Java~ Management Extensions (JMX~)
Specification, version 1.4

Final Release

1 November 9, 2006

Chapter 1

2 Java Management Extensions Specification, version 1.4 « November 9, 2006

]avaTM Management Extensions (]MXTM) Specification, version 1.4
Status: Final Release
Release: November 9, 2006

Copyright 2006 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license
(without the right to sublicense), under Sun’s applicable intellectual property rights to view, download, use and reproduce the
Specification only for the purpose of internal evaluation. This includes (i) developing applications intended to run on an
implementation of the Specification, provided that such applications do not themselves implement any portion(s) of the Specification,
and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or written
communications which discuss the Specification provided that such excerpts do not in the aggregate constitute a significant portion
of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-exclusive, non-transferable,
worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable copyrights or, subject to
the provisions of subsection 4 below, patent rights it may have covering the Specification to create and/or distribute an Independent
Implementation of the Specification that: (a) fully implements the Specification including all its required interfaces and functionality;
(b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages,
classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by the Specification
or Specifications being implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly
conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose (including, for example,
modifying the Specification, other than to the extent of your fair use rights, or distributing the Specification to third parties). Also, no
right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted hereunder. Java, and
Java-related logos, marks and names are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular "pass
through" requirements in any license You grant concerning the use of your Independent Implementation or products derived from
it. However, except with respect to Independent Implementations (and products derived from them) that satisfy limitations (a)-(c)
from the previous paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under Sun’s
applicable intellectual property rights; nor (b) authorize your licensees to make any claims concerning their implementation’s
compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed by all
technically feasible implementations of the Specification, such license is conditioned upon your offering on fair, reasonable and non-
discriminatory terms, to any party seeking it from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your
patent rights which are or would be infringed by all technically feasible implementations of the Specification to develop, distribute
and use a Compliant Implementation.

b. With respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2, whether or not their
infringement can be avoided in a technically feasible manner when implementing the Specification, such license shall terminate with
respect to such claims if You initiate a claim against Sun that it has, in the course of performing its responsibilities as the Specification
Lead, induced any other entity to infringe Your patent rights.

c. Also with respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2 above, where the
infringement of such claims can be avoided in a technically feasible manner when implementing the Specification such license, with
respect to such claims, shall terminate if You initiate a claim against Sun that its making, having made, using, offering to sell, selling
or importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the Specification
that neither derives from any of Sun’s source code or binary code materials nor, except with an appropriate and separate license from
Sun, includes any of Sun'’s source code or binary code materials; "Licensor Name Space" shall mean the public class or interface

declarations whose names begin with "java", "javax", "com.sun" or their equivalents in any subsequent naming convention adopted

Chapter 3

by Sun through the Java Community Process, or any recognized successors or replacements thereof; and "Technology Compatibility
Kit" or "TCK" shall mean the test suite and accompanying TCK User’s Guide provided by Sun which corresponds to the Specification
and that was available either (i) from Sun’s 120 days before the first release of Your Independent Implementation that allows its use
for commercial purposes, or (ii) more recently than 120 days from such release but against which You elect to test Your implementation
of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act outside the scope of the
licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE
SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does
not represent any commitment to release or implement any portion of the Specification in any product. In addition, the Specification
could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION, EVEN
IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You will indemnify, hold
harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification; (ii) the use or
distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later versions or releases of any
Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompanying documentation shall be only
as set forth in this license; this is in accordance with 48 C.ER. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.ER. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree that such
Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully
paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use
without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for
the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee
agrees to comply strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to
export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written
communications, proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any
quote, order, acknowledgment, or other communication between the parties relating to its subject matter during the term of this

Agreement. No modification to this Agreement will be binding, unless in writing and signed by an authorized representative of each

party.
Rev. April, 2006
Sun/Final/Full

4 Java Management Extensions Specification, version 1.4 « November 9, 2006

Part 1.

Contents

Introduction to the JMX Specification 21

1.1
1.2

1.3

1.4

1.5
1.6

Benefits of the JMX Architecture 21
Scope of this Specification 23
121 Reference Implementation 23
1.2.2 Compatibility Test Suite 23
1.2.3 JMX APIs as part of the Java Platform 24
Architectural Overview 24
1.3.1 Instrumentation Level 25
1.3.2 Agent Level 26
1.3.3 Distributed Services Level 27
Component Overview 28
14.1 Components of the Instrumentation Level 28
14.1.1 Managed Beans (MBeans) 28
1.4.1.2 Notification Model 29
1.4.1.3 MBean Metadata Classes 30
142 Components of the Agent Level 30
1421 MBean Server 30
1422 Agent Services 31
JMX Remote API 32
What Has Changed 32
1.6.1 Changes to the JMX Specification (JSR 3) 33
1.6.2 Changes to the JMX Remote Specification (JSR 160) 35

JMX Instrumentation Specification

MBean Instrumentation 39

2.1

Definition 39

2.1.1 Public Management Interface 40

Chapter Contents

2.1.2 MBean Public Constructor 40
2.2 Standard MBeans 41
221 MBean Interface 42
2211 The MO ass Example MBean 43
222 Lexical Design Patterns 44
2221 Attributes 44
2222 Operations 45
2223 Case Sensitivity 46
2.3 Dynamic MBeans 46
2.3.1 Dynani cMBean Interface 47
2.3.2 Behavior of Dynamic MBeans 49
2321 Coherence 49
23.2.2 Dynamics 49
24 Inheritance Patterns 50
2.5 JMX Notification Model 54
2.5.0.1 Notification Type 54
25.1 Notification Class 55

2.5.2 NotificationBroadcast er and NotificationEmitter
Interfaces 56

253 NotificationListener Interface 57

254 NotificationFilter Interface 58
2.6 Attribute Change Notifications 58

2.6.1 AttributeChangeNotificationClass 59

2.6.2 AttributeChangeNotificationFilter Class 59
2.7 MBean Metadata Classes 60

271 MBeanl nfo Class 61

2.7.2 MBeanFeat urel nfo Class 62

273 MBeanAttributelnfoClass 63

274 MBeanConstructorlnfoClass 63

2.75 MBeanQper ati onl nfo Class 64

2.7.6 MBeanPar anet er| nfo Class 64

6 Java Management Extensions Specification, version 1.4 « November 9, 2006

2.7.7 NMBeanNoti ficationl nfo Class 65

Open MBeans 67

3.1
3.2

3.3

3.4

Overview 67

Basic Data Types 68

3.21 Representing Complex Data 70
3.2.1.1 Conposi t eDat a Interface and Support Class 70
3.21.2 Tabul ar Dat a Interface and Support Class 71

3.2.2 Open Type Descriptions 71

Open MBean Metadata Classes 72

3.3.1 OpenMBeanl nf o Interface and Support Class 73

3.3.2 OpenMBeanQper ati onl nf o and OQpenMBeanConstruct or | nfo

Interfaces and Support Classes 74

3.3.3 OpenMBeanPar anet er | nf o and QpenMBeanAt tri but el nfo
Interfaces and Support Classes 75

Summary of Open MBean Requirements 76

Model MBeans 77

4.1

4.2

Overview 77

411 Generic Notifications 79

412 Interaction with Managed Resources 80

413 Interaction with Management Applications 81
Model MBean Metadata Classes 81

421 Descriptor Interface 81

422 DescriptorAccess Interface 83

423 Model MBeanl nf o Interface 84

424 Model MBeanl nf o Implementation 85

425 Model MBeanAttri but el nf o Implementation 88
426 Model MBeanConstruct or | nf o Implementation 89
427 Model MBeanQper at i onl nf o Implementation 89
428 Model MBeanNoti fi cati onl nf o Implementation 90

Chapter Contents

43 Model MBean Specification 90
43.1 Mbdel MBean Interface 91
43.2 Model MBean Implementation 92
43.3 Dynam cMBean Implementation 93
434 Persistent MBean Interface 95
435 Model MBeanNot i fi cati onBroadcast er Interface 96
43.6 Mbdel MBeanNot i ficati onBroadcast er Implementation 97
44 Descriptors 97
441 Attribute Behavior 98
442 Notification Logging Policy 98
443 Persistence Policy 99
444 Behavior of Cached Values 100
445 Protocol Map Support 100
4.4.6 Export Policy 101
4.4.7 Visibility Policy 101
4.4.8 Presentation Behavior 102
45 Predefined Descriptor Fields 102
451 MBean Descriptor Fields 102
4.5.2 Attribute Descriptor Fields 104
453 Operation Descriptor Fields 105
454 Notification Descriptor Fields 106

Part II. JMX Agent Specification

5. Agent Architecture 111
51 Overview 111
52 JMX Compliant Agent 113
5.3 Protocol Adaptors and Connectors 113

6. Foundation Classes 115
6.1 (bj ect Nanme Class 115

8 Java Management Extensions Specification, version 1.4 « November 9, 2006

6.1.1
6.1.2
6.1.3
6.14

Domain Name 116

Key Property List 116

String Representation of Names 117
Pattern Matching 117

6.14.1 Pattern Matching Examples 118

6.2 (bjectlnstance Class 119
6.3 AttributeandAttributeList Classes 119
6.4 JMX Exceptions 119

6.4.1
6.4.2
6.4.3

7. MBean Server

JMExcepti on Class and Subclasses 120

JVMRunt i mreExcept i on Class and Subclasses 121
Description of JMX Exceptions 122

6.4.3.1 JMEXception Class 123

6.4.3.2 Ref | ecti onExcepti on Class 123

6.4.3.3 MBeanExcepti on Class 123

6.4.3.4 Oper ati onsExcepti on Class 123

6.4.3.5 I nst anceAl r eadyExi st sExcepti on Class 123
6.4.3.6 I nst anceNot FoundExcepti on Class 124
6.4.3.7 I nval i dAttri but eVal ueExcepti on Class 124
6.4.3.8 At tri but eNot FoundExcepti on Class 124
6.4.3.9 I ntrospecti onException Class 124

6.4.3.10 Mal f or mredCbj ect NaneExcepti on Class 124
6.4.3.11 Not Conpl i ant MBeanExcept i on Class 124
6.4.3.12 Servi ceNot FoundExcepti on Class 124
6.4.3.13 MBeanRegi strati onException Class 124
6.4.3.14 JMRunti meExcepti on Class 125

6.4.3.15 RuntinmeQperati onsException Class 125
6.4.3.16 Runti neMBeanException Class 125

6.4.3.17 Runti neErrorExceptionClass 125

127

7.1 Role of the MBean Server 127

Chapter Contents

7.1.1 MBean Server Factory 127
7.1.2 MBean Server Permission Checking 128
7.1.3 Registration of MBeans 129
7.1.3.1 MBean Registration Control 129
714 Operations on MBeans 131
7.1.5 MBean Proxies 132
7.2 MBean Server Delegate MBean 132
7.3 Remote Operations on MBeans 133
7.4 MBean Server Notifications 134
7.5 Queries 135
7.5.1 Scope of a Query 135
7.5.2 Query Expressions 136
75.2.1 Methods of the Query Class 137
7522 Query Expression Examples 139
7.5.3 Query Exceptions 139
7.5.3.1 BadAtt ri but eVal ueExpExcepti on Class 140
7.5.3.2 BadSt ri ngOper ati onExcepti on Class 140
7.5.3.3 BadBi nar yOpVal ueExpExcepti on Class 140
7.5.3.4 I nval i dAppl i cati onException Class 140
7.6 MBeanServerConnection Interface 140

7.7 Changing the MBean Server Implementation 141

8. Advanced Dynamic Loading 143
8.1 Overview of M-Lets 143
82 The MLET Tag 144
8.3 The M-Let Service 146
8.3.1 Loading MBeans From a URL 146

8.3.2 Class Loader Functionality 147
8.3.2.1 Native libraries 147

8.4 The Class Loader Repository 148
8.4.1 How to Add Loaders to the Class Loader Repository 148

10 Java Management Extensions Specification, version 1.4 « November 9, 2006

10.

11.

8.4.2 Order of Loaders in the Class Loader Repository 149
8.43 M-Let Delegation to the Class Loader Repository 149
8.4.3.1 New Semantics in the JMX 1.2 Specification 150
8.5 Using the Correct Class Loader for Parameters 152
8.5.1 getClassLoaderFor 153
8.5.2 getClassLoader and getClassLoaderRepository 153

Monitoring 155
91 Overview 155

9.1.1 Types of Monitors 155
9.2 MonitorNotificationClass 156

9.21 Common Monitor Notification Types 157
9.3 CounterMnitor Class 158

9.3.1 Counter Monitor Notification Types 159
94 CGaugeMoni tor Class 160

9.41 Gauge Monitor Notification Types 161
95 StringMnitor Class 162

9.5.1 String Monitor Notification Types 163
9.6 Implementation of the Monitor MBeans 163

Timer Service 165
10.1 Timer Notifications 165
10.1.1 Timer NotificationClass 166
10.1.2 Adding Notifications to the Timer 166
10.1.3 Receiving Timer Notifications 167
10.1.4 Removing Notifications From the Timer 167
10.2 Starting and Stopping the Timer 168

Relation Service 169
11.1 The Relation Model 169
11.1.1 Terminology 170

Chapter Contents

11

11.1.2 Example of a Relation 170
11.1.3 Maintaining Consistency 171
11.14 Implementation 172
11.1.4.1 External Relation Types 173
11.1.4.2 External Relations 174
11.2 Relation Service Classes 175
11.21 Rel ationService Class 177
11.22 Rel ationNotificationClass 179
11.2.3 MBeanServer NotificationFilter Class 179
11.3 Interfaces and Support Classes 179
11.3.1 Rel ati onType Interface 181
11.3.2 Rel ati onTypeSupport Class 181
11.3.3 Rel ati on Interface 182
11.3.3.1 Specified Methods 182
11.3.3.2 Maintaining Consistency 183
11.3.4 Rel ati onSupport Class 184
11.4 Role Description Classes 184
114.1 RolelnfoClass 185
1142 Rol e Class 186
11.4.3 Rol eLi st Class 186
11.4.4 Rol eUnresol ved Class 187
11.4.5 Rol eUnresol vedLi st Class 187
114.6 Rol eResul t Class 187
11.4.7 Rol eSt at us Class 188

12. Security 189
12.1 Permissions 189
12.1.1 MBeanServerPermission 190
12.1.2 MBeanPermission 191
12.1.2.1 MBeanPermission Target 191
12.1.2.2 MBeanPermission Actions 193

12 Java Management Extensions Specification, version 1.4 « November 9, 2006

Part I11.

13.

12.2

12.1.2.3 Unchecked MBean Server Methods 196
12.1.2.4 Permission Checking for Queries 196
12.1.2.5 Permission Checking for getDomains 197

12.1.2.6 Permission Checking for getAttributes and
setAttributes 198

12.1.3 MBeanTrustPermission 198
Policy File Examples 199

JMX Remote API Specification

Connectors 205

13.1
13.2
13.3
13.4

13.5
13.6
13.7

13.8
13.9

13.10

13.11

Sessions and Connections 206

Connection Establishment 206

MBean Server Operations Through a Connection 207
Adding Remote Listeners 208

13.4.1 Filters and Handbacks 208

13.4.2 Removing Listeners 209

13.4.3 Notification Buffer 210

13.4.4 Getting Notifications From the Notification Buffer 211
Concurrency 212

Normal Termination 212

Abnormal Termination 213

13.7.1 Detecting Abnormal Termination 213
Connector Server Addresses 214

Creating a Connector Client 214

13.9.1 JMXConnectorFactory 215

13.9.2 Connection Stubs 215

13.9.3 Finding a Server 216

Creating a Connector Server 216

13.10.1 Publishing a Server 218

Class Loading 218

Chapter Contents

13

14

13.11.1 Class Loading on the Client End 219
13.11.2 Class Loading on the Server End 219

13.12 Connector Server Security 221
13.12.1 Subject Delegation 222
13.12.2 Access Control Context 222

14. RMI Connector 225

14.1
14.2

14.3
14.4

14.5

15. Generic Connector

15.1

RMI Transports

225

Mechanics of the RMI Connector 225
14.2.1 Wrapping the RMI Objects 228
14.2.2 RMIConnection 228

14.2.3 Notifications 229

How to Connect to an RMI Connector Server 229

Basic Security With the RMI Connector 230

14.4.1 How Security Affects the RMI Connector Protocol 230
14.4.2 Achieving Real Security 231

Protocol Versioning 232

233

Pluggable Transport Protocol 233
15.2 Pluggable Object Wrapping 234

15.3 Generic Connector Protocol 235

15.3.1
15.3.2
15.3.3

15.3.4
15.3.5
15.3.6

Handshake and Profile Message Exchanges 236

MBean Server Operation and Connection Message Exchanges

Security Features in the JMXMP Connector 241

15.3.3.1
15.3.3.2

TLS Profile 242
SASL Profile 242

Protocol Violations 242

Protocol Versioning 243

Properties Controlling Client and Server 244

15.3.6.1

Global Properties of the Generic Connector

Java Management Extensions Specification, version 1.4 « November 9, 2006

244

239

16.

17.

15.3.6.2 TLS Properties 244
15.3.6.3 SASL Properties 245

Defining a New Transport 247

Bindings to Lookup Services 249

17.1
17.2

17.3

17.4

17.5

Terminology 249
General Principles 250
17.2.1 JMXServiceURL Versus JMXConnector Stubs 250
17.2.2 Lookup Attributes 251
Using the Service Location Protocol 254
17.3.1 SLP Implementation 254
17.3.2 SLP Service URL 254
17.3.3 SLP Lookup Attributes 254
17.34 Code Templates 254
17.3.4.1 Discovering the SLP Service 255
17.3.4.2 Registering a JMX Service URL With SLP 256
17.3.4.3 Looking up a JMX Service URL With SLP 257
Using the Jini Network Technology 258
17.4.1 Jini Networking Technology Implementation 258
17.4.2 Service Registration 258
17.4.3 Using JMX Remote API Connector Stubs 259
17.4.4 Jini Lookup Service Attributes 260
17.4.5 Code Templates 260
17.4.5.1 Discovering the Jini Lookup Service 261

17.4.5.2 Registering a JMX Remote API Connector Stub With the
Jini Lookup Service 262

17.45.3 Looking up a JMX Connector Stub From the Jini Lookup
Service 263

Using the Java Naming and Directory Interface (LDAP Backend) 264
17.5.1 LDAP Schema for Registration of JMX Connectors 265
17.5.2 Mapping to Java Objects 267

Chapter Contents 15

16

17.6

17.5.3
17.54
17.5.5

Structure of the JMX Remote API Registration Tree 267

Leasing 268

Code Templates 268

17.5.5.1 Discovering the LDAP Server 268

17.5.5.2 Registering a JMXServiceURL in the LDAP server 269

17.5.5.3 Looking up a JMX Service URL From the LDAP Server
271

Registration With Standards Bodies 272

18. Summary of Environment Parameters 273

A. Service Templates 277

Al
A2
A3
A4

Service Template for the service:;jmx Abstract Service Type 277

Service Template for the service;jmx:;jmxmp Concrete Service Type 279

Service Template for the service:;jmx:rmi Concrete Service Type 280

Service Template for the service:;jmx:iiop Concrete Service Type 282

B. Non-standard environment parameters 285

Java Management Extensions Specification, version 1.4 « November 9, 2006

Preface

This document provides an introduction to the Java™ Management extensions (JMX™)
and then gives the JMX instrumentation, agent, and distributed services
specifications that define these extensions. It is not intended to be a programming
guide or a tutorial, but rather a comprehensive specification of the architecture,
design patterns and programming interfaces for these components.

The complete JMX specification is composed of this document and the
corresponding API documentation generated by the Javadoc™ tool, that completely
defines all programming objects.

Who Should Use This Book

The primary focus of this specification is to define the extensions to the Java
programming language for all actors in the software and network management field.
Also, programmers who want to build devices, applications, or implementations
that conform to JMX will find this specification useful as a reference guide.

Before You Read This Book

This specification assumes a working knowledge of the Java programming language
and of the development environment for the Java programming language. It is
essential to understand the Java Develoment Kit (JDK™) software and be familiar
with system or network management. A working knowledge of the JavaBeans™
model is also helpful.

All object diagrams in this book use the Unified Modeling Language (UML) for
specifying the objects in the Java programming language that comprise the JMX
specification. This allows a visual representation of the relation between classes and
their components. For a complete description of UML see:

http://ww. rational.conun/resources/docunent ation/

How This Book Is Organized

Chapter 1 “ provides an overview of the scope and goals of the JMX specification. It
explains the overall management architecture and presents the main components.

Part I “JMX Instrumentation Specification”

Chapter Preface 17

Chapter 2 “MBean Instrumentation presents standard and dynamic MBeans, their
characteristics and design patterns, their naming scheme, the notification model and
the MBean metadata classes.

Chapter 3 “Open MBeans” presents the open MBean components and their Java
classes.

Chapter 4 “Model MBeans presents the model MBean concept and the Java classes
on which it relies.

Part IT “JMX Agent Specification”

Chapter 5 “Agent Architecture presents the architecture of the JMX agent and its
components.

Chapter 6 “Foundation Classes defines the foundation classes used by the interfaces
of the JMX agent components.

Chapter 7 “MBean Server defines the MBean server and the methods available to
operate on managed objects, including queries that retrieve specific managed
objects.

Chapter 8 “Advanced Dynamic Loading defines advanced class-loading features,
including the m-let (management applet) service that loads classes and libraries
dynamically from a URL over the network.

Chapter 9 “Monitoring defines the monitoring service that observes the value of an
attribute in MBeans and signals when thresholds are reached.

Chapter 10 “Timer Service defines the timer service that provides scheduling
capabilities.

Chapter 11 “Relation Service defines the relation service that creates relation types
and maintains relations between MBeans based on these types.

Chapter 12 “Security defines the permissions that are used to control access to
MBeans.

Part III “JMX Remote API Specification”.

Chapter 13 “Connectors defines the connectors added to the JMX specification by
JMX Remote APIL.

Chapter 14 “RMI Connector defines the standard JMX Remote API connector.
Chapter 15 “Generic Connector defines an optional generic connector.

Chapter 16 “Defining a New Transport defines how other transport protocols can be
implemented.

18 Java Management Extensions Specification, version 1.4 « November 9, 2006

Chapter 17 “Bindings to Lookup Services defines how to register connectors with
existing lookup services.

Chapter 18 “Summary of Environment Parameters lists the environment
parameters used with JMX Remote API.

Appendix A “Service Templates

Appendix B “Non-standard environment parameters

Related Information

The model MBeans specification in Chapter 4 “Model MBeans, as well as the model
MBean Reference Implementation and compatibility test cases, are based on an
initial contribution from IBM.

The security specification in Chapter 12 “Security was developed in conjunction
with Hewlett Packard and IBM.

The definitive specification for all Java objects and interfaces of the JMX specification
is the API documentation generated by the Javadoc tool for these classes. It is
available online as part of the Java Platform, Standard Edition (Java SE)
documentation at the following URL:

http://]java.sun. conij2se/ 1. 6.0/ docs/ api /

A number of Java Specification Requests (JSRs) developed through the Java
Community Process™ make use of, or are related to the J]MX specification:

= JSR 000018 - JAIN OAM API Specification

= JSR 000022 - JAIN SLEE API Specification

= JSR 000077 - J2EE™ Management Specification

= JSR 000151 - J2EE 1.4 Specification

= JSR 000160 - Java Management Extensions (JMX) Remoting

= JSR 000174 - Monitoring and Management Specification for the Java Virtual
Machine

= JSR 000176 - J2SE 1.5 (Tiger) Release Content

= JSR 000255 - JMX Specification, version 2.0 (which will define the next version of
this specification)

= JSR 000262 - Web Services Connector for JMX Agents

http://java. sun. cond pr oduct s/ JavalManagenent

Chapter Preface 19

20

Typographic Conventions

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning

Example

AaBbCc123 The names of literals and the
underlined text of URLs
(Universal Resource Locators).

AaBbCc123 The names of interfaces, classes,
fields or methods in the Java
programming language.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized.

Set the value of the nane descriptor.
See the http://java. sun. comweb site

The Ti mer class implements the
Ti mer MBean interface.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must implement this interface.

Java Management Extensions Specification, version 1.4 « November 9, 2006

Introduction to the
JMX Specification

1.1

The Java Management extensions (also called the J]MX specification) define an
architecture, the design patterns, the APIs, and the services for application and
network management and monitoring in the Java programming language. This
chapter introduces all these elements, presenting the broad scope of these
extensions. The JMX specification provides Java developers across all industries with
the means to instrument Java code, create smart Java agents, implement distributed
management middleware and managers, and smoothly integrate these solutions into
existing management and monitoring systems. In addition, the J]MX specification is
referenced by a number of Java APIs for existing standard management and
monitoring technologies.

It should be noted that, throughout the rest of the present document, the concept of
management refers to both management and monitoring services.

The JMX architecture is divided into three levels:

= Instrumentation level
= Agent level
= Distributed services level

This chapter gives an introduction to each of these levels and describes their basic
components.

Benetfits of the JMX Architecture

Through an implementation of the JMX specification, the JMX architecture provides
the following benefits:

Chapter 1 21

e Enables Java applications to be managed without heavy investment

The JMX architecture relies on a core managed object server that acts as a
management agent and can run on most Java-enabled devices. This allows Java
applications to be manageable with little impact on their design. A Java application
simply needs to embed a managed object server and make some of its functionality
available as one or several managed beans (MBeans) registered in the object server;
that is all it takes to benefit from the management infrastructure.

JMX provides a standard way to enable manageability for any Java based
application, service or device. For example, Enterprise JavaBeans™ (E]B)
applications can conform to the JMX architecture to become manageable.

e Provides a scalable management architecture

Every JMX agent service is an independent module that can be plugged into the
management agent, depending on the requirements. This component-based
approach means that JMX solutions can scale from small footprint devices to large
telecommunications switches and beyond.

The JMX specification provides a set of core agent services. Additional services will
be developed by conformant implementations, as well as by the integrators of the
management solutions. All these services can be dynamically loaded, unloaded, or
updated in the management infrastructure.

e Integrates existing management solutions

JMX smart agents are capable of being managed through HTML browsers or by
various management protocols such as SNMP and WBEM. The JMX API are open
interfaces that any management system vendor can leverage.

e Leverages existing standard Java technologies

Whenever needed, the JMX specification will reference existing Java specifications
such as Java Naming and Directory Interface™ (JNDI), Java Database Connectivity
API (JDBC™), Java Transaction Services (JTS), or others.

¢ Can leverage future management concepts

The APIs of the JMX specification can implement flexible and dynamic management
solutions, through the Java programming language, that can leverage emerging
technologies. For example, JMX solutions can use lookup and discovery services and
protocols such as Jini™ network technology, Universal Plug'n’Play (Upnp), and the
Service Location Protocol (SLP).

In a demonstration given by Sun Microsystems, Jini network technology provides
spontaneous discovery of resources and services on the network, that are then
managed by through a JMX application. The combination of these two capabilities is
called the Sun Spontaneous Management™ Software.

22 Java Management Extensions Specification, version 1.4 « November 9, 2006

1.2

1.2.1

1.2.2

e Defines only the interfaces necessary for management

The JMX API is not designed to be a general purpose distributed object system.
Although it provides a number of services designed to fit into a distributed
environment, these are focused on providing functionality for managing networks,
systems, and applications.

Scope of this Specification

The JMX specification defines an architecture for management and a set of APIs that
describe the components of this architecture. These APIs cover functionality, both on
the manager and on the agent side, that compliant implementations will provide to
the developer of management applications.

This JMX specification document addresses all three levels of the management
architecture. These parts are:

» The instrumentation specification
= The agent specification
= The distributed services specification

Reference Implementation

The reference implementation (RI) is the first working application of the J]MX
specification, as mandated by the Java Community Process for defining extensions to
the Java programming language. The RI for both the instrumentation and agent
specifications has been developed by Sun Microsystems, Inc., in its role as the JMX
specification lead.

As of version 1.3 of the JMX AP]I, there is no separately-available RI for the
specification. The Rl is part of the RI for version 6 of the Java Platform, Standard
Edition (Java SE) , codenamed “Mustang”.

Compatibility Test Suite

The compatibility test suite (CTS) for the JMX specification will check the conformance
of JMX implementations. It is also mandated by the Java Community Process. The
CTS verifies that applications claiming to conform to a specific part of JMX follow
every point of the specification. The CTS for both the instrumentation and agent
specifications has been developed by Sun Microsystems, Inc., in its role as the JMX
specification lead.

Chapter 1 Introduction to the JIMX Specification 23

Because the classes defined by the JMX specification are optional packages of the
Java platform, the CTS is implemented as a Technology Compatibility Kit (TCK) that
is run by the JavaTest™ software.

Each part of the JMX specification can identify mandatory and optional components.
A JMX-compliant implementation must provide all mandatory services, and can
provide any subset of the optional services, but those it does provide must conform
to the specification.

When claiming JMX compliance, implementations list the optional services they
support, and are tested by the CTS against their statement of conformance. This
requires some modularity in the way the CTS can be run against various
implementations that implement a number of subsets of the specification.

1.2.3 JMX APIs as part of the Java Platform

As of version 5.0 of the Java 2 Platform, Standard Edition (the J2SE™ platform),
codenamed “Tiger”, the JMX API and JMX Remote API are part of the core platform.
“Tiger” contains version 1.2 of the J]MX API and version 1.0 of the JMX Remote APIL
The versions of those APIs covered by this document (version 1.4 of each API) are
included in version 6 of the Java Platform, Standard Edition (also known as Java SE),
codenamed “Mustang”, the successor to “Tiger”.

It is possible to replace the implementations of either or both of the JMX and JMX
Remote APIs in “Tiger” with implementations of the APIs covered by this document.
Such a replacement must pass the CTS for each API replaced.

The specification for MXBeans defines certain behavior when the annotation
@ ava. beans. Construct or Properti es appears. Since this annotation does not
exist in the “Tiger” platform, the behavior in question does not happen there.

1.3 Architectural Overview

This section describes each part of the JMX specification and its relation to the
overall management architecture:

= Instrumentation level

= Agent level

= Distributed services level

= Additional management protocol APIs

FIGURE 1-1 shows how the key components of the J]MX architecture relate to one
another within the three levels of the architectural model. These components are
introduced in the following subsections and further discussed in the “Component
Overview” on page 28.

24 Java Management Extensions Specification, version 1.4 « November 9, 2006

JMX-compliant Proprietary Management Additional
Management Application Web Browser Application Management
Protocol APIs
Distributed
Services Level c
=== IMX \\
E Manager \
SNMP
Manager API
Connectors and Protocol Adaptors 9
r—- - - -/ Y - — A
| Lec | [ea] [c| =T \
Agent Level | MBean | I ' \
| Server | | | CIMMWBEM
| | API
| Agent | |
| Services | |
(as MBeans) | | \
Instrumentation | N
Level | Resource 2 | Lo £1os_t2)J
Resource 1 (MBean) TMN
| (MBean) | Manager API
L ngaﬂrtuil mﬂ:hlﬁe (rEstJi ________ 3

1.3.1

- Current JMX specification

Separate JSRs

|:| Future phases of the JMX specification

FIGURE 1-1 Relationship Between the Components of the JMX Architecture

Instrumentation Level

The instrumentation level provides a specification for implementing JMX manageable
resources. A JMX manageable resource can be an application, an implementation of a
service, a device, a user, and so forth. It is developed in Java, or at least offers a Java
wrapper, and has been instrumented so that it can be managed by JMX-compliant
applications.

The instrumentation of a given resource is provided by one or more Managed Beans,
or MBeans, that are either standard or dynamic. Standard MBeans are Java objects
that conform to certain design patterns derived from the JavaBeans™ component
model. Dynamic MBeans conform to a specific interface that offers more flexibility at
runtime. For further information, see “Managed Beans (MBeans)” on page 28.

Chapter 1 Introduction to the JIMX Specification 25

The instrumentation of a resource allows it to be manageable through the agent level
described in the next section. MBeans do not require knowledge of the J]MX agent
with that they operate.

MBeans are designed to be flexible, simple, and easy to implement. Developers of
applications, services, or devices can make their products manageable in a standard
way without having to understand or invest in complex management systems.
Existing objects can easily be evolved to produce standard MBeans or wrapped as
dynamic MBeans, thus making existing resources manageable with minimum effort.

In addition, the instrumentation level also specifies a notification mechanism. This
allows MBeans to generate and propagate notification events to components of the
other levels.

Because the instrumentation level consists of design patterns and Java interfaces, the
reference implementation can only provide an example of the different MBeans and
of their notification mechanism.

However, the compatibility test suite for the instrumentation level will check that
MBeans being tested conform to the design patterns and implement the interfaces
correctly.

JMX manageable resources are automatically manageable by agents compliant with
the JMX specification. They can also be managed by any system that is not compliant
with the JMX specification that supports the MBean design patterns and interfaces.

1.3.2 Agent Level

The agent level provides a specification for implementing agents. Management
agents directly control the resources and make them available to remote
management applications. Agents are usually located on the same machine as the
resources they control, although this is not a requirement.

This level builds upon and makes use of the instrumentation level, to define a
standardized agent to manage JMX manageable resources. The J]MX agent consists of
an MBean server and a set of services for handling MBeans. In addition, a JMX agent
will need at least one communications adaptor or connector. The MBean server
implementation and the agent services are mandatory in an implementation of the
specification.

The JMX agent can be embedded in the machine that hosts the JMX manageable
resources when a Java Virtual Machine (JVM) is available in that machine. Likewise,
the JMX agent can be instantiated into a mediation/concentrator element when the
managed resource only offers a proprietary (non-Java) environment. Otherwise, a
JMX agent does not need to know which resources it will serve: any JMX
manageable resource can use any JMX agent that offers the services it requires.

26 Java Management Extensions Specification, version 1.4 « November 9, 2006

Managers access an agent’s MBeans and use the provided services through a
protocol adaptor or connector, as described in the next section. However, JMX agents
do not require knowledge of the remote management applications that use them.

JMX agents are implemented by developers of management systems, who can build
their products in a standard way without having to understand the semantics of the
JMX manageable resources, or the functions of the management applications.

The agent compatibility test suite will check that agents being tested conform to the
interfaces and functionality set forth in the agent specification. Agents that have
been successfully tested against the agent CTS are qualified as JMX agents.

JMX agents run on the Java 2 Platform, Standard Edition (the J2SE™ platform)
version 1.3 or above, and on certain profiles of the Java 2 Platform, Micro Edition
(the]2ME™ platform). JMX agents that implement version 1.3 of the JMX
specification must run on version 5.0 or above of the J2SE platform.

JMX agents will be automatically compatible with J]MX distributed services, and can
also be used by any non-JMX compliant systems or applications that support JMX
agents.

1.3.3 Distributed Services Level

The distributed services level provides the interfaces for implementing JMX
managers. This level defines management interfaces and components that can
operate on agents or hierarchies of agents. These components can:

= Provide an interface for management applications to interact transparently with
an agent and its JMX manageable resources through a connector

= Expose a management view of a JMX agent and its MBeans by mapping their
semantic meaning into the constructs of a data-rich protocol (for example the
hypertext mark-up language (HTML) or the simple network management
protocol (SNMP))

» Distribute management information from high-level management platforms to
numerous JMX agents

= Consolidate management information coming from numerous JMX agents into
logical views that are relevant to the end user’s business operations

= Provide security
Management components cooperate with one another across the network to provide
distributed, scalable management functions. Customized Java-based management

functions can be developed on top of these components to deploy a management
application.

Chapter 1 Introduction to the JIMX Specification 27

1.4

1.4.1

14.1.1

The combination of the manager level with the other agent and instrumentation
levels provides a complete architecture for designing and developing complete
management solutions. The Java Management extensions technology brings unique
facilities to such solutions, such as portability, on-demand deployment of
management functionality, dynamic and mobility services, and security.

Component Overview

The key components of each architectural level are listed below and discussed in the
subsequent sections.

» Instrumentation level

= MBeans (standard, dynamic, open, and model MBeans)
« Notification model
« MBean metadata classes

= Agent level

= MBean server
= Agent services

Components of the Instrumentation Level

The key components of the instrumentation level are the Managed Bean (MBean)
design patterns, the notification model, and the MBean metadata classes.

Managed Beans (MBeans)

An MBean is a Java object that implements a specific interface and conforms to
certain design patterns. These requirements formalize the representation of the
resource’s management interface in the MBean. The management interface of a
resource is the set of all necessary information and controls that a management
application needs to operate on the resource.

The management interface of an MBean is represented as:

= Valued attributes that can be accessed

= Operations that can be invoked

= Notifications that can be emitted (see “Notification Model” on page 29)

» The constructors for the MBean’s Java class

28 Java Management Extensions Specification, version 1.4 « November 9, 2006

1.4.1.2

MBeans encapsulate attributes and operations through their public methods and
follow the design patterns for exposing them to management applications. For
example, a read-only attribute in a standard MBean will have just a getfer method,
whereas a getter and a setter methods implement read-write access.

Any objects that are implemented as an MBean and registered with the agent can be
managed from outside the agent’s Java virtual machine. Such objects include:

= The resources your application manages
= Value-added services provided to help manage resources
= Components of the JMX infrastructure that can be managed

Other JMX components, such as agent services, are specified as fully instrumented
MBeans, which allows them to benefit from the J]MX infrastructure and offer a
management interface.

The JMX architecture does not impose any restrictions on where compiled MBean
classes are stored. They can be stored at any location specified in the classpath of the
agent’s JVM, or at a remote site if class loading is used (see Chapter 8 “Advanced
Dynamic Loading” on page 143).

The JMX specification defines four types of MBean: standard, dynamic, open and
model MBeans. Each of these corresponds to a different instrumentation need:

= Standard MBeans are the simplest to design and implement, their management
interface is described by their method names. MXBeans are a kind of Standard
MBean that uses concepts from Open MBeans to allow universal manageability
while simplifying coding.

» Dynamic MBeans must implement a specific interface, but they expose their
management interface at runtime for greatest flexibility.

= Open MBeans are dynamic MBeans that rely on basic data types for universal
manageability and that are self describing for user-friendliness.

= Model MBeans are also dynamic MBeans that are fully configurable and self
described at runtime; they provide a generic MBean class with default behavior
for dynamic instrumentation of resources.

Notification Model

The JMX specification defines a generic notification model based on the Java event
model. Notifications can be emitted by MBean instances, as well as by the MBean
server. This specification describes the notification objects and the broadcaster and
listener interfaces that notification senders and receivers must implement.

This specification includes services that allow distribution of this notification model,
thus allowing a management application to listen to MBean events and MBean
server events remotely.

Chapter 1 Introduction to the JIMX Specification 29

1.4.1.3

1.4.2

1.4.2.1

MBean Metadata Classes

The instrumentation specification defines the classes that are used to describe the
management interface of an MBean. These classes are used to build a standard
information structure for publishing the management interface of an MBean. One of
the functions of the MBean server at the agent level is to provide the metadata of its
MBeans.

The metadata classes contain the structures to describe all the components of an
MBean’s management interface: its attributes, operations, notifications and
constructors. For each of these, the metadata includes a name, a description and its
particular characteristics. For example, one characteristic of an attribute is whether it
is readable, writable or both; a characteristic of an operation is the signature of its
parameter and return types.

The different types of MBean extend the metadata classes to provide additional
information. Through this inheritance, the standard information will always be
available and management applications that know how to access the subclasses can
obtain the extra information.

Components of the Agent Level

The key components in the agent level are the MBean server, a registry for objects in
the instrumentation level, and the agent services that enable a J]MX agent to
incorporate management intelligence for more autonomy and performance.

MBean Server

The managed bean server, or MBean server for short, is a registry for objects that are
exposed to management operations in an agent. Any object registered with the
MBean server becomes visible to management applications. However, the MBean
server only exposes an MBean's management interface, never its direct object
reference.

Any resource that you want to manage from outside the agent’s Java virtual machine
(JVM) must be registered as an MBean in the server. The MBean server also provides
a standardized interface for accessing MBeans within the same JVM, giving local
objects all the benefits of manipulating manageable resources. MBeans can be
instantiated and registered by:

= Another MBean
= The agent itself
= A remote management application (through the distributed services)

30 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

1.4.2.2

When you register an MBean, you must assign it a unique object name. A
management application uses the object name to identify the object on which it is to
perform a management operation. The operations available on MBeans include:

= Discovering the management interface of MBeans

= Reading and writing their attribute values

= Performing operations defined by the MBeans

= Getting notifications emitted by MBeans

= Querying MBeans based on their object name or their attribute values

The MBean server relies on protocol adaptors and connectors to make the agent
accessible from management applications outside the agent’s JVM. Each adaptor
provides a view through a specific protocol of all MBeans registered in the MBean
server. For example, an HTML adaptor could display an MBean on a Web browser.
The view provided by protocol adaptors is necessarily different for each protocol
and none are addressed in this phase of the JMX specification.

