management.remote.JMXPrincipal "remote" {

 permission javax.management.MBeanPermission "Stats", "getAttribute";

 permission java.io.FilePermission "stats.txt", "read";

 }
Chapter 13 Connectors 223

224 Java Management Extensions Specification, version 1.4 • November 9, 2006

14

RMI Connector

The RMI connector is the only connector that must be present in all implementations
of this specification. It uses the RMI infrastructure to communicate between client
and server.

14.1 RMI Transports
RMI defines two standard transports, the Java Remote Method Protocol (JRMP) and
the Internet Inter-ORB Protocol (IIOP).

JRMP is the default transport. This is the transport you get if you use only the
java.rmi.* classes from the Java 2 Platform Standard Edition (the J2SETM

platform).

IIOP is a protocol defined by CORBA. Using RMI over IIOP allows for
interoperability with other programming languages. It is covered by the
javax.rmi.* and org.omg.* classes from the J2SE plaform.

RMI over these two transports is referred to as RMI/JRMP and RMI/IIOP.

The RMI connector supports both transports. Refer to the API documentation (in
particular the description of the javax.management.remote.rmi package) for
details.

14.2 Mechanics of the RMI Connector
For every RMI connector server, there is a remotely-exported object that implements
the remote interface RMIServer. A client that wants to communicate with the
connector server needs to obtain a remote reference, or stub, that is connected to this
remote object (how the stub can be obtained is described in Section 14.3 “How to
Connect to an RMI Connector Server” on page 229). RMI arranges that any method
Chapter 14 RMI Connector 225

called on the stub is forwarded to the remote object. So, a client that has a stub for
the RMIServer object can call a method on it, resulting in the same method being
called in the server’s object.

FIGURE 14-1 shows two clients that both have stubs for the same server object. The
server object is labeled impl because it is the object that implements the functionality
of the RMIServer interface.

FIGURE 14-1 Several Clients can Have Stubs Connected to the Same Server Object
226 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 14-2 A New Client Connection Is a New Remote Object on the Server

In addition to the remote object representing the connector server, there is one
remote object for every client connection made through the connector to the MBean
server. When a client wants to invoke methods on the remote MBean server, it
invokes the newClient method in its server stub. This causes the newClient
method in the remote server object to be invoked. This method creates a new remote
object that implements the remote interface RMIConnection, as shown in
FIGURE 14-2. This interface contains all the remotely-accessible methods of the MBean
Chapter 14 RMI Connector 227

server. The value returned from the client’s newClient method is a stub that is
connected to this new object. When the client calls an MBean server method such as
getAttribute, this produces a call to the corresponding method in the
RMIConnection stub, and hence a remote call to the corresponding implementation
object in the server.

14.2.1 Wrapping the RMI Objects
User code does not usually interact directly with the RMIServer and
RMIConnection objects.

On the server side, the RMIServer object is created and exported by an
RMIConnectorServer. RMIConnectorServer is a subclass of
JMXConnectorServer, and as such is a connector server for the purposes of this
standard. RMIConnection objects are created internally by the RMIServer
implementation, but user code in the server never sees them.

On the client side, an RMIServer stub can be obtained explicitly, as described in
Section 14.3 “How to Connect to an RMI Connector Server” on page 229. More
usually, it is obtained as part of the process of looking up a URL for the RMI
connector, but is wrapped in an RMIConnector object. User code usually only deals
with this RMIConnector object. RMIConnector implements the JMXConnector
interface and it is through this interface that it is usually accessed.

In normal use, user code never invokes any methods from RMIServer, and never
sees any objects of type RMIConnection. These objects are hidden by the
RMIConnector class.

14.2.2 RMIConnection
The RMIConnection interface is similar to the MBeanServerConnection
interface defined by the JMX specification, but has some important differences:

■ Parameters that are subject to the class loading rules detailed in Section 13.11
“Class Loading” on page 218 are wrapped inside a MarshalledObject so that
they can be unwrapped by the server after it has determined the appropriate class
loader to use

■ The addNotificationListeners and removeNotificationListener
methods use listener IDs instead of listeners, as detailed in Section 13.4 “Adding
Remote Listeners” on page 208

■ There are additional methods to get the connection ID and to close the connection

■ There is an additional method to obtain outstanding notifications
228 Java Management Extensions Specification, version 1.4 • November 9, 2006

The RMIConnection object represents a connection, not a session, in the terminology
of Section 13.1 “Sessions and Connections” on page 206. Either end of the connection
can close it at any time without affecting the session. The server closes the
connection by unexporting the RMIConnection object. Ongoing RMI calls on the
object run to completion and return normally, but new calls will fail. When the client
sees such a failure, it will obtain a new RMIConnection object as described in
Section 14.2 “Mechanics of the RMI Connector” on page 225.

14.2.3 Notifications
The RMI connector uses the techniques described in Section 13.4 “Adding Remote
Listeners” on page 208. The connector server has a stateless notification buffer
(Section 13.4.3 on page 210). If the connector client has listeners, it uses the
fetchNotifications call on the RMIConnection object to receive notifications
for them.

The list of (ObjectName,NotificationFilter) pairs corresponding to the client’s
listeners is not passed in every call to fetchNotifications. Rather, it is
established with a single addNotificationListeners call when the
RMIConnection object is created. Changes to the notification list while the
connection is open are made with further calls to addNotificationListeners
and to removeNotificationListener.

14.3 How to Connect to an RMI Connector
Server
Broadly, there are three ways to connect to an RMI connector server:

1. Supply a JMXServiceURL to the JMXConnectorFactory that specifies the rmi
or iiop protocol. This is the most usual way to connect. The JMXServiceURL
either contains the stub in an encoded form, or indicates a directory entry in
which an RMIServer stub can be found. This is further described in the API
specification of the javax.management.remote.rmi package. The details of
looking up this directory entry and creating a JMXConnector from it are hidden
from the caller

2. Obtain a JMXConnector stub from somewhere, for example a directory such as
LDAP, the Jini Lookup Service, or as the returned value of an RMI method call.
This stub is an object generated by RMIConnectorServer.toJMXConnector. It
is an object of type JMXConnector. It is not an RMI stub and should not be
confused with the RMI stubs of type RMIServer or RMIConnection. However,
it references an RMIServer stub which it uses when its connect method is called
Chapter 14 RMI Connector 229

3. Obtain an RMIServer stub from somewhere and use it as a parameter to the
constructor of RMIConnector

14.4 Basic Security With the RMI Connector
The RMI connector provides a simple mechanism for securing and authenticating
the connection between a client and a server. This mechanism is not intended to
address every possible security configuration, but provides a basic level of security
for environments using the RMI connector. More advanced security requirements are
better addressed by the JMXMP connector (see Section 15.3.3 “Security Features in
the JMXMP Connector” on page 241).

To make an RMI connector server secure, the environment supplied at its creation
must contain the property jmx.remote.authenticator, whose associated value
is an object that implements the interface JMXAuthenticator. This object is
responsible for examining the authentication information supplied by the client and
either deriving a JAAS Subject representing the client, or rejecting the connection
request with a SecurityException.

A client connecting to a server that has an JMXAuthenticator must supply the
authentication information that the JMXAuthenticator will examine. The
environment supplied to the connect operation must include the property
jmx.remote.credentials, whose associated value is the authentication
information. This object must be serializable.

This specification does not include any predefined authentication system. The
simplest example of such a system is a secret string shared between client and
server. The client supplies this string as its jmx.remote.credentials, and the
server’s JMXAuthenticator checks that it has the correct value.

As a slightly more complicated example, the authentication information could be a
String[2] that includes a username and a password. The JMXAuthenticator
verifies these, for example by consulting a password file or by logging in through
some system-dependent mechanism, and if successful derives a Subject based on
the given username.

14.4.1 How Security Affects the RMI Connector Protocol
The authentication information supplied by the client is passed as an argument to
the newClient call (see FIGURE 14-2). The connector server gives it to the
JMXAuthenticator. If the JMXAuthenticator throws an exception, that
exception is propagated to the client. If the JMXAuthenticator succeeds, it returns
a Subject, and that Subject is passed as a parameter to the constructor of the new
230 Java Management Extensions Specification, version 1.4 • November 9, 2006

RMIConnection object. All of the MBean server methods in RMIConnection
perform privileged work as this particular Subject, so that they have the
permissions appropriate to the authenticated client.

14.4.2 Achieving Real Security
The solution outlined above is enough to provide a basic level of security. A number
of problems have to be addressed to achieve a real level of security, however:

1. If the authentication information includes a password, and if the network is not
secure, then attackers might be able to see the password sent from client to server

2. Attackers might be able to substitute their own server for the server that the client
thinks it is talking to, and retrieve the password that the client sends to
authenticate itself

3. Attackers might be able to see the RMI object ID of a legitimately-created
RMIConnection object as it is accessed remotely. They could then use RMI to
call that object, executing MBean server methods using the Subject that was
authenticated when the object was created

4. Attackers might be able to guess this RMI object ID, for instance if object IDs are
allocated as consecutive small integers

The first three problems can be solved by using an RMI socket factory so that the
connection between client and server uses the Secure Socket Layer (SSL). This is
covered in more detail elsewhere (see for example "Using RMI with SSL" [RMI/
SSL]).

A special case of problem 2 is that attackers might be able to modify the contents of
a directory or lookup service that is used during connection establishment. This
might be either the directory that is used to find the RMIServer stub, or the
directory that is used to find the URL. If an RMI Registry is used for the RMIServer
stub, it should be secured with SSL.

The fourth problem can be solved by setting the standard RMI system property
java.rmi.server.randomIDs to "true". This causes the 64-bit object ID of every
export RMI object to be generated using a cryptographically strong random number
generator. (See the documentation for the class java.rmi.server.ObjID.)
Chapter 14 RMI Connector 231

14.5 Protocol Versioning
The remote RMIServer interface includes a method getVersion that returns a
string including a protocol version number. This standard specifies version 1.0 of the
RMI connector protocol, which is currently the only version. Any given future
version of this standard might or might not include an updated version of the
protocol.

Each protocol version will have a version number which is the same as the version
of this standard that first defines it. For example, if version 1.1 of this standard does
not change the protocol but version 1.2 does, then the next RMI connector protocol
version number will be 1.2.

All future versions of the RMI connector will include a remote RMIServer object
that has at least the same methods as the current version, 1.0, and in particular the
getVersion method. A future version might add further methods too.

If a future version adds methods to the RMIServer interface, it must ensure that the
methods that a 1.0 client calls work as expected.

If the client side of the RMI connector defined in a future version uses methods
added to the server in that version, it must check, using getVersion, that the
server it is communicating with supports that version. Otherwise, it must limit itself
to the methods that the server does support, perhaps losing some functionality as a
consequence.
232 Java Management Extensions Specification, version 1.4 • November 9, 2006

15

Generic Connector

The JMX Remote API includes a generic connector as an optional part of the API. This
connector is designed to be configurable by plugging in modules to define the
following:

■ The transport protocol used to send requests from the client to the server and to
send responses and notifications from the server to the clients

■ The object wrapping for objects sent from the client to the server whose class loader
can depend on the target MBean

The JMXMP Connector is a configuration of the generic connector where the
transport protocol is based on TCP and the object wrapping is native Java
serialization (as defined by java.io.ObjectOutputStream etc.). Security is
based on JSSE [JSSE], JAAS [JAAS], and SASL [JSR28][RFC2222].

The generic connector and its JMXMP configuration are optional, which means that
an implementation can choose not to include them. An implementation that does
include them must conform to their specification here and in the API
documentation.

15.1 Pluggable Transport Protocol
Each configuration of the generic connector includes a transport protocol, which is an
implementation of the interface MessageConnection. Each end of a connection
has an instance of this interface. The interface defines three main methods:

■ The writeMessage method writes a Java object to the other end of the
connection. The Java object is of the type Message defined by the connector. It
can reference other Java objects of arbitrary Java types. For the JMXMP Connector,
the possible types of messages are contained in the package
javax.management.remote.message.

■ The readMessage method reads a Java object from the other end of the
connection. The Java object is of type Message and again can refer to objects of
arbitrary other types.
Chapter 15 Generic Connector 233

■ The close method closes the connection

The connection is a full-duplex connection between the client and the server. A
stream of requests is sent from client to server, and a stream of responses and
notifications is sent from server to client. See FIGURE 15-1.

FIGURE 15-1 MessageConnection Defines a Full-Duplex Transport Between Client and
Server

When client code issues an MBeanServerConnection request such as
getMBeanInfo, the request is wrapped inside an MBeanServerRequestMessage
object and written to the server using MessageConnection.writeMessage. The
client code then waits for the corresponding response. Meanwhile, another thread in
the client can write another request. When a response arrives, its message ID is used
to match it to the request it belongs to, and the thread that issued that request is
woken up with the response.