Connectors provide a manager-side interface that handles the communication
between manager and agent. Each connector will provide the same remote interface
though a different protocol. When a remote management application uses this
interface, it can connect to an agent transparently through the network, regardless of
the protocol.

Adaptors and connectors make all MBean server operations available to a remote
management application. For an agent to be managed, it must include at least one
protocol adaptor or connector. However, an agent can include any number of these,
allowing it to be managed by multiple managers, through different protocols.

Agent Services

Agent services are objects that can perform management operations on the MBeans
registered in the MBean server. By including management intelligence into the
agent, JMX helps you build more powerful management solutions. Agent services
are often MBeans as well, allowing them and their functionality to be controlled
through the MBean server. The JMX specification defines the following agent
services:

= Dynamic class loading through the management applet (m-let) service retrieves
and instantiates new classes and native libraries from an arbitrary network
location.

= Monitors observe the numerical or string value of an attribute of several MBeans
and can notify other objects of several types of changes in the target.

= Timers provide a scheduling mechanism based on a one-time alarm-clock
notification or on a repeated, periodic notification.

= The relation service defines associations between MBeans and enforces the
cardinality of the relation based on predefined relation types.

Chapter 1 Introduction to the JIMX Specification 31

All the agent services are mandatory in a JMX-compliant implementation.

1.5 JMX Remote API

The JMX Remote API was defined by JSR 160. For convenience of presentation, this
document combines the specification of Maintenance Review 2 of JSR 160 with the
specification of Maintenance Review 4 of JSR 3. Formally, Parts I and II of this
document are defined by JSR 3, while Part III and the appendices are defined by JSR
160. For simplicity, the same version number 1.3 is used for the two specifications.
The ongoing JSR 255 is defining version 2.0 of the JMX Specification, which will
integrate the JMX Remote API into the JMX API. As such, it will merge the
specifications originally defined by JSRs 3 and 160.

The principal goals of the J]MX Remote API are interoperability, transparency, security,
and flexibility.

The API is interoperable because it completely defines the standard protocols that are
used between client and server, so that two different implementations of the
standard can communicate.

The API is transparent because it exposes an API to the remote client that is as close
as possible to the API defined by the JMX specification for access to instrumentation
within the agent.

The API is secure because it builds on the Java technology standards for security,
namely the Java Secure Socket Extension (JSSE), the Simple Authentication and
Security Layer (SASL), and the Java Authentication and Authorization Service
(JAAS). These standards enable connnections between clients and servers to be
private and authenticated and allow servers to control what operations different
clients can perform.

The API is flexible because, in addition to the required protocol, it provides ways for
new transport protocols to be added and new implementations of the existing
protocols to be substituted.

1.6 What Has Changed

This document merges and updates two previous specifications, namely JMX
Instrumentation and Agent Specification, v1.2, December 2002, and JMX Remote API
Specification, v1.0, October 2003. This section lists the major changes to these two
specifications.

All changes to either specification are marked in the text with change bars.

32 Java Management Extensions Specification, version 1.4 « November 9, 2006

1.6.1 Changes to the JMX Specification (JSR 3)

= The JMX API has been generified. For example, MBeanSer ver . quer yNanes
previously returned a Set , while now it returns a Set <Cbj ect Name>.

= The MXBeans feature, introduced in J2SE 5.0 for the j ava. | ang. managenent
package, has been generalized so that users can create their own MXBeans.

= Descriptors, previously only supported for Model MBeans, are now supported for
all types of MBean.

Information about legal types that was previously only available with Open
MBeans can now be expressed through Descriptors with any type of MBean.

A parent of Descr i pt or Access called Descr i pt or Read has been added and
is implemented by the various MBean* | nf o classes.

A second, immutable implementation of the Descri pt or interface called
| nmrut abl eDescri pt or has been added.

A number of new conventional Descriptor items (“fields”) are documented in
the API specification for the Descri pt or interface.

Predefined Descriptor field names have corresponding string constants in the
new class called JMX.

A new annotation Descri pt or Key can be used to add information to the
Descriptors for a Standard MBean (or MXBean) via annotations in its Java
interface.

The method Descri pt or. get Fi el dVal ues(String...) and the
constructor Descri pt or Support (String...) previously took a String[]
parameter.

The Descri pt or interface defines an equals method and specifies how array
values are compared.

The order the returned array is sorted with is clarified for
Descri ptor. get Fi el dval ues(nul l).

Exception wrapping for Descri pt or. set Fi el d and
Descri ptor. set Fi el ds is specified.

= A new class j avax. managenent . JMX has been added to house constants and
static methods.

= Notification handling has been updated, as follows:

New constructors have been added to Not i fi cati onBr oadcast er Support
that specify the MBeanNot i fi cati onl nfo[] that will be returned by
get Notificationlnfo().

The threading model for Not i fi cati onBr oadcast er Support has been
specified explicitly and a constructor with an Execut or parameter added to
allow changing it.

The behavior when a filter or listener in
Noti fi cati onBroadcast er Support throws an exception is specified.

Chapter 1 Introduction to the JIMX Specification 33

A new class, j avax. managenent . St andar dEni t t er MBean, is a subclass of
j avax. managenent . St andar dMBean that is a Noti fi cati onEmtter.

= ObjectName has been modified, as follows:

Wildcards * and ? can appear in the value of a key property for matching. New
methods i sSPropertyVal uePattern() and

i sPropertyVal uePattern(String property) tell whether a given
ObjectName has such a wildcard.

New ObjectName constants are added for the name of the MBean Server
Delegate and for a wildcard that matches all ObjectNames.

ObjectName implements Conpar abl e<Obj ect Name>.

» The text forbidding the invocation of getters and setters as if they were operations
was confusing in the previous version of this specification.

» Standard MBeans support covariant return types in MBean interfaces.

= MBeanServer.islnstanceX semantics for Dynamic MBeans have been
clarified.

= Various small changes have been applied to the Model MBean specification, as
follows:

The val ue and di spl ayNane fields in Model MBean Descriptors are optional
but the previous version of this specification did not show them in italics.

Requi r edMbdel MBean. set At t ri but e should throw an exception if there is
no set Met hod and no cur rencyTi neLi mi t, because the set Attri but e call
would have no effect in this case.

The r ol e field in Model MBeanQper at i onl nf o Descriptors is optional.

The value of the t ar get Type Descriptor field is case insensitive but was
omitted from the explicit list of case-insensitive fields.

The t ar get Type Descriptor field is not included in the serial form of a
DescriptorSupport instance.

Model MBeanl nf oSupport. cl one is explicitly shallow (does not clone the
contained Mbdel MBeanAt t ri but el nf oSupport etc).

New OnUnr egi st er value for the per si st Pol i cy field of a Descriptor.

Descri ptor Support (String[], Object[]) forbids null parameters - this
was previously ambiguous.

= Open MBeans have been updated as follows:

Open MBeans can reference arrays of primitive type. An ArrayType object can
be constructed that represents such an array.

In the constructor ArrayType(int di mension, QpenType<?>
el enent Type), the elementType parameter can now be an Ar r ayType
instance.

Conposi t eDat aSupport . equal s compares arrays element-by-element.

34 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

1.6.2

= Tabul ar Dat aSupport. entrySet () specifies the key in the returned Set is
wrapped into a Li st .

= The impact of an MBeanQper at i onl nf o can be UNKNOW.

The Monitor Service supports complex types when the monitored attribute looks
like “a. b. c”.

Monitor tasks are specified to run within the access control context of the caller of
Monitor.start().

Inconsistencies in the specification for past dates in the Timer Service have been
resolved.

The M_et Cont ent class has been made public.

The Rel ati onNoti fi cati on constructor now allows the source to be either a
Rel ati onSer vi ce instance or an Obj ect Nane.

Rel ati onServi ce. addRel ati onType rejects a null relation name.

The Rel at i onSupport specification has been clarified regarding
Rol eNot FoundExcept i on thrown from set Rol e and
I'I'l egal Argunment Excepti on thrown from set Rol es.

A new query, Query. i sl nstance(, has been added.

Proxies constructed with MBeanSer ver | nvocat i onHandl er no longer forward
the methods hashCode(),toString(), and equal s(Obj ect) to the proxied
MBean, unless they are explicitly declared in the proxy interface.

The API documentation now clearly specified the seri al Ver si onUl D of all
serializable classes and calls for queries to be serialized using standard non-public
classes.

Changes to the JMX Remote Specification (JSR
160)

JMXConnect or interface extends j ava. i 0. Cl oseabl e.
JMX connection provider exception handling clarified.
Serialized form of RM Connect or class included spurious cl i ent Not i f | D field.

Added JMXAddr essabl e interface to get the address to which a connector client
is connected.

Chapter 1 Introduction to the JIMX Specification 35

36 Java Management Extensions Specification, version 1.4 « November 9, 2006

JMX Instrumentation Specification

Chapter

37

38 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

MBean Instrumentation

2.1

The instrumentation level of the JMX specification defines how to instrument
resources in the Java programming language so that they can be managed. Resources
developed according to the rules defined in this chapter are said to be JMX
manageable resources.

The Java objects that implement resources and their instrumentation are called
managed beans, or MBeans. MBeans must follow the design patterns and interfaces
defined in this part of the specification. This ensures that all MBeans provide the
instrumentation of managed resources in a standardized way.

MBeans are manageable by any JMX agent, but they can also be managed by non-
compliant agents that support the MBean concept.

This part of the specification is primarily targeted at developers of applications or
devices that want to provide management capabilities to their resources.

Developers of applications and devices are free to choose the granularity of objects
that are instrumented as MBeans. An MBean might represent the smallest object in
an application, or it could represent the entire application. Application components
designed with their management interface in mind can typically be written as
MBeans. MBeans can also be used as wrappers for legacy code without a
management interface or as proxies for code with a legacy management interface.

Definition

An MBean is a concrete Java class that includes the following instrumentation:

= The implementation of its own corresponding MBean interface
or an implementation of the Dynanmi cMBean interface

= Optionally, an implementation of the Not i fi cati onBr oadcast er interface

Chapter 2 MBean Instrumentation 39

2.11

2.1.2

A class that implements its own MBean interface is referred to as a standard MBean.
This is the simplest type of instrumentation available when developing new JMX
manageable resources. An MBean that implements the Dynamni cMBean interface
specified in this chapter is known as a dynamic MBean, because certain elements of
its instrumentation can be controlled at runtime.

Which interface the MBean implements determines how it will be developed, not
how it will be managed. JMX agents provide the abstraction for handling both types
of instrumentation transparently. In fact, when both types of MBean are being
managed in a JMX agent, management applications handle them in a similar
manner.

The Java class of a standard MBean exposes the resource to be managed directly
through its attributes and operations. Attributes are internal entities that are exposed
through getter and setter methods. Operations are the other methods of the class
that are available to managers. All these methods are defined statically in the MBean
interface and are visible to an agent through introspection. This is the most
straightforward way of making a new resource manageable.

When developing a Java class from the Dynami cMBean interface, attributes and
operations are exposed indirectly through method calls. Instead of introspection,
JMX agents must call one method to find the name and nature of attributes and
operations. Then when accessing an attribute or operation, the agent calls a generic
getter, setter or invocation method whose argument is the name of the attribute or
operation. Dynamic MBeans enable you to rapidly instrument existing resources and
other legacy code objects you want to manage.

Public Management Interface

It is not a requirement for an MBean of any type to be a public Java class. However,
to be manageable, an MBean must have a public management interface. This public
management interface is the MBean’s own interface in the case of a standard MBean,
or the Dynani cMBean interface, in the case of a dynamic MBean.

MBean Public Constructor

The Java class of an MBean, whether standard or dynamic, can optionally be of a
public class and have one or more public constructors. An MBean must be of a
public concrete class with a public constructor if it is to be instantiated by a JMX
agent on demand from a management application.

40 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

2.2

An MBean can have any number of constructors, to allow an agent to perform an
instantiation. An MBean can also optionally have any number of public constructors,
all of which are available to a management application through a JMX agent that can
instantiate this MBean class.

Public constructors of an MBean can have any number of arguments of any type. It
is the developer’s and administrator’s responsibility to guarantee that the classes for
all argument types are available to the agent and manager when instantiating an
MBean.

An MBean can omit all constructors and rely on the default constructor which the Java
compiler provides automatically in such a case. The default constructor takes no
arguments and is public if the class is public. The Java compiler does not provide a
default public constructor if any other constructor is defined.

CODE EXAMPLE 2-1 shows a simple MBean example with two constructors, one of
which is the public constructor.

CODE EXAMPLE 2-1 Constructors of the Si npl € MBean Example

public class Sinmple {
private int state = O;

/1 Default constructor only accessible from subcl asses

/1
protected Sinmple() {
}
/1 Public constructor: this class is an MBean candi date
/1
public Sinmple (int s) {
state = s;
}

Standard MBeans

To be manageable through a JMX agent, a standard MBean explicitly defines its
management interface. The management interface defines the handles on the
resource that are exposed for management. An MBean's interface is made up of the
methods it makes available for reading and writing its attributes and for invoking its
operations.

Chapter 2 MBean Instrumentation 41

2.2.1

Standard MBeans rely on a set of naming rules, called design patterns, that must be
observed when defining the interface of their Java object. These naming rules define
the concepts of attributes and operations inspired by the JavaBeans™ component
model. However, the actual design patterns for the JMX architecture take into
consideration the inheritance scheme of the MBean, as well as lexical design patterns
to identify the management interface. As a result, the design patterns for MBeans are
specific to the JMX specification.

The management interface of a standard MBean is composed of:

= Its constructors: only the public constructors of the MBean class are exposed

= Its attributes: the properties that are exposed through getter and setter methods
= Its operations: the remaining methods exposed in the MBean interface

= Its notifications: the notification objects and types that the MBean broadcasts

As described in “MBean Public Constructor” on page 40, constructors are an
inherent component of an MBean. The attributes and operations are methods of an
MBean, but they are identified by the MBean interface, as described below. The
notifications of an MBean are defined through a different interface: see “JMX
Notification Model” on page 54.

The process of inspecting the MBean interface and applying these design patterns is
called introspection. The JMX agent uses introspection to look at the methods and
superclasses of a class, determine if it represents an MBean that follows the design
patterns, and recognize the names of both attributes and operations.

MBean Interface

The Java class of a standard MBean must implement a Java interface that is named
after the class. This interface mentions the complete signatures of the attribute and
operation methods that are exposed. A management application can access these
attributes and operations. A management application cannot access methods of the
MBean’s Java class that are not listed in this interface.

The name of an MBean’s Java interface is formed by adding the MBean suffix to the
MBean'’s fully-qualified Java class name. For example, the Java class MyQl ass would
implement the MyCl assMBean interface; the Java class com exanpl e. MyCl ass
would implement the com exanpl e. MyCl assMBean interface. The interface of a
standard MBean is referred to as its MBean interface.

By definition, the Java class of an MBean must implement all the methods in its
MBean interface. How it implements these methods determines its response to
management operations. An MBean can also define any other methods, public or
otherwise, that do not appear in its MBean interface.

42 Java Management Extensions Specification, version 1.4 « November 9, 2006

2211

The MBean interface can list methods defined in the MBean, as well as methods that
the MBean inherits from its superclasses. This enables MBeans to extend and
instrument classes whose Java source code is inaccessible.

A standard MBean can also inherit its management interface if one of its
superclasses implements a Java interface named after itself (the superclass). For
example, if MySuper O ass is an MBean and MyCl ass extends MySuper C ass then
My/d ass is also an MBean. The same is true if MySuper Cl ass is a dynamic MBean;
MyCl ass would also be dynamic. If MyCl ass does not implement a MyCl assMBean
interface, then it will have the same management interface as MySuper Cl ass.
Otherwise, M/Cl ass can redefine its management interface by implementing its
own MyCl assMBean interface.

In this case, MyCl assMBean defines the management interface, and any
management interface of MySuper O ass is ignored. However, interfaces can also
extend parent interfaces, and all methods in the inheritance tree are also considered.
Therefore, MyCl assMBean can extend MySuper O assMBean, allowing Myd ass to
extend the management interface of its parent. For more information about how an
MBean inherits its management interface, see “Inheritance Patterns” on page 50.

Having to define and implement an MBean interface is the main constraint put on a
standard MBean for it to be a JMX manageable resource.

As of the JMX 1.2 specification, the j avax. managenent . St andar dvBean class can
be used to define standard MBeans with an interface whose name is not necessarily
related to the class name of the MBean.

The MyCl ass Example MBean

CODE EXAMPLE 2-2 gives a basic illustration of the explicit definition of the
management interface for an MBean named MyCl ass. Among the public methods it
defines, get Hi dden and set Hi dden will not be part of the management interface
because they do not appear in the MyCl assMBean interface.

CODE EXAMPLE 2-2 MyC assMBean interface and MyCl ass Example

public interface MyCl assMBean {
public int getState();
public void setState(int s);
public void reset();

Chapter 2 MBean Instrumentation 43

public class MyC ass inplements Myd assMBean {
private int state = O;
private String hidden = null;

public int getState() {
return(state);

}

public void setState(int s) {
state = s;

}

public String getH dden() {
return(hi dden);

}

public void setH dden(String h) {
hi dden = h;

}

public void reset() {
state = 0O;
hi dden = nul | ;

222 Lexical Design Patterns

The lexical patterns for attribute and operation names rely on the method names in
an MBean interface. They enable a JMX agent to identify the names of attributes and
operations exposed for management in a standard MBean. They also allow the agent
to make the distinction between read-only, write-only and read-write attributes.

2221 Attributes

Attributes are the fields or properties of the MBean that are in its management
interface. Attributes are discrete, named characteristics of the MBean that define its
appearance or its behavior, or are characteristics of the managed resource that the
MBean instruments. For example, an attribute named i packet s in an MBean
representing an Ethernet driver could be defined to represent the number of
incoming packets.

Attribute names must begin with a character for which
Character.isJavaldentifierStart istrue. The remaining characters in the
name must also be t r ue for Char acter. i sJaval dentifierPart.

44 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

2222

Attributes are always accessed via method calls on the object that owns them. For
readable attributes, there is a getter method to read the attribute value. For writable
attributes, there is a setter method to allow the attribute value to be updated.

The following design pattern is used to identify attributes:

publi ¢ AttributeType get AttributeName() ;
public void set AttributeName(AttributeType val ue);

If a class definition contains a matching pair of get AttributeName and

set AttributeName methods that take and return the same type, these methods define
a read-write attribute called AttributeName. If a class definition contains only one of
these methods, the method defines either a read-only or write-only attribute.

The AttributeName cannot be overloaded, that is, there cannot be two setters or a
getter and setter pair for the same name that operate on different types. An object
with overloaded attribute names is not a compliant MBean. The AttributeType can be
of any Java type, including array types, provided that this type is valid in the
MBean’s runtime context or environment.

When the type of an attribute is an array type, the getter and setter methods operate
on the whole array. The design patterns do not include any getter or setter method
for accessing individual array elements. If access to individual elements of arrays is
needed, it must be implemented through MBean operations.

In addition, for boolean type attributes, it is possible to define a getter method using
the following design pattern:

publ i c bool ean i sAttributeName() ;

To reduce redundancy, only one of the two getter methods for boolean types is
allowed. An attribute can have either an i sAttributeName method or a
get AttributeName method, but not both in the same MBean.

Operations

Operations are the actions that a JMX manageable resource makes available to
management applications. These actions can be any computation that the resource
exposes, and they can also return a value.

In a standard MBean, an operation is a Java method specified in its interface and
implemented in the class itself. Any method in the MBean interface that does not fit
an attribute design pattern is considered to define an operation.

Chapter 2 MBean Instrumentation 45

2223

2.3

A typical usage is shown in CODE EXAMPLE 2-2 on page 43 where the MBean exposes
the r eset method to reinitialize its exposed attributes and private fields. Simple
operations can also be written to access individual elements of an indexed array
attribute.

Case Sensitivity

All attribute and operation names derived from these design patterns are case-
sensitive. For example, this means that the methods get st at e and set St at e
define two attributes, one called st at e that is read-only, and one called St at e that
is write-only.

While case sensitivity applies directly to component names of standard MBeans, it is
also applicable to all component names of all types of MBeans, standard or dynamic.
In general, all names of classes, attributes, operations, methods, and internal
elements defined in the JMX specification are case sensitive, whether they appear as
data or as functional code when they are manipulated by management operations.

Dynamic MBeans

Standard MBeans are ideally suited for straightforward management structures,
where the structure of managed data is well defined in advance and unlikely to
change often. In such cases, standard MBeans provide the quickest and easiest way
to instrument manageable resources. When the data structures are likely to evolve
often over time, the instrumentation must provide more flexibility, such as being
determined dynamically at runtime. Dynamic MBeans bring this adaptability to the
JMX specification and provide an alternative instrumentation with more elaborate
management capabilities.

Dynamic MBeans are resources that are instrumented through a predefined interface
that exposes the attributes and operations only at runtime. Instead of exposing them
directly through method names, dynamic MBeans implement a method that returns
all attributes and operation signatures. For example, this information could be
determined by reading an XML file at runtime.

Because the names of the attributes and operations are determined dynamically,
these MBeans provide great flexibility when instrumenting existing resources. An
MBean that implements the Dynani cMBean interface provides a mapping for
existing resources that do not follow standard MBean design patterns. Instead of
introspection, JMX agents call the method of the MBean that returns the name of the
attributes and operations it exposes.

46 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

When managed through a JMX agent, dynamic MBeans offer all the same
capabilities that are available through standard MBeans. Management applications
that rely on JMX agents can manipulate all MBeans in exactly the same manner
regardless of their type.

2.3.1 Dynam cMBean Interface

For a resource object to be recognized as a dynamic MBean by the JMX agent, its
Java class or one of its superclasses must implement the Dynani cMBean public
interface.

The Dynani cMBean interface is defined by the UML diagram in FIGURE 2-1 below.
Each of the methods it defines is described in the following subsections.

«Interface»
DynamicMBean

getMBeaninfo(): MBeaninfo
getAttribute(attribute:String): Object
getAttributes(attributes: String[]): AttributeList
setAttribute(attribute:Attribute): void
setAttributes(attributes:AttributeList): Attributelist
invoke(actionName: String,

params:Object([],

signature:String[]): Object

FIGURE 2-1 Definition of the Dynam cMBean Interface

get MBeanl nf o Method

This method returns an MBeanl nf o object that contains the definition of the
MBean’s management interface. Conceptually, dynamic MBeans have both attributes
and operations, only they are not exposed through method names. Instead, dynamic
MBeans expose attribute names and types and operation signatures through the
return value of this method at runtime.

This method returns an MBeanl nf o object that contains a list of attribute names and
their types, a list of operations and their parameters, and other management
information. This type and its constituent classes are further described in “MBean
Metadata Classes” on page 60.

Chapter 2 MBean Instrumentation 47

48

getAttri bute and get Attri but es Methods

These methods take an attribute name and a list of attribute names, respectively, and
return the value of the corresponding attribute(s). These are like a standard getter
method, except the caller supplies the name of the attribute requested. It is up to the
implementation of the dynamic MBean to map the exposed attribute names correctly
to their values through these methods.

The classes that are used to represent attribute names and values and lists of names
and values are described in “Attri bute and Attri buteLi st Classes” on
page 119. These data types are also used by the set At t ri but e methods below.

set Attribute and set Attri but es Methods

These methods take attribute name-value pairs and, like standard setter methods,
they write these values to the corresponding attribute. When setting several
attributes at a time, the list of attributes for which the write operation succeeded is
returned. When setting only one attribute, there is no return value and any error is
signaled by raising an exception. Again, it is up to the implementation of the
dynamic MBean to map the new values correctly to the internal representation of
their intended attribute target.

i nvoke Method

The i nvoke method lets management applications call any of the operations
exposed by the dynamic MBean. Here the caller must provide the name of the
intended operation, the objects to be passed as parameters, and the types for these
parameters. By including the operation signature, the dynamic MBean
implementation can verify that the mapping is consistent between the requested
operation and that which is exposed. It can also choose between methods that have
the same name but different signatures (overloaded methods), though this is not
recommended.

If the requested operation is successfully mapped to its internal implementation, this
method returns the result of the operation. The calling application will expect to
receive the return type exposed for this operation in the MBeanl nf o method.

Java Management Extensions Specification, version 1.4 « November 9, 2006

2.3.2

23.2.1

2.3.2.2

Behavior of Dynamic MBeans

When registered in a JMX agent, a dynamic MBean is treated in exactly the same
way as a standard MBean. Typically, a management application will first obtain the
management interface through the get MBeanl nf o method, to have the names of the
attributes and operations. The application will then make calls to getters, setters and
the i nvoke method of the dynamic MBean.

In fact, the interface for dynamic MBeans is very similar to that of the MBean server
in the JMX agent (see “Role of the MBean Server” on page 127). A dynamic MBean
provides the management abstraction that the MBean server provides for standard

MBeans. This is why management applications can manipulate both kinds of MBean
without distinction: the same management operations are applied to both.

In the case of the standard MBean, the MBean server uses introspection to find the
management interface and then call the operations requested by the manager. In the
case of the dynamic MBean, these tasks are taken over by the dynamic MBean’s
implementation. In effect, the MBean server delegates the self description
functionality to the get MBean! nf o method of a dynamic MBean.

Coherence

With this delegation comes the responsibility of ensuring coherence between the
dynamic MBean’s description and its implementation. The MBean server does not
test or validate the self description of a dynamic MBean in any way. Its developer
must guarantee that the advertised management interface is accurately mapped to
the internal implementation. For more information about describing an MBean, see
“MBean Metadata Classes” on page 60.

From the manager’s perspective, how the dynamic MBean implements the mapping
between the declared management interface and the returned attribute values and
operation results is not important; it only expects the advertised management
interface to be available. This gives much flexibility to the dynamic MBean to build
more complex data structures, expose information that it can gather off-line, or
provide a wrapper for resources not written in the Java programming language.

Dynamics

Because the management interface of a dynamic MBean is returned at runtime by
the get MBeanl nf 0 method, the management interface itself can be dynamic. That
is, subsequent calls to this method might not describe the same management
interface. It should be noted that the get MBeanl nf o method is allowed to vary.

Chapter 2 MBean Instrumentation 49

2.4

Therefore, truly dynamic MBeans, in which you can change the MBean interface, are
possible, though they can only be managed by proprietary management applications
designed specifically to handle them.

Truly dynamic MBeans of this sort can only be used in limited circumstances,
because in general there is no way for a management application to notice that the
interface has changed. Developers implementing such systems should consider how
they work when more than one management application is connected to the system.
Race conditions also need to be considered: for instance, if the MBean sends a
notification to say that its interface has changed, at the same time a management
application might be performing an operation on the MBean based on its old
interface.

The descriptor field (see page 60) i mrut abl el nf o can be used to declare explicitly
whether the management interface of an MBean will change over its lifetime.

Inheritance Patterns

The introspection of an MBean is the process that JMX agents use to determine its
management interface. This algorithm is applied at runtime by a IMX compliant
agent, but it is described here because it determines how the inheritance scheme of
an MBean influences its management interface.

When introspecting a standard MBean, the management interface is defined by the
design patterns used in its MBean interface. Because interfaces can also extend
parent interfaces, all public methods in the inheritance tree of the interface are also
considered. When introspecting a dynamic MBean, the management interface is
given through the Dynani cMBean interface. In either case, the algorithm determines
the names of the attributes and operations that are exposed for the given resource.

The introspection algorithm used is the following;:

1. If Myd ass is an instance of the Dynami cMBean interface, then the return value
of its get MBean! nf o method will list the attributes and operations of the
resource. In other words, MyCl ass is a dynamic MBean.

2. If the MyCl ass MBean is an instance of a MyCl assMBean interface, then only the
methods listed in, or inherited by, the interface are considered among all the
methods of, or inherited by, the MBean. The design patterns are then used to
identify the attributes and operations from the method names in the
MyCl assMBean interface and its ancestors. In other words, MyCl ass is a
standard MBean.

50 Java Management Extensions Specification, version 1.4 « November 9, 2006

3. If Myd ass is an instance of the Dynamni cMBean interface, then MyCl assMBean is
ignored. If MyCl assMBean is not a public interface, it is not a JMX manageable
resource. If the MBean is an instance of neither MyCl assMBean nor
Dynami cMBean, the inheritance tree of MyCl ass is examined, looking for the
nearest superclass that implements its own MBean interface.

a. If there is an ancestor called Super Cl ass that is an instance of
Super O assMBean, the design patterns are used to derive the attributes and
operations from Super Cl assMBean. In this case, the MBean MyCl ass then
has the same management interface as the MBean Super C ass. If
Super Cl assMBean is not a public interface, it is not a JMX manageable
resource.

b. When there is no superclass with its own MBean interface, Myl ass is not a
Standard MBean.

4. If none of the above conditions applies and MyCl ass implements an MXBean
interface, then MyCl ass is an MXBean and its attributes and operations are
determined by the MXBean interface as detailed in the API documentation for
j avax. managenent . MXBean.

As a general rule, the management interface is defined either by the Dynami cMBean
interface, if the MBean is an instance of Dynamni cMBean, or by the MBean class or
the nearest ancestor that implements its own MBean interface. If neither the class nor
any of its superclasses follows the rules for a standard or dynamic MBean, it is not a
JMX manageable resource and the JMX agent will raise an MBean error (see “JMX
Exceptions” on page 119). Similarly, an MBean interface implemented by a standard
MBean must be public.

These rules do not exclude the rare case of a class that inherits from a standard
MBean but is itself a dynamic MBean because it implements the Dynam cMBean
interface. On the other hand, a class that inherits from a dynamic MBean is always a
dynamic MBean, even if it follows the rules for a standard MBean.

Standard MBean Inheritance

For standard MBeans, the management interface can be built up through inheritance
of both the class and its interface. This is shown in the following examples, where
the class fields al, a2, and so on, stand for attributes or operations recognized by the
design patterns for standard MBeans. Various combinations of these example cases
are also possible.

Chapter 2 MBean Instrumentation 51

52

AMBean

al
a2

N < «implements»
N

~

~

A

al
a2
a3

FIGURE 2-2 Standard MBean Inheritance (Case 1)

B

AMBean
1
22 Nz < «implements»
A
al
a2
a3

«extends»

bl
b2

FIGURE 2-3 Standard MBean Inheritance (Case 2)

AMBean

al
a2

Nz <~ «implements»
N

~

~

BMBean

b2

Nz < «implements»
N

~
~

A

B

al
a2
a3

«extends»

bl
b2

FIGURE 2-4 Standard MBean Inheritance (Case 3)

AMBean

<l

«extends»

al
a2

v ~ «implements»

~
N
N

BMBean

b2

N < «implements»
N

~
~

S

ALK

B

al
a2
a3

«extends»

bl
b2

FIGURE 2-5 Standard MBean Inheritance (Case 4)

Java Management Extensions Specification, version 1.4 « November 9, 2006

In the simplest case, class A
implements class AVBean,
which therefore defines the
management interface for A:
{al, a2}.

If class B extends A without
defining its own MBean
interface, then B is also an
MBean. B has the same
management interface as

A: {al, a2}

If class B does implement
the BMBean interface, then
this defines the onl
management interface
considered: {b2}.

The BMBean interface and all
interfaces it extends make up
the management interface

for the elements which B
defines or inherits: {al, a2, b2}.

Whether or not Aimplements
AMBean makes no difference
with regards to B.

AMBean] 5 BMBean The class B must implement
al «extends» b2 all methods defined in or
a2 v < «implements» inherited by the BMBean
N interface. If it does not inherit
AR them, it must implement them
B explicitly: {al, a2, b2}.
al bl
a2 b2

FIGURE 2-6 Standard MBean Inheritance (Case 5)

Dynamic MBean Inheritance

Like standard MBeans, dynamic MBeans can also inherit their instrumentation from
a superclass. However, the management interface cannot be composed from the
inheritance tree of the dynamic MBean class. Instead, the management interface is
defined in its entirety by the get MBeanl nf o method or the nearest superclass
implementation of this method.

In the same way, subclasses can also redefine getters, setters and the i nvoke
method, thus providing a different behavior for the same management interface. It is
the MBean developer’s responsibility that the subclass” implementation of the
attributes or operations matches the management interface that is inherited or
exposed.

DynamicM Bean If class D extends C without
redefining the get MBeanl nf o
gg¥£sﬂtrgr% \Z < «implements» method, then Dis a dynamic
get N MBean with the same manage-
invoke N «extends» .
ment interface. However, D

C <— D overrides the getter and setter
methods of C, thus providing

getMBeaninfo . - .
ctters/setters ctters/setters | 2 different implementation of
g invoke g the same attributes.

FIGURE 2.7 Dynamic MBean Inheritance

Chapter 2 MBean Instrumentation 53

2.5

2.5.0.1

JMX Notification Model

The management interface of an MBean allows its agent to perform control and
configuration operations on the managed resources. However, such interfaces
provide only part of the functionality necessary to manage complex, distributed
systems. Most often, management applications need to react to a state change or to a
specific condition when it occurs in an underlying resource.

This section defines a model that allows MBeans to broadcast such management
events, called notifications. Management applications and other objects register as
listeners with the broadcaster MBean. The MBean notification model of JMX enables a
listener to register only once and still receive all the different events that might occur
in the broadcaster.

The JMX notification model relies on the following components:

= A generic event type, Noti fi cati on, that can signal any type of management
event. The Not i fi cati on event can be used directly, or can be subclassed,
depending on the information that needs to be conveyed with the event.

=« The NotificationLi stener interface, which needs to be implemented by
objects requesting to receive notifications sent by MBeans.

= The NotificationFilter interface, which needs to be implemented by objects
that act as a notification filter. This interface lets notification listeners provide a
filter to be applied to notifications emitted by an MBean.

= The NotificationBroadcast er interface, which needs to be implemented by
each MBean that emits notifications. This interface allows listeners to register
their interest in the notifications emitted by an MBean.

= The NotificationEm tter interface, that extends
Noti fi cati onBroadcast er to allow more control when removing listeners.

By using a generic event type, this notification model allows any one listener to
receive all types of events from a broadcaster. The filter is provided by the listener to
specify only those events that are needed. Using a filter, a listener only needs to
register once to receive all selected events of an MBean.

Any type of MBean, standard or dynamic, can be either a notification broadcaster, a
notification listener, or both at the same time. Notification filters are usually
implemented as callback methods of the listener itself, but this is not a requirement.

Notification Type

The type of a notification, not to be confused with its Java class, is the
characterization of a generic notification object. The type is assigned by the
broadcaster object and conveys the semantic meaning of a particular notification.

54 Java Management Extensions Specification, version 1.4 « November 9, 2006

2.5.1

The type is given as a St ri ng field of the Noti fi cati on object. This string is
interpreted as any number of dot-separated components, allowing an arbitrary, user-
defined structure in the naming of notification types.

All notification types prefixed by “JMX. ” are reserved for the notifications emitted
by the components of the JMX infrastructure defined in this specification, such as
JMX. nmbean. r egi st er ed. Otherwise, notification broadcasters are free to define all
the types they use when naming the notifications they emit. Usually, MBeans will
use type strings that reflect the nature of their notifications within the larger
management structure in which they are involved.

For example, a vendor who provides JMX manageable resources as part of a
management product might prefix all its notification types with VendorName.
FIGURE 2-8 below shows a tree representation of the structure induced by the dot
notation in notification type names.

JMX VendorName
nbean . event 1 resour ceA
regi stered event Al
unregi stered event A2
JMX. mbean. r egi st ered VendorName. event 1

JMX. nbean. unr egi st er ed VendorName. r esour ceA. event Al
c VendorName. r esour ceA. event A2

FIGURE 2-8 Structure of Notification Type Strings

Noti ficati on Class

The Noti fi cati on class extends the j ava. uti | . Event Qbj ect base class and
defines the minimal information contained in a notification. It contains the following
fields:

» The notification type, a string expressed in a dot notation similar to Java properties,
for example: vendorName. r esour ceA. event Al

= A sequence number, a serial number identifying a particular instance of notification
in the context of the notification broadcaster

Chapter 2 MBean Instrumentation 55

= A time stamp, indicating when the notification was generated

= A message contained in a string, which could be the explanation of the notification
for displaying to a user

= User data is used for whatever other data the notification broadcaster will
communicate to its listeners

Notification broadcasters use the notification type to indicate the nature of the event
to their listeners. Additional information that needs to be transmitted to listeners is
placed in the message or in the user data fields.

In most cases, this information is sufficient to allow broadcasters and listeners to
exchange instances of the Not i fi cati on class. However, subclasses of the

Noti fi cati on class can be defined when additional semantics are required within
the notification object.

2.5.2 Noti fi cati onBr oadcast er and
Noti ficati onEm tter Interfaces

This interface specifies three methods that MBeans acting as notification
broadcasters must implement:

= getNotificationlnfo-Gives a potential listener the description of all
notifications this broadcaster can emit. This method returns an array of
MBeanNot i fi cati onl nf o objects, each of which describes a notification. For
more information about this class, see “MBeanNot i fi cati onl nf o Class” on
page 65.

= addNotificationListener - Registers a listener’s interest in notifications sent
by this MBean. This method takes a reference to a Noti fi cati onLi st ener
object, a reference to a Noti fi cati onFi | ter object, and a handback object.

The handback object is provided by the listener upon registration and is opaque
to the broadcaster MBean. The implementation of the broadcaster interface must
store this object and return its reference to the listener with each notification. This
handback object can allow the listener to retrieve context information for use
while processing the notification.

The same listener object can be registered more than once, each time with a
different handback object. This means that the handl eNot i fi cat i on method of
this listener will be invoked several times, with different handback objects.

The MBean has to maintain a table of listener, filter and handback triplets.
When the MBean emits a notification, it invokes the handl eNoti fi cati on
method of all the registered Noti fi cati onLi st ener objects, with their
respective handback object.

56 Java Management Extensions Specification, version 1.4 « November 9, 2006

2.5.3

If the listener has specified a Not i fi cati onFi | t er when registering as a

Noti fi cationLi st ener object, the MBean will invoke the filter’s

i sNotificationEnabl ed method first. Only if the filter returns an affirmative
(t r ue) response will the broadcaster then call the notification handler.

= renoveNotificationLi stener - Unregisters the listener from a notification
broadcaster. If a listener has been registered several times with this broadcaster,
all entries corresponding to the listener will be removed.

Any type of MBean can implement the Not i fi cati onBr oadcast er interface. This
might lead to a special case of a standard MBean that has an empty management
interface: its role as a manageable resource is to be a broadcaster of notifications. It
must be a concrete class, and it must implement an MBean interface, which in this
case defines no methods. The only methods in its class are those implementing the
Noti fi cati onBroadcast er interface. This MBean can be registered in a J]MX
agent, and its management interface only contains the list of notifications that it may
send.

Instead of Not i fi cati onBr oadcast er, an MBean can implement its subinterface
Noti ficati onEm tter, introduced in version 1.2 of the JMX specification. It is
recommended that new code use Noti fi cati onEm tter rather than

Not i fi cati onBroadcast er. NotificationEmitter adds a second

removeNot i ficationLi st ener method that specifies the filter and handback
values for the listener to be removed. If the listener is registered more than once with
different filter and handback values, only a matching one is removed.

Instead of implementing Not i fi cati onBroadcast er or NotificationEmtter,
an MBean can inherit from the standard JMX class

Noti fi cati onBroadcast er Support. This class manages a list of listeners,
modified by the addNot i fi cati onLi st ener and

renmoveNot i fi cati onLi st ener methods. Its sendNot i fi cati on method sends
a notification to all listeners in the list whose filters accept it.

Noti fi cati onLi st ener Interface

This interface must be implemented by all objects interested in receiving
notifications sent by any broadcaster. It defines a unique callback method,

handl eNot i fi cati on, which is invoked by a broadcaster MBean when it emits a
notification.

Besides the Not i fi cati on object, the listener’s handback object is passed as an
argument to the handl eNot i fi cat i on method. This is a reference to the same
object that the listener provided upon registration. It is stored by the broadcaster and
returned unchanged with each notification.

Chapter 2 MBean Instrumentation 57

254

2.6

Because all notifications are characterized by their type string, notification listeners
only implement one handler method for receiving all notifications from all potential
broadcasters. This method then relies on the type string, other fields of the
notification object and on the handback object to determine the broadcaster and the
meaning of the notification.

NotificationFilter Interface

This interface is implemented by objects acting as a notification filter. It defines a
unique method, i sNoti fi cati onEnabl ed, which will be invoked by the
broadcaster before it emits a notification. This method takes the Noti fi cati on
object that the broadcaster intends to emit and, based on its contents, returns t r ue
or f al se, indicating whether or not the listener will receive this notification.

The filter object is provided by the listener when it registers for notifications with the
broadcaster, so each listener can provide its own filter. The broadcaster must apply
each listener’s filter, if defined, before calling the handl eNot i fi cati on method of
the corresponding listener.

Listeners rely on the filter to screen all possible notifications and only handle the
ones in which they are interested. An object can be both a listener and a filter by
implementing both the Not i fi cati onLi st ener and the NotificationFilter
interfaces. In this case, the object reference will be given for both the listener and the
filter object when registering it with a broadcaster.

Attribute Change Notifications

This section introduces a specific family of notifications, the attribute change
notifications, that allows management services and applications to be notified
whenever the value of a given MBean attribute is modified.

In the JMX architecture, the MBean has the full responsibility of sending
notifications when an attribute change occurs. The mechanism for detecting changes
in attributes and triggering the notification of the event is not part of the JMX
specification. The attribute change notification behavior is therefore dependent upon
the implementation of each MBean’s class.

MBeans are not required to signal attribute changes, but if they need to do so within
the JMX architecture, they rely on the following components:

= A specific event class, At t ri but eChangeNot i fi cati on, which can signal any
attribute change event.

= A specific filter support, At t ri but eChangeNoti fi cati onFilter, which
allows attribute change notification listeners to filter the notifications depending
on the attributes of interest.

58 Java Management Extensions Specification, version 1.4 « November 9, 2006

2.6.1

2.6.2

Otherwise, attribute change notification broadcasters and listeners are defined by the
same interfaces as in the standard notification model. Any MBean sending attribute
change notifications must implement the Not i fi cati onBr oadcast er interface, as
described in the “JMX Notification Model” on page 54. Similarly, the

Noti ficationLi st ener interface must be implemented by all objects interested in
receiving attribute change notifications sent by an MBean.

At tri but eChangeNoti fi cation Class

The At tri but eChangeNoti fi cati on class extends the Noti fi cati on class and
defines the following additional fields:

= The name of the attribute that has changed

= The type of the attribute that has changed

= The old value of the attribute

= The new value of the attribute

When implementing the attribute change notification model, broadcaster MBeans
must use this class when sending notifications of attribute changes. They can also
send other Not i fi cati on objects for other events. The additional fields of this class
provide the listener with information about the attribute that has changed. The
notification type of all attribute change notifications must be

j mx. attribute.change. This type is defined by the static string
ATTRI BUTE_CHANCE declared in this class.

Attri but eChangeNotificationFilter Class

The At t ri but eChangeNot i ficationFilter class implements the
NotificationFilter interface and defines the following additional methods:

= enabl eAttri but e - Enables notifications for the given attribute name.

= di sabl eAttri but e - Filters out notifications for the given attribute name.

=« disabl eAl | Attri butes - Effectively disables all attribute change notifications.
= get Enabl edTypes - Returns a list of all attribute names that are currently

enabled for receiving notifications

Notification listeners observing certain attributes for changes can instantiate this
class, configure the set of “enabled” attributes and use this object as the filter when
registering as a listener with a known attribute change broadcaster. The attribute
change filter allows the listener to receive attribute change notifications only for
those attributes that are desired.

Chapter 2 MBean Instrumentation 59

2.7

MBean Metadata Classes

This section defines the classes that describe an MBean. These classes are used both
for the introspection of standard MBeans and for the self description of all dynamic
MBeans. These classes describe the management interface of an MBean in terms of
its attributes, operations, constructors and notifications.

The JMX agent exposes all its MBeans, regardless of their type, through the MBean
metadata classes. All clients, whether management applications or other local
MBeans viewing the management interface of an MBean, need to be able to interpret
these objects and their constructs. Certain MBeans might provide additional data by
extending these classes (see “Open Type Descriptions” on page 71 and “Model
MBean Metadata Classes” on page 81).

In addition to providing an internal representation of any MBean, these classes can
be used to construct a visual representation of any MBean. One approach to
management is to present all manageable resources to an operator through a
graphical user interface. To this end, the complete description of all MBeans includes
a descriptive text for each of their components. How this information is displayed is
completely dependent upon the application that manages the MBean and is outside
the scope of this specification.

The following classes define an MBean’s management interface; they are referred to
collectively as the MBean metadata classes throughout this document:

= MBeanl nf o - lists the attributes, operations, constructors and notifications

= MBeanFeat ur el nf o - superclass for the following classes

= MBeanAttri but el nfo - describes an attribute

= MBeanConst ruct or | nf o - describes the signature of a constructor

=« MBeanQper ati onl nf o - describes the signature of an operation

= MBeanPar anet er | nf o - describes a parameter of an operation or constructor
= MBeanNoti ficationl nfo - describes a notification

All of these classes include a descriptor, which is a collection of (key,value) pairs
where the key is a string. Several keys are predefined by the JMX specification. For
example, the uni t s key can be added in the descriptor for an attribute to express
what units the value of the attribute is in. Descriptors are further defined in
Section 4.4 “Descriptors” on page 97, and in the API documentation for

j avax. managenent . Descri pt or. For a Standard MBean, the contents of the
descriptor can be supplied by annotations in the Standard MBean interface, as
described in the API documentation for j avax. managemnent . Descri pt or Key.

The following UML diagram shows the relationship between these classes as well as
the components of each. Each class is fully described in the subsequent sections.

60 Java Management Extensions Specification, version 1.4 « November 9, 2006

MBeanInfo

getClassName(): String
getNotifications(): MBeanNotificationinfof] (<> MBeanFeaturelnfo
getAttributes(): MBeanAttributel nfo[] < _
getConstructors(): MBeanConstructorinfof] <> getName(): String
getOperations(): MBeanOperationinfo[] getDescription(): String
getDescription(): String | getDescriptor(): Descriptor

| | getDescriptor(): Descriptor j& ANNANA

0.* 0.*

MBeanOperationInfo MBeanNotificationInfo

UNKNOWN: int {frozen} getNotifTypes(): String[]
ACTION: int {frozen}

INFO: int {frozen 0.
ACTION_INFO: int {frozen} MBeanAttributeInfo

getReturnType(): String getType(): String
—<>| getSignature(): MBeanParameterinfof] isReadable(): boolean
getlmpact(): int isWritable(): boolean
0. isls(): boolean

MBeanConstructorInfo

’—<> getSignature(): MBeanParameterInfo[]
0.* |0.*

MBeanParameterInfo

getType(): String

FIGURE 2-9 The MBean Metadata Classes

2.7.1 MBeanl nf o Class

This class is used to fully describe an MBean: its attributes, operations, its
constructors, and the notification types it can send. For each of these categories, this
class stores an array of metadata objects for the individual components. If an MBean
has no component in a certain category, for example no notifications, the
corresponding method returns an empty array.

Each metadata object is a class that contains information that is specific to the type of
component. For example, attributes are characterized by their type and read-write
access, and operations by their signature and return type. All components have a
case-sensitive name and a description string.

Chapter 2 MBean Instrumentation 61

2.7.2

Besides the array of metadata objects for each component category, the MBeanl nf o
class has three descriptive methods. The get O assNane method returns a string
containing the Java class name of this MBean. The get Descr i pti on method is used
to return a string describing the MBean that is suitable for displaying to a user in a
GUIL. It describes the MBean's overall purpose or functionality. The get Descri pt or
method returns the descriptor for this MBean as a whole.

In the case of a standard MBean, the information contained in the MBeanl nf o class
is provided by the introspection mechanism of the JMX agent. Introspection can
determine the components of the MBean, but it cannot provide a qualitative
description. The introspection of standard MBeans provides a simple generic
description string for the MBeanl nf o object and all its components. Therefore, all
standard MBeans will have the same description. The St andar dMBean class
provides a way to add custom descriptions while keeping the convenience of the
standard MBean design patterns.

For dynamic MBeans, it is the developer’s responsibility to ensure that the
description strings for the MBean! nf o object and all its components provide correct
and useful information about the MBean.

MBeanFeat ur el nf o Class

This class is not directly returned by an MBean! nf 0 object, but it is the parent of all
the other component metadata classes. All the subsequent objects subclass
MBeanFeat ur el nf o and inherit its three methods, get Nane, get Descri pti on,
and get Descri ptor.

The get Name method returns a string with the name of the component. This name is
case-sensitive and identifies the given component within the MBean. For example, if
an MBean interface exposes the get st at € method, it will be described by an
MBeanAt t ri but el nf o object whose inherited get Name method will return
“state”.

The get Descri pti on method returns a string that provides a human readable
explanation of a component. In the case of dynamic MBeans, this string must be
provided by the developer. For example, this string must be suitable for displaying
to an operator through the user interface of a management application.

The get Descri pt or method returns a descriptor containing arbitrary extra
information about the component.

62 Java Management Extensions Specification, version 1.4 « November 9, 2006

2.7.3

2.7.4

MBeanAt tri but el nf o Class

The MBeanAt t ri but el nf o class describes an attribute in the MBean’s management
interface. An attribute is characterized by its type and by how it is accessed.

The type of an attribute is the Java class that is used to represent it when calling its
getter or setter methods. The get Type method returns a string containing the fully
qualified name of this class. The format of this string is identical to that of the string
returned by the get Nanme method of the j ava. | ang. C ass class.

For a complete description of this format, please see the API documentation
generated by the Javadoc tool for the j ava. | ang. C ass class in the Java 2 platform
standard edition (J2SE) online documentation. As an example, an array of
java.util.Map type is represented as the string “[Lj ava. util. Map; ”, and a
two-dimensional array of bytes is represented as the string “[[B”. Non-array objects
are simply given as their full package name, such as “j ava. util. Map”.

MBean access is either readable, writable or both. Read access implies that a
manager can get the value of this attribute, and write access that it can set its value:

» The i sReadabl e method will return t r ue if this attribute has a getter method in
its MBean interface or if the get At t ri but e method of the Dynani cMBean
interface will succeed with this attribute’s name as the parameter; otherwise it
will return f al se.

= Thei sWitabl e method will return t r ue if this attribute has a setter method in
its MBean interface or if the set At t ri but e method of the Dynani cMBean
interface will succeed with this attribute’s name as a parameter; otherwise it will
return f al se.

= The i sl s method will return t r ue if this attribute has a boolean type and a
getter method with the is prefix (versus the get prefix); otherwise it will return
f al se. Note that this information is only relevant for a standard MBean.

See “Lexical Design Patterns” on page 44 for the definition of getter and setter
methods in standard MBeans.

Note — By this definition, the access information does not take into account any read
or write access to an attribute’s internal representation that an MBean developer
might provide through one of the operations.

MBeanConst ruct or | nf o Class

MBean constructors are described solely by their signature: the order and types of
their parameters. This class describes a constructor and contains one method,

get Si gnat ur e, that returns an array of MBeanPar anet er | nf o objects. This array
has no elements if the given constructor has no parameters. Elements of the

Chapter 2 MBean Instrumentation 63

2.7.5

2.7.6

parameter array are listed in the same order as constructor parameters, and each
element gives the type of its corresponding parameter (see “MBeanPar aret er | nf o
Class” on page 64).

MBeanOper at i onl nf o Class

The MBeanQper at i onl nf o class describes an individual operation of an MBean.
An operation is defined by its signature, return type, and its impact.

The get | npact method returns an integer that can be mapped using the static
fields of this class. Its purpose is to communicate the impact this operation will have
on the managed entity represented by the MBean. A method described as | NFOwill
not modify the MBean, it is a read-only method that only returns data. An ACTI ON
method has some effect on the MBean, usually a write operation or some other state
modification. The ACTI ON_I NFO method has both read and write roles.

The UNKNOWN value is reserved for the description of all operations of a standard
MBean, as introspected by the MBean server.

Impact information is very useful for making decisions on which operations to
expose to users at different times. It can also be used by some security schemes. It is
the dynamic MBean developer’s responsibility to assign the impact of each method
in its metadata object correctly and consistently. Indeed, the difference between
“information” and “action” is dependent on the design and usage of each MBean.

The get Ret ur nType method returns a string containing the fully qualified class
name of the Java object returned by the operation being described. The format of this
string is identical to that of the string returned by the get Name method of the
java. |l ang. C ass class, as described by the API documentation generated by the
Javadoc tool in the J2SE online documentation.

The get Si gnat ur e method returns an array of MBeanPar amet er | nf 0 objects
where each element describes a parameter of the operation. The array elements are
listed in the same order as the operation’s parameters, and each element gives the
type of its corresponding parameter (see below).

MBeanPar anet er | nf o Class

The MBeanPar anet er | nf o class is used to describe a parameter of an operation or
of a constructor. This class gives the class type of the parameter and also extends the
MBeanFeat ur el nf o class to provide a name and description.

64 Java Management Extensions Specification, version 1.4 « November 9, 2006

2.7.7

As in the “MBeanAt t ri but el nf o Class” on page 63, the get Type method returns a
string containing the fully qualified name of this class. The format of this string is
identical to that of the string returned by the get Nane method of the

java. l ang. O ass class, as described by the API documentation generated by the
Javadoc tool in the J2SE online documentation.

MBeanNoti fi cati onl nf o Class

The MBeanNot i fi cati onl nf o class is used to describe the notifications that are
sent by an MBean. This class extends the MBeanFeat ur el nf o class to provide a

name and a description. The name must give the fully qualified class name of the
notification objects that are actually broadcast.

The get Not i f Types method returns an array of strings containing the notification
types that the MBean can emit. The notification type is a string containing any
number of elements in dot notation, not the name of the Java class that implements
this notification. As described in “JMX Notification Model” on page 54, a single
notification class can be used to send several notification types. All these types are
returned in the string array returned by this method.

Chapter 2 MBean Instrumentation 65

66 Java Management Extensions Specification, version 1.4 « November 9, 2006

Open MBeans

3.1

This chapter defines a way of instrumenting resources to which MBeans must
conform if they are to be “open” to the widest range of management applications.
These MBeans are called open MBeans.

In version 1.0 of the JMX specification, open MBeans were incompletely specified
and could not be implemented. In version 1.1, open MBeans were completely
specified but were optional in implementations. As of version 1.2, open MBeans are
a mandatory part of any JMX implementation.

Overview

The goal of open MBeans is to provide a mechanism that will allow management
applications and their human administrators to understand and use new managed
objects when they are discovered at runtime. These MBeans are called “open”
because they rely on small, predefined set of universal Java types and they advertise
their functionality.

Management applications and open MBeans are thus able to share and use
management data and operations at runtime without requiring the recompilation,
reassembly or expensive dynamic linking of management applications. In the same
way, human operators can intelligently use the newly discovered managed object
without having to consult additional documentation. Thus, open MBeans contribute
to the flexibility and scalability of management systems.

Open MBeans are particularly useful where the management application does not
necessarily have access to the Java classes of the agent. By using only standard, self
describing types, agents and management applications can interoperate without
having to share application-specific classes.

In addition, because the set of open MBean data-types is fixed, and does not include
self referential types or subclassing, open MBeans are accessible even when the
connection between the management application and the agent does not support
Java serialization. An important case of this is when the management application is
in a language other than Java.

Chapter 3 Open MBeans 67

3.2

To provide its own description to management applications, an open MBean must be
a dynamic MBean (see “Dynamic MBeans” on page 46). Beyond the Dynamni cMBean
interface, there is no corresponding “open” interface that must be implemented.
Instead, an MBean earns its “openness” by providing a descriptively rich metadata
and by using only certain predefined data types in its management interface.

An open MBean has attributes, operations, constructors and possibly notifications
like any other MBeans. It is a dynamic MBean with the same behavior and all the
same functionality. It also has the responsibility of providing its own description.
However, all the object types that the MBean manipulates, its attribute types, its
operation parameters and return types, and its constructor parameters, must belong
to the set defined in “Basic Data Types” on page 68 below. It is the developer’s
responsibility to implement the open MBean fully using these data types exclusively.

An MBean indicates whether it is open or not through the MBeanl nf o object it
returns. Open MBeans return an QpenMBean! nf o object, a subclass of MBeanl nf o.
Other component metadata classes are also subclassed and it is the developer’s
responsibility to describe the open MBean fully using the proper classes. If an
MBean is marked as open in this manner, it is a guarantee that a management
application compliant with the J]MX specification can immediately make use of all
attributes and operations without requiring additional classes.

Because open MBeans are also dynamic MBeans and provide their own description,
the MBean server does not check the accuracy of the OpenMBeanl! nf 0 object (see
“Behavior of Dynamic MBeans” on page 49). The developer of an open MBean must
guarantee that the management interface relies on the basic data types and provides
a rich, human-readable description. As a rule, the description provided by the
various parts of an open MBean must be suitable for displaying to a user through a
Graphical User Interface (GUI).

Basic Data Types

In order for management applications to make use immediately of MBeans without
recompilation, reassembly, or dynamic linking, all MBean attributes, method return
values, and method arguments must be limited to a universal set of data types. This
set is called the basic data types for open MBeans.

In addition, any array of the basic data types, or an array of a primitive type (for
example byt e[]) can be used in open MBeans. A special class,

j avax. managenent . opennbean. ArrayType is used to represent the definition of
single or multi-dimensional arrays in open MBeans.

68 Java Management Extensions Specification, version 1.4 « November 9, 2006

The following list specifies all data types that are allowed as scalars or as any-
dimensional arrays in open MBeans:

Table 1:
j ava. | ang. Bool ean * java.l ang. Fl oat
java.lang. Byte * java.l ang. | nteger
java. | ang. Char act er e java.l ang. Long
j ava. | ang. Doubl e e java.l ang. Short
bool ean[] e float[]
byte[] e int[]
char[] * long[]
doubl e[] e short[]
java.lang. String » java.l ang. Voi d (operation return
only)
j ava. mat h. Bi gDeci nal e java. mat h. Bi gl nt eger
java.util.Date ¢ javax. managenent . Obj ect Nane

j avax. managenent . opennbean. Conposi t eDat a (interface)

j avax. managenent . opennbean. Tabul ar Dat a (interface)

All the wrapper classes for the primitive types are defined and implemented in all

Java virtual machines, as are the Bi gDeci mal , Bi gl nt eger, and Dat e classes. The
Cbj ect Namre class is provided by the implementation of the J]MX specification. The
Conposi t eDat a and Tabul ar Dat a interfaces are used to define aggregates of the
basic data types and provide a mechanism for expressing complex data objects in a
consistent manner.

Because Conposi t eDat a and Tabul ar Dat a objects are also basic data types, these
structures can contain other composite or tabular structures and have arbitrary
complexity. A Tabul ar Dat a object represents a homogeneous table of

Conposi t eDat a objects, a very common structure in the management domain. The
basic data types can therefore be used alone or in combination to satisfy most data
representation requirements.

Chapter 3 Open MBeans 69

3.2.1

3.2.1.1

Representing Complex Data

This section presents the two non-primitive types from this specification that are
included in the set of basic data types: Conposi t eDat a and Tabul ar Dat a. These
two types are specified as interfaces and are supported by an implementation.

These classes represent complex data types within open MBeans. Both kinds of
objects are used to create aggregate structures that are built up from the primitive
data types and these objects themselves. This means that any J]MX agent or any JMX-
compliant management application can manipulate any open MBean and use the
arbitrarily complex structures it contains.

The two interfaces and implementations provide some semantic structure to build
aggregates from the basic data types. An implementation of the Conposi t eDat a
interface is equivalent to a hash table: values are retrieved by giving the name of the
desired data item. An instance of a Tabul ar Dat a object contains an array of
Conposi t eDat a instances that can be retrieved individually by giving a unique key.
A Conposi t eDat a object is immutable once instantiated; you cannot add an item to
it and you cannot change the value of an existing item. Tables are modifiable, and
rows can be added or removed from existing instances.

Conposi t eDat a Interface and Support Class

The Conposi t eDat aSupport class defines an immutable map with an arbitrary
number of entries, called data items, that can be of any type. To comply with the
design patterns for open MBeans, all data items must have a type among the set of
basic data types. Because this set also includes Conposi t eDat a objects, complex
hierarchies can be represented by creating composite types that contain other
composite types.

When instantiating the Conposi t eDat aSupport class, the user must provide the
description of the composite data object in a Conposi t eType object (see “Open
Type Descriptions” on page 71). Then, all the items provided through the constructor
must match this description of the composite type. Because the composite object is
immutable, all items must be provided at instantiation time, and therefore the
constructor can verify that the items match the description. The get OpenType
method will return this description so that other objects that interact with a
Conposi t eDat a object can know its structure.

A Conposi t eDat a object associates string keys with the values of each data item.
The methods of the class then search for and return data items based on their string
key. The enumeration of all data items is also possible.

70 Java Management Extensions Specification, version 1.4 « November 9, 2006

3.2.1.2

3.2.2

Tabul ar Dat a Interface and Support Class

The Tabul ar Dat aSupport class defines a table structure with an arbitrary number
of rows that can be indexed by any number of columns. Each row is a

Conposi t eDat a object, but all rows must have the same composite data description
(Composi t eType). The columns of the table are headed by the names of the data
items that make up the uniform Conposi t eDat a rows. The constructor and the
methods for adding rows verify that all rows are described by the same

Conposi t eDat a instance.

The index consists of a subset of the data items in the common composite data
structure, with the requirement that this subset must be a key that uniquely
identifies each row of the table. When the table is instantiated, or when a row is
added, the methods of this class must ensure that the index can uniquely identify all
TOWS.

Both the description of composite object that makes up each row and the list of items
that form the index are given by the table description returned by the get QpenType
method. This method defined in the Tabul ar Dat a interface returns the

Tabul ar Type object that describes the table (see “Open Type Descriptions” on

page 71).

The access methods of the Tabul ar Dat a class take an array of objects representing
a key value that indexes one row and returns the Conposi t eDat a instance that
makes up the designated row. A row of the table can also be removed by providing
its key value. All rows of the table can also be retrieved in an enumeration.

Open Type Descriptions

To manipulate the basic data types, management applications must be able to
identify them. Primitive types are given by their wrapper class names and arrays can
be represented in a standard way (see the API documentation generated by the
Javadoc tool for the get Nanme method of the j ava. | ang. C ass class). However,
the complex data types need more structure than a flat string to represent their
contents. Therefore, open MBeans rely on description classes for all the basic data
types, including special structures for describing complex data.

These description classes are collectively known as the open types because they
describe the open MBean basic data types. The abstract QpenType class is the
superclass for the specialized open type classes for each category of basic data type.
It defines common methods for providing a name for the type, giving it a
description, and specifying the actual class that is being described. For simple types,
this information can be redundant, that is the name is the same as the class name.
For composite types, this information allows the user to name each of the items in a

Chapter 3 Open MBeans 71

3.3

complex data structure. The user should also give items a meaningful description for
other users who have to manipulate a composite data instance described by this

type.

The Si npl eType, ArrayType, Conposi t eType, and Tabul ar Type classes extend
the QpenType class to accommodate the different sorts of basic data types.

The primitive types and the Qbj ect Nane class are described by instances of the

Si npl eType class when they are not used in arrays. This class does not define any
more methods than its QpenType superclass, it only defines constant fields for each
of the primitive types (and for the Cbj ect Nane class). These fields are themselves
instances of the Si npl eType class where the name, description and class name are
predefined. These constants avoid having to instantiate and provide the information
for the simple types every time their description is needed.

The Ar rayType class provides a description of arrays of the basic data types. It
inherits its description of the type from the OpenType class and adds the
information about the number of its dimensions. The Ar r ay Type class can also be
used to describe arrays of primitive type such asint[].

Finally, the open type classes for composite and tabular types provide the structure
for describing these aggregate types that are specific to open MBeans. These
structures are recursive, that is, they are built up from other open type instances. For
complex structures, the name and description inherited from QpenType provide
overall information about the structure.

A Conposi t eType instance gives the name, description and open type object for
each item in the data structure. When associated with a Conposi t eDat a object (see
“Conposi t eDat a Interface and Support Class” on page 70), the composite type
describes the open type for each item of the composite data. This allows any
manager that needs to handle the composite data instance to understand how to
handle each of its constituent items.

Similarly, the Tabul ar Type gives the description needed to manipulate a

Tabul ar Dat a object (see “Tabul ar Dat a Interface and Support Class” on page 71).
This includes the open type instance that describes the composite structure of each
row, and the list of item names in this structure that index the table.

Open MBean Metadata Classes

To distinguish open MBeans from other MBeans, J]MX provides a set of metadata
classes that are used specifically to describe open MBeans. These classes inherit from
the MBeanl nf o class and its components. The MBean! nf o classes are fully
described in “MBean Metadata Classes” on page 60. The present section discusses
only those components that are particular to open MBeans.

72 Java Management Extensions Specification, version 1.4 « November 9, 2006

3.3.1

As of version 1.3 of this specification, an alternative to using these classes is to add
certain fields to the descriptor in a MBeanAt t ri but el nf o, MBeanOper at i onl nf o,
or MBeanPar anet er | nf 0. The openType field specifies the Open Type for an
attribute, parameter, or operation return value. The def aul t Val ue, mi nVal ue,
maxVal ue, and | egal Val ues fields specify default and allowed values for
attributes, parameters, and operatino return values.

The following interfaces in the j avax. managenent . opennmbean package define the
management interface of an open MBean:

= OpenMBeanl nf o - lists the attributes, operations, constructors and notifications
= OpenMBeanQper at i onl nf o - describes the method of an operation

= OpenMBeanConst ruct or | nf o - describes a constructor

= QpenMBeanPar anet er | nf o - describes a method parameter

= OpenMBeanAttri but el nf o - describes an attribute

For each of the above interfaces, a support class provides an implementation and
directly extends the MBean metadata class, the name of which is given by removing
the Open prefix. Each of these classes describes a category of components in an open
MBean. However, open MBeans do not have a specific metadata object for
notifications: they use the MBeanNot i fi cati onl nf o class described on page 65.

Through methods inherited from their superclasses, the open MBean metadata
objects describe the management interface of an open MBean. Beyond this
description, they provide new methods for returning the extra information required
of open MBeans and to return the description of the new aggregate data types. This
description is given by the appropriate subclass of the OpenType class.

Because open MBeans are a universal way of exchanging management functionality,
their description must be rich enough for an operator to understand and use their
functionality. All the open MBean metadata classes inherit the get Descri pti on
method that must return a non-empty string. Each component of an open MBean
must use this method to provide a description of itself, for example, the side-effects
of an operation or the significance of an attribute. All descriptions must be suitable
for displaying to a user in a GUIL

The extra information that the open MBean model allows the developer to provide is
a list of legal values and one default value for all attributes and all operation
parameters. This information allows any user to manipulate a new or unfamiliar
open MBean intelligently.

OpenMBeanl nf o Interface and Support Class

The OpenMBeanl nf oSupport class provides the main information structure for
describing an open MBean. It implements the QpenMBeanl nf o interface and
extends the MBeanl nf o class. Thus, it inherits the methods for specifying the class

Chapter 3 Open MBeans 73

3.3.2

name and overall MBean description. It also inherits the method for returning an
array of notification metadata objects, as notifications are described in the same way
as for dynamic MBeans.

However, this class overrides all other methods that describe each category of
MBean component: attributes, operations and constructors. Their new
implementation still describes all components of a given category, but they now rely
on the open MBean metadata classes. Because each of the open MBean metadata
objects subclasses the original metadata object, each method returns an array of the
subclass type to describe an open MBean. The open MBean metadata classes for each
category of component are described in the following sections.

OpenMBeanQper at i onl nf o and
OpenMBeanConst r uct or | nf o Interfaces and
Support Classes

The OpenMBeanQOper at i onl nf oSupport and OQpenMBeanConst r uct or | nf o-
Suppor t classes implement their corresponding interface and extend the
MBeanQper at i onl nf o and MBeanConst r uct or | nf o classes, respectively (see
their definition on page 63). The former describes an operation of an open MBean,
and the latter describes one of its constructors.

Both of these classes override the get Si gnat ur e method of their respective
superclass, again only to describe their parameters with open MBean metadata
objects. The get Si gnat ur e method nominally returns an array of

MBeanPar anet er | nf o objects, but both implementations actually return an array
of OpenMBeanPar anet er | nf 0 instances whose class is described in the next
section.

The OpenMBeanQper at i onl nf o interface specifies the get Ret ur nQpenType
method. The open MBean metadata use this method to provide the description of
the open type class that is actually returned by the method. For example, if the
return type is actually a complex data object, this method returns either a

Composi t eType or Tabul ar Type instance that describes the data structure of the
return type. When the return type is one of the Java primitive types, this information
is redundant with the result of the get Ret ur nType method. However, by returning
the appropriate Si npl eType instance, this method allows managers to treat all the
open types homogeneously.

Only the OpenMBeanQper at i onl nf o interface specifies the get | npact method,
and in the case of open MBean, it cannot return UNKNOWN. This means that all
operations must be identified as ACTI ON, I NFO, or ACTI ON_I NFOwhen instantiating
their metadata objects. It is the open MBean developer’s responsibility to assign the
impact of each operation correctly. The get | npact method provides information to
the user about an operation’s side effects, as a complement to its self description.

74 Java Management Extensions Specification, version 1.4 « November 9, 2006

3.3.3

OpenMBeanPar anet er | nf o and
OpenMBeanAt t ri but el nf o Interfaces and
Support Classes

The OpenMBeanPar anet er | nf oSupport and QpenMBeanAtt ri but el nf o-
Suppor t classes implement their corresponding interface extend the

MBeanPar anet er | nf o and MBeanAt t ri but el nf o classes, respectively (see their
definition on page 64 and page 63). The former describes one parameter of an
operation or constructor, and the latter describes an attribute of an open MBean.

Because these classes are specific to open MBeans, all parameter and attribute types
returned by the inherited get Type method are necessarily one of the basic data
types. To describe the complex data types, both interfaces also specify the

get OpenType method, that returns the OpenType subclass that describes the
parameter or attribute. This allows a management application to handle all open
types, including complex data structures that must be described by Arr ay Type,
Conposi t eType or Tabul ar Type instances.

The open MBean attribute metadata inherits i sReadabl e, i sWitable,andisls
for defining attribute access. None of these methods are overridden and therefore
have the same functionality as in the superclass.

Both classes also define the get Def aul t Val ue and get Legal Val ues methods to
provide additional information about the parameter or attribute. These methods
have exactly the same functionality in each class.

The get Def aul t Val ue method is used to indicate an optional default value for a
given parameter or attribute. At runtime, it returns an Qbj ect that must be
assignment compatible with the type named by the get Type method of the same
parameter or attribute description object. The default value can be used to initialize
an attribute or to provide a parameter value when the operation’s caller has no
particular preference for some parameter. It can be nul | .

The get Legal Val ues method is used to return an optional list of permissible
values for a given parameter or attribute. It returns an Cbj ect array, the elements of
which must be assignment compatible with the type named by the get Type method
of the same parameter or attribute description object. The legal values can be used to
provide the user with a list of choices when editing writable attributes or filling in
operation parameters. For readable attributes, this method provides a list of legal
values that can be expected. If a set of legal values is supplied, then the methods that
implement the Dynani cMBean interface must verify that any value written to the
attribute or used for this parameter is a member of this set. If get Legal Val ues
returns nul |, then all assignment compatible values are legal.

Chapter 3 Open MBeans 75

3.4

76

Summary of Open MBean Requirements

To summarize, an open MBean must possess the following properties:

It must fully implement the Dynam cMBean interface.

All attributes, method arguments, and non-void return values must be objects in
the set of basic data types for open MBeans, described by an instance of the
appropriate OpenType subclass.

The implementation of the get MBeanl nf 0 method must return an instance of a
class that implements the QpenMBeanl nf o interface. This object must fully
describes the MBean components using the open MBean metadata objects.

All the following methods must return valid, meaningful data (non-empty
strings) suitable for display to users:

« OpenMBeanl nf 0. get Descri ption

« OpenMBeanOper ati onl nfo. get Descri ption

« OpenMBeanConstructor | nfo. get Description
« OpenMBeanPar anet er | nf 0. get Descri ption

« OpenMBeanAttri butel nfo. getDescription

« MBeanNotificationl nfo.getDescription

Instances of OpenMBeanQOper at i onl nf 0. get | npact must return one of the
constant values ACTI ON, | NFO or ACTI ON_I NFQO. The value UNKNOWN cannot be
used.

Note — As with other dynamic MBeans, the MBean server does not verify the proper
usage of the open MBean metadata classes. It is up to the MBean developer to ensure
that all metadata for composite data and tabular data provide coherent default
values, legal values and indexes.

The developer must also ensure that all MBean components are adequately
described in a meaningful way for the intended users. This qualitative requirement
cannot be programmatically enforced.

Java Management Extensions Specification, version 1.4 « November 9, 2006

Model MBeans

4.1

A model MBean is a generic, configurable MBean that anyone can use to instrument
almost any resource rapidly. Model MBeans are dynamic MBeans that also
implement the interfaces specified in this chapter. These interfaces define structures
that, when implemented, provide an instantiable MBean with default and
configurable behavior.

Further, the Java Management extensions specify that a model MBean
implementation must be supplied as part of all conforming JMX agents. This means
that resources, services and applications can rely on the presence of a generic
template for creating manageable objects on-the-fly. Users only need to instantiate a
model MBean, configure the exposure of the default behavior, and register it in a
JMX agent. This significantly reduces the programming burden for gaining
manageability. Developers can instrument their resources according to the JMX
specification in as little as three to five lines of code.

Instrumentation with model MBeans is universal because instrumentors are
guaranteed that there will be a model MBean appropriately adapted to all
environments that implement the Java Management extensions.

Overview

The model MBean specification is a set of interfaces that provides a management
template for managed resources. It is also a set of concrete classes provided in
conjunction with the JMX agent. The J]MX agent must provide an implementation
class named j avax. managenent . nodel nbean. Requi r edMbdel MBean. This
model MBean implementation is intended to provide ease of use and extensive
default management behavior for the instrumentation.

The MBean server is a repository and a factory for the model MBean, so the
managed resource obtains its model MBean object from the JMX agent. Managed
resource developers do not have to supply their own implementation of this class.
Instead, the resource is programmed to create and configure its model MBean at
runtime, dynamically instrumenting the management interface it needs to expose.

Chapter 4 Model MBeans 77

78

Resources to be managed add custom attributes, operations, and notifications to the
basic model MBean object by interfacing with the JMX agent and model MBeans that
represent the resource. There can be one or more instances of a model MBean for
each instance of a resource (application, device, and so forth) to be managed in the
system. The model MBean is a dynamic MBean, meaning that it implements the
Dynani cMBean interface. As such, the JMX agent delegates all management
operations to the model MBean instances.

The model MBean instances are created and maintained by the JMX agent, like other
MBean instances. The managed resource instantiating the model MBean does not
have to be aware of the specifics of the implementation of the model MBean.
Implementation differences between environments include the JVM, persistence,
transactional behavior, caching, scalability, throughput, location transparency,
remoteability, and so on. The Requi r edMbdel MBean implementation will always be
available, but there can be other implementations of the model MBean available,
depending on the needs of the environment in which the JMX agent is installed.

For example, a JMX agent running on a Java 2 Platform, Micro Edition (J2ME™)
environment can provide a Requi r edMbdel MBean with no persistence or
remoteability. A JMX agent running in an application server’s JVM supporting Java
2 Platform, Enterprise Edition (J2EE™) technologies can provide a

Requi r edMbdel MBean that handles persistence, transactions, remote access,
location transparency, and security. In either case, the instrumentation programmer’s
task is the same. MBean developers do not have to provide different versions of their
MBeans for different Java environments, nor do they have to program to a specific
Java environment.

The model MBean, in cooperation with its JMX agent, will be implemented to
support its own persistence, transactionality, location transparency, and locatability,
as applicable in its environment. Instrumentation developers do not need to develop
MBeans with their own transactional and persistence characteristics. They merely
instantiate model MBeans in the J]MX agent and trust that the model MBean
implementation is appropriate for the environment in which the JMX agent currently
exists.

Any implementation of the model MBean must implement the Model MBean
interface that extends the Dynam cMBean, Per si st ent MBean and

Model MBeanNot i fi cati onBr oadcast er interfaces. The model MBean must
expose its metadata in a Model MBeanl nf oSuppor t object that extends MBeanl nf o
and implements the Model MBeanl nf o interface. A model MBean instance sends
attribute change notifications and generic notifications for which management
applications can listen. The model MBean has both a default constructor and a
constructor that takes a Model MBeanl nf o instance.

The model MBean information includes a descriptor for each attribute, constructor,
operation, and notification in its management interface. A descriptor is an essential
component of the model MBean. It contains dynamic, extensible, and configurable
behavior information for each MBean component. This includes, but is not limited

Java Management Extensions Specification, version 1.4 « November 9, 2006

4.1.1

to, logging policy, notification responses, persistence policy, value caching policy.
Most importantly, the descriptors of a model MBean provide the mapping between
the attributes and operations in the management interface and the actual methods
that need to be called to satisfy the get, set, or i nvoke request.

As of version 1.3 of this specification, descriptors are present in all MBean types, not
just Model MBeans.

Allowing methods to be associated with the attribute allows for dynamic, runtime
delegation. For example, a get Attri but e("nyAppl St at us") call can actually
invoke the nyAppl . St at usChecker method on another object that is part of the
managed resource. The object myAppl can be in this JVM, or it can be in another
JVM on this host or another host, depending on how the model MBean has been
configured through its descriptors. In this way, distributed, dynamic, and
configurable model MBeans are supported.

The Model MBean interface extends the Dynanmi cMBean interface. The
implementation of the Dynani cMBean methods uses the policy in the descriptors to
guide how the requests are satisfied. How to do this is described in greater detail in
“Dynani cMBean Implementation” on page 93.

The Model MBean interface also extends the Per si st ent MBean interface specific to
model MBeans. The | oad and st or e methods of this interface are responsible for
analyzing and complying with the persistence policy in the descriptors. The
persistence policy can be specified at both the MBean level and at the attribute level.
These methods are called when appropriate by the model MBean implementation
itself and not necessarily by the managed resource or a management application.
The implementation can choose to not support any actual, direct persistence, in
which case these methods will do nothing. However, if persistence is not
implemented, an exception will be thrown.

Generic Notifications

The Model MBean interface extends the Mbdel MBeanNot i fi cati onBr oadcast er
interface. This interface defines a sendNot i fi cat i on method that sends any

Not i fi cati on object to all registered listeners. It also overloads the

sendNot i fi cati on method to accept a text message and wraps it in a notification
called Generi c of type j nx. nodel nbean. generi c. This makes it easier for
managed resources to signal important events as well as informational events.
Finally, this interface also provides methods for sending the attribute change
notifications for which the model MBean’s implementation is responsible.

Chapter 4 Model MBeans 79

4.1.2

Interaction with Managed Resources

When a managed resource is instrumented through a model MBean, it uses the
Model MBeanl nf o interface to expose its intended management interface. At
initialization, the managed resource obtains access to the JMX agent through the
static f i ndMBeanSer ver method of the MBeanSer ver Fact ory class (see “MBean
Server Factory” on page 127). The managed resource will then create or find and
reference one or more instances of the model MBean using the i nst anti ate,

cr eat eMBean, get Qbj ect | nst ance, or quer yMBeans methods. The predefined
attributes that are part of the model MBean’s name are meant to establish a unique
managed resource (MBean) identity.

The managed resource then configures the model MBean object with its management
interface. This includes the custom attributes, operations, and notifications that it
needs management applications to access through the JMX agent. The resource
specific information can thus be dynamically determined at execution time. The
managed resource sets and updates any type of data as an attribute in the model
MBean whenever necessary with a single set At t ri but e method invocation. The
attribute is now published for use by any management system.

The model MBean has an internal caching mechanism for storing attribute values
that are provided by the management resource. Maintaining values of fairly static
attributes in the model MBean allows it to return that value without calling the
managed resource. The resource can also set its model MBean to disable caching,
meaning that the resource will be called whenever an attribute is accessed. In this
case, the managed resource is invoked and it returns the attribute values to the
model MBean. In turn, the model MBean returns these values to the MBean server,
that returns them to the request originator, usually a management application.
Because the model MBean can be persistent and is locatable, critical but transient
managed resources can retain any required counters or state information within the
JMX agent. Likewise, if persistence is supported, the managed resource’s data
survives if the JMX agent is recycled.