15.2 Pluggable Object Wrapping
The arguments to an MBean method called through MBeanServer.invoke, and
the attribute values supplied to setAttribute or setAttributes, can be of Java
classes that are known to the target MBean but not to the connector server. If these
objects were treated like any other, the connector server would get a
ClassNotFoundException when it tried to deserialize a request containing them.

To avoid this problem, deserialization at the server end of a connection proceeds in
two stages. First, the objects that are necessarily of classes known to the connector
server are deserialized. This is enough to determine what kind of request has been
received, which MBean it is destined for (if any), and therefore what class loader is
appropriate for use. Then the remaining objects (arguments to invoke or attribute
values for setAttribute(s)) can be deserialized using this class loader.

The ObjectWrapping interface allows object wrapping to be customized. By
default, it constructs a byte array containing the output of
ObjectOutputStream.writeObject on the object or objects to be wrapped. But
this would be inappropriate if, for example, the MessageConnection is using the
234 Java Management Extensions Specification, version 1.4 • November 9, 2006

Extensible Markup Language (XML). So, in such a case an ObjectWrapping object
could be plugged into the connector that wraps the objects in XML. This XML can
then be included in the larger XML text constructed by the MessageConnection.

15.3 Generic Connector Protocol
The generic connector protocol defines a set of protocol messages that are exchanged
between the client and the server ends of the connection, and the sequence these
message exchanges must follow. Implementations of this specification must
exchange these messages in the defined sequence so that they can interoperate with
other implementations. FIGURE 15-2 depicts the UML diagram of all the messages
defined by the generic connector protocol.

FIGURE 15-2 Generic Connector Protocol Messages

The generic connector protocol messages can be divided into four categories:

■ Handshake messages:

HandshakeBeginMessage
HandshakeEndMessage
Chapter 15 Generic Connector 235

HandshakeErrorMessage
VersionMessage

■ Profile messages:

TLSMessage (JMXMP Connector only)
SASLMessage (JMXMP Connector only)

■ MBean server operation messages:

MBeanServerRequestMessage
MBeanServerResponseMessage
NotificationRequestMessage
NotificationResponseMessage

■ Connection messages

CloseMessage

15.3.1 Handshake and Profile Message Exchanges
The handshake message exchanges are started by the server end of the connection as
soon as the connect method on the JMXConnector class is called by the client and
the connection between the client and the server is established.

The server end of the connection sends a HandshakeBeginMessage to the client
with the profiles supported by the server. These profiles are retrieved from the
environment map through the jmx.remote.profiles property. The client then
starts the profile message exchanges for the profiles chosen from the server’s
supported profiles.

The JMXMP profile is used to negotiate the version of JMXMP to use. This profile is
always implicitly enabled, but is only negotiated if the client and server differ in
their default versions. See Section 15.3.5 “Protocol Versioning” on page 243.

For the other profiles, the client will first check that all the profiles requested in its
environment map are supported by the server. If not, it will send a
HandshakeErrorMessage to the server and close the connection. (This is the
behavior of the standard JMX Remote API. Other APIs for JMXMP can provide ways
to pick which of the proposed profiles to use.)

Then, for each profile asked for in the client’s environment map, the client will
negotiate that profile. The order in which profiles are negotiated is the order they
appear in the client’s environment map. This order can be important. For example, if
the client negotiates the SASL/PLAIN profile before the TLS profile, it will send a
password in clear text over the connection. If it negotiates TLS first, the connection
will become encrypted before the password is sent.

It is not specified how the server accepts or denies the sequence of profiles run by
the client. However, it is recommended that if the profiles in the server’s
environment map imply a certain level of security, the server should reject a
236 Java Management Extensions Specification, version 1.4 • November 9, 2006

connection whose negotiated profiles do not ensure that level of security. For
example, if the server is configured with only the TLS profile, then it should reject
connections that do not negotiate TLS. If the server is configured with the TLS
profile and with the SASL/DIGEST-MD5 profile specifying the same level of security
as regards authentication and encryption, then it should reject connections that
negotiate neither profile.

The profile exchanges are performed one at a time and always started by the client.
Once the profile exchanges are completed the client sends a
HandshakeEndMessage to the server. No further profile exchanges are then
possible. The server replies either with the same HandshakeEndMessage if it
accepts the profiles that have been negotiated, or with a HandshakeErrorMessage
if it does not. In the latter case, the connection is closed.

After the handshake phase has been completed the client can get a reference to the
remote MBean server, send MBean server requests, and register listeners for
receiving notifications. The server will send responses to the client MBean server
requests and will forward notifications to the interested clients. FIGURE 15-3 depicts
the initial handshake and profile message exchanges.

FIGURE 15-3 Handshake and Profile Message Exchanges
Chapter 15 Generic Connector 237

Notice that only the handshake begin and handshake end messages are mandatory.
The profile message exchanges depend on the configuration of the server and the
client by means of the jmx.remote.profiles property in the environment map
passed in at the creation of the JMXConnector and JMXConnectorServer.

At any time during the handshake phase, if an error is encountered by either peer
(client or server), it must send an indication (HandshakeErrorMessage) as to why
the operation failed. The peer that encountered the problem will send the error
message to the other peer and immediately close the connection. The peer that
receives the message on the other end of the connection will also close the
connection immediately on reception of a handshake error message. FIGURE 15-4
depicts how an error is indicated by either a client or a server to the other peer
during the initial handshake message exchanges.

FIGURE 15-4 Handshake Error Message Exchanges
238 Java Management Extensions Specification, version 1.4 • November 9, 2006

15.3.2 MBean Server Operation and Connection Message
Exchanges
Once the initial handshake phase has been terminated, and all profiles negotiated,
the client can retrieve a reference to the remote MBean server by calling the
getMBeanServerConnection method on the JMXConnector instance. Through
the MBeanServerConnection interface the client can perform operations on the
registered MBeans, including registration for receiving notifications. These MBean
server operations will be mapped by the protocol to
MBeanServerRequestMessage messages. For each such message the server will
receive it, decode it, perform the operation on the MBean server, and return the
result of the operation in an MBeanServerResponseMessage message.

If several client threads are performing MBean server operations at the same time,
there can be several MBeanServerRequestMessages that have been sent without
yet having received the corresponding MBeanServerResponseMessages. There is
no requirement that a client receive a response for each request before sending the
next request.

Each MBeanServerRequestMessage contains an identifier that the matching
MBeanServerResponseMessage must also contain. At any time, the client has a
set of identifiers {id1, id2, ...} for requests it has sent that have not yet received a
response. Each new request must have an identifier that is not in the set, and that is
added to the set when the request is sent. Each response must have an identifier that
is in the set, and that is removed from the set when the response is received. It is a
protocol error for these conditions to be violated. The peer that detects the error
must close the connection, optionally after sending a CloseMessage to the other
peer.

Notifications are handled using the techniques described in Section 13.4 “Adding
Remote Listeners” on page 208. The connector server has a stateless notification
buffer (Section 13.4.3 on page 210). If the connector client has listeners, it uses the
NotificationRequestMessage to receive notifications for them. Each such
message solicits a NotificationReplyMessage.

The list of (ObjectName,NotificationFilter) pairs corresponding to the client’s
listeners is not passed in every NotificationRequestMessage. Rather, it is
established with a single addNotificationListeners in an
MBeanServerRequestMessage when the connection is established. Changes to
the notification list while the connection is open are made with further
MBeanServerRequestMessages containing addNotificationListeners or
removeNotificationListener.

FIGURE 15-5 depicts the MBean server operation message exchanges.
Chapter 15 Generic Connector 239

FIGURE 15-5 MBean Server Operations Message Exchanges

At any time after the handshake phase and during the MBean server operation
message exchanges, either the client or the server can want to close the connection.
On the one hand, the client can achieve that by calling the close method on the
JMXConnector instance. On the other hand, the server can achieve that by calling
the stop method on the JMXConnectorServer instance. Additionally, the client or
server can close the connection at any time, for example as detailed in Section 13.7.1
“Detecting Abnormal Termination” on page 213. The peer initiating the connection
close action will send a message of type CloseMessage to inform the other peer
that the connection must be closed and that the necessary clean-up should be carried
out.

When a client sends or receives a CloseMessage it must not send any further
requests to the server over that connection. The server will continue to process
existing requests and send the corresponding replies before closing the connection.

FIGURE 15-6 depicts the close-connection message exchanges.
240 Java Management Extensions Specification, version 1.4 • November 9, 2006

FIGURE 15-6 Close-Connection Message Exchanges

15.3.3 Security Features in the JMXMP Connector
The JMXMP Connector provides support for authentication and authorization
through the TLS and SASL profiles. The JMX Remote API does not mandate the
implementation and support of any specific SASL mechanism. It simply relies on
third-party implementations that can be plugged in using the standard SASL
interface [JSR28].
Chapter 15 Generic Connector 241

15.3.3.1 TLS Profile

The TLS profile allows the client and server ends of a connection to negotiate a TLS
encryption layer. Certificate-based authentication and mutual client/server
authentication are optional features configurable through properties in the
environment map (see Section 15.3.6 “Properties Controlling Client and Server” on
page 244).

15.3.3.2 SASL Profile

When using a SASL profile the way authentication is carried out is defined by the
selected SASL mechanism and can vary from one mechanism to another.

However, at the end of the SASL handshake exchanges an authorization identity has
been negotiated between the SASL client and the SASL server. Thus, the SASL
profile has to make this identity available to allow the MBean server and the
underlying MBeans to perform access control checks based on this identity.

The SASL profile implementation uses the JAAS framework to construct a
JMXPrincipal based on this authorization identity, and stores this JMXPrincipal
in a Subject. Then, when the JMXMPConnectorServer performs any of the
subsequent MBean server operations, it must do so with the given subject for the
required privileged action using an appropriate access control context.

An MBean interested in retrieving the authorization information can do so (if it has
the appropriate permissions) by calling:

15.3.4 Protocol Violations
If a peer receives a message from the other peer that does not respect the protocol
described here, its behavior is unspecified. The recommended behavior is to send a
CloseMessage indicating the detected violation and to close the connection
immediately afterwards.

AccessControlContext acc = AccessController.getContext();
 Subject subject = Subject.getSubject(acc);
 Set principals = subject.getPrincipals();
242 Java Management Extensions Specification, version 1.4 • November 9, 2006

15.3.5 Protocol Versioning
This standard specifies version 1.0 of the JMXMP protocol, which is currently the
only version. Any given future version of this standard might or might not include
an updated version of the protocol.

Each protocol version will have a version number which is the same as the version
of this standard that first defines it. For example, if version 1.1 of this standard does
not change the protocol but version 1.2 does, then the next JMXMP protocol version
number will be 1.2.

The first message sent over a newly-opened connection is a handshake begin
message from the server to the client. This message includes the latest JMXMP
version that the server understands. If the client also understands that version, then
the subsequent communication will take place using that version. If the client only
understands an earlier version, then it will send a VersionMessage requesting that
the earlier version be used. If the server understands this earlier version, then it will
reply with the same VersionMessage, and the subsequent communication will
take place using that version. Otherwise, the server will send a
HandshakeErrorMessage and the communication will be aborted.

In other words, suppose the server version is S and the client version is C. Then the
version V to be used for communication is determined as follows:

■ Server to client: "Version S"

■ If client understands S, V = S

■ Otherwise:

■ Client to server: "Version C"

■ If server understands C:

- Server to client: "Version C"
- V = C

■ Otherwise (server does not understand C):

- Server to client: "Handshake error."

- Connection aborted

A consequence of this negotiation is that every version of the protocol must
understand every other version’s HandshakeBeginMessage and
VersionMessage. This will be true provided that Java serial compatibility is
respected. See the section Type Changes Affecting Serialization in [Serial].

It is expected but not required that every implementation of any version of this
standard understand all protocol versions from previous versions of the standard.
Chapter 15 Generic Connector 243

15.3.6 Properties Controlling Client and Server
When creating a JMXConnector or a JMXConnectorServer, an environment map
can be supplied. One of the functions of this environment is to provide configuration
parameters for the underlying profiles. The following subsections describe these
parameters.

15.3.6.1 Global Properties of the Generic Connector

These properties control global aspects of the connection, that is they are valid
regardless of the profiles that are selected.

■ jmx.remote.profiles

A string that is a space-separated list of profile names to be supported by the
client and/or the server. Examples of profile names are: JMXMP, TLS, SASL/
EXTERNAL, SASL/OTP. If this property is unspecified, no profiles will be used.