The model MBean implements the Not i fi cati onBr oadcast er interface. One
sendNot i fi cati on API call on the model MBean by the managed resource sends
notifications to all “interested” management systems. Predefined or unique
notifications can be sent for any significant event defined by a managed resource or
management system. These notifications must be documented in the

Model MBeanNot i fi cati onl nf o object. Notifications are typically sent by a
managed resource when operator intervention is required or the application’s state
is unacceptable. Notifications can also be sent based on MBean life cycle, attribute
changes, or for informative reasons. The model MBean sends attribute change
notifications whenever a custom attribute is set through the model MBean. The
managed resource can capture change requests initiated by the management system
by listening for the attribute change notification as well. The managed resource can
then choose to implement the attribute change from the model MBean into the
resource.

80 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

4.1.3

4.2

421

Interaction with Management Applications

Management applications access model MBeans in the same way as they access
dynamic or standard MBeans. However, if the manager understands model MBeans
it will be able to get additional information out of the descriptors that are part of the
model MBean. This additional metadata makes it easier for an arbitrary
management console to understand and treat managed resources that are
instrumented as model MBeans. As with any MBean, the management application
will “find” the JMX agent and model MBean objects through the methods of the
MBean server.

The manager can then interact with the model MBean through the JMX agent. It
finds the available attributes and operations through the MBeanl nf o provided by
the managed resource. For model MBeans, the manager finds out behavior details
about supported attributes, operations, and notifications through the

Model MBeanl nf o and Descri pt or interfaces. Like any other MBean, attributes are
accessed through the getter and setter methods of the MBean server, and operations
through its i nvoke method. Because the model MBean is a notification broadcaster,
management notification can be added as listeners for any notifications or attribute
change notifications from the managed resource.

Model MBean Metadata Classes

The management interface of a model MBean is described by its Model MBeanl nf o
instance. The get MBeanl nf o method of a model MBean (specified by the

Dynami cMBean interface) must return an extension of MBeanl nf o that also
supports the Model MBeanl nf o interface. The Mbdel MBeanl nf o interface returns
arrays of Model MBeanAt tri but el nf o, Model MBeanOper ati onl nf o,

Model MBeanConst r uct or | nf o, and Model MBeanNot i fi cati onl nf o instances.
These classes extend the MBean metadata classes of the same name without the
Model prefix.

The model MBean extensions of the MBean metadata classes implement the
Descri pt or Access interface. This allows replacing the Descri pt or for each
attribute, constructor, operation, and notification in the management interface. The
descriptor is accessed through the metadata object for each component.

Descri pt or Interface

A descriptor defines behavioral and runtime metadata that is specific to model
MBeans. The descriptor data is kept as a set of fields, each consisting of a name-
value pair. The Descri pt or interface must be implemented by the class
representing a descriptor. The Descri pt or Access interface defines how to get and
set the Descri pt or from within the model MBean metadata classes. The

Chapter 4 Model MBeans 81

82

Descri pt or interface describes how to interact with a descriptor instance returned
by the Descri pt or Access interface. See “Predefined Descriptor Fields” on

page 102 for a discussion of the valid field names and values that must be
supported.

The JMX specification includes two standard implementations of this interface called
I mut abl eDescri pt or and Descri pt or Support . Most applications will use one
of these rather than implementing the Descri pt or interface themselves.

«Interface»
Descriptor

clone(): Object

getFieldNames(): String[]

getFieldValue(fieldName: String): Object
getFieldValues(fieldNames: String[]): Object[]
getFields(): String[]

setField(fieldName: String, fieldValue: Object)
setFields(fieldNames: String[], fieldVaues: Object([])
removeField(fieldName: String)

isvalid(): boolean

Java Management Extensions Specification, version 1.4 « November 9, 2006

422

The meaning of these methods is explained in the API documentation generated by
the Javadoc tool, that accompanies this specification. A brief summary is presented

in the following table.

TABLE4-1 Descri ptor Interface Methods

Method

Description

get Fi el dNanes
get Fi el dval ue(s)

set Fi el d(s)

get Fi el ds

renoveFi el ds

cl one

isvalid

toString

Returns al the field names of the descriptor ina St ri ng array

Finds the given field name(s) in a descriptor and returns its
(their) value.

Finds the given field name(s) in a descriptor and sets it
(them) to the provided value.

Returns the descriptor information as an array of strings,
each with the fi el dNarme=f i el dVal ue format. If the field
value is null then the field is defined as fi el dName=.

Removes a descriptor field from the descriptor.

Returns a new Descri pt or instance which is a duplicate of
the descriptor.

Returns t r ue if this descriptor is valid for its
descri pt or Type field.

Returns a human-readable string containing the descriptor
information.

Descri pt or Access Interface

This interface must be implemented by the Model MBeanAttri but el nf o,
Model MBeanConst r uct or | nf o, Model MBeanOper at i onl nf o, and
Model MBeanNot i fi cati on classes.

«Interface»
DescriptorAccess

getDescriptor(): Descriptor
setDescriptor(inDescr: Descriptor)

Chapter 4 Model MBeans 83

4.2.3

The meaning of these methods is explained in the API documentation generated by
the Javadoc tool, that accompanies this specification. A brief summary is presented
in the following table.

TABLE4-2 Descri pt or Access Interface Methods

Method Description

get Descri pt or Returns a copy of the descriptor associated with the
metadata class

set Descri ptor Replaces the descriptor associated with the metadata class
with a copy of the one passed in. This is a full replacement,
not a merge.

Mbdel MBeanl nf o Interface

The Model MBeanl nf o interface was originally defined to allow the association of a
descriptor with the model MBean, attribute, constructor, operation, and notification
metadata classes. This descriptor is used to define behavioral characteristics of the
model MBean instance. Now that descriptors are present in all types of MBean, the
principal interest of the Model MBeanl nf o interface is that it adds methods to
retrieve particular kinds of descriptors from the contained metadata objects. When
the get MBeanl nf 0 method of the Dynam cMBean interface is invoked on a model
MBean, it must return an instance of a class that implements the Mbdel MBeanl| nf o
interface.

The JMX specification includes a standard implementation of this interface called
Model MBeanl nf oSuppor t . Most applications will use this rather than
implementing the Model MBeanl nf o interface themselves.

84 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

424

«Interface»
ModelMBeanInfo

clone(): Object

getM BeanDescriptor(): Descriptor

setM BeanDescriptor(inDescriptor: Descriptor)

getDescriptor(inDescriptorName: String, inDescriptorType: String): Descriptor
getDescriptors (inDescriptorType: String): Descriptor(]
setDescriptor(inDescriptor: Descriptor, inDescriptorType: String)
setDescriptors(inDescriptors: Descriptor|])

getAttribute(inAttrName: String): ModelMBeanAttributel nfo
getNotification(inNotifName: String): ModelMBeanNatificationlnfo
getOperation(inOperName: String): Model M BeanOperationinfo
getAttributes(): MBeanAttributel nfo[]

getNotifications(): MBeanNotificationlnfo]

getOperations(): MBeanOperationinfo[]

getConstructors(): MBeanConstructorInfo[]

getClassName(): String

getDescription(): String

Model MBeanl nf o Implementation

The requirements of the Model MBean| nf o implementation are the following:

It must extend the MBeanl nf o class.
It must implement the Model MBeanl nf o interface.

Its get At tri but es, get Construct ors, get Oper ati ons, and

get Noti fi cati ons methods must return Model MBeanAttri but el nf o,
Model MBeanConst r uct or | nf o, Model MBeanOper at i onl nf o, and
Model MBeanNot i fi cati onl nf o arrays, respectively.

The Model MBeanAttri but el nf o, Model MBeanConstructorl nfo,

Model MBeanQper at i onl nf 0, and Model MBeanNot i fi cati onl nf o classes it
returns must extend their respective MBeanAt t ri but el nf o,

MBeanConst ruct or I nf o, MBeanQper at i onl nf 0, and

MBeanNot i fi cati onl nf o classes.

The Model MBeanAttri but el nf o, Model MBeanConst ruct or | nf o,

Model MBeanQper at i onl nf 0, and Model MBeanNot i fi cati onl nf o classes it
returns must implement the Descri pt or Access interface. This interface
associates a configurable Descri pt or object with the metadata class. The
descriptor allows the definition of behavioral policies for the MBean component.

Chapter 4 Model MBeans 85

86

» It is recommended that it implement the following constructors, though
implementations of the JMX specification do not have to check this:

TABLE 4-3 Mbdel MBeanl nf o Constructors

Constructor

Description

Model MBeanl nf o

Model MBeanl nf o (with
Model MBeanl nf o)

Mbdel MBeanl nf o (with cl assNane,
descri ption,

Model MBeanAttri butelnfo[],
Model MBeanConstructorlnfo[],
Model MBeanOper ati onl nfo[],
Model MBeanNoti ficationlnfo[])

Model MBeanl nf o (with cl assNane,
descri ption,

Model MBeanAttri butelnfo[],
Model MBeanConstructorlnfo[],
Model MBeanOper ati onlnfo[],
Model MBeanNoti ficationlnfo[],
MBeanDescri pt or)

The default constructor that constructs
a Model MBeanl nf o with empty
component arrays and a default MBean
descriptor.

Constructs a Model MBeanl nf o that is
a duplicate of the one passed in.

Creates a Model MBeanl nf o with the
provided information, but the MBean
descriptor is a default one constructed
by the Model MBeanl nf o
implementation. The constructed
MBean descriptor must not be null. It
contains at least the name and

descri pt or Type fields. The name
should be the MBean class, as returned
by the get O assName method
inherited from MBeanl nf o.

Creates a Mbdel MBeanl nf o with the
provided information. The MBean
descriptor is verified: if it is not valid,
an exception will be thrown and a
default MBean descriptor will be set.

Java Management Extensions Specification, version 1.4 « November 9, 2006

= It must implement the following model MBean-specific methods:

TABLE 4-4 Mbdel MBeanl nf o Methods

Method

Description

get MBeanDescri pt or

set MBeanDescri pt or

get Descri ptor(s)

set Descri ptor(s)

getAttribute
get Operation
getNotification

Returns the MBean descriptor. This descriptor
contains default configuration and policies that
apply to the whole MBean and to its components by
default. The descri pt or Type field will be
“MBean”.

Sets the MBean descriptor. This descriptor contains
MBean-wide default configuration and policies. This
is a full replacement, no merging of fields is done.
The descriptor is verified before it is set: if it is not
valid, the change will not occur.

Returns a descriptor from a model MBean metadata
object by name and descriptor type (as found in the
descri pt or Type field on the descriptor).

Sets a descriptor in the model MBean in a model
MBean metadata object by name and descriptor type
(found in the descri pt or Type field on the
descriptor). Replaces the descriptor in its entirety.

Returns a Model MBeanAt t ri but el nf o by name.
Returns a Model MBeanQper at i onl nf o by name.

Returns a Mbdel MBeanNot i fi cati onl nf o by
name.

= It must implement the following methods specified in the Model MBeanl nf o

interface but identical to those of the MBeanl nf o class (see “MBeanl nf o Class’

on page 61):

7

TABLE 4-5 Mbdel MBeanl nf o Interface Method

Method

Description

getAttributes

get Notifications

get Oper ati ons

Returns an array of all
Model MBeanAt tri but el nf o objects.

Returns an array of all
Model MBeanNot i fi cati onl nf o objects.

Returns an array of all ModeMBeanQper at i onl nf o
objects.

Chapter 4 Model MBeans 87

425

TABLE 4-5 Mbdel MBeanl nf o Interface Method

Method Description
get Constructors Returns an array of all
Model MBeanConst r uct or | nf o objects.
get Cl assNane Returns the name of the managed resource class.
get Descri ption Returns the description of this model MBean
instance.

Model MBeanAtt ri but el nf o Implementation

The Model MBeanAt t ri but el nf 0 must extend the MBeanAt t ri but el nf o class
and implement the Descri pt or Access interface. The Descri pt or Access
interface adds the ability to replace the Descri pt or to the base functionality from
the MBeanAt t ri but el nf o class.

This descriptor must have a nane field that matches the name given by the get Nane
method of the corresponding metadata object. It must have a descri pt or Type
with the value “at t ri but e”. It can also contain the following defined fields:

val ue, def aul t, di spl ayNane, get Met hod, set Met hod, pr ot ocol Map,

persi st Policy, persistPeriod,currencyTimeLimt,

| ast Updat edTi neSt anp, visibility, and presentati onStri ng. See
“Attribute Descriptor Fields” on page 104 for a detailed description of each of these
fields.

The Model MBeanAt t ri but el nf o class must have the following constructors:

= A constructor accepting a name, description, getter Met hod, and setter Met hod
that sets the descriptor to a default value with at least the nane and
descri pt or Type fields set.

= A constructor accepting a name, description, getter Met hod, setter Met hod, and a
Descri pt or instance that has at least its name and descri pt or Type fields set.

= A constructor accepting a name, type, description, i sSReadabl e, i sWi t abl e,
and i sl s boolean parameters that sets the descriptor to a default value with at
least the nane and descri pt or Type fields set.

= A constructor accepting a name, description, i sReadabl e, i sWi t abl e, and
i sl s boolean parameters, and a Descri pt or instance that has at least its nane
and descri pt or Type fields set.

= A copy constructor accepting a Model MBeanAtt ri but el nf o object.

88 Java Management Extensions Specification, version 1.4 ¢« November 9, 2006

4.2.6

427

Model MBeanConst ruct or | nf o Implementation

The Model MBeanConst r uct or | nf 0 must extend the MBeanConst r uct or | nf o
class and implement the Descr i pt or Access interface. The Descri pt or Access
interface adds the ability to replace the Descri pt or instance to the base
functionality of the MBeanConst r uct or | nf o class.

This descriptor must have a nane field that matches the name given by the get Nane
method of the corresponding metadata object. It must have a descri pt or Type
with the value “oper ati on” and arol e of “const ruct or ”. It can also contain the
defined fields di spl ayNane, vi si bility, and presentati onStri ng. See
“Operation Descriptor Fields” on page 105 for a detailed description of each of these
fields.

The Mbdel MBeanConst r uct or I nf o class must have the following constructors:

= A constructor accepting a description and Const r uct or object that sets the
descriptor to a default value with at least nanme and descr i pt or Type fields set.

= A constructor accepting a description, a Const r uct or object, and a Descri pt or
instance that has at least the name and descri pt or Type fields set.

= A constructor accepting a name, a description, and an MBeanPar anet er | nf o
array that sets the descriptor to a default value with at least the name and
descri pt or Type fields set.

= A constructor accepting a name, description, MBeanPar anet er | nf o array, and a
Descri pt or instance that has at least its name and descri pt or Type fields set.

= A copy constructor accepting a Model MBeanConst r uct or | nf o object.

Model MBeanQper at i onl nf o Implementation

The Mbdel MBeanQper at i onl nf o0 must extend the MBeanQOper at i onl nf o class
and implement the Descri pt or Access interface. The Descri pt or Access
interface adds the ability to replace the Descri pt or instance to the base
functionality of the MBeanOper at i onl nf o class.

This descriptor must have a nane field that matches the name given by the get Nane
method of the corresponding metadata object. It must have a descri pt or Type
with the value “oper at i on”. If the r ol e field is present, it must have a value of
“operation”, “getter”, or “setter”. It can also contain the defined fields

di spl ayNane, t ar get Obj ect, t arget Type, val ue, currencyTi neLini t,

| ast Updat edTi neSt anp, vi sibility, and presentati onStri ng. See
“Operation Descriptor Fields” on page 105 for a detailed description of each of these

fields.

The Model MBeanQper at i onl nf o class must have the following constructors:

Chapter 4 Model MBeans 89

428

4.3

= A constructor accepting a description and a Met hod object that sets the descriptor
to a default value with at least its nane and descr i pt or Type fields set.

= A constructor accepting a description, a Met hod object, and a Descri pt or
instance that at least has its nane and descri pt or Type fields set.

= A constructor accepting a name, description, MBeanPar anet er | nf o array, type,
and an impact that sets the descriptor to a default value with at least the nane
and descri pt or Type fields set.

= A constructor accepting a name, description, MBeanPar anet er | nf o array, type,
impact and a Descri pt or instance that has at least its nanme and
descri pt or Type fields set.

= A copy constructor accepting a Model MBeanQper at i onl nf o object.

Model MBeanNot i fi cati onl nf o Implementation

The Model MBeanNot i fi cati onl nf o must extend the MBeanNot i fi cationlnfo
class and implement the Descr i pt or Access interface. The Descri pt or Access
interface adds the ability to replace the Descri pt or instance to the base
functionality of the MBeanNot i fi cati onl nf o class.

This descriptor must have a nane field that matches the name given by the get Nane
method of the corresponding metadata object. It must have a descri pt or Type
with the value “noti fi cati on”. It can also contain the defined fields

di spl ayNane, severity, messagel D, 1 og,logfile,visibility, and
present ationString. See “Notification Descriptor Fields” on page 106 for a
detailed description of each of these fields.

The Model MBeanNot i fi cati onl nf o class must have the following constructors:

= A constructor accepting an array of notification types, a name and a description
that sets the descriptor to a default value with at least its nanme and
descri pt or Type fields set.

= A constructor accepting an array of notification types, a name, a description, and
a Descri pt or instance that has at least its nanme and descri pt or Type fields
set.

= A copy constructor accepting a Model MBeanNot i fi cati onl nfo.

Model MBean Specification

All JMX agents must have an implementation class of a model MBean called

j avax. managenent . nodel nbean. Requi r edMbdel MBean. The

Requi r edMbdel MBean and any other compliant model MBean must comply with
the following requirements:

90 Java Management Extensions Specification, version 1.4 « November 9, 2006

4.3.1

= Implement the Model MBean interface that extends the following interfaces:
« Dynam cMBean
= Persistent MBean
= Mbdel MBeanNoti fi cati onBroadcast er

= Return an object from the get MBeanl nf o method of the Dynamni cMBean
interface that:

= Implements the Model MBeanl nf o interface
= Extends MBeanl nfo

= Returns Mbdel MBeanAttri but el nf o objects from the get Attri but es
method

= Returns Mbdel MBeanConst r uct or | nf o objects from the get Constructors
method

= Returns Mbdel MBeanQper at i onl nf o objects from the get Oper at i ons
method

= Returns Mbdel MBeanNot i fi cati onl nf o objects from the
get Noti fi cati ons method

= Have the following constructors:
= A default constructor having an empty parameter list

= A constructor accepting a Model MBeanl nf o

Mbdel MBean Interface

Java technology-based resources that need to be manageable instantiate the

Requi r edMbdel MBean or another compliant model MBean using the MBean
server's cr eat eMBean method, passing as a parameter the Model MBeanl nf o
(including its descriptors) for the Model MBean instance. The attributes and
operations exposed via the Model MBeanl nf o for the model MBean are accessible to
other MBeans, and to management applications. Through the Model MBeanl nf o
descriptors, values and methods in the managed application can be defined and
mapped to attributes and operations of the model MBean. This mapping can be
defined during development in a file, or dynamically and programmatically at
runtime.

The Model MBean interface extends Dynam cMBean, Per si st ent MBean, and
Model MBeanNot i fi cati onBr oadcast er and its unique methods are defined by
the following UML diagram.

Chapter 4 Model MBeans 91

4.3.2

«Interface»
ModelMBean

setM odel M Beanl nfo(mbi: MBeaninfo)
setManagedResource(mr: Object, mr_type: String)

Model MBean Implementation

The following sections describe how the Model MBean interface must be
implemented by compliant model MBeans and in particular how it is implemented
by the Requi r edMbdel MBean class. This combines both the meaning of the
methods and the implementation details.

set Mbdel MBeanl nf o (with Model MBeanl nf 0)

This method creates the model MBean to reflect the given Model MBeanl nf o
interface. Sets the Mbdel MBeanl nf o object for the model MBean to the provided
Model MBeanl nf o object. Initializes a Model MBean instance using the

Model MBeanl nf o passed in.

The model MBean must be instantiated, but not yet registered with the MBean
server. Only after the model MBean's Model MBeanl nf o and its Descri pt or objects
are customized, should the model MBean be registered with the MBean server.

set ManagedResour ce (with ManagedResour ceQbj ect, Type)

This method sets the managed resource attribute of the model MBean to the
supplied object. Sets the instance of the object against which to execute all
operations in this model MBean management interface (metadata and descriptors).
The St ri ng field encodes the target object type of reference for the managed
resource. This can be:

bj ect Ref erence, Handl e, | OR, EJBHandl e, or RM Ref er ence. An
implementation must support Cbj ect Ref er ence, but need not support the other
types. It can also define implementation-specific types.

If the MBean server cannot process the given target object type, this method will
throw an | nval i dTar get TypeExcept i on.If the t ar get Obj ect field of an
operation’s descriptor is set and is valid, then it overrides the managed resource
setting for that operation’s invocation.

92 Java Management Extensions Specification, version 1.4 « November 9, 2006

4.3.3

Dynam cMBean Implementation

The Dynani cMBean interface defines the following methods:

= get MBeanl nfo

= getAttributeandgetAttributes
= setAttributeandsetAttributes
= invoke

The description of these methods is given in “Dynamni cMBean Interface” on page 47.
Here, we define how the model MBean implementation expresses the functionality
of each method of the interface.

get MBeanl nf o

This method returns the Mbdel MBeanl nf 0 object that implements the

Model MBeanl nf o interface for the Model MBean. Valid attributes, constructors,
operations, and notifications defined by the managed resource can be retrieved from
the Model MBeanl nf o with the get Qper ati ons, get Constructors,

get Attri butes, and get Noti fi cati ons methods.

The Model MBeanl nf o instance returns Model MBeanQper at i onl nf o,

Model MBeanConst ruct or | nf o, Model MBeanAt tri but el nf o, and

Model MBeanNot i fi cati onl nf o arrays, respectively. These classes extend
MBeanQper at i onl nf o, MBeanConst ruct or | nf o, MBeanAtt ri but el nf o, and
MBeanNot i fi cati onl nf o, respectively. These extensions must implement the
Descri pt or Access interface that sets and returns the descriptor associated with
each of these metadata classes. The Model MBeanl nf o also maintains a descriptor
for the model MBean, referred to as the MBean descriptor.

get Attri buteand get Attri butes

These methods are invoked to get attribute information from this instance of the
Model MBean implementation synchronously. Model MBeans that support attribute
value caching will perform cache checking and refreshing in this method. Model
MBean caching policy is set and values are cached in the descriptor for each
attribute. If the model MBean supports the get Met hod field of the descriptor
(assignment of an operation to be invoked when a get is requested for an attribute)
then this method will invoke that operation and return its results as the attribute
value. Otherwise, if a val ue field is defined in the descriptor and it is not “stale” as
described below, its contents are returned. Otherwise, if no val ue or get Met hod
descriptor fields are defined the def aul t field is returned. If no default value is
defined then nul | will be returned.

Chapter 4 Model MBeans 93

94

If caching is supported, then the following algorithm will be used. The model
MBean will check for attribute value staleness. Staleness is determined from the
currencyTi meLi mi t and | ast Updat edTi e fields in the descriptor for the
attribute in its Model MBeanAt t ri but el nf o object. If currencyTi meLinmi t is O,
then the value will never be stale. If cur r encyTi neLi m t is - 1, then the value will
always be stale.

If the val ue in the model MBean is set and not stale, then it will return this value
without invoking any methods on the managed resource. If the attribute value is
stale, then the model MBean will invoke the operation defined in the get Met hod
field of the attribute descriptor. The returned value from this invocation will be
stored in the model MBean as the current value. The | ast Updat edTi ne will be
reset to the current time. If a get Met hod is not defined and the value is stale, then
the def aul t from the Descri pt or for the attribute will be returned.

set Attri buteand set Attri butes

These methods are invoked to set information for an attribute of this instance of the
Model MBean implementation synchronously. The model MBean will invoke the
operation defined in the set Met hod field of the attribute descriptor. If no

set Met hod operation is defined then only the val ue field of the attribute’s
descriptor will be set. Invocation of this method where the new attribute value does
not match the current attribute value causes an At t ri but eChangeNot i fi cation
to be generated.

If caching is supported by the model MBean, the new attribute value will be cached
in the val ue field of the descriptor if the currencyTi meLi m t field of the
descriptor is not - 1. The | ast Updat edTi e field will be set whenever the val ue
field is set.

i nvoke

The i nvoke method will execute the operation name passed in with the parameters
passed in, according to the Dynani cMBean interface. The method will be invoked on
the model MBean’s managed resource (as set by the set ManagedResour ce
method). If the t ar get Obj ect field of the descriptor is set and the value of the

t ar get Type field is valid for the implementation, then the method will be invoked
on the value of the t ar get Obj ect instead. Valid values for t ar get Type include,
but are not limited to, Obj ect Ref er ence, Handl e, | OR, EJBHandlI e, and

RM Ref er ence.

If operation caching is supported, the response from the operation will be cached in
the val ue and | ast Updat edTi meSt anp fields of the operation’s descriptor if the
currencyTi meLi mi t field in the operation’s descriptor is not - 1. If i nvoke is

executed for a method and the val ue field does not contain a stale value then it will

Java Management Extensions Specification, version 1.4 « November 9, 2006

43.4

be returned and the associated method will not actually be executed. This is true
even if the i Nnvoke parameters are not the same as the parameters that produced the
cached value. If this is not appropriate for the operation, caching must not be used.

The Requi r edModel MBean class extends these semantics. If the method name and
signature supplied to i nvoke correspond to a public method of the

Requi r edModel MBean class itself, and that method is listed in the MBeanl nf o,
then that method is invoked. Otherwise, the behaviour is as explained above.

Per si st ent MBean Interface

This interface is implemented by all model MBeans. If the model MBean is not
persistent or not responsible for its own persistence, then these methods might do
nothing. If the model MBean implementation does not support persistence, then
these methods will throw an exception. The methods of the Per si st ent MBean
interface are not intended to be called directly by management applications. Rather,
they are called by the required model MBean to implement the persistence policy
advertised by the MBean descriptor, to the level that it is supported by the JMX
agent’s runtime environment.

«Interface»
PersistentMBean

load()
store()

= | oad

Locates the MBean in a persistent store and primes this instance of the MBean
with the stored values. Any currently set values are overwritten. This should only
be called by an implementation of the Model MBean interface.

= Store

Writes the MBean in a persistent store. It is only called by an implementation of
the Model MBean interface to store itself according to persistence policy for the
MBean. When used, it can be called with every invocation of set Attri but e, or
on a periodic basis.

Chapter 4 Model MBeans 95

4.3.5

Mbdel MBeanNoti fi cati onBr oadcast er
Interface

This interface extends the Not i fi cati onBr oadcast er interface and must be
implemented by any MBean needing to broadcast custom, generic, or attribute
change notifications to listeners. Model MBeans must implement this interface.

In the model MBean, At t ri but eChangeNoti fi cati ons are sent to a different set
of listeners to those to which other notifications would go. All other notifications go
to listeners who registered using the methods defined in the
Noti fi cati onBroadcast er interface. Attri but eChangeNoti fi cati ons are
also sent to those listeners, but in addition they are sent to listeners added using
addAttri but eChangeNoti ficati onLi st ener.

The model MBean sends an At t ri but eChangeNoti fi cati on to all registered
notification listeners whenever a value change for the attribute in the model MBean
occurs. By default, no At t ri but eChangeNot i fi cati on will be sent unless a
listener is explicitly registered for them. Normally, the set At t ri but e on the model
MBean invokes the set method defined for the attribute on the managed resource
directly. Alternatively, managed resources can use the attribute change notification
to trigger internal actions that implement the intended effect; namely, they change
the attribute value on the model MBean.

«Interface»
ModelMBeanNotificationBroadcaster

addAttributeChangeNotificationListener(inListener: NotificationListener,
inAttributeName: String,
javalang.Object inhandback: Object)

removeAttributeChangeNotificationListener(inListener: NotificationListener,

inAttributeName: String)

sendNotification(ntfyObj: Notification)

sendNotification(ntfyText: String)

sendAttributeChangeNotification(ntfyObj: AttributeChangeNotification)

sendAttributeChangeNatification(inOldVaue: Attribute, inNewValue: Attribute)

96 Java Management Extensions Specification, version 1.4 « November 9, 2006

4.3.6

4.4

Mbdel MBeanNoti fi cati onBr oadcast er
Implementation

The Model MBeanNot i fi cati onBr oadcast er interface extends the

Noti fi cati onBroadcast er interface for its addNot i fi cati onLi st ener and
removeNot i ficationLi st ener methods. The following methods are specific to
open MBeans.

= addAttri buteChangeNotificationListener:

Registers an object that implements the Not i fi cati onLi st ener interface as a
listener for At t ri but eChangeNoti fi cati ons from this MBean.

= renoveAttri buteChangeNotificationLi stener
Removes a listener for At tri but eChangeNoti fi cati ons from the MBean.

= sendAttributeChangeNotification (with
Attribut eChangeNoti fication)

Sends the given At t ri but eChangeNot i fi cati on object to all registered
listeners.

= sendAttributeChangeNotifi cation (with new and old Attributes)
Creates and sends an At t ri but eChangeNot i fi cati on to all registered
listeners.

= sendNotification (with Notification)
Sends the given Not i fi cati on object to all registered listeners.

= sendNotification (with String)

Creates a Not i fi cati on called “generi c” of type j nx. nodel nbean. generi c
and sends it to all registered listeners. The source of the notification is this
Model MBean instance, sequence 1, and severity of 5 (informative).

Descriptors

The Model MBeanl nf o interface publishes metadata about the attributes, operations,
and notifications in the management interface. The model MBean descriptors contain
behavioral information and policies about the same management interface. A
descriptor consists of a set of fields, each of which is a St ri ng name and Qbj ect
value pair. They can be used to store any additional metadata about the
management information. The managed resource or management applications can
add, modify, or remove fields in any model MBean descriptor at run time.

Chapter 4 Model MBeans 97

441

442

Some standard field names are reserved and predefined in this specification to
handle common data management policies such as caching and persistence. The
descriptors also contain the names for the getter and setter operations for attributes.
This allows applications to distribute attribute support naturally across the
application, regardless of class, and to change that responsibility at runtime.

Descriptors are objects that implement the Descri pt or interface. They are
accessible through the methods defined in the Descri pt or Access interface and
implemented in the Mbdel MBeanAt t ri but el nf o, Model MBeanQper at i onl nf o,
Model MBeanConst r uct or | nf o, and Model MBeanNot i fi cati onl nf o classes.
Arrays of these classes are accessed through the Mbdel MBeanl nf o instance. Each of
these returns a descriptor that contains information about the component it
describes. A managed resource can define the values in the descriptors by
constructing a Model MBeanl nf o object and using it to define its model MBean
through the set Model MBeanl nf o method or through the Model MBean constructor.

Attribute Behavior

For an attribute, if the descriptor in the Model MBeanAt t ri but el nf o for it has no
method signature associated with it, then no managed resource method can be
invoked to satisfy it. This means that for set At t ri but e the value is simply
recorded in the descriptor, and any attribute change notification listeners are sent an
Attri but eChangeNoti fication. For get Attri but e, the current value for the
attribute in the model MBean is simply returned from the descriptor and its value
cannot be refreshed from the managed resource. This can be useful to minimize
managed resource interruption for static resource information. The attribute
descriptor also includes policy for managing its persistence, caching, and protocol
mapping. For operations, the method signature must be defined. For notifications,
the type, identity, severity, and logging policy are defined optionally.

Notification Logging Policy

The model MBean will log notifications if the | og field of the MBean descriptor or of
the Model MBeanNot i fi cati onl nf o descriptor is set to true. A | ogfi | e field
must also be defined with a fully qualified file name at one of these levels to indicate
where the notifications should be logged. The setting at the

Model MBeanNot i fi cati onl nf o level will take precedence over the setting at the
MBean descriptor level. If the Model MBean implementation or the JMX agent does
not support logging, then the | og and | ogf i | e fields are ignored.

98 Java Management Extensions Specification, version 1.4 « November 9, 2006

4.4.3

Persistence Policy

Persistence policies can be implemented as an option. Persistence is handled within
the model MBean. However, this does not mean that a model MBean must
implement persistence itself. Different implementations of the J]MX agent can have
different levels of persistence. When there is no persistence, objects will be
completely transient in nature. In a simple implementation, the Model MBeanl| nf o
can be serialized into a flat file. In a more complex environment, persistence can be
handled by the JMX agent in which the model MBean has been instantiated. If the
JMX agent is not transient and the model MBean is persistable it should support
persistence policy at the attribute level and model MBean level.

The persistence policy can switch persistence off, force persistence on checkpoint
intervals, allow it to occur whenever the model MBean is updated, or throttle the
update persistence so that it does not write out the information any more frequently
than a certain interval. If the model MBean is executing in an environment where
management operations are transactional, this should be shielded from the managed
resource. If the managed resource must be aware of the transaction, then this will
mean that the managed resource depends on a proprietary version of the JMX agent
and model MBean, for the resource to be accessible.

A Model MBean implementation that supports persistence will attempt to prime
itself when it is registered in the MBean server, by calling the Model MBean. | oad
method. This method must determine where the persistent representation of the
MBean is located, retrieve it, and initialize the model MBean. For simpler
representations, the directory and filename to be used for persistence can be defined
directly in the MBean descriptor’s per si st Locat i on and per si st Nane fields.
The model MBean can, through JDBC™ (Java Database Connectivity) operations,
write data to and populate the model MBeans from any number of data storage
options such as an LDAP server, a database application, a flat file, an NFS file, an
FAS file, or an internal high performance cache.

The | oad method allows the JMX agent to be independent and ignorant of data
locale information and knowledge. This allows the data location to vary from one
installation to another depending on how the JMX agent and managed resource are
installed and configured. It also permits managed resource configuration data to be
defined within the directory service for use by multiple managed resource instances
or JMX agent instances. In this way, data locale has no impact on the interaction
between the managed resource, its model MBean, the JMX agent, the adaptor or the
management system. As with all data persistence issues, the platform data service
characteristics can have an impact upon performance and security.

Because the persistence policy can be set at the model MBean attribute level, all or
some of the model MBean attributes can be stored by the Mbdel MBean. The model
MBean will detect that it has been updated and invoke its own st or e method. If the
model MBean service is configured to checkpoint model MBeans periodically, it will

Chapter 4 Model MBeans 99

444

4.4.5

do so by invoking the Model MBean. st or e method. Like the | oad method, the
st or e method must determine where the data should reside and store it there
appropriately.

The JMX agent’s persistence setting will apply to all its model MBeans unless one of
them defines overriding policies. The model MBean persistence policy provides a
specified persistence event (update/checkpoint) and timing granularity concerning
how the designated attributes, if any, are stored. The model MBean persistence
policy will allow persistence on a “whenever updated” basis, a “periodic
checkpoint” basis, or a “never persist” basis. If no persistence policy for a model
MBean is defined, then its instance will be transient.

Behavior of Cached Values

The descriptor for an attribute or operation contains the cached value and default
value for the data along with the caching policy. In general, the adaptors access the
application’s Mbdel MBean as it is returned by the JMX agent. If the data requested
by the adaptor is current, the managed resource is not interrupted with a data
retrieval request. Therefore, direct interaction with the managed resource is not
required for each interaction with the management system. This helps minimize the
impact of management activity on runtime application resources and performance.

The attribute descriptor contains currencyTi meLi mi t and

| ast Updat edTi meSt anp fields that are expressed in units of seconds. If the
current time is past | ast Updat eTi meSt anp + currencyTi neLi mi t, then the
attribute value is stale. If the currencyTi meLi mi t is - 1, then the attribute value is
always stale. If the currencyTi meLi ni t is O, then the attribute value is never
stale.

Ifaget Attri but e is received for an attribute with a stale value (or no value) in the
descriptor, then:

= If there is a get Met hod for the attribute, it will be invoked and the returned
value will be recorded in the val ue field in the descriptor for the attribute. The
| ast Updat edTi neSt anp will be reset, and the caller will be handed the new
value.

= If there is no get Met hod defined, then the default value from the def aul t field
in the descriptor for the attribute will be returned.

Protocol Map Support

The model MBean'’s default behavior and simple APIs satisfy the management needs
of most applications. However, the interfaces of a model MBean also allow complex
managed resource management scenarios. The model MBean APIs allow mapping of

100 Java Management Extensions Specification, version 1.4 « November 9, 2006

4.4.6

4.4.7

the application’s model MBean attributes to existing management data models, for
example, specific MIBs or CIM objects through the pr ot ocol Map field of the
descriptor. Conversely, the managed resource can take advantage of generic
mappings to MIBs and CIM objects generated by tools interacting with the JMX
agent. For example, a MIB generator can interact with the JMX agent and create a
MIB file that is loaded by an SNMP management system. The generated MIB file can
represent the resources known by the JMX agent. The applications represented by
those resources do not have to be cognizant of how the management data is mapped
to the MIB. This scenario will also work for other definition files required by
management systems.

The pr ot ocol Map field of an attribute’s descriptor must contain a reference to an
instance of a class that implements the Descri pt or interface. The contents (or
mappings) of the pr ot ocol Map must be appropriate for the attribute. The entries in
the pr ot ocol Map can be updated or augmented at runtime.

Export Policy

If the JMX agent implementation supports operation in a multi-J]MX agent
environment, then the JMX agent will need to advertise its existence and availability
with the appropriate directory or lookup service. The J]MX agent might also need to
register MBeans that need to be locatable from other JMX agents without advance
knowledge about which JMX agent the MBean is currently registered with. MBeans
that need to be locatable in this type of environment define an export field in the
MBean descriptor in its Model MBeanl nf o object.

The value of the export field is the external name or object required to export the
MBean appropriately. If the JMX agent does not support interoperation with a
directory or lookup service and the export field is defined, then the field will be
ignored. If the value of the export field is F or f al se, or the export field is
undefined or null, then the MBean will not be exported.

Visibility Policy

Model MBeans in the JMX specification provide developers of managed resources
with the ability to instrument manageability that supports both their custom, stand-
alone, domain manager as well as interchangeable enterprise managers. However,
the level of detail that is available from these types of managers can be significantly
different. Enterprise managers might want to interact with higher level management
objects. Domain managers generally manage all details of the application. Most
management systems show large grain objects on a user interface screen and show
small grain objects on a detailed or advanced screen. The vi si bi | i ty field in the
descriptor is a hint about the level of granularity an MBean, attribute, or operation

Chapter 4 Model MBeans 101

448

4.5

4.5.1

represents. The vi si bi | i ty field can be used by a custom implementation of a
protocol adaptor or connector or by a management system to filter out MBeans,
attributes, or operations that it doesn’t need to represent.

The vi si bi | i ty field’s value is an integer ranging from 1 to 4. The largest grain is
1, for an MBean or a component that is nearly always visible. The smallest grain is
4, for an MBean or a component that is only visible in special cases. The J]MX
specification does not further define these levels.

Presentation Behavior

A PresentationString field can be defined in any descriptor. This string is an
XML formatted string meant to provide hints to a console so that it can generate
user interfaces for a management object. A standard set of presentation fields have
not yet been defined.

Predefined Descriptor Fields

The fields in each descriptor describe standard and custom information about model
MBean components. All predefined fields for each of the descriptors are specified
below. The fields defined here are standardized so that the management
instrumentation is portable between implementations of model MBeans. More fields
can be defined in a management solution to store custom information as needed.

Field names are not case sensitive. The field descri pt or Type can also be referred
to as Descri pt or Type or DESCRI PTORTYPE. The case used when a descriptor is
created or updated is preserved. It is recommended that the form shown here be
used consistently.

Certain field values are also case insensitive. This is true for the values of the
descri ptor Type, persi st Pol i cy, t arget Type, and | og fields.

MBean Descriptor Fields

These are the predefined fields for the MBean descriptor. These values are valid for
the entire model MBean. These values can be overridden by descriptor fields with
the same name defined at the attribute, operation, or notification level. Optional
fields are in italics:

name - The case-sensitive name of the MBean.

descri pt or Type - String that always contains the value “MBean”.

102 Java Management Extensions Specification, version 1.4 « November 9, 2006

di spl ayNane - Displayable attribute name. In the absence of a value, the value of
the nane field should be used instead.

per si st Pol i cy - Defines the default persistence policy for attributes in this MBean
that do not define their own per si st Pol i cy. Takes on one of the following values:

= Never - The attribute is never stored. This is useful for highly volatile data or
data that only has meaning within the context of a session or execution period.