■ jmx.remote.context

An arbitrary Object to be conveyed by the handshake messages from one peer
to the other. The Object should be serializable and of a class that is known to the
other peer. If this property is unspecified, a null context will be conveyed.

The JMXMP Connector currently makes no use of this object and does not expose
it to user code on the client or server.

■ jmx.remote.authenticator

A JMXAuthenticator that is used at the end of the handshake phase to validate
the new connection. The authenticate method of this object is called with a
two-element Object[] as a parameter. The first element is the connection ID of
the new connection. The second element is the authenticated Subject, if any.
The method returns the authenticated Subject to use for the connection, or null
if there is no authenticated ID. The returned Subject is usually the same as the
Subject passed as a parameter, but it can have different Principals. If the
authenticator does not accept the connection id or Subject, it can throw a
SecurityException.

15.3.6.2 TLS Properties

The following properties control the TLS profile:

■ jmx.remote.tls.socket.factory
244 Java Management Extensions Specification, version 1.4 • November 9, 2006

An object of type javax.net.ssl.SSLSocketFactory that is an already
initialized TLS socket factory. The SSLSocketFactory can be created and
initialized through the SSLContext factory. If the value of this property is not
specified, the TLS socket factory defaults to
SSLSocketFactory.getDefault().

■ jmx.remote.tls.enabled.protocols

A string that is a space-separated list of TLS protocols to enable. If the value of
this property is not specified, the TLS enabled protocols default to
SSLSocket.getEnabledProtocols().

■ jmx.remote.tls.enabled.cipher.suites

A string that is a space-separated list of TLS cipher suites to enable. If the value of
this property is not specified the TLS enabled cipher suites default to
SSLSocket.getEnabledCipherSuites().

■ jmx.remote.tls.need.client.authentication

A string that is "true" or "false" according to whether the connector server
requires client authentication. If true, a client that does not authenticate during
the handshake sequence will be refused.

■ jmx.remote.tls.want.client.authentication

A string that is "true" or "false" according to whether the connector server
requires client authentication if appropriate to the cipher suite negotiated. If true,
then if a client negotiates a cipher suite that supports authentication but that
client does not authenticate itself, the connection will be refused.

15.3.6.3 SASL Properties

The following properties control the SASL profile:

■ jmx.remote.sasl.authorization.id

A string that is the connector client’s identity for authorization when it is
different from the authentication identity. If this property is unspecified, the
provider derives an authorization identity from the authentication identity.

■ jmx.remote.sasl.callback.handler

An object of type javax.security.auth.callback.CallbackHandler that
is the callback handler to be invoked by the SASL mechanism to retrieve user
information. If this property is unspecified, no callback handler will be used.
Chapter 15 Generic Connector 245

246 Java Management Extensions Specification, version 1.4 • November 9, 2006

16

Defining a New Transport

The standard protocols defined by this specification might not correspond to all
possible environments. Examples of other protocols that might be of interest are:

■ A protocol that runs over a serial line to manage a JMX API agent in a device that
is not networked

■ A protocol that uses HTTP/S because it is a familiar protocol that system
administrators might be more willing to let through firewalls than RMI or JMXMP

■ A protocol that formats messages in XML (perhaps in an XML-based RPC
protocol such as SOAP) to build on an existing XML-based infrastructure. Such a
transport could potentially be used by non-Java clients

There are two ways to implement a user-defined protocol. One is to define a
transport for the generic connector using the MessageConnection and
MessageConnectionServer classes as described in Chapter 15 “Generic
Connector”. The other is to define a new provider for the JMXConnectorFactory.

Defining a transport for the generic connector has the advantage that many of the
trickier implementation details, in particular concerning listeners, are already
handled. The transport has to take care of establishing the connection and serializing
and deserializing the various Message classes. Potentially, the transport can include
other exchanges, for example to set up a secure connection, that are not the result of
a MessageConnection.writeMessage and are never seen by a
MessageConnection.readMessage. For example, this is the case for the TLS and
SASL exchanges in the JMXMP Connector.

Defining a provider for the JMXConnectorFactory is explained in the API
documentation for that class. A provider can be based on the generic connector, or it
can implement a protocol completely from scratch.
Chapter 16 Defining a New Transport 247

248 Java Management Extensions Specification, version 1.4 • November 9, 2006

17

Bindings to Lookup Services

This standard specifies connectors that make it possible for a JMX Remote API client
to access and manage MBeans exposed through a JMX API agent (an MBean server)
running in a remote JVM. It also defines a JMXServiceURL class, which represents
the address of a JMX Remote API connector server, and makes it possible for a client
to obtain a JMX Remote API connector connected to that server. However, this
standard does not provide any specific API that would make it possible for a client
to find the address of a connector server attached to an agent it knows about, or to
discover which agents are running, and what the addresses of the connector servers
are that make it possible to connect to them. Rather than reinventing the wheel, this
standard instead details how to advertise and find agents using existing discovery
and lookup infrastructures.

This specification discusses three such infrastructures:

■ The Service Location Protocol [SLP], as defined by [RFC 2608] and [RFC 2609]

■ The Jini Network Technology [Jini]

■ The Java Naming and Directory InterfaceTM ("J.N.D.I") API [JNDI] with an LDAP
backend

The goal of this chapter is to specify how a JMX API agent can register its connector
servers with these infrastructures, and how a JMX Remote API client can query these
infrastructures in order to find and connect to the advertised servers.

This chapter imposes no requirements on implementations of the JMX Remote API.
It details the conventions to be followed so that a server can be registered and found
by clients, without having to share special knowledge between client and server.

17.1 Terminology
The term JMX Remote API Agent (or agent) is used throughout this section to identify
a logical server application composed of:

■ One MBean server
Chapter 17 Bindings to Lookup Services 249

■ One or more JMX Remote API connector servers allowing remote clients to access
the MBeans contained in that MBean server

The term JMX Remote API client (or client) is used to identify a logical client
application which opens a client connection with a JMX Remote API agent.

Note that a single JVM machine can contain many agents and/or clients.

17.2 General Principles
Although the APIs with which to register and query a server access point using a
lookup service vary from one infrastructure to another, the general principles remain
the same:

■ The agent creates one or more JMX Remote API connector servers

■ Then for each connector to expose, the JMXServiceURL (SLP, JNDI/LDAP) or
the JMXConnector stub (Jini networking technology, JNDI/LDAP) is registered
with the lookup service, possibly giving additional attributes which qualify the
agent and/or connector

■ The client queries the lookup service, and retrieves one or more JMXServiceURL
addresses (or JMXConnector stubs) that match the query

■ Then, it either uses the JMXConnectorFactory to obtain a JMXConnector
connected with the server identified by a retrieved JMXServiceURL (SLP, JNDI/
LDAP), or it directly connects to the server using the provided JMXConnector
stub (Jini, JNDI/LDAP)

17.2.1 JMXServiceURL Versus JMXConnector Stubs
When using SLP, it is natural to register and retrieve a service URL from the lookup
service. However, it is not as natural when using networking technologies like Jini.
In the Jini networking technology, the Service object you register and get from the
lookup service is usually a stub that directly implements the interface of the
underlying service, and not an object that gives you back some information on how
to connect to the service. Therefore this standard specifies different ways of
advertising a connector server, depending on the underlying lookup service used:

■ SLP: register the URL string representation of the JMX Service URL
(JMXServiceURL.toString()). This is natural as SLP is a URL-based protocol.
See Section 17.3 “Using the Service Location Protocol” on page 254.

■ Jini networking technology: register a JMXConnector stub. The JMXConnector
interface is directly the interface of the JMX Connector Service. See Section 17.4
“Using the Jini Network Technology” on page 258
250 Java Management Extensions Specification, version 1.4 • November 9, 2006

■ JNDI API/LDAP: register the URL string representation of the JMX Service URL
(JMXServiceURL.toString()). The JNDI API can be configured on the client
side (via StateFactories and ObjectFactories - see [JNDI - Java Objects])
to create and return a new JMXConnector automatically from the DirContext
containing the JMX Service URL, or simply return the DirContext from which
that JMX Service URL can be extracted. See Section 17.5 “Using the Java Naming
and Directory Interface (LDAP Backend)” on page 264.
An alternative way to use JNDI/LDAP is to store a JMXConnector stub directly,
as described for Jini. This specification does not define a standard way to do that.

17.2.2 Lookup Attributes
All three infrastructures considered in this specification have the notion of lookup
attributes. These attributes are properties that qualify the registered services. They
are passed to the infrastructure when the service is registered, and can be used as
filters when performing a lookup.

A client can then query the lookup service to find all the connectors that match one
or more attributes. A client that obtains several services as a result of a lookup query
can also further inquire about the lookup attributes registered for those services to
determine which of the returned matching services it wants to use.

For a client to be able to format a query to the lookup service independently of the
JMX Remote API implementation used on the agent side, and to understand the
meaning of the retrieved attributes, this standard specifies a common set of JMX
Remote API lookup attributes whose semantics will be known by all agents and
clients. In the remainder of this specification we will use the term Lookup Attributes
for these.

When registering a connector server with a lookup service, an agent will:

1. Build the JMXServiceURL describing its connector server (SLP, JNDI/LDAP), or
obtain a JMXConnector stub from that server (using Jini networking technology)

2. Register that URL (SLP, JNDI/LDAP), or JMXConnector stub (using Jini
networking technology) with the lookup service

3. Provide any additional lookup attributes that might help a client to locate the
server

TABLE 17-1 defines the set of common lookup attributes that can be provided at
connector registration and that can be used to filter the lookup. Most of these
attributes are optional: an agent can choose whether it wants to specify them when it
registers a JMXServiceURL with the lookup service.
Chapter 17 Bindings to Lookup Services 251

Note – The name format of the lookup attributes is different depending on the back-
end lookup service (see Section 17.4 “Using the Jini Network Technology” on
page 258)

TABLE 17-1 Lookup Attributes for Connectors

Name / ID Type
Multi-
valued Optional Description

AgentName String No Mandatory A simple name used to identify the agent
in a common way. Can also be viewed as
a logical name for the service
implemented by the agent. Makes it
possible to search for all connectors
registered by a given agent.
This specification does not define the
format of an agent name. However, the
characters colon (:) and slash (/) are
reserved for future use.
252 Java Management Extensions Specification, version 1.4 • November 9, 2006

ProtocolType String No Optional The protocol type of the registered
connector, as returned by
JMXServiceURL.getProtocol().
Makes it possible to retrieve only the
connectors using a given protocol that
the client supports.

AgentHost String Yes Optional The name(s) or IP address(es) of the host
on which the agent is running. This
attribute is multivalued in order to allow
aliasing - namely, if one single host is
known under several names. This
attribute is multivalued only if the
underlying lookup protocol supports
multivalued attributes.

Property String Yes Optional A string containing a Java-like property,
in the form "<property-
name>=<value>" - for example,
"com.sun.jmx.remote.tcp.connect
.timeout=200".
This attribute is multivalued so that it
can be used to map several properties. It
might be used by agents as a means to
provide additional information to client
applications. For instance, this attribute
could be used to hold some of the
attributes that were passed to a
connector server within the environment
map at construction time. However, an
agent must not rely on the fact that a
Client will read these attributes, and a
client must not rely on the fact that an
agent will provide them. All the
information that any client will need to
connect to a specific server must be
contained in the server’s JMX Service
URL, or in its JMX API connector stub.

TABLE 17-1 Lookup Attributes for Connectors

Name / ID Type
Multi-
valued Optional Description
Chapter 17 Bindings to Lookup Services 253

17.3 Using the Service Location Protocol
The Service Location Protocol [SLP] is is an IETF standards track protocol [RFC
2608], [RFC 2609] that provides a framework to allow networking applications to
discover the existence, location, and configuration of networked services in
enterprise networks. You may wish to read the [SLP White Paper] for a concise
description of SLP, and its positioning with respect to other technologies, like
DNSSRV and LDAP.

17.3.1 SLP Implementation
The Java SLP API is the object of [JSR 140]. At the time of writing, this JSR is not yet
finalized. The code extracts in this section are based on Sun’s proprietary Java
implementation of SLP, which closely follows [RFC 2614]. Code based on other
implementations of that RFC will work similarly.

17.3.2 SLP Service URL
The JMXServiceURL defined by this standard is directly compliant with [RFC
2609]. Therefore there is a direct mapping between JMX Service URLs and SLP
Service URLs, since their String representation is identical.

17.3.3 SLP Lookup Attributes
SLP supports multivalued attribute registrations; these attributes are provided at
registration time, when registering the Service URL of the connector server. The
filtering method used for lookup is an LDAPv3 filter string. The attributes that must
or may be provided by an agent when registering a connector server URL are those
defined in Section 17.2.2 “Lookup Attributes” on page 251.

17.3.4 Code Templates
The following sections provide some code templates for SLP.
254 Java Management Extensions Specification, version 1.4 • November 9, 2006

17.3.4.1 Discovering the SLP Service

With SLP, discovering the lookup service is transparent to the user; the running SLP
daemon is responsible for finding the Service Agent or Directory Agent (depending
on the configuration of the daemon).

In fact, one line is enough to locate the lookup service, as shown in
CODE EXAMPLE 17-1:

CODE EXAMPLE 17-1 Discovering the SLP Service

import com.sun.slp.ServiceLocationManager;
import com.sun.slp.ServiceLocationException;
import com.sun.slp.Advertiser;
import com.sun.slp.Locator;
...
try {

 // Getting the Advertiser (for registration purposes)
Advertiser slpAdvertiser = ServiceLocationManager.getAdvertiser(Locale.US);

 // Getting the Locator (for lookup purposes)
 Locator slpLocator = ServiceLocationManager.getLocator(Locale.US);

} catch(ServiceLocationException e) {...}
Chapter 17 Bindings to Lookup Services 255

17.3.4.2 Registering a JMX Service URL With SLP

The class Advertiser is used to perform the SLP registrations, as shown in
CODE EXAMPLE 17-2:

CODE EXAMPLE 17-2 Registering a Service URL With SLP

import com.sun.slp.ServiceURL;
import com.sun.slp.ServiceLocationAttribute;
...
try {

 // Create a new JMXMPConnectorServer, let the system allocate a
// a port number.
//

 JMXServiceURL jmxUrl = new JMXServiceURL("service:jmx:jmxmp://myhost:0");
 final JMXConnectorServer cserver = new JMXMPConnectorServer(jmxUrl,null);

// Get the Connector Server address
 final JMXServiceURL srvAddr = cserver.getAddres();

 // Note: It is recommended that the JMX Agents make use of the leasing
 // feature of SLP, and periodically renew their lease.
 final ServiceURL serviceURL =
 new ServiceURL(srvAddr.toString(), ServiceURL.LIFETIME_DEFAULT);

final Vector attributes = new Vector();
 final Vector attrValues = new Vector();

 // Using the default SLP scope
 attrValues.add("DEFAULT");

final ServiceLocationAttribute attr1 =
 new ServiceLocationAttribute("SCOPE", attrValues);
 attributes.add(attr1);

 // AgentName attribute
 attrValues.removeAllElements();

 attrValues.add(new String("my-jmx-agent"));
 final ServiceLocationAttribute attr2 =
 new ServiceLocationAttribute("AgentName", attrValues);
 attributes.add(attr2);

 ...
 // Registration
 slpAdvertiser.register(serviceURL, attributes);

} catch(ServiceLocationException e) {...}
256 Java Management Extensions Specification, version 1.4 • November 9, 2006

17.3.4.3 Looking up a JMX Service URL With SLP

The class Locator is used to perform the SLP lookup, as shown in
CODE EXAMPLE 17-3:

CODE EXAMPLE 17-3 Looking up a JMX Service URL With SLP

import com.sun.slp.ServiceType;
import com.sun.slp.ServiceLocationEnumeration;
...
try {
 // lookup in default SCOPE.

 final Vector scopes = new Vector();
 scopes.add("DEFAULT");

 // Set the LDAPv3 query string
// Here we look for a specific agent called "my-jmx-agent",
// but we could have asked for any agent by using a wildcard:
// final String query = "(&(AgentName=*))";

 //
 final String query = "(&(AgentName=my-jmx-agent))";

 // lookup
 final ServiceLocationEnumeration result =

slpLocator.findServices(new ServiceType("service:jmx"), scopes, query);

// Extract the list of returned ServiceURL
 while(result.hasMoreElements()) {
 final ServiceURL surl = (ServiceURL) result.next();

 // Get the attributes
 final ServiceLocationEnumeration slpAttributes =

 slpLocator.findAttributes(surl, scopes, new Vector());

 while(slpAttributes.hasMoreElements()) {
 final ServiceLocationAttribute slpAttribute =

 (ServiceLocationAttribute) slpAttributes.nextElement();
 ...
 }

 // Open a connection
 final JMXServiceURL jmxUrl = new JMXServiceURL(surl.toString());

 final JMXConnector client = JMXConnectorFactory.connect(jmxUrl);
 ...
 }
} catch(ServiceLocationException e) {...}
Chapter 17 Bindings to Lookup Services 257

17.4 Using the Jini Network Technology
The Jini Network Technology [Jini] is an open software architecture that enables
developers to create network-centric services that are highly adaptive to change.

The Jini specification offers a standard lookup service. A running Jini lookup service
can be discovered with a simple API call. A remote service (device, software,
application, etc.) that wants to be registered in the Jini lookup service provides a
serializable Java object. When looked up by a remote client, a copy of this Java object
is returned. Usually, this object acts as a proxy to the remote service.

In addition, Jini networking technology offers various APIs and mechanisms to
download code from a remote HTTP server (necessary to get the classes required for
instantiating the proxy objects), and the Jini specification supports security for code
download based on the RMI security manager.

17.4.1 Jini Networking Technology Implementation
The Jini networking technology is Java-based software the implementation of which
is available for download under the Sun Community Source Licence v3.0 (with Jini
Technology Specific Attachment v1.0). See http://wwws.sun.com/software/
communitysource/jini/download.html

17.4.2 Service Registration
The Jini specification is based on service registration. A service is registered through
a serializable Java object, which can be a stub, a proxy or a simple class providing
information about the service. Usually, the registered service is a stub which
provides a direct link to the underlying service. Thus, although it would be possible
to use the JMXServiceURL as the service, this standard specifies the use of a JMX
Remote API connector stub, implementing the JMXConnector interface, as the
service. This is consistent with the Jini specification’s philosophy, where objects
retrieved from the Jini lookup service are usually proxies implementing the interface
of the service looked up.

The Jini lookup service, which uses Java RMI marshalling and dynamic class loading
semantics, will make use of RMI annotations to download automatically from the
server side all the classes needed to deserialize the service object on the client side.
This makes it possible for a server to register any private implementation class, and
for a client to use that class (through its generic JMXConnector interface) without
any a-priori knowledge of the server implementation. However, this requires a
certain amount of configuration from the server-side. This standard completely
specifies the JMX Remote API connector stubs for the protocols it describes, so that
258 Java Management Extensions Specification, version 1.4 • November 9, 2006

http://wwws.sun.com/software/communitysource/jini/download.html

an instance of such a class serialized from the JMX Remote API implementation on
the server side can be deserialized in an instance of the same class using the
implementation on the client side, without having to download any new classes.
Thus, no special configuration is needed on the server side when using standard
connectors. Providers and users of non-standard connectors should however
perform the required configuration steps if they want to make their non-standard
connectors available to generic JMX API clients.

17.4.3 Using JMX Remote API Connector Stubs
When registering a JMX Remote API connector stub, the server application will
either call the JMXConnectorFactory.newConnector method to obtain an
unconnected stub, or call the toJMXConnector method on the
JMXConnectorServer it wants to register. The toJMXConnector method returns
a serializable connector stub that can be directly registered as the service provided
by that connector.

When the client looks up the registered connector from the Jini lookup service, the
returned connector stub is not yet connected to its corresponding server. The client
application needs to call the JMXConnector.connect() method on that object
before using it.

Calling JMXConnector.connect() on the server side is shown in
CODE EXAMPLE 17-4:

CODE EXAMPLE 17-4 Calling JMXConnector.connect() on the Server Side

// get the connector stub:
JMXConnector c = server.toJMXConnector(null);

// register c as the Jini Service.
...
Chapter 17 Bindings to Lookup Services 259

Calling JMXConnector.connect() on the client side, as shown in
CODE EXAMPLE 17-5:

17.4.4 Jini Lookup Service Attributes
Like SLP, the Jini lookup service supports the specification of additional lookup
attributes, called entries. The Java class of these attributes must implement the
net.jini.core.entry.Entry interface. The Name entry defined by the Jini
specification is interpreted as meaning the AgentName as defined in Section 17.2.2
“Lookup Attributes” on page 251. As this specification was being completed, the
other entries were being standardized through the Jini Community Decision Process
(JDP). Refer to the JMX technology home page for current information:

http://java.sun.com/products/JavaManagement/

17.4.5 Code Templates
The following sections provide some code templates for the Jini lookup service:

CODE EXAMPLE 17-5 Calling JMXConnector.connect() on the Client Side

// Obtain the service from Jini
Object service = ...
JMXConnector c = (JMXConnector) service;

// Build the env Map, add security parameters,
Map env = new HashMap();
env.put(...)

// Connect with the server
c.connect(env);
260 Java Management Extensions Specification, version 1.4 • November 9, 2006

17.4.5.1 Discovering the Jini Lookup Service

The Jini lookup service is represented by the
net.jini.core.lookup.ServiceRegistrar class. There are two ways to
discover the Jini lookup service. The first and most simple way assumes that you
know the address of the lookup service, as shown in CODE EXAMPLE 17-6:

The second solution uses a broadcast mechanism to retrieve the lookup services
running on the accessible network, as shown in CODE EXAMPLE 17-7:

CODE EXAMPLE 17-6 Discovering the Jini Lookup Service Using an Address

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.discovery.LookupLocator;
...
LookupLocator lookup = new LookupLocator("jini://my_host");
ServiceRegistrar registrar = lookup.getRegistrar();

CODE EXAMPLE 17-7 Discovering the Jini Lookup Service Using a Broadcast Mechanism

import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
...
LookupDiscovery lookupDiscovery = null;
try {
 lookupDiscovery = new LookupDiscovery(null);
} catch (IOException e) {...}

lookupDiscovery.addDiscoveryListener(new LookupDiscoveryListener());

private class LookupDiscoveryListener implements DiscoveryListener {

 public LookupDiscoveryListener() {
}

 public void discovered(DiscoveryEvent evnt) {
 ServiceRegistrar[] regs = evnt.getRegistrars();
 for(int i = 0; i < regs.length; i++) {
Chapter 17 Bindings to Lookup Services 261

17.4.5.2 Registering a JMX Remote API Connector Stub With the Jini
Lookup Service

Registering a JMX Remote API Connector Stub with the Jini Lookup Service is
shown in CODE EXAMPLE 17-8:

 String[] regGroups = regs[i].getGroups();
 // Must verify here that the ServiceRegistrar
 // contains the groups I want to register in...
 }

 // It is generally better here to launch another Thread to use
 // the discovered ServiceRegistrar; this avoids blocking the
 // discovery process.
 }

 public void discarded(DiscoveryEvent evnt) {}
}

CODE EXAMPLE 17-8 Registering a JMX Remote API Connector Stub With the Jini Lookup
Service

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import java.rmi.RemoteException;
...
// Get the Jini ServiceRegistrar with one of the above methods
ServiceRegistrar registrar = ...;

// Get a connector stub for the server you want to export
//
JMXConnector proxy = jmxConnectorServer.toJMXConnector(null);

// Prepare Service’s attributes entry
Entry[] serviceAttrs = new Entry[] {
 new net.jini.lookup.entry.Name("MyAgentName");
 // Add here the lookup attributes you want to specify.
};

CODE EXAMPLE 17-7 Discovering the Jini Lookup Service Using a Broadcast Mechanism
262 Java Management Extensions Specification, version 1.4 • November 9, 2006

17.4.5.3 Looking up a JMX Connector Stub From the Jini Lookup
Service

Looking up a JMX Connector stub from the Jini lookup service is shown in
CODE EXAMPLE 17-9:

// Create a ServiceItem from the service instance
ServiceItem srvcItem = new ServiceItem(null, proxy, serviceAttrs);

// Register the Service with the Lookup Service
try {

 ServiceRegistration srvcRegistration =
 registrar.register(srvcItem, Lease.ANY);
 System.out.println("Registered ServiceID: " +
 srvcRegistration.getServiceID().toString());
} catch(RemoteException e) {...}

CODE EXAMPLE 17-9 Looking up a JMX Connector Stub From the Jini Lookup Service

import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceMatches;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.entry.Entry;
...
// Get the Jini ServiceRegistrar with one of the above methods
ServiceRegistrar registrar = ...;

// Prepare Service’s attributes entry to be matched
Entry[] serviceAttrs = new Entry[] {
 // Retrieve all services for which a Name entry was registered,
 // whatever the name is (null = wildcard).
 new net.jini.lookup.entry.Name(null)

 // Add here any other matching attribute.