= OnTi mer - The attribute is stored whenever the model MBean’s persistence
timer, as defined in the per si st Peri od field, expires.

= OnUpdat e - The attribute is stored every time the attribute is updated.

= OnUnregi st er - The attribute is stored when the MBean is unregistered from
the MBean Server

= NoMor e t enThan - The attribute is stored every time it is updated unless the
updates are closer together than the per si st Peri od. This acts as an update
throttling mechanism that helps prevent temporarily highly volatile data from
affecting performance.

= Al ways - This is a synonym of OnUpdat e, which is recognized for
compatibility reasons. It is recommended that applications use OnUpdat e
instead. An implementation of the Descri pt or interface, such as
Descri pt or Support, can choose to replace a value of “Al ways” for
per si st Pol i cy by a value of “OnUpdat e”.

persi st Peri od - Valid only if the per si st Pol i cy field’s value is OnTi ner or
NoMor ef t enThan. For OnTi mer, the attribute is stored at the beginning of each
per si st Per i od starting from when the value is first set. For NoMor eCf t enThan,
the attribute will be stored every time it is updated unless the per si st Peri od has
not elapsed since the previous storage. The value of this field is a number of
seconds, specified as a decimal integer string.

persi st Locat i on - The fully qualified directory where files representing the
persistent MBeans are stored (for this reference implementation). For other
implementations this value can be a keyword or value to assist the appropriate
persistence mechanism.

per si st Name - The filename in which this MBean is stored. This should be the
same as the MBean’s name (for this reference implementation). For other
implementations, this value can be a keyword or value to assist the appropriate
persistence mechanism.

| 0g - A boolean where t r ue indicates that all sent notifications are logged to a file,
and f al se indicates that no notification logging will be done. This setting can be
overridden for a particular notification by defining the | og field in the notification
descriptor.

| ogFi | e - The fully qualified file name where notifications are logged. If logging is
t rue and the | ogFi | e is not defined or invalid, no logging will be performed.

Chapter 4 Model MBeans 103

45.2

currencyTi meLi mi t - Time period in seconds from when an attribute value is
current and not stale. If the saved value is current then that value is returned and the
get Met hod (if defined) is not invoked. If the currencyTi neLi ni t is - 1, then the
value must be retrieved on every request. If currencyTi nmeLi ni t is 0, then the
value is never stale. The value of this field is a number of seconds, specified as a
decimal integer string.

export - Its value can be any object that is serializable and contains the information
necessary to make the MBean locatable. A value of nul | , or a String value of F or

f al se, indicates that the MBean should not be exposed to other JMX Agents. A
defined value indicates that the MBean should be exposed to other JMX Agents and
also be findable when the JMX agent address is unknown. If exporting MBeans and
MBean servers is not supported, then this field is ignored.

vi si bi ity - Integer set from 1 to 4, indicating a level of granularity for the
MBean. A value of 1 is for the large grain and most frequently viewed MBeans. A
value of 4 is the smallest grain and possibly the least frequently viewed MBeans.
This value can be used by adaptors or management applications.

present ationString - XML-encoded string that describes how the attribute will
be presented.

Attribute Descriptor Fields

An attribute descriptor represents the metadata for one of the attributes of a model
MBean. Optional fields are in italics:

name - The case-sensitive name of the attribute.
descri pt or Type - A string that always contains the value “attri but e”.

val ue - The value of this field is the object representing the current value of
attribute, if set. This is, in effect, the cached value of the attribute that will be
returned if the currencyTi meLi mi t is not stale.

def aul t - An object that is to be returned if the val ue is not set and the
get Met hod is not defined.

di spl ayNamne - The displayable name of the attribute.

get Met hod - Operation name from the operation descriptors to be used to retrieve
the val ue of the attribute from the managed resource. The returned object is saved
in the val ue field.

set Met hod - Operation name from the operation descriptors to be used to set the
val ue of the attribute in the managed resource. The new value will also be saved in
the val ue field.

104 Java Management Extensions Specification, version 1.4 « November 9, 2006

4.5.3

pr ot ocol Map - The value of this field must be a Descri pt or object. It contains the
set of protocol name and mapped protocol value pairs. This allows the attribute to
be associated with a particular identifier (CIM schema, SNMP MIB Oid, etc.) for a
particular protocol. This descriptor is set by the managed resource and used by the
adaptors as hints for representing this attribute to management applications.

per si st Pol i cy - Defines the persistence policy for this attribute. If defined, this
overrides a per si st Pol i cy in the MBean descriptor. The possible values and their
meanings are the same as for the per si st Pol i cy in the MBean descriptor,
described on page 103.

per si st Peri od - The meaning of this field is the same as for the per si st Peri od
in the MBean descriptor, described on page 103.

currencyTi meLi mi t - The meaning of this field is the same as for the
currencyTi meLi mi t in the MBean descriptor, described on page 104.

| ast Updat edTi meSt anp - Time stamp from when the val ue field was last
updated. The value of this field is a string created by code equivalent to
Long.toString(SystemcurrentTimeMI1is()).

vi si bi l'i ty -Integer set from 1 to 4 indicating a level of granularity for the MBean
attribute. A value of 1 is for the large grain and most frequently viewed MBean
attributes. A value of 4 is the small grain and the least frequently viewed MBean
attributes. This value can be used by adaptors or management applications.

presentationString - XML-encoded string that describes how the attribute is
presented.

Operation Descriptor Fields

The operation descriptor represents the metadata for operations of a model MBean.
Optional fields are in italics:

nane - The case-sensitive operation name.
descri pt or Type - A string that always contains the value “oper ati on”.
di spl ayNane - Display name of the operation.

val ue - The value that was returned from the operation the last time it was
executed. This allows the caching of operation responses. Operation responses are
only cached if the currencyTi meLi m t field is not - 1.

currencyTi neLi mi t - The period of time in seconds that the val ue is current and
not stale. If the val ue is current then it is returned without actually invoking the
method on the managed resource. If the val ue is stale then the method is invoked.

Chapter 4 Model MBeans 105

4.54

If currencyTi meLi mi t is - 1, then the value is always stale and is not cached. If
the currencyTi meLi nmi t is O, then the value is never stale. The value of this field
is a number of seconds, specified as a decimal integer string.

| ast Updat edTi meSt anp - The time stamp of when the val ue field was updated.
The value of this field is a string created by code equivalent to
Long.toString(SystemcurrentTimeMI1is()).

vi si bi l'i ty - Integer set from 1 to 4 indicating a level of granularity for the MBean
operation. A value of 1 is for the large grain and most frequently viewed MBean
operations. A value of 4 is the smallest grain and the least frequently viewed MBean
operations. This value can be used by adaptors or management applications.

present ationString - XML-encoded string that defines how to present the
operation, parameters, and return type to a user.

t ar get Obj ect - a resource to which invocations of this method are directed. This
overrides the managed resource specified by the
Model MBean. set ManagedResour ce method for the MBean as a whole.

t ar get Type - the type of the resource defined by the t ar get Cbj ect . Every
implementation must recognize the type Obj ect Ref er ence, where calling the
MBean operation results in calling a method with the same name and parameter
types on the t ar get Obj ect . Implementations can also recognize the predefined
types Qbj ect Ref er ence, Handl e, | OR, EJBHandl e, and RM Ref er ence, as well
as implementation-defined types.

Notification Descriptor Fields

Notification Descri pt or represents the metadata for the notifications of a model
MBean. Optional fields are in italics:

namne - The case-sensitive name of the notification.
descri pt or Type - A string that always contains the value “noti fi cation”.

severity - Integer range of O to 6 interpreted as follows:

e Unknown, Indeterminate
¢ Non recoverable

Critical, Failure

w N+ O
.

* Major, Severe

106 Java Management Extensions Specification, version 1.4 « November 9, 2006

4 ¢ Minor, Marginal, or Error
5 ¢ Warning

6 ® Normal, Cleared, or Informative

messagel d - ID for the notification. Usually used to retrieve text to match the ID to
minimize message size or perform client-side translation.

| 0g - A boolean that is t r ue if this notification is logged to a file and f al se if not.
There can be a default value for all notifications of an MBean by defining the | og
field in the MBean descriptor.

| ogFi | e - The fully qualified file name where notifications are logged. If | og is

t r ue but the | ogFi | e is not defined or invalid, no logging will be performed. This
setting can also have an MBean-wide default by defining the | ogFi | e field in the
MBean descriptor.

present ationString - XML-encoded string that describes how to present the
notification to a user.

Chapter 4 Model MBeans 107

108 Java Management Extensions Specification, version 1.4 « November 9, 2006

Il JMX Agent Specification

Chapter 109

110 Java Management Extensions Specification, version 1.4 « November 9, 2006

Agent Architecture

5.1

This chapter gives an overview of the Java Management extensions (JMX) agent
architecture and its basic concepts. It serves as an introduction to the JMX agent
specification.

Overview

A JMX agent is a management entity that runs in a Java Virtual Machine (JVM) and
acts as the liaison between the MBeans and the management application. A J]MX
agent is composed of an MBean server, a set of MBeans representing managed
resources, a minimum number of agent services implemented as MBeans, and typically
at least one protocol adaptor or connector.

The key components in the JMX agent architecture can be further defined as follows:

= MBeans that represent managed resources, as specified in Part I “JMX
Instrumentation Specification”

= The MBean server, the key-stone of this architecture and the central registry for
MBeans. All management operations applied to MBeans need to go through the
MBean server.

= Agent services that can either be components defined in this specification or
services developed by third parties. The agent service MBeans defined by the JMX
specification provide:

Dynamic loading services that allow the agent to instantiate MBeans using Java
classes and native libraries dynamically downloaded from the network

Monitoring capabilities for attribute values in MBeans; the service notifies its
listeners upon detecting certain conditions

A timer service that can send notifications at predetermined intervals and act as
a scheduler

A relation service that defines associations between MBeans and maintains the
consistency of the relation

Chapter 5 Agent Architecture 111

Remote management applications can access an agent through different protocol
adaptors and connectors. These objects are part of the agent application but they are
not part of the JMX agent specification.

FIGURE 5-1 shows how the agent’s components relate to each other and to a
management application.

Agent side Manager side
r—— - - - - - - - - - = A
| Protocol | o
Adaptor Management Application
| | with a view of the JMX agent
through a protocol adaptor
| (SNMP, for example)
Monitor
I I
| Relation | r——_ -
| | | Java virtual machine |
— |
| | | |
Resource 1 | 7 |
| / ! / JMX-enabled |
| Connector | / Management
Server | / Application |
| Resource 2 | /
MBean Server | / |
. | | 77 |
L Javavirtual machine - _ _ a Connector |
. Client
. Agent service MBean !_ |

|:| JMX managed resource MBean
FIGURE5-1 Key Concepts of the JMX Agent Architecture

The JMX architecture allows objects to perform the following operations on a J]MX
agent. These objects can either be in the agent-side application or in a remote
management application. They can:

= Manage existing MBeans by:

= Getting their attribute values
= Changing their attribute values
= Invoking operations on them

= Get notifications emitted by any MBean
» Instantiate and register new MBeans from:

= Java classes already loaded into the agent JVM
« New classes downloaded from the local machine or from the network

112 Java Management Extensions Specification, version 1.4 « November 9, 2006

5.2

5.3

= Use the agent services to implement management policies involving existing
MBeans

In the JMX architecture, all these operations are performed, either directly or
indirectly, through the MBean server of the JMX agent.

JMX Compliant Agent

All the agent components and classes described in the agent specification are
mandatory. To conform to the agent specification, a JMX agent implementation must
provide the following components:

= The MBean server implementation
= All the agent services:

= Dynamic class loading
= Monitoring

« Timer

= Relation

All these components are specified in this document and in the associated API
documentation generated by the Javadoc tool. The Agent Compatibility Test Suite
will check that all components are actually provided by an implementation of the
specification.

Protocol Adaptors and Connectors

Protocol adaptors and connectors make the agent accessible from remote management
applications. They provide a view through a specific protocol of the MBeans
instantiated and registered in the MBean server. They enable a management
application outside the JVM to:

= Get or set attributes of existing MBeans

= Perform operations on existing MBeans

= Instantiate and register new MBeans

= Register for and receive notifications emitted by MBeans

Connectors are used to connect an agent with a remote JMX-enabled management
application, namely, a management application developed using the distributed
services of the J]MX specification. This kind of communication involves a connector
server in the agent and a connector client in the manager.

These components convey management operations transparently point-to-point over
a specific protocol. The distributed services on the manager side provide a remote
interface to the MBean server through which the management application can

Chapter 5 Agent Architecture 113

114

perform operations. A connector is specific to a given protocol, but the management
application can use any connector indifferently because they have the same remote
interface.

Protocol adaptors provide a management view of the JMX agent through a given
protocol. They adapt the operations of MBeans and the MBean server into a
representation in the given protocol, and possibly into a different information
model, for example SNMP.

Management applications that connect to a protocol adaptor are usually specific to
the given protocol. This is typically the case for legacy management solutions that
rely on a specific management protocol. They access the J]MX agent not through a
remote representation of the MBean server, but through operations that are mapped
to those of the MBean server.

Both connector servers and protocol adaptors use the services of the MBean server to
apply the management operation they receive to the MBeans, and to forward
notifications to the management application.

For an agent to be manageable, it must include at least one protocol adaptor or
connector server. However, an agent can include any number of these, allowing it to
be managed remotely through different protocols simultaneously.

The adaptors and connectors provided by an implementation of the JMX
specification should be implemented as MBeans. This allows them to be managed as
well as to be loaded and unloaded dynamically, as needed.

Java Management Extensions Specification, version 1.4 « November 9, 2006

Foundation Classes

6.1

The foundation classes describe objects that are used as argument types or returned
values in methods of various Java Management extensions (JMX) APIs. The
foundation classes described in this chapter are:

= Obj ect Nare

= (bj ectlnstance

= Attributeand AttributeLi st
= JMX exceptions

The following classes are also considered as foundation classes; they are described in
“MBean Metadata Classes” on page 60:

= MBeanl nfo

= MBeanFeat urel nfo

= MBeanAttributelnfo

= MBeanQperationlnfo

= MBeanConstructorlnfo
= MBeanPar anet er | nf o

= MBeanNotificationlnfo

All foundation classes are included in the JMX instrumentation API so that MBeans
can be developed solely from the instrumentation specification, yet be manipulated
by a JMX agent.

(bj ect Nane Class

An object name uniquely identifies an MBean within an MBean server. Management
applications use this object name to identify the MBean on which to perform
management operations. The class Cbj ect Nane represents an object name that
consists of two parts:

= A domain name
= An unordered set of one or more key properties

The components of the object name are described below.

Chapter 6 Foundation Classes 115

6.1.1

6.1.2

Domain Name

The domain name is a case-sensitive string. It provides a structure for the naming
space within a JMX agent or within a global management solution. The domain
name part can be omitted in an object name, as the MBean server is able to provide
a default domain. When an exact match is required (see “Pattern Matching” on

page 117), omitting the domain name will have the same result as using the default
domain defined by the MBean server.

How the domain name is structured is application-dependent. The domain name
string can contain any characters except the colon (:) that terminates the domain
name, and the asterisk (*) and question mark (?), that are wildcard characters. JMX
always handles the domain name as a whole, therefore any semantic subdefinitions
within the string are opaque to a JMX implementation.

To avoid collisions between MBeans supplied by different vendors, a useful
convention is to begin the domain name with the reverse DNS name of the
organization that specifies the MBeans, followed by a period and a string whose
interpretation is determined by that organization. For example, MBeans specified by
Sun Microsystems Inc., DNS name sun. com would have domains such as

com sun. MyDomai n. This is essentially the same convention as for Java-language
package names.

It is recommended that the domain should not contain the string “// ”, which is
reserved for future use.

Key Property List

The key property list allows you to assign unique names to the MBeans of a given
domain. A key property is a property-value pair, where the property does not need
to correspond to an actual attribute of an MBean.

The key property list must contain at least one key property. It can contain any
number of key properties, the order of which is not significant.

The value in a key property is an arbitrary string, except that it cannot contain any
of these characters:

DT, =2
If strings with these special characters are required, a quoting mechanism exists. Use
Cbj ect Name. quot e to convert any string into a quoted form that is usable as a key
property value, and Obj ect Name. unquot e to convert back to the original string.

A useful convention is to include a t ype property in every object name. Thus, the
set of all MBeans of type user can be matched with the pattern “*: t ype=user, *”.

116 Java Management Extensions Specification, version 1.4 « November 9, 2006

6.1.3

6.1.4

String Representation of Names

Object names are usually built and displayed using their string representation, that
has the following syntax:

[domai nNane] : property=val ue[, property=val ue] *
The domain name can be omitted to designate the default domain.

The canonical name of an object is a particular string representation of the object’s
name, in which the key properties are sorted in lexical order. This representation of
the object name is used in lexicographic comparisons performed to select MBeans
based on their object name.

Pattern Matching

Most of the basic MBean operations (for example, cr eat e, get and set attributes)
need to identify one MBean uniquely by its object name. In that case, exact matching
of the name is performed.

On the other hand, for query operations, it is possible to select a range of MBeans by
providing an object name expression. The MBean server will use pattern matching on
the names of the objects. The matching features for the name components are
described in the following sections.

Domain Name

The matching syntax is consistent with standard file globbing, namely:
= An asterisk (*) matches any character sequence, including an empty one

= A question mark (?) matches any one single character

Key Property List

Wildcard matching can also be performed on the values of key properties using the
same matching syntax (* and ? characters). Additionally, the list of key properties
can be incomplete and used as a pattern.

The * is also the wildcard for key properties as a whole; it replaces any number of
key properties that can take on any value. If the whole key property list is given as
*, this will match all the objects in the selected domain(s). If at least one key
property is given in the list pattern, the wildcard can be located anywhere in the

Chapter 6 Foundation Classes 117

given pattern, provided it is still a comma-separated list: “: property=val ue, *”
and “: *, property=val ue” are both valid patterns. In this case, objects having the
given key properties as subsets of their key property list will be selected.

If no wildcard is used, only object names matching the complete key property list
will be selected. Again, the list is unordered, so the key properties in the list pattern
can be given in any order.

6.1.4.1 Pattern Matching Examples

If the example MBeans with the following names are registered in the MBean server:
MyDonei n: descri ption=Printer,type=l aser
MyDomai n: descri pti on=Di sk, capacity=2
Def aul t Domai n: descri pti on=D sk, capacity=1
Def aul t Dorrai n: descri pti on=Printer,type=i nk
Def aul t Dorrai n: descri pti on=Printer,type=l aser, dat e=1993
Socr at es: descri ption=Printer,type=| aser, dat e=1993

Here are some examples of queries that can be performed using pattern matching:

= “*:*” will match all the objects of the MBean server. A null string object or
empty string (*”) name used as a pattern is equivalent to “*: *" .

= “:*” will match all the objects of the default domain

« “MyDonmi n: *” will match all objects in MyDormai n

= “??Domai n: *" will also match all objects in MyDomai n

= “*Dont:*” will match all objects in MyDomai n and Def aul t Domai n

= “*:description=Printer,type=laser,*” will match the following objects:
MyDomai n: descri ption=Printer,type=l aser
Def aul t Dorai n: descri pti on=Printer,type=l aser, dat e=1993
Socr at es: descri pti on=Printer,type=l aser, dat e=1993

”

=« “*Donmi n: description=Printer, *” will match the following objects:
MyDonai n: descri ption=Printer,type=l aser

Def aul t Domai n: descri ption=Printer,type=i nk

Def aul t Dorrai n: descri pti on=Printer,type=l aser, dat e=1993

=« “*Donmi n: descri pti on=P*, *” will match the same objects as the preceding,
since P* matches Pri nt er but not Di sk.

118 Java Management Extensions Specification, version 1.4 « November 9, 2006

6.2

6.3

6.4

(hj ect | nst ance Class

The Cbj ect I nst ance class is used to represent the link between an MBean’s object
name and its Java class. It is the full description of an MBean within an MBean
server, though it does not allow you to access the MBean by reference.

The Obj ect | nst ance class contains the following elements:

= The Java class name of the corresponding MBean
= The Qbj ect Nane registered for the corresponding MBean
= A test for equality with another Cbj ect | nst ance

An bj ect | nst ance is returned when an MBean is created and is used
subsequently for querying.

Attributeand Attri but elLi st
Classes

These classes are used to represent MBean attributes and their value. They contain
the attribute name string and its value cast as an Obj ect instance.

JMX defines the following classes:

= The At tri but e class represents a single attribute-value pair

» The AttributelLi st class represents a list of attribute-value pairs

The Attribute and Attri but eLi st objects are typically used to convey the
attribute values of an MBean, as the result of a getter operation, or as the argument
of a setter operation.

JMX Exceptions

The JMX exceptions are the set of exceptions that are thrown by different methods of
the JMX interfaces. This section describes what error cases are encapsulated by these
exceptions.

JMX exceptions mainly occur:

= While the MBean server or JMX agent services perform operations on MBeans

= When the MBean code raises user defined exceptions

The organization of the defined JMX exceptions is based on the nature of the error

case (runtime or not) and on the location where it was produced (manager, agent, or
during communication).

Chapter 6 Foundation Classes 119

6.4.1

Only exceptions raised by the agent are within the scope of this release of the
specification. This section only describes exceptions that are thrown by the MBean
server. Agent services also define and throw particular exceptions, these are
described in their respective API documentation generated by the Javadoc tool.

JMExcept i on Class and Subclasses

As shown in FIGURE 6-1 the base exception class is named JMExcept i on and it
extends the j ava. | ang. Except i on class. The JMEXcept i on represents all the
exceptions thrown by methods of a JMX agent implementation.

To characterize the JMEXcept i on and to give information for the location of the
exception’s source, some subclass exceptions are defined. They are grouped by
exceptions thrown while performing operations in general

(Oper at i onsExcept i on), exceptions thrown during the use of the reflection API
for invoking MBean methods (Ref | ecti onExcept i on) and exceptions thrown by
the MBean code (MBeanExcept i on).

The Ref | ecti onExcepti on wraps the actual core Java exception thrown when
using the reflection API. The MBeanExcept i on also wraps the actual exception
defined by the user and thrown by an MBean method.

120 Java Management Extensions Specification, version 1.4 « November 9, 2006

java.lang.Exception

i

JM Exception
A
OperationsException ReflectionException M BeanException
I : «wraps» I «wraps» :
| |
| |
AttributeNotFoundException I M BeanRegistr ationException :
| T
| |
I nstanceAlreadyExistsException Vi «wraps» ! :
Core Java Exceptions \[/ \[/
InstanceNotFoundException
ClassNotFoundException Any exception thrown
I ntrospectionException by an MBean
I1legal AccessException

InvalidAttributeValueException

InstantiationException

Listener NotFoundException

NoSuchM ethodException

M alformedObjectNameEXxception

NotCompliantM BeanException

ServiceNotFoundException

FIGURE 6-1 The JMX Exceptions Object Model

6.4.2 JMRunt i neExcepti on Class and Subclasses

As shown in FIGURE 6-2 the base JMX runtime exception defined is named

JMRunt i neExcepti on and it extends the j ava. | ang. Runt i meExcepti on class.
The JMRunt i meExcept i on represents all the runtime exceptions thrown by
methods of a JMX implementation. Like the j ava. | ang. Runti meException, a

Chapter 6 Foundation Classes 121

method of a JMX implementation is not required to declare in its t hr ows clause any
subclasses of JMRunt i meExcept i on that might be thrown during the execution of
the method but not caught.

The JMRunt i meExcept i on has three subclasses to wrap different sorts of
exceptions. The Runt i meQper at i onsExcept i on class wraps runtime exceptions
thrown while performing operations in the agent. The Runt i neMBeanExcept i on
class wraps runtime exceptions thrown by an MBean. Finally, the

Runt i meEr r or Except i on class is used by the MBean server to wrap Err or objects
thrown by an MBean.

java.lang.RuntimeException

i

JMRuntimeException

JaN
RuntimeOper ationsException RuntimeError Exception RuntimeM BeanException
: «Wraps» : «wraps» : «wraps»
i i i
Core Java Runtime Exceptions Anyjava.lang. Errof | Any runtime exception
thrown by an MBean thrown by an MBean
I1legal ArgumentException

IndexOutOfBoundsException

NullPointer Exception

FIGURE 6-2 The JMX Runtime Exceptions Object Model

6.4.3 Description of JMX Exceptions

The following sections describe the exceptions thrown in the JMX specification.

122 Java Management Extensions Specification, version 1.4 « November 9, 2006

6.4.3.1

6.4.3.2

6.4.3.3

6.4.3.4

6.4.3.5

JMExcept i on Class

This class represents exceptions thrown by JMX implementations. It does not include
the runtime exceptions.

Ref | ecti onExcepti on Class

This class represents exceptions thrown in the agent when using the java.lang.reflect
classes to invoke methods on MBeans. It “wraps” the actual
java. |l ang. Excepti on thrown.

The exception classes that can be “wrapped” in a Ref | ecti onExcept i on include
the following:

= O assNot FoundExcept i on - Thrown when an application tries to load in a class
through its string name using the f or Name method in class “Cl ass”.

= Instantiati onExcepti on - Thrown when an application tries to create an
instance of a class using the newl nst ance method in class “Cl ass”, but the
specified class object cannot be instantiated because it is an interface or an
abstract class.

= ||l egal AccessExcepti on - Thrown when an application tries to load in a class
through its string name using the f or Name method in class “Cl ass”.

= NoSuchMet hodExcept i on - Thrown when a particular method cannot be found.

MBeanExcepti on Class

This class represents “user defined” exceptions thrown by MBean methods in the
agent. It “wraps” the actual “user defined” exception thrown. This exception will be
built by the MBean server when a call to an MBean method results in an unknown
exception.

Oper ati onsExcepti on Class

This class represents exceptions thrown in the agent when performing operations on
MBeans. It is the superclass for all the following exception classes, except for the
runtime exceptions.

| nst anceAl r eadyExi st sExcepti on Class

The MBean is already registered in the repository.

Chapter 6 Foundation Classes 123

6.4.3.6

6.4.3.7

6.4.3.8

6.4.3.9

6.4.3.10

6.4.3.11

6.4.3.12

6.4.3.13

| nst anceNot FoundExcept i on Class

The specified MBean does not exist in the repository.

I nval i dAttri but eVal ueExcepti on Class

The specified value is not a valid value for the attribute.

Attri but eNot FoundExcepti on Class

The specified attribute does not exist or cannot be retrieved.

I nt rospecti onExcepti on Class

An exception occurred during introspection of the MBean, when trying to determine
its management interface.

Mal f or medQbj ect NanmeExcept i on Class

The format or contents of the information passed to the constructor does not allow a
valid Obj ect Name instance to be built.

Not Conpl i ant MBeanExcepti on Class

This exception occurs when trying to register an object in the MBean server that is
not an MBean that is compliant with the JMX specification.

Ser vi ceNot FoundExcept i on Class

This class represents exceptions raised when a requested service is not supported.

MBeanRegi strati onExcepti on Class

This class wraps exceptions thrown by the pr eRegi st er and preDer egi st er
methods of the MBeanRegi strati on interface.

124 Java Management Extensions Specification, version 1.4 « November 9, 2006

6.4.3.14

6.4.3.15

6.4.3.16

6.4.3.17

JMRunt i meExcepti on Class

This class represents runtime exceptions emitted by JMX implementations.

Runt i meQper ati onsExcepti on Class

This class represents runtime exceptions thrown in the agent when performing
operations on MBeans. It wraps the actual j ava. | ang. Runti meExcepti on
thrown.

The exception classes that can be “wrapped” in a Runt i meQOper at i onsExcept i on
include the following:

= ||l egal Argunent Excepti on - Thrown to indicate that a method has been
passed an illegal or inappropriate argument.

= | ndexQut O BoundsExcept i on - Thrown to indicate that an index of some sort
(such as to an array, to a string, or to a vector) is out of range.

= Nul | Poi nt er Excepti on - Thrown when an application attempts to use nul | in
a case where an object is required.

If a method in an MBean itself throws a runtime exception, that exception will be
wrapped in a Runt i neMBeanExcept i on, not a Runt i meOper ati onsExcepti on.
The Runt i meQper ati onsExcepti on is used in two cases: when the runtime
exception occurs before the MBean is invoked (for example, an attribute name in
get Attri but e is null), and by Model MBeans to wrap runtime exceptions coming
from methods invoked on the Managed Resource.

Runt i meMBeanExcepti on Class

This class represents runtime exceptions thrown by MBean methods in the agent. It
“wraps” the actual j ava. | ang. Runt i meExcepti on exception thrown. This
exception is built by the MBean server when a call to an MBean method throws a
runtime exception. However, if the exception is already a

Runti meQper at i onsExcept i on it is not wrapped further.

Runt i meErr or Excepti on Class

When a j ava. | ang. Error occurs in the agent it must be caught and thrown again
as a Runti neError Excepti on.

Chapter 6 Foundation Classes 125

126 Java Management Extensions Specification, version 1.4 « November 9, 2006

MBean Server

7.1

7.1.1

This chapter describes the Managed Bean server, or MBean server, that is the core
component of the Java Management extensions (JMX) agent infrastructure.

Role of the MBean Server

The MBean server is a registry for MBeans in the agent. The MBean server is the
component that provides the services for manipulating MBeans. All management
operations performed on the MBeans are done through the MBeanSer ver interface.

In general, the following kinds of MBeans are registered in an MBean server:

= MBeans that represent managed resources for management purposes. These
resources can be of any kind: application, system, or network resources that
provide a Java interface or a Java wrapper.

= MBeans that add management functionality to the agent. This functionality can be
fully generic, for example, providing a logging or a monitoring capability, or it
can be specific to a technology or to a domain of application. Some of these
MBeans are defined by the JMX specification, others will be provided by
management application developers.

= Some components of the infrastructure, such as the connector servers and
protocol adaptors, can be implemented as MBeans. This allows such components
to benefit from the dynamic management infrastructure.

MBean Server Factory

A JMX agent has a factory class for finding or creating an MBean server through the
factory’s static methods. This allows more flexible agent applications and possibly
more than one MBean server in an agent.

Chapter 7 MBean Server 127

7.1.2

The MBeanSer ver interface defines the operations available on a JMX agent. An
implementation of the J]MX agent specification provides a class that implements the
MBeanSer ver interface. Throughout this document, we use the term MBean server to
refer to the implementation of the MBeanSer ver interface that is available in an
agent.

The MBeanSer ver Fact ory is a class whose static methods return instances of the
implementation class. This object is returned as an instance of the MBeanSer ver
interface, thereby isolating other objects from any dependency on the MBean
server’s actual implementation class. When creating an MBean server, the caller can
also specify the name of the default domain used in the JMX agent it represents.

An agent application uses these methods to create the single or multiple MBean
servers containing its MBeans. The JMX agent specification only defines the behavior
of a single MBean server. The additional behavior required in a JMX agent
containing multiple MBean servers is outside the scope of this specification.

The factory also defines static methods for finding an MBean server that has already
been created. In this way, objects loaded into the JVM can access an existing MBean
server without any prior knowledge of the agent application.

Starting with version 5.0 of the Java 2 Platform, Standard Edition (J2SE 5.0 Platform),
every Java application has a platform MBean Server which can be obtained using

j ava. | ang. nanagenent . Managenent Fact ory. get Pl at f or mvBeanSer ver () .
This MBean Server contains a certain number of MBeans specified by the

j ava. |l ang. managenent package and can also be used as a convenient way to
share application MBeans between different modules of an application.

MBean Server Permission Checking

Access to the MBeanSer ver Fact ory class’s static methods is controlled by the
MBeanSer ver Per m ssi on class. MBeanSer ver Per m ssi on extends basic Java
permissions, and grants access to the following MBean server operations:

« CreateMBeanServer

« findMBeanServer

« newMBeanServer

« rel easeMBeanServer

Permission checking is covered further in Chapter 12 “Security”.

128 Java Management Extensions Specification, version 1.4 « November 9, 2006

7.1.3

7.1.3.1

Registration of MBeans

The first responsibility of the MBean server is to be a registry for MBeans. MBeans
can be registered either by the agent application, or by other MBeans. The interface
of the MBeanSer ver class allows two different kinds of registration:

= Instantiation of a new MBean and registration of this MBean in a single operation.
In this case, the loading of the java class of the MBean can be done either by using
a default class loader, or by explicitly specifying the class loader to use.

= Registration of an already existing MBean instance.

An object name is assigned to an MBean when it is registered. The object name is a
string whose structure is defined in detail in “Cbj ect Nanme Class” on page 115. The
object name allows an MBean to be identified uniquely in the context of the MBean
server. This uniqueness is checked at registration time by the MBean server, which
will refuse MBeans with duplicate names.

MBean Registration Control

The MBean developer can exercise some control over registering and unregistering
of MBeans in the MBean server. This can be done in the MBean by implementing the
MBeanRegi st rat i on interface. Before and after registering and deregistering an
MBean, the MBean server checks dynamically whether the MBean implements the
MBeanRegi st rat i on interface. If this is the case, the appropriate callbacks are
invoked.

The MBeanRegi st rati on interface is actually an API element of the JMX
instrumentation specification. It is described here because it is the implementation of
the MBean server that defines the behavior of the registration control mechanism.

Implementing this interface is also the only means by which MBeans can get a
reference to the MBeanSer ver with which they are registered. This means that they
have information about their management environment and become capable of
performing management operations on other MBeans.

If the MBean developer chooses to implement the MBeanRegi st rat i on interface,
the following methods must be provided:

= preRegi ster - This is a callback method that the MBean server invokes before
registering the MBean. The MBean is not registered if any exception is raised by
this method. This method might throw the MBeanRegi st r ati onExcept i on that
will be thrown again unchanged by the MBean server. Any other exception will
be caught by the MBean server, encapsulated in an
MBeanRegi st rati onExcepti on and thrown again.

This method can be used to:

= Allow an MBean to keep a reference on its MBean server.

Chapter 7 MBean Server 129

130

= Perform any initialization that needs to be done before the MBean is exposed
to management operations.

= Perform semantic checking on the object name, and possibly provide a name if
the object was created without a name.

= Get information about the environment, for example, check on the existence of
services upon which the MBean depends. When such required services are not
available, the MBean might either try to instantiate them, or raise a
Ser vi ceNot FoundExcept i on exception.

= post Regi st er - This is a callback method that the MBean server will invoke
after registering the MBean. Its boolean parameter will be true if the MBean was
registered successfully, and false if the MBean could not be registered. If
registration failed, this method can free resources allocated in preregistration.

= preDeregi ster - thisis a callback method that the MBean server invokes before
unregistering an MBean.

This method might throw an MBeanRegi st rati onExcepti on, that is thrown
again unchanged by the MBean server. Any other exception is caught by the
MBean server, encapsulated in an MBeanRegi strati onExcepti on and thrown
again. The MBean is not unregistered if any exception is raised by this method.

= post Der egi st er - This is a callback method that the MBean server invokes
after unregistering the MBean.

FIGURE 7-1 describes the way the methods of the MBeanRegi st rat i on are called by
the MBean server when an MBean registration or a unregistration is performed. The
methods illustrated with a thick border are MBeanSer ver methods, the others are
implemented in the MBean.

Java Management Extensions Specification, version 1.4 « November 9, 2006

7.1.4

Registration phase

OK . OK
preRegister(.) | pg| Tegister | pg{ postRegister(true)

Exception
Exception
postRegister(false)
Return without registering
Unregistration phase
OK OK

preDeregister(...)_» deregister L postDeregister()

Exception

Return without deregistering

FIGURE 7-1 Calling Sequence for the MBean Registration Methods

Operations on MBeans

The methods of the MBeanSer ver interface define the following management
operations to be performed on registered MBeans:

Retrieve a specific MBean by its object name.

Retrieve a collection of MBeans, by means of pattern matching on their names,
and optionally by means of a filter applied to their attribute values. Such a filter
can be constructed by using the query expressions defined in “Queries” on
page 135.

Get one or several attribute value(s) of an MBean.

Invoke an operation on an MBean.

Discover the management interface of an MBean, that is, its attributes and
operations. This is what is called the introspection of the MBean.

Register interest in the notifications emitted by an MBean.

The methods of the MBean server are generic: they all take an object name that
determines the MBean on which the operation is performed. The role of the MBean
server is to resolve this object name reference, determine if the requested operation

Chapter 7 MBean Server 131

7.1.5

7.2

is allowed on the designated object, and if so, invoke the MBean method that
performs the operation. If there is a result, the MBean server returns its value to the
caller.

Calling a method in the MBean server requires an appropriate permission.
Permissions are described in Chapter 12 “Security.

The detailed description of all MBean server operations is given in the API
documentation generated by the Javadoc tool.

MBean Proxies

As an alternative to calling the generic methods of the MBeanSer ver interface
directly, code that accesses a specific MBean can construct a proxy for it. A proxy is
a Java object that implements the same interface as the MBean itself. A method in
this interface on the proxy is routed through the MBean server to the MBean.

It is simpler and less error-prone to use proxies where possible rather than calling
the methods of the MBean server directly.

Proxies are constructed using the methods newiVBeanPr oxy and newiVXBeanPr oxy
in the class j avax. managenment . JMX. The Javadoc for that class explains in detail
how to construct and use them.

MBean Server Delegate MBean

The MBean server defines a domain called “JM npl enent at i on” in which one
MBean of class MBeanSer ver Del egat e is registered. This object identifies and
describes the MBean server in which it is registered. It is also the broadcaster for
notifications emitted by the MBean server. In other words, this MBean acts as a
delegate for the MBean server that it represents.

The complete object name of this delegate object is specified by the JMX
specification, as follows: “JM npl enment ati on: t ype=MBeanSer ver Del egate”.

The delegate object provides the following information about the MBean server, all
of which is exposed as read-only attributes of type St ri ng:

= The MBeanSer ver | d identifies the agent. The format of this string is not
specified, but it is intended to provide a unique identifier for the MBean server,
for example, based on the host name and a time stamp.

= The Speci fi cati onNane indicates the full name of the specification on which
the MBean server implementation is based. The value of this attribute must be
“Java Managenent Extensions”.

132 Java Management Extensions Specification, version 1.4 « November 9, 2006

7.3

= The Speci fi cati onVer si on indicates the version of the JMX specification on
which the MBean server implementation is based. For this release, the value of
this attribute must be “1. 4”.

= The Speci fi cati onVendor indicates the name of the vendor of the J]MX
specification on which the MBean server implementation is based. The value of
this attribute must be “Sun M cr osyst ens”.

« The |l npl enent at i onName gives the implementation name of the MBean server.
The format and contents of this string are given by the implementor.

= The | npl enent at i onVer si on gives the implementation version of the MBean
server. The format and contents of this string are given by the implementor.

= The | npl ement at i onVendor gives the vendor name of the MBean server
implementation. The contents of this string are given by the implementor.

The MBeanSer ver Del egat e class implements the Not i fi cati onBr oadcast er
interface and sends the MBeanSer ver Not i fi cati ons that are emitted by the
MBean server. For objects to receive these notifications, they must register with the
delegate object (see “MBean Server Notifications” on page 134).

Note — The “JM npl enent at i on” domain name is reserved for use by JMX Agent
implementations. The MBeanSer ver Del egat e MBean cannot be unregistered from
the MBean server.

Remote Operations on MBeans

Using an appropriate connector server in the agent, a remote management
application is able to perform operations on the MBeans through the corresponding
connector client, once a connection is established.

Typically, a remote client is able to perform a subset of the operations in the
MBeanSer ver interface, through that interface’s parent MBeanSer ver Connect i on.
Because remote connections can fail, each method in MBeanSer ver Connecti on
declares | CExcept i on in its throws clause. See “MBeanServerConnection Interface”
on page 140.

FIGURE 7-2 shows how a management operation can be propagated from a remote
management application to the MBean on the agent side. The example illustrates the
propagation of a method for getting the “State” attribute of a standard MBean, in the
following cases:

= The management application invokes a generic get Val ue method on the
connector client, that acts as a remote representation of the MBean server. This
type of dynamic invocation is typically used in conjunction with the MBean
introspection functionality that dynamically discovers the management interface
of an MBean, even from a remote application.

Chapter 7 MBean Server 133

7.4

134

= The management application invokes the get St at € method directly on a proxy
object that is typically generated automatically from the MBean class (in the case
of a Java application). The proxy object relies on the interface of the connector
client to transmit the request to the agent and ultimately to the MBean. The
response follows the inverse return path.