};

// Look for a specific JMXMP Connector (you may also pass
// JMXConnector.class if you wish to get all types of JMXConnector)
//
ServiceTemplate template = new ServiceTemplate(null,

CODE EXAMPLE 17-8 Registering a JMX Remote API Connector Stub With the Jini Lookup
Service
Chapter 17 Bindings to Lookup Services 263

17.5 Using the Java Naming and Directory
Interface (LDAP Backend)
The Java Naming and Directory Interface [JNDI] is a standard extension to the Java
platform, providing Java technology-enabled applications with a unified interface to
multiple naming and directory services in the enterprise. In particular, it provides a
means to access X.500 directory services through the Lightweight Directory Access
Protocol (LDAP). This standard defines how an LDAP server can be used to store
information about JMX API agents, and how JMX Remote API clients can look up
this information to connect to the agents.

A good understanding of using JNDI API with an LDAP backend can be obtained
by following the [LDAP Thread in the JNDI Tutorial].

 new Class[] {JMXMPConnector.class}, serviceAttrs);

ServiceMatches matches = null;
try {
 matches = registrar.lookup(template, Integer.MAX_VALUE);
} catch (RemoteException e) {...}

// Retrieve the JMX Connector and initiate a connection
for(int i = 0; i < matches.totalMatches; i++) {
 if(matches.items[i].service != null) {

 // Get the JMXConnector
 JMXConnector c = (JMXConnector)(matches.items[i].service);

 // Prepare env (security parameters etc...)
 Map env = new HashMap();

 env.put(...);

 // Initiate the connection
 c.connect(env);

 // Get the remote MBeanServer handle
 MBeanServerConnection server = c.getMBeanServerConnection();
 ...
 }
}

CODE EXAMPLE 17-9 Looking up a JMX Connector Stub From the Jini Lookup Service
264 Java Management Extensions Specification, version 1.4 • November 9, 2006

17.5.1 LDAP Schema for Registration of JMX Connectors
Nodes in the LDAP directory tree are typed. A node can have several object classes.
JMX Connectors should be registered in nodes of class jmxConnector. The
jmxConnector class contains two attributes, which are the JMX Service URL of the
corresponding connector (jmxServiceURL), and the name of the JMX API agent
exporting this connector (jmxAgentName). The JMX Service URL can be absent if
the agent is not accepting connections. The jmxConnector class also includes
optional attributes, like jmxAgentHost and jmxProtocolType. The agent name
makes it possible for a client application to get a connection to an agent it knows by
name. Together with the jmxAgentHost and jmxProtocolType it also makes it
possible to perform filtered queries, for instance, "find all the JMXMP connectors of
<this> JMX API agent" or "find all connectors of all agents running on <that> node".
CODE EXAMPLE 17-10 is the schema definition (as specified in [RFC 2252]) that should
be used to register JMX Remote API connectors:

CODE EXAMPLE 17-10 LDAP Schema for Registration of JMX Remote API Connectors

-- jmxServiceURL attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.1 NAME ’jmxServiceURL’
 DESC ’String representation of a JMX Service URL’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

-- jmxAgentName attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.2 NAME ’jmxAgentName’
 DESC ’Name of the JMX Agent’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

-- jmxProtocolType attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.3 NAME ’jmxProtocolType’
 DESC ’Protocol used by the registered connector’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

-- jmxAgentHost attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.4 NAME ’jmxAgentHost’
 DESC ’Names or IP Addresses of the host on which the
 agent is running. When multiple values are
 given, they should be aliases to the same host.’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

-- jmxProperty attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.5 NAME ’jmxProperty’
 DESC ’Java-like property characterizing the registered object.
 The form of each value should be: "<property-name>=<value>".
 For instance: "com.sun.jmx.remote.tcp.timeout=200"’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
Chapter 17 Bindings to Lookup Services 265

The jmxConnector class is an AUXILIARY class, which means that its properties
can be added to any node in the directory tree - namely, it does not impose any
restriction on the structure of the directory tree.

To create a node in the directory tree, you also need a STRUCTURAL class. This
specification does not impose any restriction on the structural classes that can
contain JMX Remote API connectors. You can, for instance, reuse the
javaContainer class from the Java Schema [JNDI - Java Schema] as defined in [RFC
2713], namely, create a node whose object classes would be javaContainer
(STRUCTURAL) and jmxConnector (AUXILIARY). The node containing the
jmxConnector can also have any additional auxiliary classes.

-- jmxExpirationDate attribute is a Generalized Time
-- see [RFC 2252] - or X.208 for a description of
-- Generalized Time
(1.3.6.1.4.1.42.2.27.11.1.6 NAME ’jmxExpirationDate’
 DESC ’Date at which the JMX Service URL will

 be considered obsolete and can be removed
 from the directory tree’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE)

-- from RFC-2256 --
(2.5.4.13 NAME ’description’
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{1024})

-- jmxConnector class - represents a JMX Connector.
-- must contain the JMX Service URL
-- and the JMX Agent Name
(1.3.6.1.4.1.42.2.27.11.2.1 NAME ’jmxConnector’
 DESC ’A class representing a JMX Connector, and

 containing a JMX Service URL.
 The jmxServiceURL is not present if the server
 is not accepting connections’
 AUXILIARY
 MUST (jmxAgentName)
 MAY (jmxServiceURL $ jmxAgentHost $ jmxProtocolType $

 jmxProperty $ jmxExpirationDate $ description))

CODE EXAMPLE 17-10 LDAP Schema for Registration of JMX Remote API Connectors
266 Java Management Extensions Specification, version 1.4 • November 9, 2006

17.5.2 Mapping to Java Objects
This specification only requires that the JMX Service URL is stored in LDAP. JMX
API agents can additionally store a serialized JMX Remote API connector stub, but
this is not required by this specification. Clients should only rely on the JMX Service
URL. The JNDI API makes it possible for a client to use StateFactories and
ObjectFactories [JNDI - Java Objects] to recreate a JMXConnector from the
URL when performing a lookup(), even if there is no Java Object bound to the
containing DirContext. Alternatively, a client can directly retrieve the
jmxServiceURL attribute to obtain a JMXConnector from the
JMXConnectorFactory. Whether the JNDI API lookup() returns a
JMXConnector or a DirContext depends on the configuration settings on the
client side (InitialContext), and remains local to that client.

17.5.3 Structure of the JMX Remote API Registration
Tree
The actual structure of a directory varies from one organization to another. Each
organization, or enterprise, has its own directory tree structure, with guidelines,
policies, etc. In order for JMX API agents to be able to integrate with any pre-
existing directory structure, this specification does not impose a fixed directory tree
structure for registering agents and JMX Remote API connector servers. Connectors
must simply be located in nodes of the class jmxConnector. This makes it possible
for an organization to set up its own structure for registering agents in an LDAP
server. For instance, if an organization has an existing directory containing a node
for each host in its network, it could decide to register each agent below the node of
the host it is running on.
Chapter 17 Bindings to Lookup Services 267

17.5.4 Leasing
JNDI/LDAP does not provide any built-in lease service. If an agent goes down, its
service URLs might remain in the directory server forever . The
jmxExpirationDate attribute in the jmxConnector auxiliary class can be used to
avoid that happening, as shown in CODE EXAMPLE 17-11:

A JMX API agent would have to update the jmxExpirationDate attribute
periodically. A Directory administrator might then write a daemon that would
remove the jmxConnector nodes (or more generically the jmxServiceURL
attributes) for which the jmxExpirationDate is obsolete.

17.5.5 Code Templates
The following sections provide some code templates for the JNDI API lookup service

17.5.5.1 Discovering the LDAP Server

JNDI/LDAP does not provide any standard means for discovering the LDAP server.
Assuming the standard port (389) on the local host is the entry point is usually not
an option, since the LDAP server is usually centralized, rather than having one
server per host. The JNDI API specifies a means to discover the LDAP server(s)
through DNS [JNDI - LDAP Servers Discovery], but this is operating system
dependent, and not always feasible either since the LDAP servers cannot always be
registered in DNS. This specification thus does not address the issue of discovering
the LDAP server.

The JNDI API tutorial gives an example of how to configure an InitialContext
with a list of LDAP URLs [JNDI - Multi URL].

CODE EXAMPLE 17-11 Leasing using the jmxExpirationDate Attribute

-- jmxExpirationDate attribute is a Generalized Time
 -- see [RFC 2252] - or X.208 for a description of
 -- Generalized Time
 (1.3.6.1.4.1.42.2.27.11.1.6 NAME ’jmxExpirationDate’

 DESC ’Date at which the JMX Service URL will
 be considered obsolete and may be removed
 from the directory tree’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE)
268 Java Management Extensions Specification, version 1.4 • November 9, 2006

17.5.5.2 Registering a JMXServiceURL in the LDAP server

This specification does not impose any structure on the directory tree for registering
JMX Service URLs. It is assumed that the JMX API agent knows where to register its
connectors, either from configuration, or from some built-in logic adapted to the
environment in which it is running. This specification defines the form of the data
that is registered in the directory (the how rather than the where), so that any JMX
Remote API client can look it up in a generic way. See CODE EXAMPLE 17-12.

CODE EXAMPLE 17-12 Registering a JMXServiceURL in the LDAP server

import javax.naming.InitialContext;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attribute;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttributes;
...

// Create initial context
Hashtable env = new Hashtable(11);
env.put(InitialContext.PROVIDER_URL, ldapServerUrls);
env.put(...);
InitialContext root = new InitialContext(env);

// Assuming that the Directory Administrator has created a
// context for this agent, get the DN of that context
// from configuration (e.g. Java property)
// String myOwnLdapDN =
// System.getProperty("com.sun.jmx.myapplication.dn");
String myOwnLdapDN =
DirContext myContext = (DirContext)root.lookup(myOwnLdapDN);

// Create connector server
JMXServiceURL jmxUrl = new

 JMXServiceURL("service:jmx:jmxmp://localhost:9999");
JMXConnectorServer connectorServer =
 JMXConnectorServerFactory.newJMXConnectorServer(jmxUrl, null, null);

// Prepare attributes for register connector server
Attributes attrs = new BasicAttributes();

// Prepare objectClass attribute: we’re going to create
// a javaContainer (STRUCTURAL) containing a
// jmxConnector (AUXILIARY).
Chapter 17 Bindings to Lookup Services 269

Attribute objclass = new BasicAttribute("objectClass");
objclass.add("top");
objclass.add("javaContainer");
objclass.add("jmxConnector");
attrs.put(objclass);

// Add jmxServiceURL of the connector.
attrs.put("jmxServiceURL",jmxUrl.toString());

// Add jmxAgentName
attrs.put("jmxAgentName","MyAgentName");

// Add optional attributes, if needed
attrs.put("jmxProtocolType","jmxmp");
attrs.put("jmxAgentHost",InetAddress.getLocalHost().getHostName());

// Now create the sub context in which to register the URL
// of the JMXMP connector.
// (we assume that the subcontext does not exist yet -
// ideally the agent should contain some more complex logic:
// if the context already exists, simply modify its attributes,
// otherwise, create it with its attributes).
myContext.createSubcontext("cn=service:jmx:rmi", attrs);

CODE EXAMPLE 17-12 Registering a JMXServiceURL in the LDAP server
270 Java Management Extensions Specification, version 1.4 • November 9, 2006

17.5.5.3 Looking up a JMX Service URL From the LDAP Server

CODE EXAMPLE 17-13 shows how to look up a JMX service URL from the LDAP
server.

CODE EXAMPLE 17-13 Looking up a JMX Service URL From the LDAP Server

import javax.naming.InitialContext;
import javax.naming.NamingEnumeration;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.SearchResult;
import javax.naming.directory.SearchControls;
...