I ; I I I
! MBean Server g Connecti I : Connector !
~ Connector | Y I

: O S Sever : Client |
MyMBean @ = | | |

: (Standard MBean) gé s ! ! !
I .< _____ 4_:;__ I -+ - getAttribute(nyMBeanNane, !
: get State() ; : : : “State") :
[2 | [| MyMBean Proxy Object [
I - I I Interface r07 !
| z I I rmgles ..-.%4.— -getState() !
I 2 I I the MBean I
I | e ! I Server Interf;e !
' Agent Side ! ! resembles Manager Side !
| | ! the MBean !
L e e e e e e e e e e e e e e - —— - 4 L e e e e e e e e e e e e e — e —— - Bl

FIGURE 7-2 Propagation of a Remote Operation to an MBean.

MBean Server Notifications

The MBean server will always emit notifications when MBeans are registered or
deregistered. A specific subclass of the Not i fi cati on class is defined for this
purpose: the MBeanSer ver Not i fi cat i on class, that contains a list of object names
involved in the operation.

The MBean server object does not broadcast notifications itself: its unique delegate
MBean implements the Not i fi cat i onBr oadcast er interface to broadcast the
notifications in its place.

To register for MBean server notifications, the listener will call the

addNoti fi cati onLi st ener method of the MBean server, as when registering for
MBean notifications, but it will provide the standardized object name of the MBean
server delegate object (see “MBean Server Delegate MBean” on page 132).

As when receiving MBean notifications, an object must implement the
Noti fi cationLi st ener interface to receive MBean server notifications.

Through its delegate, the MBean server emits the following two types of
notifications:

= JMX nbean. regi st er ed - This notification indicates that one or more MBeans
have been registered. The notification will convey the list of object names of these
MBeans.

Java Management Extensions Specification, version 1.4 « November 9, 2006

7.5

7.5.1

= JMX. nmbean. unr egi st er ed - This notification indicates that one or more
MBeans have been unregistered. The notification conveys the list of these
MBeans’ object names .

Note — The MBean server does not send notifications when attributes of registered
MBeans change values. When implemented, this type of notification is handled
directly by the MBean, as described in “Attribute Change Notifications” on page 58.

Queries

Queries retrieve sets of MBeans from the MBean server, according to their object
name, their current attribute values, or both. The JMX specification defines the
classes that are used to build query expressions. These objects are then passed to
methods of the MBeanSer ver interface to perform the query.

The methods of the MBeanSer ver interface that perform queries are:

= queryMBeans(Obj ect Nanme name, QueryExp query) - Returns a Set
containing object instances (object name and class name pairs) for MBeans
matching the name and query.

= queryNanes(Cbj ect Name nanme, QueryExp query) - Returns a Set
containing object names for MBeans matching the name and query.

The meaning of the parameters is the same for both methods. The object name
parameter defines a pattern: the scope of the query is the set of MBeans whose object
name satisfies this pattern. The query expression is the user-defined criteria for
filtering MBeans within the scope, based on their attribute values. If either query
method finds no MBeans that are in the given scope, or that satisfy the given query
expression, or both, the returned Set will contain no elements.

When the object name pattern is nul | , the scope is equivalent to all MBeans in the
MBean server. When the query expression is nul | , MBeans are not filtered and the
result is equivalent to the scope. When both parameters are nul | , the result is the set
of all MBeans registered in the MBean server.

The set of all MBeans registered in the MBean server always includes the delegate
MBean, as does any count of the registered MBeans. Other queries can also return
the delegate MBean if its object name is within the scope and if it satisfies the query
expression, if any (see “MBean Server Delegate MBean” on page 132).

Scope of a Query

The scope is defined by an object name pattern: see “Pattern Matching” on page 117.
Only those MBeans whose object name matches the pattern are considered in the
query. The query expression must then be applied to each MBean in the scope to

Chapter 7 MBean Server 135

7.5.2

filter the final result of the query. If the query mechanism is properly implemented
and the user gives a relevant object name pattern, the scope of the query can greatly
reduce the execution time of the query.

It is possible for the pattern to be a complete object name, meaning that the scope of
the query is a single MBean. In this case, the query is equivalent to testing the
existence of a registered MBean with that name, or, if the query expression is not
nul |, testing the attribute values of that MBean.

Query Expressions

A query expression is built up from constraints on attribute values (such as “equals”
and “less-than” for numeric values and “matches” for strings). These constraints can
then be associated by relational operators (and, or, and not) to form complex
expressions involving several MBean attributes.

For example, the agent or the manager should be able to express a query such as:
“Retrieve the MBeans for which the attribute age is at least 20 and the attribute
nane starts with Gand ends with | i ng”.

A query expression is evaluated on a single MBean at a time, and if and only if the
expression is true, that MBean is included the query result. The MBean server tests
the expression individually for every MBean in the scope of the query. It is not
possible for a query expression to apply to more than one MBean: there is no
mechanism for defining cross-MBean constraints.

If the evaluation of the query expression for a given MBean in the scope results in an
exception, that MBean is omitted from the query result. The exception is not
propagated to the caller of quer yMBeans or quer yNanes. Errors (subclasses of
java.l ang. Error) can be propagated, however.

The following classes and interfaces are defined for developing query expressions:

= The Quer yExp interface identifies objects that are complete query expressions.
These objects can be used in a query or composed to form more complex queries.

= The Val ueExp and St ri ngVal ueExp interfaces identify objects that represent
numeric and string values, respectively, for placing constraints on attribute
values.

= The Attri but eVal ueExp interface identifies objects that represent the attribute
involved in a constraint.

= The Query class supports the construction of the query. It contains static methods
that return the appropriate Quer yExp and Val ueExp objects.

136 Java Management Extensions Specification, version 1.4 « November 9, 2006

7.5.2.1

= The Qbj ect Nane class (see “Cbj ect Nanme Class” on page 115) implements the

Quer yEXp interface and can be used within queries. Usually, an Cbj ect Nane in a
query will be a pattern. When an Obj ect Nane query expression is being
evaluated for a given MBean, the expression is true if the MBean’s name matches
the Cbj ect Name pattern.

In practice, users do not instantiate the Val ueExp and Quer yExp implementation
classes directly. Instead, they rely on the methods of the Query class to return the
values and expressions, composing them together to form the final query expression.

Methods of the Query Class

The static methods of the Query class are used to construct the values, constraints,
and subexpressions of a query expression.

The following methods return a Val ueExp instance that can be used as part of a
constraint, as described:

= classattr - The result represents the class name of the MBean and can only be

used in a string constraint.

attr - The result represents the value of the named attribute. This result can be
used in boolean, numeric or string constraints, depending upon the type of the
attribute. Attributes can also be constrained by the values of other attributes of an
equivalent type. This method is overloaded to take a class name too: this is
equivalent to setting a constraint on the name of the MBean’s class.

If an MBean in the scope does not have an attribute with the given name, or if
there is a class name parameter and it does not match the MBean’s class, then the
MBean is omitted from the query result.

val ue - The result represents the value of the method’s argument, and it is used
in a constraint. This method is overloaded to take any one of the following types:
« java.lang. String
« java.l ang. Nunber

« int

« long

« float

« doubl e
« bool ean

In all these cases, the resulting value must be used in a constraint on an
equivalent attribute value.

pl us, m nus, times, di v - These methods each take two Val ueExp arguments
and return a Val ueExp object that represents the result of the operation. These
operations only apply to numeric values. These methods are useful for
constructing constraints between two attributes of the same MBean.

Chapter 7 MBean Server 137

The following methods represent a constraint on one or more values. They take

Val ueExp objects and return a Quer yExp object that indicates if the constraint is
satisfied at runtime. This return object can be used as the query expression, or it can
be composed into a more complex expression using the logical operators.

= gt,geq,lt,|eq, eq- These methods represent the standard relational operators
between two numeric values, respectively: greater than, greater than or equals,
less than, less than or equals, and equals. The constraint is satisfied if the relation
is true with the arguments in the given order.

= between - This method represents the constraint where the first argument is
strictly within the range defined by the other two arguments. All arguments must
be numeric values.

= i n - This method is equivalent to multiple “equals” constraints between a
numeric value argument and an array of numeric values. The constraint is
satisfied (t r ue) if the numeric value is equal to any one of the array elements.

= mat ch - This method represents the equality between an attribute’s value and a
given string value or string pattern. The pattern admits wildcards (* and ?),
character sets ([Aa]), and character ranges ([A- Z]) with the standard meaning.
The attribute must have a string value, and the constraint is satisfied if it matches
the pattern.

= initial SubString, final SubString, anySubStri ng - These methods
represent substring constraints between an attribute’s value and a given substring
value. The constraint is satisfied if the substring is a prefix, suffix or any substring
of the attribute string value, respectively.

= islnstanced - This method represents the constraint that the MBean is an
instance of a given class, named by a string. This query type did not exist in
versions of this specification before version 1.3, so it should not be used when
interacting remotely with an agent that implements an earlier version.

A constraint can be seen as computing a boolean value and can be used as a
subexpression to the following methods. Constraints also return a Quer yEXp object
that can either be used in a query or as a subexpression of an even more complex
query using the same methods:

= and - The resulting expression is the logical AND of the two subexpression
arguments. The second subexpression is not evaluated if the first one is false.

= or - The resulting expression is the logical OR of the two subexpression
arguments. The second subexpression is not evaluated if the first one is true.

= not - The resulting expression is the logical negation of the single subexpression
argument.

138 Java Management Extensions Specification, version 1.4 « November 9, 2006

7.5.2.2

7.5.3

Query Expression Examples

Using these methods, the sample query mentioned at the beginning of this section is
built as follows. When constructing constraints on string values, the asterisk (*) is a
wildcard character that can replace any number of characters, including zero.
Alternatively, the programmer can use the substring matching methods of the Query
class.

CODE EXAMPLE 7-1 Building a Query

QueryExp exp = Query. and(
Query. geq(Query. attr("age"),
Query. val ue(20)),
Query. mat ch(Query. attr("nane"),

Query. val ue("Gling")));

Most queries follow the above pattern: the named attributes of an MBean are
constrained by programmer-defined values and then composed into a query across
several attributes. All exposed attributes can be used for filtering purposes, provided
that they can be constrained by numeric, boolean or string values.

It is also possible to perform a query based on the name of the Java class that
implements the MBean, using the cl assat t r method of the Query class. (This
functionality is mostly replaced by the Query. i sl nstanceOf query, however.)
CODE EXAMPLE 7-2 shows how to build a query for filtering all MBeans of the
fictional class managed. devi ce. Pri nt er. This constraint can also be composed
with constraints on the attribute values to form a more selective query expression.

CODE EXAMPLE 7-2 Building a Query Based on the MBean Class

QueryExp exp = Query. eq(
Query.classattr(),
Query. val ue(“nmanaged. devi ce.Printer”));

Query Exceptions

Performing queries can result in some exceptions that are specific to the filtering
methods. If the evaluation of a query for a given MBean produces one of these
exceptions, the MBean is omitted from the query result. Application code will not
see these exceptions in usual circumstances. Only if the application itself throws the
exception, or if it calls Quer yExp. appl y, will it see these exceptions.

Chapter 7 MBean Server 139

7.5.3.1

7.5.3.2

7.5.3.3

7.5.3.4

7.6

BadAttri but eVal ueExpExcepti on Class

The BadAt t ri but eVal ueExpExcepti on is thrown when an invalid name for an
MBean attribute is passed to a query constructing method.

BadSt ri ngOper ati onExcepti on Class

This exception is thrown when an invalid string operation is passed to a method for
constructing a query.

BadBi nar yOpVal ueExpExcept i on Class

This exception is thrown when an invalid expression is passed to a method for
constructing a query.

| nval i dAppl i cati onExcepti on Class

This exception is thrown when an attempt is made to apply a constraint with a class
name to an MBean of the wrong class.

MBeanSer ver Connect i on Interface

The JMX 1.2 specification introduced a new interface MBeanSer ver Connect i on,
the parent interface of MBeanSer ver. The purpose of this interface is to provide a
common type to be used for access to an MBean server regardless of whether it is
remote, namely, accessed through a connector, or local, and accessed directly as a
Java object.

The MBeanSer ver Connect i on interface is similar to MBeanSer ver, but with two
key differences:

= It omits the following methods that are only appropriate for local access to the
MBean server:

= instantiate. This method is useful to create instances of parameters to
MBean methods or constructors when they are of classes unknown to the
caller’s class loader. But a remote client’s class loader must know the classes to
be able to deserialize them.

= registerMBean. This method registers a local object as an MBean within the
MBean server. It does not make sense to register a remote object in this way.

« get d asslLoader, get d assLoader For, get O assLoader Reposi tory.
These methods are useful for the server end of a connector. (See “Using the
Correct Class Loader for Parameters” on page 152.) Class loaders and the Class

140 Java Management Extensions Specification, version 1.4 « November 9, 2006

7.7

Loader Repository are not serializable in general, so they could not be
transmitted to a remote client. In any case, it is not appropriate for a remote
client to be able to access this information.

« deseriali ze. This method returns an Cbj ect | nput St r eam that is not a
serializable class, so it could not be transmitted to a remote client. The method
is only of use to the server end of a connector, and even there it is superseded
by the get O assLoader (etc) methods.

= FEach remaining method includes j ava. i 0. | OExcept i on in its t hr ows clause.

Application code that interacts with MBeanSer ver Connect i on works with a local
MBean server or with the client end of a connector, regardless of whether it is
connected to the server or the connector.

Because all the methods of MBeanSer ver Connect i on can throw | OExcepti on,
application code that calls them must be prepared to deal with this exception and
handle it appropriately. In the case of a local MBean server, these exceptions cannot
happen, but the code must handle them anyway. This is the price to pay for
operating the same way in both the local and remote cases.

Changing the MBean Server
Implementation

As of version 1.2 of the J]MX specification, the system property

j avax. managenent . bui l der.initial can be set to replace the default
implementation of the MBeanSer ver interface with a different implementation.
When the cr eat eMBeanSer ver or newMBeanSer ver method of the

MBeanSer ver Fact or y class is called, it consults this property. If a value exists, then
it must name a public class that is a subclass of

j avax. managenent . MBeanSer ver Bui | der. The class is instantiated and used to
create an MBeanSer ver instance.

An MBeanSer ver Bui | der must be able to create an instance of

MBeanSer ver Del egat e and an instance of MBeanSer ver. The

MBeanSer ver Del egat e can be the standard

j avax. managenent . MBeanSer ver Del egat e, or a custom subclass, for example,
to override the | npl ement at i onNane attribute. The MBeanSer ver can be a
complete reimplementation of the MBeanSer ver interface, or it can build on the
standard implementation by instantiating

j avax. managenent . MBeanSer ver Bui | der, calling its newvVBeanSer ver method,
and wrapping the resulting object in another MBeanSer ver object.

Chapter 7 MBean Server 141

142 Java Management Extensions Specification, version 1.4 « November 9, 2006

Advanced Dynamic Loading

8.1

This chapter describes the dynamic loading services that build on Java’s class loader
functionality to provide the ability to retrieve and instantiate MBeans using new
Java classes and possibly native libraries. The origin of these classes and libraries is
not necessarily known when the MBean server is deployed, and can include code
loaded from a remote server.

Dynamic loading is usually performed by the management applet (m-let) service
that is used to instantiate MBeans obtained from a remote URL (Universal Resource
Locator) on the network.

The Java Management extensions (JMX) specification also defines lower-level
mechanisms for class loading, that allow developers to extend the functionality of
the m-let service or to load classes without it.

This chapter describes mandatory functionality for all compliant JMX agents.

Overview of M-Lets

The m-let service allows you to instantiate and register one or more MBeans from a
remote URL, in the MBean server. The m-let service does this by loading an m-let
text file, that specifies information on the MBeans to be obtained. The information on
each MBean is specified in a tag similar to those used in XML, called the MLET tag.
The location of the m-let text file is specified by a URL. When an m-let text file is
loaded, all classes specified in MLET tags are downloaded, and an instance of each
MBean specified in the file is created and registered.

The m-let service is itself implemented as an MBean and registered in the MBean
server, so it can be used by other MBeans, by the agent application, or by remote
management applications.

The operation of the m-let service is illustrated in FIGURE 8-1.

Chapter 8 Advanced Dynamic Loading 143

8.2

144

r - .
Java virtual machine

http://soft.dist

m-let service I:

— |
—_| <MLET

I~ CODE=0bj ect 6
\ ARCHI VE=nybean. j ar
[NAME=" obj ect 6"

object 1

http://soft.dist/nybean.txt

>
</ MLET>

http://soft.dist/mybean.jar

obj ect 6. cl ass
obj ect7.cl ass

CLASSPATH .
MBeans created dynamically
using the m-let service

Instances of classes accessible

through the agent’s classpath

cl asses/ obj ect 1. cl ass
cl asses/ obj ect 2. cl ass
cl asses/ obj ect 3. cl ass

FIGURE 8-1 Operation of the M-Let Service

The MLET Tag

The m-let file can contain any number of MLET tags, each for instantiating a different
MBean in a JMX agent. The MLET tag has the following syntax:

<MLET

CODE = class | OBJECT = serfile
ARCHI VE = "archivelist”

[CODEBASE = codebaseURL]

[NAVE = MBeanNane]

[VERSI ON = versi on]

[arglist]
</ MLET>

Java Management Extensions Specification, version 1.4 « November 9, 2006

The elements of this tag are explained below:

CODE = cl ass

This attribute specifies the full Java class name, including package name, of the
MBean to be obtained. The compiled . cl ass file of the MBean must be contained
in one of the JAR files specified by the ARCHI VE attribute. Either the CODE or the
OBJECT attribute must be present.

OBJECT = serfile

This attribute specifies the . ser file that contains a serialized representation of
the MBean to be obtained. This file must be contained in one of the JAR files
specified by the ARCHI VE attribute. If the JAR file contains a directory hierarchy,
this attribute must specify the path of the file within this hierarchy, otherwise a
match will not be found.

ARCHI VE = archi velLi st

This mandatory attribute specifies one or more JAR files containing MBeans or
other resources used by the MBean to be obtained. One of the JAR files must
contain the file specified by the CODE or OBJECT attribute. If archive list contains
more than one file:

= Each file must be separated from the next one it by a comma (,)
= The whole list must be enclosed in double quote marks (" ")

All JAR files in the archive list must be stored in the directory specified by the
code base URL, or in the same directory as the m-let file, that is the default code
base when none is given.

CODEBASE = codebaseURL

This optional attribute specifies the code base URL of the MBean to be obtained.
It identifies the directory that contains the JAR files specified by the ARCHI VE
attribute. This attribute is used when the JAR files are not in the same directory as
the m-let text file. If this attribute is not specified, the base URL of the m-let text
file is taken as the code base URL.

NAVE = MBeanNane

This optional attribute specifies the string format of an object name to be assigned
to the MBean instance when the m-let service registers it in the MBean server.

VERSI ON = version

This optional attribute specifies the version number of the MBean and associated
JAR files to be obtained.

This version number can be used to specify whether or not the JAR files need to
be loaded from the server to update those already loaded by the m-let service.
The ver si on must be a series of non-negative decimal integers each separated by
a decimal point (.), for example 2. 14.

Chapter 8 Advanced Dynamic Loading 145

8.3

8.3.1

= arglist

The optional contents of the MLET tag specify a list of one or more arguments to
pass to the constructor of the MBean to be instantiated. The m-let service looks for
a constructor with a signature that matches the types of the arguments specified
in the ar gl i st . Instantiating objects with a constructor other than the default
constructor is limited to constructor arguments for which there is a string
representation.

Each item in the ar gl i st corresponds to an argument in the constructor. Use the
following syntax to specify the ar gLi st :

<ARG TYPE=ar gunent Type VALUE=ar gurment Val ue>
where:

= argument Type is the class of the argument (for example | nt eger)
= argument Val ue is the string representation of the value of the argument

The M-Let Service

The classes of the m-let service are members of the j avax. managenent . | oadi ng
package. The MLet class implements the M_et MBean, that contains the methods
exposed for remote access. This implies that the m-let service is itself an MBean and
can be managed as such.

The M_et class also extends the j ava. net . URLCl assLoader object, meaning that
it is itself a class loader. This allows several shortcuts for loading classes without
requiring an m-let file.

Loading MBeans From a URL

The get MBeansFr omJRL methods of the m-let service perform the class loading
based on the m-let text file on a remote server. The m-let file and the class files need
to be available on the server as described in “The MLET Tag” on page 144. The two
overloaded versions of this method take the URL argument as a string or as a

j ava. net . URL object.

Each MLET tag in the m-let file describes one MBean to be downloaded and created
in the MBean server. When the call to a get MBeansFr omJRL method is successful,
the newly downloaded MBeans are instantiated in the JMX agent and registered
with the MBean server. The methods return the object instance of the MBeans that
were successfully created and a throwable object for those that were not.

Other methods of the M_et class manage the directory for native libraries
downloaded in JAR files and used by certain MBeans. See the API documentation
generated by the Javadoc tool for more details.

146 Java Management Extensions Specification, version 1.4 « November 9, 2006

8.3.2

8.3.2.1

Class Loader Functionality

The m-let service uses its class loader functionality to access the code base given in
an m-let file or given by the URL itself. This code base is then available in the m-let
service for downloading other MBeans from the same code base.

For example, an m-let file can specify a number of MLET tags to populate all the
MBeans in a JMX agent. Once the get MBeansFr omJRL method has been invoked to
do this, the m-let service can be used to instantiate any one of those MBeans again,
or any other class at the same code base.

This is done by passing the m-let service’s object name as a class loader parameter to
the cr eat eMBean method of the MBean server (see the corresponding API
documentation generated by the Javadoc tool). Because the code base has already
been accessed by the m-let service, its class loader functionality can access the code
base again. In this case, the information in the MLET tag is no longer taken into
account, although the parameters of the cr eat eMBean method can be used to
specify the parameters to the class constructor.

Because the cr eat eMBean methods of the MBeanSer ver interface take the object
name of the class loader, this functionality is also available to remote management
applications that do not have direct object references in the JMX agent.

The m-let service MBean also exposes the addURL methods for specifying a code
base without needing to access any m-let file. These methods add the code base
designated by the given URL to the class loader of the m-let service. MBean classes
at this code base can be downloaded and created in the MBean server directly
through the cr eat eMBean method, again with the m-let service given as the class
loader object.

Note — Using the class loader of the m-let service to load create classes from
arbitrary code bases or to reload classes from m-let code bases implies that the agent
application or the MBean developer has some prior knowledge of the code base
contents at runtime.

Native libraries

The m-let service acts as the class loader for any MBeans it loads. This means that if
the MBeans contain native methods, and they load a native library containing the
code for those methods using Syst em | oadLi br ary, then the m-let class loader’s
findLi brary method will be called to find the library. This method is overridden
from j ava. | ang. Cl assLoader. It will attempt to find a resource (typically an
entry in a JAR file) whose name is the name of the library, modified in a system-
dependent way. If it does find one, it will copy the contents to a file in the directory
returned by the M_et . get Li braryDi r ect or y() method, and return the name of
the file as the result of f i ndLi br ary. This is described further in the API
specification for M_et . fi ndLi brary.

Chapter 8 Advanced Dynamic Loading 147

8.4

8.4.1

Not all systems support native libraries in this way. A system that does not will
throw Unsupport edOper ati onExcepti on from the get Li braryDi rect ory and
set Li braryDi rect ory methods in the M_et class.

Even on systems that do support this functionality, it is better not to rely on it
because of the portability problems it poses.

The Class Loader Repository

The MBean server maintains a list of class loaders in the class loader repository. The
class loader repository is also sometimes referred to as the default loader Repository.

The class loader repository is used in the following circumstances:

= In the creat eMBean and i nst anti at € methods from the MBeanServer
interface. The class loader repository is used to find and load the class named by
the cl assName parameter to these methods.

These methods exist in several overloaded forms. Some of the forms have an
Cbj ect Name parameter specifying an MBean that is a class loader. The class
loader repository is not used by those forms.

= When an m-let does not find a class in its URLSs, it tries to load the class through
the class loader repository. This behavior can be disabled when the m-let is
created.

= The method get Cl assLoader Reposi t ory from the MBeanSer ver interface
provides a way for clients of the MBean server to access its class loader repository
directly.

If several MBean servers are created within the same Java Virtual Machine, for
example by a program that calls MBeanSer ver Fact ory. cr eat eMBeanSer ver
several times, each one has its own class loader repository, independently of the
others.

How to Add Loaders to the Class Loader
Repository

When an MBean server is created, its class loader repository contains the class loader
that was used to load the MBeanSer ver implementation class. Thereafter, a class
loader is added to the repository if it is registered as an MBean. If the MBean is
subsequently unregistered, it is removed from the repository.

Put another way, if an MBean is registered that is a descendant of
j ava. | ang. O assLoader, it is added to the class loader repository.

148 Java Management Extensions Specification, version 1.4 « November 9, 2006

8.4.2

8.4.3

If an MBean is a descendant of j ava. | ang. Gl assLoader but implements the
interface j avax. managenent . | oadi ng. Pri vat eCl assLoader, then it is never
added to the class loader repository.

Because the class j avax. managenent . | oadi ng. M_et is a descendant of

java. |l ang. Cl assLoader, m-lets are added to the class loader repository when
they are registered in the MBean server. The JMX specification includes a class
Privat eM.et that subclasses M_et and implements Pri vat eM.et. A

Pri vat eM_et behaves like an MLet in every way except that it is never added to
the class loader repository.

Order of Loaders in the Class Loader Repository

The order of class loaders in the repository is significant. When a class is loaded
using the repository, each class loader in turn is asked to load the class. If a loader
successully loads the class, the search stops. If a loader throws

Cl assNot FoundExcept i on, the search continues with the next loader in the list. If
no loader succeeds in loading the class, the attempt results in a

Cl assNot FoundExcepti on.

The first loader in the class loader repository is the one that was used to load the
MBeanSer ver implementation class. Thereafter, each entry is an MBean that is a
descendant of j ava. | ang. O assLoader. The order of these loaders is the order in
which the MBeans were registered.

More formally, an MBean m1 appears before an MBean m?2 if the cr eat eMBean or
regi st er MBean operation that registered m1 completed before the operation that
registered m2 started. If neither operation completed before the other started, both
MBeans were registered at the same time in different threads, and the order between
m1 and m?2 is indeterminate.

M-Let Delegation to the Class Loader Repository

An m-let is a class loader, and as such follows the standard behaviour for a class
loader when it loads a class using its | oadCl ass method:

= First, it sends a request to its parent class loader to load the class. The parent class
loader is specified when the m-let is created. By default, it is the system class loader.

= If the parent class loader is unable to load the class, the m-let attempts to load it
itself through its list of URLs. The M_et class is a subclass of
j ava. net. URLCl assLoader, and the behavior for loading a class through a list
of URLs is inherited from URLCl assLoader.

Chapter 8 Advanced Dynamic Loading 149

8.4.3.1

If neither of these two attempts finds the class, the m-let attempts to load the class
through the class loader repository. We say that it delegates to the class loader
repository. Only if that attempt also fails does the m-let throw a

Cl assNot FoundExcept i on.

When an m-let delegates to the class loader repository, each loader in the repository
is asked in turn to load the class. However, if the m-let is itself in the class loader
repository, the search stops as soon as the m-let is reached. That is, the m-let only
delegates to loaders that precede it in the repository.

The class loader repository can be used as a way to make common classes available
to MBeans from different sources. The common classes are placed in the repository,
and m-lets that delegate to the repository can find them. Because m-lets only
delegate to loaders that precede them in the repository, the order in which loaders
are registered is important. If m-let m1 defines classes that are used by classes in m-
let m2, then m1 must be registered before m?2.

When an m-let is created, it is possible to control both whether it delegates to other
loaders via the repository, and whether other loaders delegate to it:

= If the m-let is constructed with the Boolean delegateToCLR parameter false, then it
will not delegate to the class loader repository.

» If the m-let is an instance of Pri vat eM_.et, then it will not be added to the class
loader repository, so other loaders will not delegate to it.

New Semantics in the JMX 1.2 Specification

In versions of the JMX specification prior to 1.2, m-lets delegated to the complete list
of loaders in the class loader repository. That is, if an m-let did not find a class itself,
every other loader in the repository was consulted. Loaders were consulted
regardless of whether they were before or after the m-let in the repository.

This behaviour is open to a subtle problem with certain Java Virtual Machines. Note
that a class is not necessarily loaded by an explicit call to the | oadCl ass method of
some class loader. More often, a class is loaded because it is referred to by another
class, for instance because it is the type of a field in that class, or of a parameter or
return value in a method, or it is a superclass or superinterface of the class, or one of
the methods in the class constructs an instance of it or refers to a static field or
method in it. Simplifying slightly, we can say that the exact moment when a class is
loaded cannot be predicted.

When a class c1 refers to another class A for the first time, Ais loaded using c1’s class
loader. If cI was loaded by the m-let m1, then A will also be loaded using m1.

If m1 does not find the class A through its parent class loader, or through its list of
URLs, it will delegate to the class loader repository.

150 Java Management Extensions Specification, version 1.4 « November 9, 2006

Referring to FIGURE 8-2, imagine that at the same time in another thread, a class c2,

loaded by the m-let m2, refers to the class B for the first time. Again, B will be loaded
using m2, and if m2 does not find the class itself, it will delegate to the class loader
repository.

If m1 searches through all the loaders in the repository besides itself, and m2 does
likewise, then m1 will end up sending a request to m2 to load A and m2 will end up
sending a request to m1 to load B.

A problem arises with certain Java Virtual Machine implementations that do not
allow more than one thread at a time to load a class through a given class loader.
Because thread 1 is loading class A through m1, thread 2 cannot simultaneously load
class B through m1. Because thread 2 is loading class B through m2, thread 1 cannot
simultaneously load class A through m2. Each thread must wait for the other to
finish before it can proceed, creating a classical deadlock situation.

Thread 1 Thread 2
mlL. | oadd ass(“A") n2. | oadd ass(“B")
not found locally not found locally
delegate to repository delegate to repository
n2. | oadd ass(“A") nl. | oadd ass(“B")

FIGURE 8-2 Deadlock scenario for m-let delegation

The change in semantics avoids this scenario because one of the two m-lets must
appear after the other in the class loader repository. If m2 appears after m1, m1 will
never attempt to load a class using m2, because it only delegates to loaders that
appear earlier than it in the repository. So the deadlock cannot happen.

If you are prepared to run the risk of deadlock, or you are sure that a scenario such
as the above cannot happen, it is straightforward to subclass M_et and override its
| oadC ass method to restore the previous semantics of delegating to all the loaders
in the repository, whether before or after the m-let. However, you should remember

Chapter 8 Advanced Dynamic Loading 151

8.5

152

that if a class loaded by such an M_et subclass refers to another class that does not
exist, all the m-lets in the class loader repository are consulted before
Cl assNot FoundExcept i on is thrown.

Using the Correct Class Loader for
Parameters

A subtle pitfall of class loading is that the class a. b. Ccreated by the class loader c/1
is not the same as the class a. b. C created by the class loader cI2. Here, “created”
refers to the class loader that actually creates the class with its def i neCl ass
method. If c/1 and cI2 both find a. b. Cby delegating to another class loader cl3, it is
the same class.

A value of type “a. b. Ccreated by cl1” cannot be assigned to a variable or
parameter of type “a. b. Ccreated by c¢/2”. An attempt to do so will result in an
exception such as Ol assCast Excepti on.

For the JMX specification, this can pose problems for the parameters of the methods
creat eMBean, i nvoke, set Attribute, and set Attri but es of the MBean server.

Suppose you have an MBean with the following interface:

CODE EXAMPLE 8-1 Simple MBean interface

public interface AnMBean {
public void m Soned ass Xx);

}

If the MBean server contains an instance of this MBean that was created by the class
loader cl1. At some stage, either during loading or the first time it is referenced, cl1
will load the class Sonmed ass.

Suppose now that you are writing a connector. At the receiving (server) end of the
connector, you get a request to invoke mon the MBean. The sender will have sent an
instance of SomeCl ass that you must recreate, for example, by deserializing it. If
you recreate it with any class loader other than c/1, you will get an exception when
you try to pass it to the method m

This means that your connector server must have a way of instantiating received
objects using the correct class loader.

To this end, there are three methods in the MBeanSer ver interface related to class
loading;:

= get C assLoader For

= get O assLoader Repository

Java Management Extensions Specification, version 1.4 « November 9, 2006

8. 5.

8.5.2

1

= get Cl assLoader

These methods are described in the following sections.

get Cl assLoader For

The appropriate method for CODE EXAMPLE 8-1 on page 152 is:
public C assLoader getCl assLoader For (Obj ect Name nane);

By calling this method with the Qbj ect Nane of an MBean, you can obtain the class
loader that created the MBean'’s class, c/1 in our example. Then you can get the
correct class, SomeCl ass, using cl1.

The get Cl assLoader For method is appropriate for the i nvoke, set Attri bute,
and set At tri but es operations, because the appropriate class loader for the
parameters to these operations is the class loader of the target MBean.

The get U assLoader For method was introduced in version 1.2 of the JMX
specification. Previously, connector servers had to use one of the deseri al i ze
methods in the MBeanSer ver interface. These methods are now deprecated.
Consequently, use get Cl assLoader For instead of

deseriali ze(Cbj ect N\ame nane, byte[] data).

get Cl assLoader and
get Cl assLoader Repository

For the cr eat eMBean operation, the target MBean does not exist, because the whole
purpose of the operation is to create it. There are two classes of cr eat eMBean
operation, depending on whether there is a loaderName parameter that specifies the
name of an MBean that is a class loader to be used to load the MBean class.

= For a cr eat eMBean operation that does not include a loaderName, the MBean
class is loaded using the class loader repository. If the constructor invoked to
create the MBean has parameters, then these should also be loaded using the class
loader repository, to avoid the problem that was explained above for i nvoke.
Thus, the MBeanSer ver interface contains a method:

public Cl assLoader Repository getC assLoader Repository();

The method | oadCl ass in the Cl assLoader Reposi t ory interface can be used
to load classes through the class loader repository.

Chapter 8 Advanced Dynamic Loading 153

154

= For a cr eat eMBean operation that includes a loaderName, the MBean class is
loaded using the class loader that is registered as an MBean with the given name.
If the constructor has parameters, their classes should be loaded by the same class
loader. Thus, the MBeanSer ver interface contains a method:

public Cl assLoader getC assLoader (Cbj ect Nane nane);

Similar considerations apply to the i nst anti at e methods of the MBeanSer ver
interface. However, these methods are not usually exposed through connectors.

The methods get O assLoader, and get Cl assLoader Reposi t ory were
introduced in the JMX specification version 1.2. Previously, connector servers had to
use one of the three deseri al i ze methods in the MBeanSer ver interface. These
methods are now deprecated.

Consequently, use get Cl assLoader Reposi t ory instead of
deserialize(String className, byte[] data)
Also use get Cl assLoader instead of

deserialize(String classNane, ObjectNane |oaderNanme, byte[] data)

Java Management Extensions Specification, version 1.4 « November 9, 2006

Monitoring

9.1

9.1.1

This chapter specifies the family of monitor MBeans that allow you to observe the
variation over time of attribute values in other MBeans and emit notifications at
threshold events. Collectively they are referred to as the monitoring services.

Monitoring services are a mandatory part of agents that comply with the JMX
specification, and they must be implemented in full.

Overview

Using a monitoring service, an observed value from a given attribute in one or more
other MBeans (the observed MBeans) is monitored at intervals specified by the
granularity period. This value is either the attribute value, or a value contained within
an attribute value of complex type. For each observed MBean, the monitor derives a
second value from this observation, called the derived gauge. This derived gauge is
either the exact observed value, or optionally, the difference between two
consecutive observed values of numeric type.

A specific notification type is sent by each of the monitoring services when the value
of the derived gauge satisfies one of a set of conditions. The conditions are specified
when the monitor is initialized, or dynamically through the monitor MBean’s
management interface. Monitors can also send notifications when certain error cases
are encountered while monitoring an attribute value.

Types of Monitors

Information on the value of an attribute within an MBean is provided by three
different types of monitors:

= Count er Moni tor - Observes values with Java integer types (Byt e, | nt eger,
Short, Long) that behave like a counter, namely:

= Their value is always greater than or equal to zero.
= They can only be incremented.

Chapter 9 Monitoring 155

= They can roll over, and in that case a modulus value is defined.

= CGaugeMoni t or - Observes values with Java integer or floating point types
(FI oat, Doubl e) that behave like a gauge (arbitrarily increasing and decreasing).

= StringMonitor - Observes values of type St ri ng.

All types of monitors extend the abstract Moni t or class, that defines common
attributes and operations. The type of the observed value must be supported by the
specific monitor subclass used.

However, monitors verify the type of the object instance that is returned as the
attribute’s value, not the attribute type declared in the observed MBean’s metadata.
For example, this allows a string monitor to observe a value declared as an Cbj ect
in its metadata, as long as actual values are St ri ng instances.

Each of the monitors is also a standard MBean, allowing them to be created and
configured dynamically by other MBeans or by management applications.

9.2 Moni tor Noti fi cati on Class

A specific subclass of the Not i fi cati on class is defined for use by all monitoring
services: the Moni t or Not i fi cati on class.

This notification is used to report one of the following cases:

= One of the trigger conditions of a monitor is detected, for example, the high
threshold of a gauge is reached

= An error occurs during an observation of the attribute, for example, the observed
MBean is no longer registered

The notification type string within a Moni t or Not i fi cat i on instance identifies the
specific monitor event or error condition, as shown in FIGURE 9-1. The fields of a
Moni t or Not i fi cati on instance contain the following information:

= The observed MBean’s object name

= The observed attribute name, or the attribute name plus the value within a
complex-type attribute value to be observed

= The derived gauge, namely, the last value computed from the observation

= The threshold value or string that triggered this notification

The tree representation of all notification types that can be generated by the
monitoring services is given in FIGURE 9-1. The error types are common to all
monitors and are described below. Each of the threshold events is particular to its
monitor and is described in the corresponding section.

156 Java Management Extensions Specification, version 1.4 « November 9, 2006

9.2.1

m)n|i tor
count er gal|Jge st r|i ng error
L t hreshol d hi gh mat ches | Mmbean
| ow differs — attribute
— type
— runtime
L threshold

FIGURE 9-1 Tree Representation of Monitor Notification Types

Common Monitor Notification Types

The following notification types are common to all monitors and are emitted to
reflect error cases. The first measurement is made when the monitor is started:

= jnX.nonitor.error.nbean - Sent when one of the observed MBeans is not
registered in the MBean server. The observed object name is provided in the
notification.

= jnMx.nmonitor.error.attribute - Sent when the observed attribute does not
exist in one of the observed objects. The observed object name and observed attribute
name are provided in the notification.

= jnX.nonitor.error.type - Sent when the object instance of the observed
attribute value is nul | or not of the appropriate type for the given monitor. The
observed object name and observed attribute name are provided in the notification.

= jnx.nonitor.error.runtime - All exceptions (except the cases described
above) that occur while trying to get the value of the observed attribute are
caught by the monitor and will be reported in a notification of this type.

The following notification type is common to the counter and the gauge monitors; it
is emitted to reflect specific error cases:

= jnx.nonitor.error.threshol d - Sentin case of any incoherence in the
configuration of the monitor parameters:
« Counter monitor: the threshold, the offset, or the modulus is not of the same
type as the observed counter attribute.

Chapter 9 Monitoring 157

9.3

158

= Gauge monitor: the low threshold or high threshold is not of the same type as
the observed gauge attribute.

Count er Moni t or Class

A counter monitor sends a notification when the observed counter value reaches or
exceeds a comparison level known as the threshold.

The counter can roll over (also known as wrapping around) when it reaches a
maximum value. In this case, the notification is triggered every time the counter
reaches or exceeds the threshold, provided it has been observed below the threshold
since the previous notification. A counter does not necessarily roll over to zero, but
this does not affect the monitor that handles the general case.

In addition, an offset mechanism can detect counting intervals, as follows:
= The offset mechanism is enabled whenever the monitor’s offset value is non-zero.

= Whenever the monitor detects that the counter reaches or exceeds the threshold, a
notification is triggered and the threshold is incremented by the offset value. The
threshold is incremented by the offset value as many times as necessary for the
threshold to exceed the counter value again, but still only one notification is sent.