// Create initial context
Hashtable env = new Hashtable();
env.put(InitialContext.PROVIDER_URL, ldapServerUrls);
env.put(...);
InitialContext root = new InitialContext(env);

// Prepare search filter
String filter = "(&(objectClass=jmxConnector) (jmxServiceURL=*))";

// Prepare the search controls
SearchControls ctrls = new SearchControls();

// Want to get all jmxConnector objects, wherever they’ve been
// registered.
ctrls.setSearchScope(SearchControls.SUBTREE_SCOPE);

// Want to get only the jmxServiceURL (comment this line and
// all attributes will be returned).
ctrls.setReturningAttributes(new String[] { "jmxServiceURL" });

// Search...
final NamingEnumeration results = root.search("", filter, ctrls);

// Get the URL...
for (;results.hasMore();) {
 final SearchResult res = (SearchResult) results.nextElement();
Chapter 17 Bindings to Lookup Services 271

17.6 Registration With Standards Bodies
In parallel with the completion of this specification, the following registrations are
being made with standards bodies:

■ For SLP, the jmx service type and associated service template are being registered
with IANA

■ For LDAP, the OIDs for the lookup attributes defined in Section 17.5.1 “LDAP
Schema for Registration of JMX Connectors” on page 265 are defined in Sun’s
OID namespace

■ For the Jini networking technology, the entries for the lookup attributes are being
defined through the Jini Community Decision Process (JDP)

 final Attributes attrs = res.getAttributes();
 final Attribute attr = attrs.get("jmxServiceURL");
 final String urlStr = (String)attr.get();

 // Make a connector...
 final JMXServiceURL url = new JMXServiceURL(urlStr);
 final JMXConnector conn =
 JMXConnectorFactory.newConnector(url,null);

 // Start using the connector...
 conn.connect(null);
 ...
}

CODE EXAMPLE 17-13 Looking up a JMX Service URL From the LDAP Server
272 Java Management Extensions Specification, version 1.4 • November 9, 2006

18

Summary of Environment
Parameters

The environment parameters defined by this standard all begin with the string
"jmx.remote.". Implementations that define further parameters can use one of the
following conventions:

■ The reverse domain name convention used by Java platform packages, for
example "com.sun.jmx.remote.something"

■ A name beginning with the string "jmx.remote.x." (including the final period)

An implementation must not define non-standard parameters that begin with
"jmx.remote." unless they begin with "jmx.remote.x.".

Names beginning with "jmx.remote.x." can be shared between different
implementations. They are useful for agreed-on experimental extensions, but they
run the risk of collision, where two implementations use the same name to mean
two different things.

In TABLE 18-1, each parameter is defined by the following characteristics:

■ The name after the initial "jmx.remote." string

■ The type that the associated value must have

■ Whether the parameter applies to connector clients, to connector servers, or both

■ For server parameters, whether the parameter is visible, that is whether it appears
in the Map returned by JMXConnectorServerMBean.getAttributes()
Chapter 18 Summary of Environment Parameters 273

TABLE 18-1 Environment Parameters

Name jmx.remote.+ Type
Client/
Server Visible Meaning

authenticator JMXAuthen
-ticator

Server No Object to authenticate
incoming connections to the
connector. See Section 14.4
“Basic Security With the RMI
Connector” on page 230, and
Section 15.3.6.1 “Global
Properties of the Generic
Connector” on page 244.

context Object Both No Context transmitted during
handshake. See Section 15.3.6
“Properties Controlling Client
and Server” on page 244

credentials Object Client N/A Client credentials to
authenticate to the RMI
connector server. See
Section 14.4 “Basic Security
With the RMI Connector” on
page 230

default.class.
loader

Class
Loader

Both No Default class loader to
deserialize objects received
from the other end of a
connection. See Section 13.11
“Class Loading” on page 218

default.class.
loader.name

Object
Name

Server Yes Name of class loader MBean
that will be used to
deserialize objects received
from the client. See
Section 13.11 “Class Loading”
on page 218

jndi.rebind String Server Yes “true” or “false” according as
an RMI stub object can
overwrite an existing object at
the JNDI address specified in
a JMXServiceURL

message.connection MessageCo
nnection

Client N/A Object describing the
transport used by the Generic
Connector. See Section 15.1
“Pluggable Transport
Protocol” on page 233
274 Java Management Extensions Specification, version 1.4 • November 9, 2006

message.connection
.server

MessageCo
nnectionS
erver

Server No Object describing the
transport used by the Generic
ConnectorServer. See
Section 15.1 “Pluggable
Transport Protocol” on
page 233

object.wrapping ObjectWra
pping

Both No Object describing how
parameters with non-default
serialization are handled. See
Section 15.2 “Pluggable
Object Wrapping” on
page 234

profiles String Both Yes List of profiles proposed
(server) or required (client)
by the connector. See
Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

protocol.provider.
class.loader

Class
Loader

Client N/A See JMXConnectorFactory
documentation.

protocol.provider.
pkgs

String Client N/A See JMXConnectorFactory
documentation.

rmi.client.socket.
factory

RMIClient
Socket
Factory

Server No Client socket factory for
connections to the RMI
connector. See Section 14.4
“Basic Security With the RMI
Connector” on page 230

rmi.server.socket.
factory

RMIServer
Socket
Factory

Server No Server socket factory for
connections to the RMI
connector. See Section 14.4
“Basic Security With the RMI
Connector” on page 230

sasl.authorization
.id

String Client N/A Authorization ID when this is
different from the
authentication ID . See
Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

sasl.callback.
handler

Callback
Handler

Both No Callback handler for SASL
mechanism. See Section 15.3.6
“Properties Controlling Client
and Server” on page 244

TABLE 18-1 Environment Parameters

Name jmx.remote.+ Type
Client/
Server Visible Meaning
Chapter 18 Summary of Environment Parameters 275

server.address.
wildcard

String Server Yes "true" or "false" according
to whether connector server
should listen on all local
network interfaces or just
one. See
JMXMPConnectorServer
documentation.

tls.enabled.cipher
.suites

String Both Yes TLS cipher suites to enable.
See Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

tls.enabled.
protocols

String Both Yes TLS protocols to enable. See
Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

tls.need.client.
authentication

String Server Yes "true" or "false" according
to whether connector server
requires client authentication.
See Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

tls.socket.factory SSLSocket
Factory

Both No TLS socket factory for this
connector. See Section 15.3.6
“Properties Controlling Client
and Server” on page 244

tls.want.client.
authentication

String Server Yes "true" or "false" according
to whether connector server
requires client authentication
if supported by the
negotiated cipher suite. See
Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

TABLE 18-1 Environment Parameters

Name jmx.remote.+ Type
Client/
Server Visible Meaning
276 Java Management Extensions Specification, version 1.4 • November 9, 2006

A

Service Templates

This appendix defines the service templates that describe the service:jmx services
in conformance to [RFC 2609]. These service template are a formal description of the
bindings between the Service Location Protocol and JSR 160 connectors.

Note – The following templates are a copy of the submissions that have been made
to svrloc-list@iana.org.

A.1 Service Template for the service:jmx
Abstract Service Type
■ Template Filename: jmx.1.0.en

■ Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

■ Language of service template: en

■ Security considerations:

Security is defined by each of the concrete service types.

See those templates for further details.

■ TemplateText:

CODE EXAMPLE A-1 Service template for the service:jmx Abstract Service Type

Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

Language of service template: en

Security considerations:

 Security is defined by each of the concrete service types.

 See those templates for further details.

TemplateText:

-------------------------template begins here-----------------------

template-type=jmx
Chapter A Service Templates 277

template-version=1.0

template-description=

 This is an abstract service type. The purpose of the jmx service

 type is to organize in a single category all JMX Connectors that

 make it possible to access JMX Agents remotely.

 JMX Connectors are defined by the Java Specification Request 160

 (JSR 160). More information on JSR 160 can be obtained from the

 Java Community Process Home Page at:

 http://www.jcp.org/en/jsr/detail?id=160

template-url-syntax=

 url-path= ; Depends on the concrete service type.

AgentName= string L

The name of the JMX Agent - see JSR 160 specification.

ProtocolType= string O L

The type of the protocol supported by the JMX Connector.

Currently only two protocols are mandatory in the specification: "rmi" and

"iiop". A third optional protocol is also standardized: "jmxmp".

However this could be extended in the future to support other types

of protocols, e.g. "http", "https", "soap", "beep", etc...

Thus, the allowed values of this attribute are at least "rmi" and "iiop"

for every implementation; additionally "jmxmp" for implementations that

support it; and other protocol names that are understood by client and

server.

The value of this attribute is the same as the protocol name that appears

after "service:jmx:" in the Service URL. Registering the ProtocolType

attribute means clients can search for connectors of a particular type.

AgentHost= string O M L

The host name or IP address of the host on which the JMX Agent is running.

If multiple values are given they must be aliases to the same host.

Property= string O M L

Additional properties qualifying the agent, in the form of Java-like

properties, e.g. "com.sun.jmx.remote.connect.timeout=200"

Note that in order to include '=' in an attribute value, it must be

escaped. Thus the example would be encoded as

CODE EXAMPLE A-1 Service template for the service:jmx Abstract Service Type
278 Java Management Extensions Specification, version 1.4 • November 9, 2006

A.2 Service Template for the
service:jmx:jmxmp Concrete Service
Type
■ Template Filename: jmx:jmxmp.1.0.en

■ Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

■ Language of service template: en

■ Security considerations:

Security for the JMXMP connector is defined by JSR 160 specification and is
based on SASL mechanisms.

For further details please refer to JSR 160 specification available at

http://www.jcp.org/en/jsr/detail?id=160

■ TemplateText:

"com.sun.jmx.remote.connect.timeout\3D200"

-------------------------template ends here-----------------------

CODE EXAMPLE A-2 Service Template for the service:jmx:jmxmp Concrete Service
Type

Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

Language of service template: en

Security considerations:

 Security for the JMXMP connector is defined by JSR 160

 specification and is based on SASL mechanisms.

 For further details please refer to JSR 160 specification

 available at http://www.jcp.org/en/jsr/detail?id=160

TemplateText:

-------------------------template begins here-----------------------

template-type=jmx:jmxmp

template-version=1.0

template-description=

 This template describes the JMXMP Connector defined by JSR 160.

CODE EXAMPLE A-1 Service template for the service:jmx Abstract Service Type
Chapter A Service Templates 279

http://www.jcp.org/en/jsr/detail?id=160

A.3 Service Template for the
service:jmx:rmi Concrete Service
Type
■ Template Filename: jmx:rmi.1.0.en

■ Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

■ Language of service template: en

■ Security considerations:

Java Specification Request (JSR) 160 defines a secure configuration of the
jmx:rmi connector, based on SSL socket factories.

For further details please refer to JSR 160 specification available at

http://www.jcp.org/en/jsr/detail?id=160

■ TemplateText:

 More information on this connector can be obtained from the

 JSR 160 specification available from the JCP Home Page at:

 http://www.jcp.org/en/jsr/detail?id=160

template-url-syntax=

 url-path= ; There is no URL path defined for a jmx:jmxmp URL.

Example of a valid Service URL:

service:jmx:jmxmp://myhost:9876

There are no default values for the host or port number, so in

general these must be supplied when registering the URL.

-------------------------template ends here-----------------------

CODE EXAMPLE A-3 Service Template for the service:jmx:rmi Concrete Service Type

Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

Language of service template: en

Security considerations:

 Java Specification Request (JSR) 160 defines a secure

 configuration of the jmx:rmi connector, based on SSL socket

 factories.

 For further details please refer to JSR 160 specification

 available at http://www.jcp.org/en/jsr/detail?id=160

CODE EXAMPLE A-2 Service Template for the service:jmx:jmxmp Concrete Service
Type
280 Java Management Extensions Specification, version 1.4 • November 9, 2006

http://www.jcp.org/en/jsr/detail?id=160

TemplateText:

-------------------------template begins here-----------------------

template-type=jmx:rmi

template-version=1.0

template-description=

 This template describes the RMI Connector defined by JSR 160.

 More information on this connector can be obtained from the

 JSR 160 specification available from the JCP Home Page at:

 http://www.jcp.org/en/jsr/detail?id=160

template-url-syntax=

 url-path = jndi-path / stub-path

 stub-path = "/stub/" *xchar

 ; serialized RMI stub encoded as BASE64 without newlines

 jndi-path = "/jndi/" *xchar

 ; name understood by JNDI API, shows where RMI stub is stored

 ; The following rules are extracted from RFC 2609

 safe = "$" / "-" / "_" / "." / "~"

 extra = "!" / "*" / "'" / "(" / ")" / "," / "+"

 uchar = unreserved / escaped

 xchar = unreserved / reserved / escaped

 escaped = 1*(`\' HEXDIG HEXDIG)

 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"

 unreserved = ALPHA / DIGIT / safe / extra

Examples of the stub form:

service:jmx:rmi://myhost:9999/stub/rO0ABX<270 chars deleted>gAAAeA==

service:jmx:rmi:///stub/rO0ABX<270 chars deleted>gAAAeA==

This form contains the serialized form of the Java object representing

the RMI stub, encoded in BASE64 without newlines. It is generated by

the connector server, and is not intended to be human-readable.

#

Examples of the JNDI form:

service:jmx:rmi://myhost:9999/jndi/ldap://namehost:389/a=b,c=d

service:jmx:rmi:///jndi/ldap://namehost:389/a=b,c=d

If the client has an appropriate JNDI configuration, it can use

a URL such as this:

service:jmx:rmi:///jndi/a=b,c=d

#

In both the /stub/ and /jndi/ forms, the hostname and port number

(myhost:9999 in the examples) are not used by the client and, if

CODE EXAMPLE A-3 Service Template for the service:jmx:rmi Concrete Service Type
Chapter A Service Templates 281

A.4 Service Template for the
service:jmx:iiop Concrete Service
Type
■ Template Filename: jmx:iiop.1.0.en

■ Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

■ Language of service template: en

■ Security considerations:

There is no special security defined for the jmx:iiop connector, besides the
mechanisms provided by RMI over IIOP itself. In its default configuration, the
jmx:iiop connector is not secure. Applications that are concerned with
security should therefore not advertise their jmx:iiop connectors through
this template, unless they have taken the appropriate steps to make it secure.