» If the counter that is monitored rolls over when it reaches a maximum value, then
the modulus value needs to be set to that maximum value. The threshold will then
also “roll over” whenever it strictly exceeds the modulus value. When the
threshold “rolls over”, it is reset to the value that was specified through the latest
call to the monitor’s set | ni t Thr eshol d method, before any offsets were
applied.

= The get Thr eshol d method of the Count er Moni t or class always returns the
current value of the threshold, which includes any offset increments.

= All incrementing or rolling over of the threshold is considered to take place
instantaneously, namely, before the count is incremented. Thus, if the granularity
period is set appropriately, the monitor triggers a threshold notification every
time the count increases by an interval equal to the offset value.

If the counter difference option is used, then the value of the derived gauge is
computed as the difference between the observed counter values for two consecutive
observations. If the counter will roll over, then the modulus must be defined when
counter difference is active. When the counter does roll over, the difference between
the observations will be negative and value of the modulus needs to be added.

The derived gauge value (V[t]) for the counter difference is calculated at time t
using the following algorithm, where GP is the granularity period:
= Whilet isless than St art Dat e+2GP, V[t] = (Integer)0

« If(counter[t] - counter[t-GP]) is greater than or equal to zero, then
V[t] = counter[t] - counter[t-GP]

Java Management Extensions Specification, version 1.4 « November 9, 2006

« If (counter[t] -
counter[t] -

V[t]

counter[t-GP

counter[t-GP]) is negative, then

+ MODULUS

The counter monitor has the following constraint:

= The threshold value, the offset value and the modulus value properties must be of
the same integer type as the observed attribute.

The operation of a counter monitor with an offset of 2 is illustrated in FIGURE 9-2.

A

count (C)

_4_7_

Offset

threshold

threshold

COMPAriSON st

level (T)
(threshold)

9.3.1

threshold

FIGURE 9-2 Operation of the Count er Moni t or

The monitor observes a counter C(t) that varies with time t . The granularity period
is GP and the comparison level is T. A Count er Moni t or sends a notification when
the value of the counter reaches or exceeds the comparison (threshold) level. After
the notification has been sent, the threshold is incremented by the offset value until
the comparison level is greater than the current value of the counter.

Counter Monitor Notification Types

In addition to the monitor error notification types, a Count er Moni t or MBean can
broadcast the following notification type:

Chapter 9

Monitoring 159

9.4

160

= jnx.nonitor.counter.threshol d - This notification type is triggered when
the derived gauge has reached or exceeded the threshold value.

GaugeMoni t or Class

A gauge monitor observes a numerical value that behaves as a gauge. A hysteresis
mechanism is provided to avoid the repeated triggering of notifications when the
gauge makes small oscillations around the threshold value. This capability is
provided by specifying threshold values in pairs; one being a high threshold value
and the other being a low threshold value. The difference between threshold values is
the hysteresis interval.

The GaugeMbni t or MBean has the following structure:

=« The Hi ghThr eshol d attribute defines the value that the gauge must reach or
exceed to trigger a notification that will be broadcast only if the Not i f yH gh
boolean attribute is t r ue.

= The LowThr eshol d attribute defines the value that the gauge must fall to or fall
below to trigger a notification that will be broadcast only if the Not i f yLow
boolean attribute is set to t r ue.

The gauge monitor has the following constraints:

= The threshold high value and the threshold low value properties are of the same
type as the observed attribute.

» The threshold high value is greater than or equal to the threshold low value.

The gauge monitor has the following behavior:

» Initially, if Noti f yHi gh is t rue and the gauge value becomes equal to or greater
than the Hi ghThr eshol d value while the gauge is increasing, then the defined
notification is triggered. Subsequent crossings of the high threshold value will not
trigger further notifications until the gauge value becomes equal to or less than
the LowThr eshol d value.

» Initially, if Not i f yLowis t r ue and the gauge value becomes equal to or less than
the LowThr eshol d value while the gauge is decreasing, then the defined
notification is triggered. Subsequent crossings of the low threshold value will not
cause further notifications until the gauge value becomes equal to or greater than
the H ghThr eshol d value.

= Upon creation of the gauge, if Not i f yH gh is t r ue and the gauge value is
already equal to or greater than the Hi ghThr eshol d value, then the defined
notification is triggered. Similarly, if Noti f yLowis t r ue and the gauge value is
already equal to or less than the LowThr eshol d value, then the defined
notification is also triggered.

Java Management Extensions Specification, version 1.4 « November 9, 2006

thresholdHighValue

thresholdLowValue

94.1

P() A

If the gauge difference option is used, then the value of the derived gauge is
calculated as the difference between the observed gauge values for two consecutive
observations.

The derived gauge value (V[t]) for gauge difference is calculated at time t using
the following algorithm, where GP is the granularity period:

= Whilet isless than Start Date+2GP, V[t] = (Integer)0

s Otherwise, V[t] = gauge[t] - gauge[t-GP]

The operation of the GaugeMoni t or is illustrated in FIGURE 9-3, assuming both
notification switches are t r ue.

FIGURE 9-3 Operation of the GaugeNbni t or

Gauge Monitor Notification Types

In addition to the monitor error notification types, a GaugeMni t or MBean can
broadcast the following notification types:

= j nx. noni tor. gauge. hi gh - This notification type is triggered when the
derived gauge has reached or exceeded the high threshold value.

= j mx. noni tor. gauge. | ow- This notification type is triggered when the derived
gauge has decreased to or below the low threshold value.

Chapter 9 Monitoring 161

9.5 StringMoni t or Class

A string monitor observes a value of type St ri ng. The derived gauge in this case is
always the observed value. The string monitor is configured with a value for the
string called string-to-compare, and is able to detect the following two conditions:

= The derived gauge matches the string-to-compare. If the Not i f yMat ch attribute
of the monitor is t r ue, then a notification is sent. At the subsequent observation
times (defined by the granularity period), no other notification will be sent for as
long as the attribute value still matches the string-to-compare.

= The value of the derived gauge differs from the string-to-compare. If the
Not i fyDi f f er attribute of the monitor is t r ue, then a notification is sent. At the
subsequent observation times, no other notification will be sent for as long as the
attribute value differs from the string-to-compare.

Assuming both notifications are selected, this mechanism ensures that matches and
differs are strictly alternating, each occurring the first time the condition is observed.

The operation of the string monitor is illustrated in FIGURE 9-4. The granularity
period is GP, and the string-to-compare is “XYZ".

Sz o

differs differs
matches matches
observed attribute | “XYZ" | “XX” | “XYZ' | “yyyy” | “zz277”
I I I I I I I I I -
<>

granularityPeriod (GP)

FIGURE 9-4 Operation of the St ri nghoni t or

162 Java Management Extensions Specification, version 1.4 « November 9, 2006

9.5.1

9.6

String Monitor Notification Types

In addition to the monitor error notification types, a St ri nghoni t or MBean can
broadcast the following notification types:

= jnx.nonitor.string. matches - This notification type is triggered when the

derived gauge first matches the string to compare.

= jnmx.nonitor.string.differs - This notification type is triggered when the
derived gauge first differs from the string to compare.

Implementation of the Monitor MBeans

FIGURE 9-5 provides the package diagram of the various monitor MBean classes, with
the interfaces they implement. The API documentation generated by the Javadoc
tool provides the complete description of all monitoring service interfaces and

classes.

«Interface»
M BeanRegistration

«Interface»
Monitor M Bean

NotificationBroadcaster Support

. . 7
b e e e e e — —— — 4
|
- - I
j avax. managenent . noni t or I
|
|
1
Monitor
«Interface» «Interface»

Counter M onitor M Bean

A

A

StringMonitor M Bean

A

Counter Monitor

«Interface»
GaugeM onitor M Bean

A

GaugeMonitor

StringMonitor

FIGURE 9-5 The Package and Class Diagram of the Monitor MBeans

Chapter 9 Monitoring 163

164 Java Management Extensions Specification, version 1.4 « November 9, 2006

10

Timer Service

10.1

The timer service triggers notifications at specific dates and times. It can also trigger
notifications repeatedly at a constant interval. The notifications are sent to all objects
registered to receive notifications emitted by the timer. The timer service is an
MBean that can be managed, allowing applications to set up a configurable
scheduler.

Conceptually, the Ti mer class manages a list of dated notifications that are sent
when their date and time arrives. Methods of this class are provided to add and
remove notifications from the list. In fact, the notification type is provided by the
user, along with the date and optionally a period and the number of repetitions. The
timer service always sends the notification instances of its specific

Timer Not i fication class.

Timer Notifications

The timer service can manage notifications in two different ways:

= Notifications that are triggered only once

= Notifications that are repeated with a defined period and/or number of
occurrences

This behavior is defined by the parameters passed to the timer when the notification
is added into the list of notifications. Each of the notifications added to the timer
service is assigned a unique identifier number. Only one identifier number is
assigned to a notification, no matter how many times it is triggered.

Chapter 10 Timer Service 165

10.1.1 Ti mer Noti fi cati on Class

A specific subclass of the Not i fi cati on class is defined for use by the timer
service: the Ti mer Not i fi cat i on class. The notification type contained in instances
of the Ti mer Not i fi cati on class is particular: it is defined by the user when the
notification is added to the timer. All notifications broadcast by the timer service are
instances of the Ti mer Not i fi cati on class.

The Ti mer Not i fi cati on class has a notification identifier field that uniquely
identifies the timer notification that triggered this notification instance.

10.1.2 Adding Notifications to the Timer

The timer service maintains an internal list of the dated notifications that it has been
requested to send. Notifications are added to this list using the Ti mer class’
addNot i fi cati on methods. The methods take the following parameters, used by
the timer to create a Ti mer Not i fi cati on object and then add it to the list:

= type - The notification type string.
= message - The notification’s detailed message string.
= user Dat a - The notification’s user data object.

= dat e - The date when the notification will occur. The Ti mer class includes
integer constants for expressing durations in milliseconds, that can then be used
to create j ava. uti | . Dat e objects.

The addNot i fi cat i on method is overloaded and, in addition to the notification’s
parameters and date, it can take the following optional parameters:

= period - The interval in milliseconds between notification occurrences.
Repeating notifications are not enabled if this parameter is zero or nul | .

= nbQccur ences [sic] - The total number of times that the notification will occur. If
the value of this parameter is zero or is not defined (nul |), and if the peri od is
not zero or nul |, then the notification will repeat indefinitely.

If the notification to be inserted has a date that is before the current date, the
addNot i fi cati on method behaves as if the current date had been specified.
Updating the date of a timer notification that is being added does not generate any
notification events, as opposed to the sendPast Noti fi cati ons mechanism that
applies when the timer is started (see “Starting and Stopping the Timer” on

page 168).

The addNot i fi cati on method returns the identifier of the new timer notification.
This identifier can be used to retrieve information about the notification from the
timer or to remove the notification from the timer’s list of notifications. However,
after a notification has been added to the list of notifications, its associated
parameters cannot be updated.

166 Java Management Extensions Specification, version 1.4 « November 9, 2006

10.1.3

10.1.4

When a one-off notification (period is zero or null) occurs, it is removed from the
timer’s list of notifications.

Receiving Timer Notifications

The timer service MBean is a standard notification broadcaster with notification
types and times defined by the list of notifications built up through the

addNot i fi cati on method. All listeners of a given timer MBean will receive all its
timer notifications. Listeners configured to listen for a specific timer notification
should specify the appropriate filter object when registering as a listener (see
“NotificationFilter Interface” on page 58).

When the timer is active and the date of a timer notification comes due, the timer
service broadcasts this notification with the given type, message, and user data,
along with the notification’s identifier within the timer. If a periodic notification has
a specified number of occurrences, that number is decremented by one. Accessing
the occurrence parameter of a timer notification always returns the remaining
number of occurrences at the time of access.

When a notification is not repeating or when it has exhausted its number of
occurrences, it is removed from the timer’s list of notifications. The methods of the
Ti mer class for accessing notification parameters will raise an exception if called
with the identifier of a timer notification that has been sent and removed.

Removing Notifications From the Timer

Timer notifications can also be removed from the list of notifications using one of the
following methods of the Ti mer class:

= renoveNotification - Takes a notification identifier as a parameter and
removes the corresponding notification from the list. If the specified identifier
does not exist in the list, this method throws an | nst anceNot FoundExcepti on.

= renmoveNotifications - Takes a notification type as a parameter and removes
all notifications from the list that were added with that type. If the specified
notification type does not correspond to any notifications in the list, this method
throws an | nst anceNot FoundExcept i on.

= renoveAl | Notifications - Empties the timer’s list of notifications. This
method also resets the notification identifiers, meaning that all existing identifiers
for this timer are invalid and will erroneously refer to new notifications.

Chapter 10 Timer Service 167

10.2

Starting and Stopping the Timer

The timer service, represented by an instance of the Ti nmer class, is activated using
the st art method and deactivated using the st op method. If the list of notifications
is empty when the timer is started, the timer waits for a notification to be added. No
timer notifications are triggered before the timer is started or after it is stopped.

You can determine whether the timer is running or not by invoking the timer
method i SActi ve. The i sAct i ve method returns t r ue if the timer is running.

If any of the notifications in the timer’s list have associated dates that have passed
when the timer is started, the timer attempts to update them. The dates of periodic
notifications are incremented by their interval period until their date is greater than
the current date. The number of increments can be limited by their defined number
of occurrences. Notifications with one-time dates preceding the start date and
notifications with a limited number of occurrences that cannot be updated to exceed
the start date are removed from the timer’s list of notifications.

When a notification is updated or removed during timer start-up, its notification is
either triggered or ignored, depending on the sendPast Not i fi cati ons attribute
of the Ti mer class:

= sendPast Noti fications =true - All one-time notifications with a date before
the start date are broadcast, and all periodic notifications will be broadcast as
many times as they should have occurred before the start date, including those
that are removed because they cannot be updated beyond the start date.

= sendPast Notifications =fal se - Notifications with a date before the start
date are ignored; if a notification is periodic, its notification date is updated but
no notifications are triggered.

Setting the sendPast Not i fi cati ons flag to t r ue can cause a flood of
notifications to be broadcast when the timer is started. The default value for this flag
is f al se. Setting this flag to t r ue ensures that notification dates that occur while
the timer is stopped are not lost. The user can choose to receive them when the timer
is started again, even though they no longer correspond to their set dates.

Calling start on a Ti mer that has already been started, or St op on a Ti mer that
has already been stopped, has no effect. After a st op, the timer is in its initial state,
and it can be started again with start.

168 Java Management Extensions Specification, version 1.4 « November 9, 2006

11

Relation Service

11.1

As part of the agent specification, the Java Management extensions (JMX)
specification also defines a model for relations between MBeans. A relation is a user
defined, n-ary association between MBeans in named roles. The JMX specification
defines the classes that are used to construct an object representing a relation, and it
defines the relation service that centralizes all operations on relations in an agent.

All relations are defined by a relation type that provides information about the roles
it contains, such as their multiplicity, and the class name of MBeans that satisfy the
role. Through the relation service, users create new types and then create, update, or
remove relations that satisfy these types. The relation service also performs queries
among all relations to find related MBeans.

The relation service maintains the consistency of relations, checking all operations
and all MBean deregistrations to ensure that a relation always conforms to its
relation type. If a relation is no longer valid, it is removed from the relation service,
though its member MBeans continue to exist otherwise.

The Relation Model

A relation is composed of named roles, each of which has a value consisting of the
list of MBeans in that role. This list must comply with the role information that
defines the multiplicity and class of MBeans in the corresponding role. A set of one
or more role information definitions constitutes a relation type. The relation type is a
template for all relation instances that associate MBeans representing its roles. We
use the term relation to mean a specific instance of a relation that associates existing
MBeans according to the roles in its defining relation type.

Chapter 11 Relation Service 169

11.1.1 Terminology

The relation model in the JMX specification relies on the following terms. Here we
only define the concepts represented by a term, not the corresponding Java class.

role information Describes one of the roles in a relation. The role information gives the name
of the role, its multiplicity expressed as a single range, the name of the class
that participates in this role, read-write permissions, and a description string.

relation type The metadata for a relation, composed of a set of role information. It
describes the roles that a relation must satisfy, and it serves as a template for
creating and maintaining relations.

relation A current association between MBeans that satisfies a given relation type. A
relation can only be created and modified such that the roles of its defined
type are always respected. A relation can also have properties and methods
that operate on its MBeans.

role value The list of MBeans that currently satisfies a given role in a relation. The role
value must at all times conform to its corresponding role information.

unresolved role An unresolved role is the result of an illegal access operation on a role, as
defined by its role information. Instead of the resulting role value, the
unresolved role contains the reason for the refused operation. For example,
setting a role with the wrong class of MBean, providing a list with an illegal
cardinality, or attempting to write a read-only role will all return an
unresolved role.

support classes Internal classes used to represent relation types and relation instances. The
support classes are also exposed to simplify user implementations of relation
classes. The user’s external implementation must still rely on the relation
service to maintain the consistency of the relation model.

relation service An MBean that can access and maintain the consistency of all relation types
and all relation instances within a JMX agent. It provides query operations to
find related MBeans and their role in a relation. It is also the sole source of
notifications concerning relations.

11.1.2 Example of a Relation

Throughout this chapter we will use the example of a relation between books and
their owner.

To represent this relation in the JMX specification model, we say that Books and
Oaner are roles. Books represents any number of owned books of a given MBean
class, and Oaner is a book owner of another MBean class. We might define a relation
type containing these two roles and call it Per sonal Li br ary, representing the
concept of book ownership.

170 Java Management Extensions Specification, version 1.4 « November 9, 2006

11.1.3

The following diagram represents this sample relation, as compared to the UML
modeling of its corresponding association.

JMX Model UML Model

«Relation Type»
Per sonal Library

1.1 0.*
Omer Books
. «P_ersonal
1.1 0.. Library»
«Role» «Role»
Oaner Books

FIGURE 11-1 Comparison of the Relation Models

In the JMX specification model, the relation type is a static set of roles. Relation types
can be defined at runtime, but once defined, their roles and the role information
cannot be modified. The relation instance of a given type defines the MBeans in each
role and provides operations on them, if necessary.

Maintaining Consistency

MBeans are related through relation instances defined by relation types in the
relation service, but the MBeans remain completely accessible through the MBean
server. Only registered MBeans, identified by their object name, can be members of a
relation. The relation service never operates on member MBeans, it only provides
their object names in response to queries.

The relation service blocks the creation of invalid relation types, for example if the
role information is inconsistent. In the same way, invalid relations cannot be created,
either because the relation type is not respected or because the object name of a
member MBean does not exist in the MBean server. The modification of a role value
is also subject to the same consistency checks.

When a relation is removed from the relation service, its member MBeans are no
longer related through the removed instance, but are otherwise unaffected. When a
relation type is removed, all existing relations of that type are first removed. The
caller is responsible for being aware of the consequences of removing a relation type.

Because relations are defined only between registered MBeans, deregistering a
member MBean modifies the relation. The relation service listens for all MBean
server notifications that indicate when a member of any relation is deregistered. The

Chapter 11 Relation Service 171

corresponding MBean is then removed from any role value where it appears. If the
new cardinality of the role is not consistent with the corresponding relation type,
that relation is removed from the relation service.

The relation service sends a notification after all operations that modify a relation
instance, either creation, update, or removal. This notification provides information
about the modification, such as the identifier of the relation and the new role values.
The notification also indicates whether the relation was internally or externally
defined (see “External Relations” on page 174).

There is a difference between the two models presented in FIGURE 11-1 on page 171.
The UML association implies that each one of the Books can only have one owner.
The relation type in the JMX specification only models a set of roles, indicating that
a relation instance has one Omer MBean and any number of MBeans in the Books
role.

The JMX specification relation model only guarantees that an MBean satisfies its
designated role, it does not allow a user to define how many relations an MBean can
appear in. This implies that the relation service does not perform inter-relation
consistency checks. These are the responsibility of the management application
when creating or modifying relation instances.

If this level of consistency is needed, the designer of a management solution must
implement the necessary verifications in the objects that use the relation service. In
our example, the designer would need to ensure that the same book MBean is not
added to more than one Per sonal Li brary relation. One way to do this is by
calling the query methods of the relation service before performing any operation.

11.1.4 Implementation

The JMX specification defines the Java classes the behavior of which implements this
relation model. Each of the concepts defined in “Terminology” on page 170 has a
corresponding Java class (see FIGURE 11-2 on page 173). Along with the behavior of
the relation service object itself, these classes determine how the relation service is
used in management solutions.

This section explains the interaction between the relation service and the support
classes. The operations and other details of all classes will be covered in further
sections. The exception classes are all subclasses of the Rel at i onExcepti on class
and provide only a message string. The API documentation generated by the
Javadoc tool for the other classes indicates which exceptions are raised by specific
operations.

In practice, role description structures are handled outside of the relation service,
and their objects are instantiated directly by the user (see “Role Description Classes”
on page 184). Role information objects are grouped into arrays to define a relation

172 Java Management Extensions Specification, version 1.4 « November 9, 2006

11.1.4.1

type. Role objects and role lists are instantiated to pass to setters of role values. Role
results are returned by getters of role values, and their role lists and unresolved role

lists can be extracted for processing.

j avax. managenent.rel ati on

«relation service»

Rel ati onService

Rel at i onSer vi ceMBean
Rel ati onNotification
MBeanServerNotificationFilter
«relation support»

Rel ati onType

Rel ati onTypeSupport
Rel ati on

Rel ati onSupport

Rel at i onSupport MBean

«role description»

Rol el nfo
Rol e
Rol eLi st

Rol eUnr esol ved

Rol eUnr esol vedLi st
Rol eResul t

Rol eSt at us

«exception superclass»

Rel ati onExcepti on

«relation type creation errors»

I nval i dRol el nf oExcepti on

I nval i dRel ati onTypeExcepti on

«relation creation errors»

I nval i dRel ati onServi ceExcepti on

Rel ati onSer vi ceNot Regi st er ed-
Exception

Rol el nf oNot FoundExcepti on

I nval i dRol eVal ueExcepti on

Rel ati onTypeNot FoundExcepti on

I nval i dRel ati onl dExcepti on

«relation access errors»

Rel ati onNot FoundExcepti on

Rol eNot FoundExcepti on

FIGURE 11-2 Classes of the j avax. managenent . r el ati on package

On the other hand, relation types and relation instances are controlled by the
relation service to maintain the consistency of the relation model. The
implementation of the JMX specification relation model provides a flexible design
whereby relation types and instances can be either internal or external to the relation

service.

Internal relation types and instances are created by the relation service and can only
be accessed through its operations. The objects representing types and relations
internally are not accessible to the user. External relation types and instances are
objects instantiated outside the relation service and added under its control. Users
can access these objects in any manner that has been designed into them, including

as registered MBeans.

External Relation Types

The relation service maintains a list of relation types that are available for defining
new relations. A relation type must be created internally or instantiated externally
and added to the relation service before it can be used to define a relation.

Chapter 11 Relation Service 173

11.1.4.2

Objects representing external relation types must implement the Rel ati onType
interface. The relation service relies on its methods to access the role information for
each of the roles defined by the external object. See “Rel ati onTypeSupport Class”
on page 181 for the description of a class used to define external relation types.

Relation types are immutable, meaning that once they are added to the relation
service, their role definitions cannot be modified. If an external relation type exposes
methods for modifying the set of role information, they should not be invoked by its
users after the instance has been added under the control of the relation service. The
result of doing so is undefined, and consistency within the relation service is no
longer guaranteed.

The benefit of using an external relation type class is that the role information can be
defined statically, for example, in a class constructor. This allows predefined types to
be rapidly instantiated and then added to the relation service.

Once it has been added to the relation service, an external relation type can be used
to create both internal and external relations. An external relation type is also
removed from the relation service in the same way as an internal relation type, with
the same consequences (see “Rel ati onServi ce Class” on page 177)

External Relations

The relation service also maintains a list of the relations that it controls. Internal
relations are created through the relation service and are only accessible through its
methods. External relations are MBeans instantiated by the user and added under
the control of the relation service. They must be registered in the MBean server
before they can be added to the relation service. They are accessible both through the
relation service and through the MBean server.

An external relation object must implement the Rel at i on interface that defines the
methods that the relation service uses to access its role values. An external relation is
also responsible for maintaining its own consistency, by only allowing access to its
role values as described by its relation type. Finally, an external relation must inform
the relation service when any role values are modified.

The relation service object exposes methods for checking role information and
updating its internal role values. The external relation object must be designed to
call these when appropriate. Failure to do so will result in an inconsistent relation
service the behavior of which is thereafter undefined.

The major benefit of external relations is the ability to provide methods that return
information about the relation’s members or even operate on the role values.
Because the external relation is also an MBean, it can choose to expose these
methods as attributes and operations.

174 Java Management Extensions Specification, version 1.4 « November 9, 2006

11.2

Returning to “Example of a Relation” on page 170, the book ownership relation can
be represented by a unary relation type containing only the role Books. The relation
would be implemented by instances of an Oamner MBean that are external to the
relation service. This MBean could have an attribute such as bookCount and
operations such as buy and sel | that all apply to the current members of the
relation.

See “Rel at i onSupport Class” on page 184 for an example of an external relation.

Relation Service Classes

The relation service is implemented in the Rel at i onSer vi ce object, a standard
MBean defined by the Rel at i onSer vi ceMBean interface. It can therefore be
accessed and managed remotely from a management application.

Chapter 11 Relation Service 175

RelationService

«constructor» RelationService(purgeFlag: boolean)

«operations» addRelation(relationMBeanName: ObjectName)
addRelationType(relationType: RelationType)
createRelation(relationld: String, relationTypeName: String, roleList: RoleList)
createRelationType(relationTypeName: String, rolelnfos: Rolelnfo[])
findAssociatedM Beans(MBeanName: ObjectName,

relationTypeName: String,
roleName: String): Map<ObjectName, List<String>>
findReferencingRel ations(MBeanName: ObjectName,
relationTypeName: String,
roleName: String): Map<String, List<String>>

findRel ationsOf Type(relationTypeName: String): List<String>
getAllRoles(relationld: String): RoleResult
getReferencedM Beans(relationld: String): Map<ObjectName, List<String>>
getRelationTypeName(relationld: String): String
getRole(relationld: String, roleName: String): List<ObjectName>
getRolelnfo(relationTypeName: String, roleName: String): Rolelnfo
getRolelnfos(relationTypeName: String): List<Rolelnfo>
getRoles(relationld: String, roleNames: String[]): RoleResult
hasRelation(relationld: String): boolean
isRelation(MBeanName: ObjectName): String
isRelationMBean(relationld: String): ObjectName
purgeRel ations()
removeRelation(relationld: String)
removeRel ationType(relationTypeName: String)

«use» |
|

v

«Interface»
RelationServiceM Bean

'«send»

RelationNotification

|

|

l
«notification types» :
RELATION_BASIC_CREATION: String {frozen} :
RELATION_BASIC REMOVAL: String {frozen} |
RELATION_BASIC UPDATE: String {frozen} \1/
RELATION_MBEAN_CREATION: String {frozen}
RELATION_MBEAN_REMOVAL: String {frozen}
RELATION_MBEAN_UPDATE: String {frozen}

M BeanSer ver NotificationFilter

FIGURE 11-3 Relation Service Classes

The relation service MBean is a notification broadcaster and the only object to send
Rel ati onNot i fi cati on objects. To maintain consistency, it also listens for MBean
server notifications through an MBeanSer ver Noti fi cati onFi | t er object.

176 Java Management Extensions Specification, version 1.4 « November 9, 2006

11.2.1

Rel ati onSer vi ce Class

The relation service exposes methods for creating and removing relation types and
relation instances, and for accessing roles in relations. It also exposes methods for
querying the relations and their members to find related MBeans.

There are two methods to define a relation type:

= createRel ati onType - Creates an internal relation type from an array of role
information objects; the relation type is identified by a name passed as a
parameter and that must be unique among all relation type names.

= addRel ati onType - Makes an externally defined relation type available through
the relation service (see “Rel ati onType Interface” on page 181).

There are also two similar methods for defining a relation. Every new relation
triggers a Rel ati onNot i fi cati on:

= createRel ati on - Creates an internal relation using the given list of role values;
the relation is identified by an identifier passed as a parameter and that must be
unique among all relation identifiers.

= addRel ati on - Places an external relation represented by a MBean under the
control of the relation service; the MBean must have been previously instantiated
and registered in the MBean server.

The method r enpveRel ati onType removes both internal or external relation
types. All relations of that type will be removed with the r emoveRel at i on method
(see “Maintaining Consistency” on page 171).

The r enoveRel at i on method removes a relation from the relation service,
meaning that it can no longer be accessed. Member MBeans in the roles of the
relation continue to exist. When an external relation is removed, the MBean that
implements it will still be available in the MBean server. Removing a relation
triggers a relation notification.

The relation service provides methods to access a relation type, identified by its
unique name: get Rol el nf o and get Rol el nf os.

It provides methods to access the relation and its role values. All access to roles is
subject to the access mode defined in the relation type and to consistency checks,
especially for setting role values: get Rel at i onTypeNane, get Rol e, get Rol es,
get Al | Rol es, get Ref er encedMBeans, set Rol e and set Rol es. Setting roles will
trigger a relation update notification.

There are also methods for identifying internal and external relations:
= hasRel ati on - Indicates if a given relation identifier is defined.

= isRel ation - Takes an object name and indicates if it has been added as an
external relation to the service.

Chapter 11 Relation Service 177

178

= isRel ati onMBean - Returns the object name of an externally defined relation.

The following query methods retrieve relations where a given MBean is involved:

« findReferencingRel ati ons - Retrieves the relations where a given MBean is
referenced.
It is possible to restrict the scope of the search by specifying the type of the
relations to look for and/or the role where the MBean is expected to be found in
the relation.
In the result, relation identifiers are mapped to a list of role names where the
MBean is referenced (an MBean can be referenced in several roles of the same
relation).

« findAssoci at edMBeans - Retrieves the MBeans associated to a given MBean in
the relation service.
It is possible to restrict the scope of the search by specifying the type of the
relations to look for and/or the role in which the MBean is expected to be found
in the relation.
In the result, the object names of related MBeans are mapped to a list of relation
identifiers where the two are associated.

The method fi ndRel at i onsOf Type returns the relation identifiers of all the
relations of the given relation type.

To maintain consistency, the relation service listens to the deregistration notifications
from the MBean server delegate. It will be informed when an external relation’s
MBean is unregistered, in which case the relation is removed, or when an MBean
that is a member of a relation is unregistered (see “Maintaining Consistency” on
page 171). The pur geRel at i ons method will check all relation data for consistency
and remove all relations that are no longer valid.

Every time a relevant deregistration notification is received, the relation service
behavior depends upon the purge flag attribute:

= If the purge flag is t r ue, the pur geRel at i ons method will be called
automatically.

= When the purge flag is f al se, no action is taken and the relation service might be
in an inconsistent state until the pur geRel ati ons method is called by the user.

The relation service also exposes methods that allow external relation MBeans to
implement the expected behavior, or to inform the relation service so that it can
maintain consistency:

= checkRol eReadi ng and checkRol eW i ti ng - Check if a given role can be read
and updated by comparing the new value to the role information.

= sendRel ati onRerroval Noti ficati on, sendRol eUpdat eNoti fi cati on, and
sendRel ati onCreationNotification - Trigger a notification for the given
event.

= updat eRol eMap - Informs the relation service that a role value has been
modified, so that it can update its internal data.

Java Management Extensions Specification, version 1.4 « November 9, 2006

11.2.2

11.2.3

11.3

Rel ati onNoti fi cati on Class

An instance of this class is created and broadcast as a notification when a relation is
created, added, updated, or removed. It defines two separate notification types for
each of these events, depending upon whether the event concerns an internal or
external relation. The static fields of this class describe all notification type strings
that the relation service can send (see FIGURE 11-3 on page 176).

The methods of this class allow the listener to retrieve information about the event:

= getRel ationl d - Returns the identifier of the relation affected by this event.

= get Rel ati onTypeNamne - Returns the relation type identifier of the relation
affected by this event.

= get Cbj ect Nanme - Returns the object name only if the involved relation was an
externally defined MBean.

= get Rol eNane, get A dRol eVal ue, get NewRol eVal ue - Give additional
information about a role update event.

= get MBeansToUnr egi st er - Returns the list of object names for MBeans
expected to be unregistered due to a relation removal.

MBeanServer NotificationFilter Class

This class is used by the relation service to receive only those notifications
concerning MBeans that are role members or external relation instances. It filters
MBeans based on their object name, ensuring that the relation service will only
receive the deregistration notifications for MBeans of interest.

Its methods allow the relation service to update the filter when it must add or
remove MBeans in relations or representing external relations.

The filter instance used by the relation service is not exposed for management by the
relation service. This class is described here because it is available as part of the
j avax. managenent . r el ati on package and can be reused elsewhere.

Interfaces and Support Classes

External relation types and relation instances rely on the interfaces defined in the
following figure and can choose to extend the support classes for convenience.
Implementations of the JMX specification can also rely on these classes internally.

Chapter 11 Relation Service 179

«Interface»
RelationType oo K
«operations» getRelationTypeName(): String |
getRolelnfo(roleName: String): Rolelnfo I
getRolelnfos(): List<Rolelnfo> I
|
1 . _ .
«describes» RelationTypeSupport
«constructor» RelationTypeSupport(typeName: String, rolelnfos: Rolelnfo[])
«operations» getRelationTypeName(): String
getRolelnfo(roleName: String): Rolelnfo
| getRolelnfos(): List<Rolelnfo>
#addRolelnfo(theRolelnfo: Rolelnfo)
0..*

«Interface»

Relation

«operations» getRelationld(): String
getRelationServiceName(): ObjectName
getRelationTypeName(): String
getReferencedM Beans(): Map<ObjectName, List<String>>
getRoleCardinality(theRoleName: String): Integer
getRole(roleName: String): List<ObjectName>
getRoles(roleNames: String[]): RoleResult
getAllRoles(): RoleResult
setRole(role: Role)
setRoles(roles: RoleList): RoleResult
handleM BeanUnregistration(objName: ObjectName, roleName: String)

«Interface»

RelationSupportM Bean <t -

RelationSupport

«constructors» RelationSupport(relld: String, rel ServObjName: ObjectName, rel TypeName: String, roles: RoleList)
RelationSupport(relld: String, rel ServObjName: ObjectName, rel ServMBeanServer: MBeanServer,
relTypeName: String, roles: RoleList)

FIGURE 11-4 Interfaces and Support Classes

180 Java Management Extensions Specification, version 1.4 « November 9, 2006

11.3.1

11.3.2

Rel ati onType Interface

Any external representation of a relation type must implement the Rel ati onType
interface to be recognized by the relation service. The methods of this interface
expose the name of the relation type and its role information (see “Rol el nf o Class”
on page 185).

The relation service invokes the methods of this interface to access the relation type
name or the role information. Because a relation type is immutable, the returned
values should never change while the relation type is registered with the relation
service.

An instance of an object that implements this interface can be added as an external
relation type, using the addRel at i onType method of the relation service.
Providing its implementation is coherent, it can be accessed through the relation
service in the same manner as an internal relation type. In fact, internal relation
types are usually represented by an object that also implements this interface

Rel ati onTypeSupport Class

This class implements the Rel at i onType interface and provides a generic
mechanism for representing any relation type. The name of the relation type is
passed as a parameter to the class constructor.

There are two ways to define a specific relation type through an instance of the
Rel ati onTypeSupport class:

= Its constructor takes an array of Rol el nf o objects.

» The addRol el nf 0 method takes a single Rol el nf o object at a time.

Role information cannot be added after an instance of this class has been used to
define an external relation type in the relation service.

Users can also extend this class to create custom relation types without needing to
rewrite the role information access methods. For example, the constructor of the
subclass can determine the Rol el nf o objects to be passed to the superclass
constructor. This effectively encapsulates a relation type definition in a class that can
be downloaded and instantiated dynamically.

The implementation of the relation service will usually instantiate the
Rel ati onTypeSupport class to define internal relation types, but these objects are
not accessible externally.

Chapter 11 Relation Service 181

11.3.3 Rel at i on Interface

The Rel at i on interface describes the operations to be supported by a class whose
instances are expected to represent relations. Through the methods of this interface,
the implementing class exposes all the functionality needed to access the relation.

The class that implements the Rel at i on interface to represent an external relation
must be instrumented as an MBean. The object must be instantiated and registered
in the MBean server before it can be added to the relation service. Then, it can be
accessed either through the relation service or through whatever management
interface it exposes in the MBean server.

11.3.3.1 Specified Methods

Each relation is identified in the relation service by a unique relation identifier that is
exposed through the get Rel at i onl d method. The string that it returns must be
unique among all relations in the service at the time it is registered. The relation
service will refuse to add an external relation with a duplicate or nul | identifier.

In the same way, the get Rel at i onTypeName method must return a valid relation
type name that has already been defined in the relation service. An external relation
instance must also know about the relation service object where it will be controlled:
this can be verified through the get Rel at i onSer vi ceNane method. This method
returns an object name that is assumed to be valid in the same MBean server as the
external relation implementation.

The other methods of the Relation interface are used by the relation service to access
the roles of a relation under its control. Role values can be read or written either
individually or in bulk (see “Role Description Classes” on page 184). Individual
roles that cannot be accessed cause an exception whose class indicates the nature of
the error (see the exception classes in FIGURE 11-2 on page 173).

The methods for bulk role access follow a “best effort” policy: access to all indicated
roles is attempted and roles that cannot be accessed do not block the operation.
Those that cannot be accessed, either due to error in the input or due to the access
rights of the role, will return an unresolved role object indicating the nature of the
error (see “Rol eUnr esol ved Class” on page 187).

The get Ref er encedMBeans method returns a list of object names for all MBeans
referenced in the relation, with each object name mapped to the list of roles in which
the MBean is a member.

182 Java Management Extensions Specification, version 1.4 « November 9, 2006

11.3.3.2

Maintaining Consistency

The relation service delegates the responsibility of maintaining role consistency to
the relation object. In this way, consistency checks can be performed when the roles
are accessed through methods of the external relation. However, the relation service
must be informed of any role modifications, so that it can update its internal data
structures and send notifications.

When accessing a role, either getting or setting its value, the relation instance must
verify that:

= The relation type has the corresponding role information for the named role.
= The role has the appropriate access rights according to its role information.

= The role value provided for setting a role is consistent with that role’s information
with respect to cardinality and MBean class.

An implementation of the Rel at i on interface can rely on the checkRol eReadi ng
and checkRol eW i ti ng methods of the relation service MBean, provided to
simplify the above verifications.

After setting a role, an external relation must call the updat eRol eMap operation of
the relation service, providing the old and new role values. This allows the relation
service to update its internal data to maintain consistency.

The relation service must be informed of all new role values so that it can listen for a
unregistration notification concerning any of the member MBeans. When a member
MBean of an external relation is unregistered from the MBean server, the relation
service checks the new cardinality of the role it satisfied.

If the cardinality is no longer valid and if the purge flag is t r ue, the relation service
removes this relation instance (see “Rel at i onSer vi ce Class” on page 177). If the
external relation is still valid, the relation service calls its

handl eMBeanUnr egi st rat i on method.

When called, this method removes the MBean from the role where it was referenced
(because all role members must be registered MBeans). The guarantee that the relation
service will call this method when necessary frees the external relation from having to
listen for MBean unregistrations itself. It also allows the relation implementation to
define how the corresponding role will be updated. For example, the unregistration of
an MBean in a given role could update other roles.

In this case, and in any other case where an exposed method modifies a role value, the
implementation uses its own set Rol e method or call the appropriate relation service
methods, such as updat eRol eMap. It is the responsibility of all implementations of
the Rel at i on interface to maintain the consistency of their relation instance, as well
as that of the relation service concerning their role values.

Chapter 11 Relation Service 183

11.3.4

11.4

Rel ati onSupport Class

This class is a complete implementation of the Rel at i on interface that provides a
generic relation mechanism. This class must be instantiated with a valid role list that
defines the relation instance it will represent. The constructor also requires a unique
relation identifier, and the name of an existing relation type that is satisfied by the
given role list.

In fact, the Rel ati onSupport class implements the Rel at i onSuppor t MBean that
extends the Rel at i on interface. This implies that it is also a standard MBean whose
management interface exposes all the relation access methods. Because an external
relation must first be registered in the MBean server, external instances of the
relation support class can be managed by remote applications.

Users can also extend the Rel at i onSupport class to take advantage of its
implementation when developing a customized external relation. Users can also
choose to extend its MBean interface to expose other attributes or operations that
access the relation. This customization must still maintain the consistency of role
access and role updating, but it can use the consistency mechanism built into the
methods of the Rel ati onSupport class.