For further details please refer to JSR 160 specification available at

http://www.jcp.org/en/jsr/detail?id=160

■ TemplateText:

present, are essentially comments. The connector server address

is actually stored in the serialized stub (/stub/ form) or in the

directory entry (/jndi/ form).

#

For more information, see the JSR 160 specification, notably the

package javax.management.remote.rmi.

-------------------------template ends here-----------------------

CODE EXAMPLE A-4

Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

Language of service template: en

Security considerations:

There is no special security defined for the jmx:iiop connector,

besides the mechanisms provided by RMI over IIOP itself. In its

default configuration, the jmx:iiop connector is not

secure. Applications that are concerned with security should therefore

not advertise their jmx:iiop connectors through this template, unless

they have taken the appropriate steps to make it secure.

For further details please refer to JSR 160 specification available at

CODE EXAMPLE A-3 Service Template for the service:jmx:rmi Concrete Service Type
282 Java Management Extensions Specification, version 1.4 • November 9, 2006

http://www.jcp.org/en/jsr/detail?id=160

http://www.jcp.org/en/jsr/detail?id=160

TemplateText:

-------------------------template begins here-----------------------

template-type=jmx:rmi-iiop

template-version=1.0

template-description=

 This template describes the RMI/IIOP Connector defined by JSR 160.

 More information on this connector can be obtained from the

 JSR 160 specification available from the JCP Home Page at:

 http://www.jcp.org/en/jsr/detail?id=160

template-url-syntax=

 url-path = jndi-path / ior-path

 ior-path = "/ior/IOR:" *HEXDIG

 ; CORBA IOR

 jndi-path = "/jndi/" *xchar

 ; name understood by JNDI API, shows were RMI/IIOP stub is stored

 ; The following rules are extracted from RFC 2609

 safe = "$" / "-" / "_" / "." / "~"

 extra = "!" / "*" / "'" / "(" / ")" / "," / "+"

 uchar = unreserved / escaped

 xchar = unreserved / reserved / escaped

 escaped = 1*(`\' HEXDIG HEXDIG)

 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"

 unreserved = ALPHA / DIGIT / safe / extra

Examples of the IOR form:

service:jmx:iiop://myhost:9999/ior/IOR:000000000000003b<350 chars deleted>00

service:jmx:iiop:///ior/IOR:000000000000003b<350 chars deleted>00

This form contains the CORBA IOR for the remote object representing

the connector server. It is generated by the connector server, and

is not intended to be human-readable.

#

Examples of the JNDI form:

service:jmx:iiop://myhost:9999/jndi/ldap://namehost:389/a=b,c=d

service:jmx:iiop:///jndi/ldap://namehost:389/a=b,c=d

If the client has an appropriate JNDI configuration, it can use

a URL such as this:

service:jmx:iiop:///jndi/a=b,c=d

#

In both the /ior/ and /jndi/ forms, the hostname and port number

CODE EXAMPLE A-4
Chapter A Service Templates 283

(myhost:9999 in the examples) are not used by the client and, if

present, are essentially comments. The connector server address is

actually stored in the IOR (/ior/ form) or in the directory entry

(/jndi/ form).

#

For more information, see the JSR 160 specification, notably the

package javax.management.remote.rmi.

-------------------------template ends here-----------------------

CODE EXAMPLE A-5 Service Template for the service:jmx:iiop Concrete Service Type

-------------------------template begins here-----------------------

template-type=jmx:rmi-iiop
template-version=1.0

template-description=
 This template describes the RMI/IIOP Connector defined by JSR 160.
 More information on this connector can be obtained from the
 JSR 160 specification available from the JCP Home Page at:
 http://www.jcp.org/en/jsr/detail?id=160
template-url-syntax=
 url-path = jndi-path / ior-path
 jndi-path = "/jndi/" *xchar
 ; name understood by JNDI API, shows were RMI/IIOP stub is stored
 ior-path = "/ior/IOR:" *HEXDIG
 ; CORBA IOR
 ; The following rules are extracted from RFC 2609
 safe = "$" / "-" / "_" / "." / "~"
 extra = "!" / "*" / "’" / "(" / ")" / "," / "+"
 uchar = unreserved / escaped
 xchar = unreserved / reserved / escaped
 escaped = 1*(‘” HEXDIG HEXDIG)
 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"
 unreserved = ALPHA / DIGIT / safe / extra

-------------------------template ends here-----------------------

CODE EXAMPLE A-4
284 Java Management Extensions Specification, version 1.4 • November 9, 2006

B

Non-standard environment
parameters

This appendix lists non-standard environment parameters that are understood by
the Reference Implementation of this specification. These attributes are defined in
the jmx.remote.x namespace. As described in Chapter 18 “Summary of
Environment Parameters, this namespace is reserved for non-standard extensions to
the parameters defined in this specification.

Implementations are not required to support the parameters defined here. However,
implementors are encouraged to use the same name and semantics where applicable.

The format of this table is the same as for the table in TABLE 18-1 on page 274.

Where the type of an attribute is “integer”, the value can be of any subclass of
java.lang.Number, typically Integer or Long. It can also be a string, which is
parsed as a decimal integer.

When the type of an attribute is “boolean”, the value must be one of the strings
“true” or “false”, ignoring case.
Chapter B Non-standard environment parameters 285

TABLE B-1 Environment Parameters

Name
jmx.remote.x.+ Type

Client/
Server Visible Meaning

access.file String Server No Name of a file containing access levels for simple
RMI and JMXMP connector access control. Uses
Properties file format: property name is user name,
property value is “readonly” or “readwrite”.

check.
notification.
emission

boolean Server Yes If true, a client will only receive a given notification
if it has permission to call
addNotificationListener on the MBean that
sent the notification. It must have had that
permission to register its listener, but may have lost
it since.

check.stub boolean Client N/A If true, the RMI connector client will require the RMI
stubs it is given to contain the standard SSL/TLS-
based RMIClientSocketFactory.

client.
connection.
check.period

integer Client N/A Time in milliseconds between client probes of an
open connection. The client will do a harmless
operation on the connection with this period in order
to detect communication problems on otherwise-idle
connections. The value can be negative or zero to
disable this probing.

fetch.
notifications.
executor

Executor Client N/A java.util.concurrent.Executor to be used for
the remote fetchNotifications operation.

login.config String Server Yes JAAS LoginContext configuration entry name for
authentication. The CallbackHandler will make
the username and password (supplied as an array of
two Strings via jmx.remote.credentials)
available to the LoginModule through the
NameCallback and PasswordCallback.

notification.
buffer.size

integer Server Yes Minimum size of the buffer that stores notifications
for one or more connector servers. A connector
server will remember a notification if there have not
been this many others since it was sent.

notification.
fetch.max

integer Client N/A Maximum number of notifications that a client (RMI
or JMXMP) will request in a single
fetchNotifications request.

notification.
fetch.timeout

integer Client N/A Timeout in milliseconds that a client (RMI or
JMXMP) will specify in each fetchNotifications
request.
286 Java Management Extensions Specification, version 1.4 • November 9, 2006

password.file String Server No Name of a file containing username and password
entries for RMI authentication. Uses Properties file
format: property name is user name, property value
is password.

request.
waiting.
timeout

integer Client N/A Timeout in milliseconds for the response to each
JMXMP client request. If a response does not arrive
within this time, the connection is assumed to be
broken and is terminated. Specifying too short a
value will cause this to happen for requests whose
treatment happens to be slow. Default value is
infinite.

server.
connection.
timeout

integer Server Yes Time in milliseconds that the server will keep a
connection open after answering the most recent
client request.

server.max.
threads

integer Server Yes Maximum number of server threads for each JMXMP
connection. If more than this many requests arrive
simultaneously, the surplus ones will be blocked
until others complete.

server.min.
threads

integer Server Yes Minimum number of server threads for each JMXMP
connection. The server will keep at least this many
threads alive, even if the current number of requests
is less than this.

TABLE B-1 Environment Parameters

Name
jmx.remote.x.+ Type

Client/
Server Visible Meaning
Chapter B Non-standard environment parameters 287

288 Java Management Extensions Specification, version 1.4 • November 9, 2006

References

J
JAAS

Sun Microsystems, Java Authentication and Authorization Service (JAAS), http
//java.sun.com/products/jaas/

Jini
Sun Microsystems, Jini Network Technology, ,http

//wwws.sun.com/software/jini/
JNDI ,

Sun Microsystems, Java Naming and Directory Interface,http
//java.sun.com/products/jndi/

JNDI - Java Objects
JNDI Tutorial, Java Objects and the Directory, http

//java.sun.com/products/jndi/tutorial/objects/index.html
JNDI - Java Schema

JNDI Tutorial, Java Schema for the Directory,http
//java.sun.com/products/jndi/tutorial/config/LDAP/java.schema

JNDI - LDAP Servers Discovery
JNDI Tutorial, Automatic Discovery of LDAP Servers, ,http

//java.sun.com/products/jndi/tutorial/ldap/connect/create.html#AUTO
JNDI - Multi URL

JNDI Tutorial, How to specify more than one URL when creating initial context., ,http
//java.sun.com/products/jndi/tutorial/ldap/misc/src/MultiUrls.java

JSR 140
Nick Briers, et al, Service Location Protocol (SLP) API for Java, 2001,http

//www.jcp.org/en/jsr/detail?id=140
JSR28

Lee, Rosanna, et al, Java SASL Specification, http
//jcp.org/en/jsr/detail?id=28

JSSE
Sun Microsystems, Java Secure Socket Extension (JSSE), ,http

//java.sun.com/products/jsse/
L
LDAP Thread in the JNDI Tutorial

Tips for LDAP Users, http
//java.sun.com/products/jndi/tutorial/ldap/index.html

R
RFC , , ,
RFC 2608

E. Guttman, et al, Service Location Protocol, Version 2, 1999,http
//www.ietf.org/rfc/rfc2608.txt

RFC 2609
Chapter References 289

E. Guttman, C. Perkins, J. Kempf, 1999,http
//www.ietf.org/rfc/rfc2609.txt

RFC 2614
J. Kempf, E. Guttman., An API for Service Location, 1999,http

//www.ietf.org/rfc/rfc2614.txt
RFC 2713

V. Ryan, et al., Schema for Representing Java Objects in an LDAP Directory, 1999,http
//www.ietf.org/rfc/rfc2713.txt

RFC2222
Myers, J, Simple Authentication and Security Layer (SASL), 1997,ftp

//ftp.rfc-editor.org/in-notes/rfc2222.txt
RMI/SSL

Sun Microsystems, Using RMI with SSL, 2001
S
Serial

Sun Microsystems, Inc, Java Object Serialization Specification
SLP

IETF SVRLOC working group, Service Location Protocol, http
//www.srvloc.org/

SLP White Paper
C. Perkins, http

//playground.sun.com/srvloc/slp_white_paper.html
290 Java Management Extensions Specification, version 1.4 • November 9, 2006

	JavaTM Management Extensions (JMXTM) Specification, version 1.4
	Contents
	Preface

	Introduction to the JMX Specification
	1.1 Benefits of the JMX Architecture
	1.2 Scope of this Specification
	1.2.1 Reference Implementation
	1.2.2 Compatibility Test Suite
	1.2.3 JMX APIs as part of the Java Platform

	1.3 Architectural Overview
	1.3.1 Instrumentation Level
	1.3.2 Agent Level
	1.3.3 Distributed Services Level

	1.4 Component Overview
	1.4.1 Components of the Instrumentation Level
	1.4.1.1 Managed Beans (MBeans)
	1.4.1.2 Notification Model
	1.4.1.3 MBean Metadata Classes

	1.4.2 Components of the Agent Level
	1.4.2.1 MBean Server
	1.4.2.2 Agent Services

	1.5 JMX Remote API
	1.6 What Has Changed
	1.6.1 Changes to the JMX Specification (JSR 3)
	1.6.2 Changes to the JMX Remote Specification (JSR 160)

	I JMX Instrumentation Specification
	MBean Instrumentation
	2.1 Definition
	2.1.1 Public Management Interface
	2.1.2 MBean Public Constructor

	2.2 Standard MBeans
	2.2.1 MBean Interface
	2.2.1.1 The MyClass Example MBean

	2.2.2 Lexical Design Patterns
	2.2.2.1 Attributes
	2.2.2.2 Operations
	2.2.2.3 Case Sensitivity

	2.3 Dynamic MBeans
	2.3.1 DynamicMBean Interface
	2.3.2 Behavior of Dynamic MBeans
	2.3.2.1 Coherence
	2.3.2.2 Dynamics

	2.4 Inheritance Patterns
	2.5 JMX Notification Model
	2.5.0.1 Notification Type
	2.5.1 Notification Class
	2.5.2 NotificationBroadcaster and NotificationEmitter Interfaces
	2.5.3 NotificationListener Interface
	2.5.4 NotificationFilter Interface

	2.6 Attribute Change Notifications
	2.6.1 AttributeChangeNotification Class
	2.6.2 AttributeChangeNotificationFilter Class

	2.7 MBean Metadata Classes
	2.7.1 MBeanInfo Class
	2.7.2 MBeanFeatureInfo Class
	2.7.3 MBeanAttributeInfo Class
	2.7.4 MBeanConstructorInfo Class
	2.7.5 MBeanOperationInfo Class
	2.7.6 MBeanParameterInfo Class
	2.7.7 MBeanNotificationInfo Class

	Open MBeans
	3.1 Overview
	3.2 Basic Data Types
	3.2.1 Representing Complex Data
	3.2.1.1 CompositeData Interface and Support Class
	3.2.1.2 TabularData Interface and Support Class

	3.2.2 Open Type Descriptions

	3.3 Open MBean Metadata Classes
	3.3.1 OpenMBeanInfo Interface and Support Class
	3.3.2 OpenMBeanOperationInfo and OpenMBeanConstructorInfo Interfaces and Support Classes
	3.3.3 OpenMBeanParameterInfo and OpenMBeanAttributeInfo Interfaces and Support Classes

	3.4 Summary of Open MBean Requirements

	Model MBeans
	4.1 Overview
	4.1.1 Generic Notifications
	4.1.2 Interaction with Managed Resources
	4.1.3 Interaction with Management Applications

	4.2 Model MBean Metadata Classes
	4.2.1 Descriptor Interface
	4.2.2 DescriptorAccess Interface
	4.2.3 ModelMBeanInfo Interface
	4.2.4 ModelMBeanInfo Implementation
	4.2.5 ModelMBeanAttributeInfo Implementation
	4.2.6 ModelMBeanConstructorInfo Implementation
	4.2.7 ModelMBeanOperationInfo Implementation
	4.2.8 ModelMBeanNotificationInfo Implementation

	4.3 Model MBean Specification
	4.3.1 ModelMBean Interface
	4.3.2 ModelMBean Implementation
	4.3.3 DynamicMBean Implementation
	4.3.4 PersistentMBean Interface
	4.3.5 ModelMBeanNotificationBroadcaster Interface
	4.3.6 ModelMBeanNotificationBroadcaster Implementation

	4.4 Descriptors
	4.4.1 Attribute Behavior
	4.4.2 Notification Logging Policy
	4.4.3 Persistence Policy
	4.4.4 Behavior of Cached Values
	4.4.5 Protocol Map Support
	4.4.6 Export Policy
	4.4.7 Visibility Policy
	4.4.8 Presentation Behavior

	4.5 Predefined Descriptor Fields
	4.5.1 MBean Descriptor Fields
	4.5.2 Attribute Descriptor Fields
	4.5.3 Operation Descriptor Fields
	4.5.4 Notification Descriptor Fields

	II JMX Agent Specification
	Agent Architecture
	5.1 Overview
	5.2 JMX Compliant Agent
	5.3 Protocol Adaptors and Connectors

	Foundation Classes
	6.1 ObjectName Class
	6.1.1 Domain Name
	6.1.2 Key Property List
	6.1.3 String Representation of Names
	6.1.4 Pattern Matching
	6.1.4.1 Pattern Matching Examples

	6.2 ObjectInstance Class
	6.3 Attribute and AttributeList Classes
	6.4 JMX Exceptions
	6.4.1 JMException Class and Subclasses
	6.4.2 JMRuntimeException Class and Subclasses
	6.4.3 Description of JMX Exceptions
	6.4.3.1 JMException Class
	6.4.3.2 ReflectionException Class
	6.4.3.3 MBeanException Class
	6.4.3.4 OperationsException Class
	6.4.3.5 InstanceAlreadyExistsException Class
	6.4.3.6 InstanceNotFoundException Class
	6.4.3.7 InvalidAttributeValueException Class
	6.4.3.8 AttributeNotFoundException Class
	6.4.3.9 IntrospectionException Class
	6.4.3.10 MalformedObjectNameException Class
	6.4.3.11 NotCompliantMBeanException Class
	6.4.3.12 ServiceNotFoundException Class
	6.4.3.13 MBeanRegistrationException Class
	6.4.3.14 JMRuntimeException Class
	6.4.3.15 RuntimeOperationsException Class
	6.4.3.16 RuntimeMBeanException Class
	6.4.3.17 RuntimeErrorException Class

	MBean Server
	7.1 Role of the MBean Server
	7.1.1 MBean Server Factory
	7.1.2 MBean Server Permission Checking
	7.1.3 Registration of MBeans
	7.1.3.1 MBean Registration Control

	7.1.4 Operations on MBeans
	7.1.5 MBean Proxies

	7.2 MBean Server Delegate MBean
	7.3 Remote Operations on MBeans
	7.4 MBean Server Notifications
	7.5 Queries
	7.5.1 Scope of a Query
	7.5.2 Query Expressions
	7.5.2.1 Methods of the Query Class
	7.5.2.2 Query Expression Examples

	7.5.3 Query Exceptions
	7.5.3.1 BadAttributeValueExpException Class
	7.5.3.2 BadStringOperationException Class
	7.5.3.3 BadBinaryOpValueExpException Class
	7.5.3.4 InvalidApplicationException Class

	7.6 MBeanServerConnection Interface
	7.7 Changing the MBean Server Implementation

	Advanced Dynamic Loading
	8.1 Overview of M-Lets
	8.2 The MLET Tag
	8.3 The M-Let Service
	8.3.1 Loading MBeans From a URL
	8.3.2 Class Loader Functionality
	8.3.2.1 Native libraries

	8.4 The Class Loader Repository
	8.4.1 How to Add Loaders to the Class Loader Repository
	8.4.2 Order of Loaders in the Class Loader Repository
	8.4.3 M-Let Delegation to the Class Loader Repository
	8.4.3.1 New Semantics in the JMX 1.2 Specification

	8.5 Using the Correct Class Loader for Parameters
	8.5.1 getClassLoaderFor
	8.5.2 getClassLoader and getClassLoaderRepository

	Monitoring
	9.1 Overview
	9.1.1 Types of Monitors

	9.2 MonitorNotification Class
	9.2.1 Common Monitor Notification Types

	9.3 CounterMonitor Class
	9.3.1 Counter Monitor Notification Types

	9.4 GaugeMonitor Class
	9.4.1 Gauge Monitor Notification Types

	9.5 StringMonitor Class
	9.5.1 String Monitor Notification Types

	9.6 Implementation of the Monitor MBeans

	Timer Service
	10.1 Timer Notifications
	10.1.1 TimerNotification Class
	10.1.2 Adding Notifications to the Timer
	10.1.3 Receiving Timer Notifications
	10.1.4 Removing Notifications From the Timer

	10.2 Starting and Stopping the Timer

	Relation Service
	11.1 The Relation Model
	11.1.1 Terminology
	11.1.2 Example of a Relation
	11.1.3 Maintaining Consistency
	11.1.4 Implementation
	11.1.4.1 External Relation Types
	11.1.4.2 External Relations

	11.2 Relation Service Classes
	11.2.1 RelationService Class
	11.2.2 RelationNotification Class
	11.2.3 MBeanServerNotificationFilter Class

	11.3 Interfaces and Support Classes
	11.3.1 RelationType Interface
	11.3.2 RelationTypeSupport Class
	11.3.3 Relation Interface
	11.3.3.1 Specified Methods
	11.3.3.2 Maintaining Consistency

	11.3.4 RelationSupport Class

	11.4 Role Description Classes
	11.4.1 RoleInfo Class
	11.4.2 Role Class
	11.4.3 RoleList Class
	11.4.4 RoleUnresolved Class
	11.4.5 RoleUnresolvedList Class
	11.4.6 RoleResult Class
	11.4.7 RoleStatus Class

	Security
	12.1 Permissions
	12.1.1 MBeanServerPermission
	12.1.2 MBeanPermission
	12.1.2.1 MBeanPermission Target
	12.1.2.2 MBeanPermission Actions
	12.1.2.3 Unchecked MBean Server Methods
	12.1.2.4 Permission Checking for Queries
	12.1.2.5 Permission Checking for getDomains
	12.1.2.6 Permission Checking for getAttributes and setAttributes

	12.1.3 MBeanTrustPermission

	12.2 Policy File Examples

	III JMX Remote API Specification
	Connectors
	13.1 Sessions and Connections
	13.2 Connection Establishment
	13.3 MBean Server Operations Through a Connection
	13.4 Adding Remote Listeners
	13.4.1 Filters and Handbacks
	13.4.2 Removing Listeners
	13.4.3 Notification Buffer
	13.4.4 Getting Notifications From the Notification Buffer

	13.5 Concurrency
	13.6 Normal Termination
	13.7 Abnormal Termination
	13.7.1 Detecting Abnormal Termination

	13.8 Connector Server Addresses
	13.9 Creating a Connector Client
	13.9.1 JMXConnectorFactory
	13.9.2 Connection Stubs
	13.9.3 Finding a Server

	13.10 Creating a Connector Server
	13.10.1 Publishing a Server

	13.11 Class Loading
	13.11.1 Class Loading on the Client End
	13.11.2 Class Loading on the Server End

	13.12 Connector Server Security
	13.12.1 Subject Delegation
	13.12.2 Access Control Context

	RMI Connector
	14.1 RMI Transports
	14.2 Mechanics of the RMI Connector
	14.2.1 Wrapping the RMI Objects
	14.2.2 RMIConnection
	14.2.3 Notifications

	14.3 How to Connect to an RMI Connector Server
	14.4 Basic Security With the RMI Connector
	14.4.1 How Security Affects the RMI Connector Protocol
	14.4.2 Achieving Real Security

	14.5 Protocol Versioning

	Generic Connector
	15.1 Pluggable Transport Protocol
	15.2 Pluggable Object Wrapping
	15.3 Generic Connector Protocol
	15.3.1 Handshake and Profile Message Exchanges
	15.3.2 MBean Server Operation and Connection Message Exchanges
	15.3.3 Security Features in the JMXMP Connector
	15.3.3.1 TLS Profile
	15.3.3.2 SASL Profile

	15.3.4 Protocol Violations
	15.3.5 Protocol Versioning
	15.3.6 Properties Controlling Client and Server
	15.3.6.1 Global Properties of the Generic Connector
	15.3.6.2 TLS Properties
	15.3.6.3 SASL Properties

	Defining a New Transport
	Bindings to Lookup Services
	17.1 Terminology
	17.2 General Principles
	17.2.1 JMXServiceURL Versus JMXConnector Stubs
	17.2.2 Lookup Attributes

	17.3 Using the Service Location Protocol
	17.3.1 SLP Implementation
	17.3.2 SLP Service URL
	17.3.3 SLP Lookup Attributes
	17.3.4 Code Templates
	17.3.4.1 Discovering the SLP Service
	17.3.4.2 Registering a JMX Service URL With SLP
	17.3.4.3 Looking up a JMX Service URL With SLP

	17.4 Using the Jini Network Technology
	17.4.1 Jini Networking Technology Implementation
	17.4.2 Service Registration
	17.4.3 Using JMX Remote API Connector Stubs
	17.4.4 Jini Lookup Service Attributes
	17.4.5 Code Templates
	17.4.5.1 Discovering the Jini Lookup Service
	17.4.5.2 Registering a JMX Remote API Connector Stub With the Jini Lookup Service
	17.4.5.3 Looking up a JMX Connector Stub From the Jini Lookup Service

	17.5 Using the Java Naming and Directory Interface (LDAP Backend)
	17.5.1 LDAP Schema for Registration of JMX Connectors
	17.5.2 Mapping to Java Objects
	17.5.3 Structure of the JMX Remote API Registration Tree
	17.5.4 Leasing
	17.5.5 Code Templates
	17.5.5.1 Discovering the LDAP Server
	17.5.5.2 Registering a JMXServiceURL in the LDAP server
	17.5.5.3 Looking up a JMX Service URL From the LDAP Server

	17.6 Registration With Standards Bodies

	Summary of Environment Parameters
	Service Templates
	Non-standard environment parameters
	References