The relation service usually instantiates the Rel at i onSupport class to define
internal relation instances, but these objects are not accessible externally.

Role Description Classes

The relation service accesses the roles of a relation for both reading and writing
values. The JMX specification defines the classes that are used to pass role values as
parameters and receive them as results. These classes are also used by external
relation MBeans that implement the behavior of a relation.

184 Java Management Extensions Specification, version 1.4 « November 9, 2006

11.4.1

1.*

:RelationType

:Rolelnfo

ROLE_CARDINALITY_INFINITY: int {frozen}

description: String)

«constructor» Rolelnfo(roleName:String, MBeanClassName: String,
isReadable: boolean, isWritable: boolean,
minDegree: int, maxDegree: int,

i\

1A

0..* | {satisfies}

) 4

0.+ {satisfies} 1..*

:Relation

:Role

«constructor» Role(name: String, referencedM BeanNames: List<ObjectName>)

0..*

RolelL ist

RoleUnresolved

problem: int)

«constructor» Role(name: String, referencedM BeanNames: List<ObjectName>,

; 0.*
| «use»

\

RoleStatus

LESS THAN_MIN_ROLE_DEGREE: int {frozen}
MORE_THAN_MAX_ROLE_DEGREE: int { frozen}
NO_ROLE WITH_NAME: int { frozen}
REF_MBEAN_NOT_REGISTERED: int {frozen}
REF_MBEAN_OF INCORRECT CLASS: int{frozen}

RoleUnresolvedList

1

RoleResult

ROLE _NOT_READABLE: int {frozen}
ROLE_NOT_WRITABLE: int {frozen}

FIGURE 11-5 Role Description Classes

Rol el nf o Class

The role information provides a metadata description of a role. It specifies:

» The name of the role.

Chapter 11

Relation Service

185

= The multiplicity of the role, expressed as a single closed interval between the
minimum and maximum number of MBeans that can be referenced in that role.
The Rol el nf o constructor verifies that this is a proper, non-empty interval.

= The name of the class or interface of which all members must be instances, as
determined by the MBean server’s i sl nst anceXf method.

» The role access mode, that is whether the role is readable, writable, or both.
When role information is used as a parameter for a new relation type, it is the

defining information for a role. When that relation type is declared in the relation
service, for each role, the service will verify that:

» The role information object is not nul | .

= The role name is unique among all roles of the given relation type. The relation
service does not guarantee that roles with the same name in other relation types
are identical; this is the user’s responsibility.

11.4.2 Rol e Class

An instance of the Rol e class represents the value of a role in a relation. It contains
the role name and the list of object names that reference existing MBeans.

A role value must always satisfy the role information of its relation’s type. The role
name is the key that associates the role value with its defining role information.

The Rol e class is used as a parameter to the set Rol € method of both the relation
service and the Rel ati on interface. It is also a component of the lists that are used
in bulk setter methods and for defining an initial role value. For each role being
initialized or updated, the relation service verifies that:

= A role with the given name is defined in the relation type.

» The number of referenced MBeans is greater than or equal to the minimum
cardinality and less than or equal to the maximum cardinality.

= Each object name references a registered MBean that is an instance of the expected
class or interface.

11.4.3 Rol eLi st Class

This class extends j ava. util . ArrayLi st to represent a set of Rol e objects.

Instances of the Rol eLi st class are used to define initial values for a relation. When
calling the cr eat eRel at i on method of the relation service, roles that admit a
cardinality of 0 can be omitted from the role list. All other roles of the relation type
must have a well-formed role value in the initial role list.

186 Java Management Extensions Specification, version 1.4 « November 9, 2006

11.4.4

11.4.5

11.4.6

Role list objects are also used as parameters to the set Rol es method of both the
relation service and the Rel at i on interface. These methods only set the roles for
which a valid role value appears in the role list.

Finally, all bulk access methods return a result containing a Rol eLi st object
representing the roles that were successfully accessed.

Rol eUnr esol ved Class

An instance of this class represents an unsuccessful read or write access to a given
role in a relation. It is used only in the return values of role access methods of either
the relation service or of an object implementing the Rel at i on interface.

The object contains:
= The name of the role that could not be accessed
» The value provided for an unsuccessful write access

= The reason why the attempt failed, encoded as an integer value. The constants for
decoding the problem are given in the FIGURE 11-5 on page 185.

Rol eUnr esol vedLi st Class

This class extends j ava. uti| . ArrayLi st to represent a set of Rol eUnr esol ved
objects. All bulk access methods return a result containing a Rol eUnr esol vedLi st
object representing the roles that could not be accessed.

Rol eResul t Class

The Rol eResul t class is the return object for all bulk access methods of both the
relation service and implementations of the Rel at i on interface. A role result
contains a list of roles and their values, and a list of unresolved roles and the reason
each could not be accessed.

As the result of a getter, the role values contain the current value of the requested
roles. The unresolved list contains the roles that cannot be read, either because the
role name is not valid or because the role does not permit reading.

As the result of a setter, the role values contain the new value for those roles where
the operation was successful. The unresolved list contains the roles that cannot be
written, for any access or consistency reason.

Chapter 11 Relation Service 187

11.4.7 Rol eSt at us Class

This class contains static fields giving the possible error codes of an unresolved role.
The error codes are either related to access permissions or consistency checking. The
names of the fields identify the nature of the problem, as given in FIGURE 11-5 on

page 185.

188 Java Management Extensions Specification, version 1.4 « November 9, 2006

12

Security

12.1

A Java Management extensions (JMX) MBean server might have access to sensitive
information and might be able to perform sensitive operations. In such cases, it is
desirable to control who can access that information and who can perform those
operations. The JMX specification builds on the standard Java security model by
defining permissions that control access to the MBean server and its operations.

The security checks described in this chapter are only performed when there is a
security manager. That is, if Syst em get Securi t yManager () returns nul |, then no
checks are performed.

Permissions

It is assumed that the reader has some familiarity with the Java security model. An
excellent reference is Inside Java™ 2 Platform Security by Li Gong (Addison Wesley,
1999). Documentation is also available online as part of the Java 2 platform Standard
Edition (J2SE) Standard Development Kit (SDK).

Sensitive operations require permissions. Before such an operation is performed, a
check is performed to ensure that the caller has the required permission or
permissions.

At any given point in the execution of a program, there is a current set of
permissions that a thread of execution holds. When such a thread calls a JMX
specification operation, we say that these are the held permissions.

An operation that performs a security check does so by defining a needed permission.
The operation is allowed if the held permissions imply the needed permission. That
is, at least one held permission must imply the needed permission.

A permission is a Java object that is a subclass of j ava. securi ty. Perni ssi on.
This class defines the following method:

public bool ean inplies(Perm ssion pernission);

Chapter 12 Security 189

A held permission hel d implies a needed permission needed if
hel d. i npl i es(needed).

For example, to call MBeanSer ver Fact ory. cr eat eMBeanSer ver, a thread needs
the permission

MBeanSer ver Per mi ssi on(“creat eMBeanServer”)

Here are some permissions a thread can hold that imply this needed permission:
= MBeanServer Perm ssion(“creat eMBeanServer™)

= MBeanServer Perm ssi on("“creat eMBeanServer, fi ndMBeanServer”)
= MBeanServer Perni ssion(“*")

= java.security. Al Perm ssion()

A thread that does not hold any of these permissions, or any other permission that
implies the needed one, will not be able to call cr eat eMBeanSer ver. An attempt to
do so will result in a Securi t yExcepti on.

The JMX 1.2 specification defines three permissions:
= MBeanSer ver Per m ssi on

= MBeanTrust Perm ssi on

= MBeanPer i ssi on

These permissions are described in the following sections.

12.1.1 MBeanServer Perm ssi on

MBeanSer ver Per mi ssi on controls access to the static methods of the class

j avax. managenent . MBeanSer ver Fact ory. (See “MBean Server Factory” on
page 127.) An MBeanSer ver Per mi ssi on is constructed with a single string
argument, and the meaning of the permission object depends on this string, as
follows:

= MBeanSer ver Perm ssi on(“createVMBeanServer”) controls access to the
two overloaded methods MBeanSer ver Fact ory. cr eat eMBeanSer ver.
Holding this permission allows the creation of an MBeanSer ver object that is
registered in the list accessible through
MBeanSer ver Fact ory. fi ndvVBeanSer ver.

This permission implies the newiBeanSer ver permission, so holding it also
allows the creation of an MBeanSer ver object that is not registered in that list.

= MBeanSer ver Per m ssi on(“ newMBeanServer”) controls access to the two
overloaded methods MBeanSer ver Fact ory. newivBeanSer ver . Holding this
permission allows the creation of an MBeanSer ver object that is not registered in
the list accessible through MBeanSer ver Fact ory. fi ndMBeanSer ver.

190 Java Management Extensions Specification, version 1.4 « November 9, 2006

12.1.2

12.1.2.1

= MBeanServer Perni ssion(“rel easeMBeanServer”) controls access to the
method MBeanSer ver Fact ory. r el easeMBeanSer ver. Holding this
permission allows the removal of an MBeanSer ver object from the list accessible
through MBeanSer ver Fact ory. fi ndMBeanSer ver.

= MBeanServer Perm ssion(“fi ndMBeanServer”) controls access to the
method MBeanSer ver Fact ory. fi ndMBeanSer ver. Holding this permission
allows you to find an MBeanSer ver object in the MBeanSer ver Fact or y’s list
given its identifier, and to retrieve all MBeanSer ver objects in the list.

As a convenience in defining permissions, two or more of these strings can be
combined in a comma-separated list. The resulting permission implies all the
operations in the list. Thus, for example, holding

MBeanSer ver Per mi ssi on(“ newMBeanSer ver, fi ndMBeanServer”) is
equivalent to holding both MBeanSer ver Per mi ssi on(“ newiVBeanSer ver”) and
MBeanSer ver Per mi ssi on(“fi ndMBeanServer”).

Holding MBeanSer ver Per i ssi on(“*”) is equivalent to holding all the
permissions in the list above.

MBeanPer m ssi on

MBeanPer m ssi on controls access to the methods of an MBeanSer ver object
returned by MBeanSer ver Fact ory. cr eat eMBeanSer ver or
MBeanSer ver Fact ory. newMBeanSer ver. (See Chapter 7 “MBean Server.)

An MBeanPer mi ssi on is constructed using two string arguments. The first
argument is conventionally called the name of the permission, but we refer to it here
as the target. The second argument is the actions of the permission.

MBeanPer m ssi on Target

The target of an MBeanPer ni ssi on groups together three pieces of information,
each of which can be omitted:

= The class name. For a needed permission, this is the class name of an MBean being
accessed. Certain methods do not reference a class name, in which case the class
name is null.

For a held permission, this is either empty or a class name pattern. A class name
pattern can be a literal class name such as

j avax. managenent . MBeanSer ver Del egat e or a wildcard such as

j avax. managenent . *. If the class name is empty or is an asterisk (*), the
permission covers any class name.

Chapter 12 Security 191

= The member. For a needed permission, this is the name of the attribute or
operation being accessed. For MBeanSer ver methods that do not reference an
attribute or operation, the member is null.

For a held permission, this is either the name of an attribute or operation that can
be accessed, or it is empty or an asterisk (*), that covers any attribute or
operation.

= The object name. For a needed permission, this is the Obj ect Name of the MBean
being accessed. (See “Obj ect Nane Class” on page 115.) For operations that do
not reference a single MBean, it is null.

For a held permission, this is the Cbj ect Nane of the MBean or MBeans that can
be accessed. It can be an object name pattern, that covers all MBeans with names
matching the pattern; see “Pattern Matching” on page 117. It can also be empty,
covering all MBeans regardless of their name.

If the domain part of the Obj ect Name in a held permission is empty, it is not
replaced by a default domain, because the permission could potentially apply to
several MBean servers with different domains.

A held MBeanPer i ssi on only implies a needed permission if all three items
match.

If a needed permission has a null class name, the class name is not relevant for the
action being checked, so a held permission will match regardless of its class name.

If a held permission has an empty class name, this means that the permission covers
any class name, so a needed permission will match no matter what its class name is.

The same rules apply to the member and the object name.

The three items in the target are written as a single string using the syntax:
cl assName#nenber [obj ect Nane]

Any of the three items can be omitted, but at least one must be present.

Any of the three items can be the character “- ”, representing a null item. A null item
is not the same as an empty item. An empty class name, for example, in a held
permission is the same as “*” and implies any class name. A null class name in a
needed permission is implied by any class name. A needed permission never has an
empty class name, and usually a held permission never has a null class name.

The following are some examples of targets with their meanings:

= com exanpl e. Resour ce#Nane[com exanpl e. mai n: t ype=r esour ce]

This represents access to the attribute or operation called Name of the MBean
whose object name is com exanpl e. mai n: t ype=r esour ce and whose class
name is com exanpl e. Resour ce.

= com exanpl e. Resour ce[com exanpl e. mai n: t ype=resour ce]
com exanpl e. Resour ce#*[com exanpl e. nmai n: t ype=r esour ce]

192 Java Management Extensions Specification, version 1.4 « November 9, 2006

12.1.2.2

These both mean the same thing, namely access to any attribute or operation of
the MBean with this object name and class name.

= #Name[com exanpl e. mai n: t ype=r esour ce]
*#Name[com exanpl e. mai n: t ype=r esour ce]

These both mean the same thing, namely access to the attribute or operation
called Nane of the MBean with the given object name, regardless of its class
name.

= [com exanpl e. mai n: type=resour ce]

This represents access to the MBean with the given object name, regardless of its
class name, and regardless of what attributes or operations can be referenced.

= [com exanpl e. mai n: *]

This represents access to any MBean with an object name that has the domain
com exanpl e. mai n.

= com exanpl e. Resour ce#Nane

This represents access to the attribute or operation called Nanme in any MBean
with a class name of com exanpl e. Resour ce.

MBeanPer m ssi on Actions

The actions string of an MBeanPer i ssi on represents one or more methods from
the MBeanSer ver interface. Not all methods in that interface are possible values for
the actions string. The complete list is as follows:

= addNotificationLi stener
= getAttribute

= get Cl assLoader

= get O assLoader For

= get C assLoader Repository
= get MBeanl nfo

= get Qbj ect | nstance

= instantiate

= invoke

= islnstanceX

= queryMBeans

= quer yNanes

= registerMean

= renoveNotificationListener
= SetAttribute

= unregisterMBean

For a needed permission, the actions string will always contain exactly one of these
strings.

Chapter 12 Security 193

194

For a held permission, it can contain one of these strings, or a comma-separated list
of strings. Holding an MBeanPer ni ssi on with actions “i nvoke, i nstanti ate” is
equivalent to holding two MBeanPer ni ssi ons, one with actions “i nvoke” and the
other with actions “ i nst anti at €”, each having the same target as the original.

A held permission can also have “ *” as its actions string, which covers all actions.

The meanings of the different actions are summarized in the table below, as well as
the risks associated with granting these permissions to potentially malicious code.

TABLE 12-1 MBeanPer mi ssi on actions

Action

Meaning when held with className, member, objectName

addNoti ficationListe
ner

getAttribute

get Cl assLoader

get Cl assLoader For

get Cl assLoader Reposi
tory

get Domai ns

get MBeanl nf o

Add a notification listener to an MBean with a class name matching
className and with an object name matching objectName. Granting
this permission to malicious code could alter the behavior of
notification broadcasters (see “Not i fi cati onBr oadcast er and
NotificationEmitter Interfaces” on page 56), by adding listeners that
block forever or that throw exceptions.

Get the value of an attribute member from an MBean with a class
name matching className and with an object name matching
objectName.

Get a class loader object with a class name matching className and
that is registered in the MBean server with an object name that
matches objectName. Granting this permission to malicious code
could alter the behavior of the class loader. For example, if the class
loader is an m-let (see “Class Loader Functionality” on page 147),
malicious code could add to its list of URLs.

Get the class loader that was used to load an MBean object with a
class name matching className and with an object name matching
objectName. Granting this permission to malicious code carries
similar risks to those for get Cl assLoader.

Get a reference to the MBean server’s class loader repository (see
“The Class Loader Repository” on page 148). Granting this
permission to malicious code allows it to load classes through these
loaders, including over the network if the class loader repository
contains URLCl assLoader s, or something similar.

See ObjectName domains in which MBeans are registered if they
match objectName.

Get the MBeanInfo of an MBean with a class name matching
className and with an object name matching objectName. (See
“MBean Metadata Classes” on page 60.)

Java Management Extensions Specification, version 1.4 « November 9, 2006

TABLE 12-1

MBeanPer m ssi on actions

Action

Meaning when held with className, member, objectName

get Obj ect | nst ance

instantiate

i nvoke

i sl nstanceOf

quer yMBeans

quer yNanes

regi st er MBean

renoveNoti ficationlLi
st ener

setAttribute

unr egi st er MBean

Get the Obj ect Nane and class name of an MBean with a class
name matching className and with an object name matching
objectName. Holding this permission allows the discovery of the
class name of any MBean, provided that its Obj ect Name and class
name match objectName and className.

Instantiate a Java class whose name matches className, using one of
the class loader possibilities offered by the overloaded

i nst ant i at e methods of the MBeanSer ver interface. This
permission is also needed by the cr eat eMBean methods. Granting
this permission to malicious code allows it to load classes through
those loaders, including over the network if there is a

URLCl asslLoader or something similar.

Invoke the method member from an MBean with a class name
matching className and with an object name matching objectName.

Determine whether an MBean with a class name matching
className and with an object name matching objectName is an
instance of any named Java class.

Discover the names and classes of MBeans whose class names
match className and whose object names match objectName, and
apply queries to them. (See “Queries” on page 135.) Holding this
permission implies the corresponding queryNames permission.

Discover the names of MBeans whose class names match className
and whose object names match objectName.

Register MBeans whose class names match className under object
names that match objectName. This permission is needed for the
regi st er MBean and cr eat eMBean methods of the MBean server.
Granting this permission to malicious code could allow it to register
a rogue MBean in the place of a legitimate one, especially if it also
has the unr egi st er MBean permission.

Remove a notification listener from an MBean with a class name
matching className and with an object name matching objectName.
The impact of granting this permission is limited, because malicious
code can only remove listeners it references. But the forms of
removeNoti ficationLi stener thatidentify the listener with an
bj ect Nanme would be vulnerable to malicious code with this
permission.

Set the value of an attribute member in an MBean with a class name
matching className and with an object name matching objectName.

Unregister an MBean with a class name matching className and
with an object name matching objectName.

Chapter 12 Security 195

12.1.2.3

12.1.2.4

Unchecked MBean Server Methods

The following MBean server methods are not subject to permission checks:

= i sRegi stered - Code can always discover whether an MBean with a given

name exists. Without the quer yMBeans or quer yNames permission, however, it
cannot find out the names of MBeans it does not already know about.

The reason that this operation is not subject to a permission check is that it would
generate a Secur i t yExcepti on if the MBean existed but its class name was not
covered by the user’s permissions, while it would generate an

I nst anceNot FoundExcept i on if the MBean did not exist, regardless of what
class names are covered by the user’s permissions. Generating a

Securi t yExcepti on would therefore be equivalent to admitting that the
MBean does indeed exist, so the permission checking would serve no purpose.

Though it is possible to refine the permission checking semantics for this case, the
i sRegi st er ed method is not considered sufficiently sensitive to justify it.

get MBeanCount - Code can always discover how many MBeans there are.
Again, this is not considered sufficiently sensitive to justify defining a permission
check for it.

get Def aul t Domai n - Code can always discover the MBean server’s default
domain.

Permission Checking for Queries

The quer yMBeans and quer yNanes actions for MBeanPer mi ssi on allow control
of which MBeans are visible to queries. A quer yMBeans operation proceeds as
follows:

1. The held permissions are checked to see if they imply

MBeanPer m ssion(“-#-[-]", “queryMBeans”)
If not, a Securit yExcepti on is thrown.
If the held permissions include any quer yMBeans permission, this implies the

permission shown here. The exception will only be thrown if there are no
guer yMBeans permissions in the caller’s set.

Without this check, if the policy that grants permissions is accidentally configured
without quer yMBeans permissions, then all queries would return an empty set,
with no indication that the reason had anything to do with security. The check
described here helps avoid this confusion.

. The Obj ect Nane parameter to quer yMBeans, that is typically an object name

pattern, is used to select a set of MBeans to which the query applies. If the
parameter is nul |, all MBeans are selected.

196 Java Management Extensions Specification, version 1.4 « November 9, 2006

3. For each MBean in the set, an MBeanPer m ssi on is constructed where the actions
parameter is “ quer yMBeans” and the target parameter contains the class name
and object name of the MBean. If the held permissions do not imply this
permission, the MBean is eliminated from the set.

4. For each MBean in the remaining set, the Quer yExp parameter to quer yMBeans
is used to decide whether it is included in the final set.

The rules for the quer yNanes operation are exactly the same as just stated, but with
quer yMBeans replaced by quer yNanes.

With these rules in place, the permissions held by a thread completely govern the set
of MBeans that thread can see through queries.

It is important that MBeans that are not covered by the held permissions be
eliminated from the set before the query is executed. In other words, step 3 must
happen before step 4. Otherwise, malicious code could implement the Quer yExp
interface to save each MBean in the selected set somewhere.

12.1.2.5 Permission Checking for get Donmai ns

The get Domai ns permission filters the information about MBean names that is
visible to a thread, in a similar fashion to quer yMBeans and quer yNanes. The
thread’s held permissions should imply :

MBeanPer m ssion(“-#-[-]", “getDomains”)
Otherwise, the MBeanSer ver . get Domai ns() method throws a
Securi t yExcepti on. Otherwise, the MBean server first gets the list of domains

that would be returned if there were no security checks, and for each domain d in
the list, it checks that the held permissions imply:

MBeanPer m ssi on(“-#-[d: x=x]", “getDonains”)
Otherwise, the domain is eliminated from the list.

The x=x is an artifact of the way Qbj ect Name works. An implementation can use
any other key=value possibility instead, but there must be one.

When defining held permissions, for instance in a security policy file, the

get Domai ns permission should always either omit the Obj ect Name or supply an
Cbj ect Nanme pattern with just a * in the key properties, such as “ *: *”,

“com exanple.*:*”, or “com exanpl e. visi bl e: *”.

Chapter 12 Security 197

12.1.2.6

12.1.3

Permission Checking for get Attri but es and
setAttributes

A similar scheme to the one for queries is used for the get Attri but es and
set Attri but es operations. A get Attri but es operation proceeds as follows:

1.

The held permissions are checked to see if they imply

MBeanPer mi ssi on(“ className#- [objectName] ", “getAttribute”)

where className and objectName are the class name and object name of the MBean
being accessed. If not, a Securi t yExcepti on is thrown.

If the held permissions allow get At t ri but e on any attribute of the MBean, they
will imply the permission shown here. Only if get At t ri but e is not allowed for

any attributes in the MBean will the exception be thrown.

Without this check, if no attributes are accessible to the caller, an empty
Attribut eLi st would be returned, with no indication that the reason had
anything to do with security.

2. For each attribute attr in the list given to the get At t ri but es operation, the
permission
MBeanPer mi ssi on(“cl assNanme#attr[obj ect Name]”, “getAttribute”)
is constructed. If the held permissions do not imply this permission, the attribute
is eliminated from the list.

3. The get Attri but es operation then works on the attributes remaining in the
list.

The rules for the set At t ri but es operation are exactly the same as just stated, but
with get Attri but e(s) replaced by set Attri bute(s).

MBeanTr ust Per m ssi on

This permission represents “trust” in a signer or codesource. If a signer or
codesource is granted this permission, it is considered a trusted source for MBeans.
Only MBeans from trusted sources can be registered in the MBean server.

In conjunction with MBeanPer m ssi on, MBeanTr ust Per mi ssi on enables fine-
grained control of which MBeans are registered in the MBean server. The

r egi st er MBean action of MBeanPer ni ssi on controls what entities can register
MBeans. MBeanTr ust Per mi ssi on controls what MBeans they can register.

An MBeanTr ust Per i ssi on is constructed with a single string argument. In this
version of the J]MX specification, the argument can have two possible values:
= “register”

RUR

198 Java Management Extensions Specification, version 1.4 « November 9, 2006

12.2

Both values have the same meaning, but if in a future version of the JMX
specification other possibilities are added, “*” will cover all of them.

The details of the MBeanTr ust Per i ssi on check are illustrated in the following
example.

Let ¢ be the Java class of an MBean to be registered in the MBean server via its
creat eMBean or r egi st er MBean methods, and let p be a permission constructed
as follows:

p = new MBeanTrust Perni ssion(“register”);

Then, for the cr eat eMBean or r egi st er MBean to succeed, the following
expression must be true:

c.getProtecti onDonai n().inplies(p)

Otherwise, a Securi t yExcept i on is thrown.

Policy File Examples

The following are some examples of how the permissions described in the previous
sections can be granted using the standard Java policy file syntax.

The simplest MBean access policy is to grant all signers and codebases access to all
MBeans:

grant {
perni ssi on j avax. nanagement .. MBeanPer i ssi on “*”, “*":

b

Here is a more restrictive policy that grants the code in appl 1. j ar the permission to
get the MBean server’s class loader repository:

grant codeBase “file:${user.dir}${/}appll.jar” {

perm ssi on j avax. managenent . MBeanPer nmi ssi on ,
“get Cl assLoader Repository”;

b

Chapter 12 Security 199

Here is a policy that grants the code in appl 2. j ar the permission to call the
i sl nstanceX and get Obj ect | nst ance operations for MBeans from any class,
provided they are registered in the domain “d1”:

grant codeBase “file:${user.dir}${/}appl2.jar” {
perni ssi on j avax. managenent. MBeanPer m ssi on “[dl:*]",
“islnstanceCf, get(bjectlnstance”;

b

Here is a policy that grants the code in appl 3. j ar the permission to find MBean
servers, and to call the quer yNanes operation but restricting the returned set to
MBeans in the domain “JM npl enent ati on”:

grant codeBase “file:${user.dir}${/}appl3.jar” {
per nmi ssi on j avax. nanagement . MBeanSer ver Per m ssi on
“fi ndMBeanSer ver”;
perm ssi on javax. managenent . MBeanPer nmi ssi on
“JM npl enentation: *”, “queryNanes”;

b

If the MBean server has MBeans with names in other domains, for example an
MBean registered as “ com exanpl e. mai n: t ype=user, name=gor ey”, they will
never appear in the result of a quer yNanes executed by code in appl 3. j ar.

Here is a policy that grants the code in appl 4. j ar the permission to create and
manipulate MBeans of class “com exanpl e. Foo” under any object name:

grant codeBase “file:${user.dir}${/}appld.jar” {
per i ssi on javax. managemnent . MBeanPer ni ssi on
“com exanpl e. Foo”, “instantiate, registerMean”;
per nmi ssi on j avax. nanagenent . MBeanPer i ssi on
“com exanpl e. Foo#dolt”,
“invoke, addNot i fi cati onLi stener, renpveNotificationLi stener”;

b

The first permission ignores the object name. The operation or attribute name is not
required by these two actions.

The second permission, however, uses the member part for the “i nvoke” action and
ignores it for the “add/ removeNot i fi cati onLi stener” actions.

200 Java Management Extensions Specification, version 1.4 « November 9, 2006

Here is a policy that allows MBeans to be registered no matter where they come
from. (A thread that registers MBeans must also have the appropriate
MBeanPer mi ssi ons.)

grant {
perni ssi on j avax. managenent. MBeanTr ust Permi ssi on “register”;

}s

Here is a policy that only trusts MBeans signed by “Gorey”:

grant signedBy “Gorey” {
perni ssi on javax. nanagenent. MBeanTr ust Perm ssion “register”;

b

Chapter 12 Security 201

202 Java Management Extensions Specification, version 1.4 « November 9, 2006

Il JMX Remote API Specification

Chapter 203

204 Java Management Extensions Specification, version 1.4 « November 9, 2006

13

Connectors

The JMX specification defines the notion of connectors. A connector is attached to a
JMX API MBean server and makes it accessible to remote Java technology-based
clients. The client end of a connector exports essentially the same interface as the
MBean server.

A connector consists of a connector client and a connector server.

A connector server is attached to an MBean server and listens for connection
requests from clients.

A connector client takes care of finding the server and establishing a connection with
it. A connector client will usually be in a different Java Virtual Machine! JVM™)
from the connector server, and will often be running on a different machine.

A given connector server can establish many concurrent connections with different
clients.

A given connector client is connected to exactly one connector server. A client
application can contain many connector clients connected to different connector
servers. There can be more than one connection between a given client application
and a given server.

Many different implementations of connectors are possible. In particular, there are
many possibilities for the protocol used to communicate over a connection between
client and server. This standard defines a standard protocol based on Remote
Method Invocation (RMI) that must be supported by every conformant
implementation. It also defines an optional protocol based directly on TCP sockets,
called the JMX Messaging Protocol (JMXMP). An implementation of this standard
can omit the JMXMP connector.

1. The terms "Java virtual machine" and "JVM" mean a virtual machine for the Java platform.

Chapter 13 Connectors 205

13.1

13.2

Sessions and Connections

A distinction is made between a session and a connection. A connector client sees a
session. During the lifetime of that session, there can be many successive connections
to the connector server. In the extreme case, there might be one connection per client
request, for example if the connector uses a stateless transport such as the user
datagram protocol (UDP) or the Java Message Service (JMS).

A session has state on the client, notably its listeners (see Section 13.4 “Adding
Remote Listeners” on page 208). A session does not necessarily have state on the
server, and for the two connectors defined by this specification, it does not.

A connection does not necessarily have state on the client or server, although for the
two connectors defined here it does.

open close

session ‘ ‘

connections }—{

FIGURE 13-1 A Session Can Contain Many Successive Connections

In FIGURE 13-1 three connections are opened and closed over the lifetime of a single
session.

Connection Establishment

In FIGURE 13-2, a connector client connects to a connector server with the address
"service:jnk:jnmknp://host1:9876". A successful connection request returns
the client end of the connection to the connector client.

206 Java Management Extensions Specification, version 1.4 « November 9, 2006

13.3

connect “service:jmx:jmxmp://host1:9876”

/ 1. connection
request

connector server
service;jmx:jmxmp://host1:9876

connector client

4, create

client end

3. connection 2. create server end

response

client
connection

server
connection

FIGURE 13-2 Connector Client and Server Communicate to Make a Connection

MBean Server Operations Through a
Connection

From the client end of a connection, user code can obtain an object that implements
the MBeanSer ver Connect i on interface. This interface is very similar to the
MBeanSer ver interface that user code would use to interact with the MBean server
if it were running in the same Java Virtual Machine.

MBeanSer ver Connect i on is the parent interface of MBeanSer ver. It contains all
the same methods except for a small number of methods only appropriate for local
access to the MBean server. All of the methods in MBeanSer ver Connecti on
declare | OExcept i on in their "throws" clause in addition to the exceptions declared
in MBeanSer ver.

Because MBeanSer ver extends MBeanSer ver Connect i on, client code can be
written that works identically whether it is operating on a local MBean server or on
a remote MBean server through a connector.

In FIGURE 13-3, the operation get MBeanl nf o("a: b=c") on the

MBeanSer ver Connect i on in a remote client is translated into a get MBeanl nf o
request that is sent to the server end of the connection via the connector protocol.
The server reacts to this request by performing the corresponding operation on the
local MBean server, and sends the results back to the client. If the operation
succeeds, the client’s get MBean! nf o call returns normally. If the operation
produces an exception, the connector arranges for the client’s get MBeanl nf o call to
receive the same exception. If there is a problem in the communication of the
request, the client’s get MBeanl nf o call will get an | OExcept i on.

Chapter 13 Connectors 207

13.4

13.4.1

getMBeanInfo("a:b=c")

—»/getMBeaninfo request»>

[

client
connection

server
connection

getMBeaninfo("a:b=c")

MBeer

FIGURE 13-3 An Operation on the Client Results in the Same Operation on the MBean
Server

Adding Remote Listeners

One of the operations in the MBeanSer ver Connect i on interface is the

addNot i ficationLi st ener operation. As in the local case, this operation
registers a listener for the notifications emitted by a named MBean. A connector will
arrange for the notifications to be sent from the server end of a connection to the
client end, and from there to the listener.

The details of how notifications are sent depend on the connector protocol. The two
connectors defined in this specification use a stateless notification buffer, as described in
Section 13.4.3 “Notification Buffer” on page 210.

Filters and Handbacks

The addNot i fi cati onLi st ener method in the MBeanSer ver Connect i on
interface has four parameters: the object name, the listener, the filter, and the handback.
The object name specifies which MBean to add the listener to. The listener is the
object whose handl eNot i fi cat i on method will be called when a notification is
emitted by the MBean. As described in Section 13.4 “Adding Remote Listeners” on
page 208, this listener object is local to the client.

The optional filter selects which notifications this listener is interested in. A given
connector can execute the filter when the notification arrives at the client, or it can
transmit the filter to the server to be executed there. Executing the filter on the
server is much more efficient because it avoids sending a notification over the
network only to have it discarded on arrival. Filters should be designed so that they

208 Java Management Extensions Specification, version 1.4 « November 9, 2006

13.4.2

work whether they are run on the client or on the server. In particular, a filter should
be an instance of a serializable class known to the server. Section 13.11 “Class
Loading” on page 218, describes class loading in more detail.

The connectors defined by this standard execute filters on the server.

To force filtering to be done on the client, the filtering logic can be moved to the
listener.

The optional handback parameter to addNot i fi cati onLi st ener is an arbitrary
object that will be given to the listener when the notification arrives. This allows the
same listener object to be registered with several MBeans. The handback can be used
to determine the appropriate context when a notification arrives. The handback
object remains on the client - it is not transmitted to the server and does not have to
be serializable.

The MBeanSer ver Connect i on interface also has an
addNot i fi cati onLi st ener variant that specifies the listener as an Cbj ect Nane,
the name of another MBean that is to receive notifications. With this variant, both the
filter and the handback are sent to the remote server.

Removing Listeners

In general, a listener that has been added with the following method is uniquely
identified for a given name by the triple (listenerfilter,handback):

addNot i fi cati onLi st ener (Obj ect Name nane,
Noti fi cati onLi stener |istener,
NotificationFilter filter,
Obj ect handback)

It can subsequently be removed either with the two-parameter
removeNoti ficati onLi st ener, specifying just listener, or with the four-
parameter r enoveNot i fi cati onlLi st ener that has the same parameters.

A problem arises with the four-parameter method in the remote case. The filter
object that is deserialized in the r emoveNot i fi cati onLi st ener method is not
generally identical to the filter object that was deserialized for

addNot i fi cati onLi st ener. Since notification broadcaster MBeans usually check
for equality in the (listener filter,handback) triple using identity rather than the

equal s method, it would not in general be possible to remove just one
(listenerfilter,handback) triple remotely.

The standard connectors avoid this problem by using listener identifiers. When a
connector client adds a (listener filter,handback) triple to an MBean, the connector
server returns a unique identifier for that triple on that MBean. When the connector
client subsequently wants to remove the triple, it uses the identifier rather than
passing the triple itself. To implement the two-parameter

Chapter 13 Connectors 209

13.4.3

renmoveNot i ficationLi st ener form, the connector client looks up all the triples
that had the same listener and sends a r enoveNoti fi cati onLi st ener request
with the listener identifier of each one.

This technique has the side-effect that a remote client can remove a triple even from
an MBean that implements Not i fi cati onBr oadcast er but not
NotificationEm tter. A local client of the MBeanSer ver interface cannot do
this.

Notification Buffer

The two connectors defined by this specification handle notifications and listeners as
follows. Every connector server has a notification buffer. Conceptually, this is a list of
every notification ever emitted by any MBean in the MBean server that the connector
server is attached to. In practice, the list is of finite size, so when necessary the oldest
notifications are discarded.

Entries in the notification buffer consist of a Noti fi cati on object and an
Obj ect Narre. The Obj ect Nane is the name of the MBean that emitted the
notification.

For every MBean that can send notifications (implements the

Not i fi cati onBroadcast er interface), the connector server registers a listener
that adds each notification to the notification buffer. The connector server tracks the
creation of MBeans, and when a new Not i fi cati onBr oadcast er MBean is
created, the listener is added to it.

Entries in the notification buffer have sequence numbers. Sequence numbers are
positive. A later notification always has a greater sequence number than an earlier
one. Sequence numbers are not necessarily contiguous, but the notification buffer
always knows what the next sequence number will be.

FIGURE 13-4 shows a connector server with its notification buffer. The notification
buffer has saved four notifications, with sequence numbers 40 to 43. The next
notification will have sequence number 44.

The client state of a session includes the sequence number of the next notification
that the client has not yet seen. In FIGURE 13-4, the client of session 1 has not yet seen
the notifications starting with number 41. The client of session 2 has seen all
notifications, so the next notification it will see will have the next available sequence
number, 44.

210 Java Management Extensions Specification, version 1.4 « November 9, 2006

13.4.4

session 2
next notif: 44

session 1

next notif: 41 connector

server

./

notification ... | 40 | 41 | 42 | 43 |
buffer

listeners MBean server

FIGURE 13-4 Notification Buffer Saves Notifications From All MBeans

When a new session is created, the client asks for the next sequence number that will
be used. It is only interested in notifications with that number or greater, not the
arbitrarily old notifications that are already present.

A notification buffer has no state related to the connector server. So an
implementation can use the same notification buffer for more than one connector
server.

Getting Notifications From the Notification Buffer

Conceptually, a connector client receives notifications by sending a fetch-notifications
request to the connector server. The request looks like this:

“Give me the notifications starting with sequence number s that match
my filters.”

Here, s is the next sequence number the client expects to see. In FIGURE 13-4, s is 41
for session 1 and 44 for session 2.

“My filters” means the Obj ect Nanme and Noti fi cationFilter values for every
addNot i fi cati onLi st ener operation that has been done on the connector client.
This filter list is either sent with every fetch-notifications request, or it is maintained as
part of the state of a connection. The latter approach is followed in the two protocols
defined by this specification, because the filter list is potentially very big.

The fetch-notifications request will wait until one of the following conditions is met:

Chapter 13 Connectors 211

» There is at least one notification in the buffer that matches the client’s criteria,
namely that has a sequence number at least s and matches the client’s filters.

= A timeout specified by the client is reached.

= The connector server decides to terminate the operation, typically because of a
timeout of its own.

The result of the fetch-notifications call includes the following information:

= Zero or more notifications that matched the client’s criteria. The result does not
have to include all available notifications. It may be limited to a maximum
number, for example. But if there are notifications, they will be the earliest
available ones.

= A sequence number n that is the number the client should use in its next fetch-
notifications call. This is the sequence number of the first notification that matched
the caller’s criteria but was not included in the result, or it is the next available
sequence number if all matched notifications were included.

= A sequence number f that is the smallest sequence number of a notification still
in the buffer. If />3, it is possible that notifications the client was interested in
have been lost. It is not certain, however, because the notifications between s and
f might not have matched the caller’s filters.

This information is encapsulated in the Noti fi cati onResul t class from the APIL

As an example, suppose that in FIGURE 13-4 the notifications 41 and 43 match the
filters for session 1. Its fetch-notifications call will have s = 41 and can return
immediately with notifications 41 and 43, n = 44, and f = 40. No notifications have
been lost (f <s) and the next fetch-notifications will have s = 44.

13.5 Concurrency

A JMX Remote API connector must support concurrent requests. If a thread calls a
potentially slow operation like i nvoke on the client end of a connector, another
thread should not be forced to wait for that operation to complete before performing
an operation.

13.6 Normal Termination

Either end of a session can terminate the session at any time.

If the client terminates a session, the server will clean up any state relative to that
client. If there are client operations in progress when the client terminates the
session, then the threads that invoked them will receive an | OExcepti on.

212 Java Management Extensions Specification, version 1.4 « November 9, 2006

13.7

13.7.1

If the server terminates a session, the client will get an | OExcept i on for any remote
operations that were in progress and any remote operations subsequently attempted.

It is not specified what happens to MBean server operations that are running when
the remote session that caused them is closed. Typically, they will run to completion,
since in general there is no reliable way to stop them.

Abnormal Termination

The client end of a session can detect that the server end has terminated abnormally.
This might happen for example because the JVM software that the server was
running in exited, or because the machine it was running on crashed. The connector
protocol (or its underlying transport) might also determine that the server is
unreachable, because communication to it has not succeeded for a certain period of
time. This can happen if there is a physical or configuration problem with the
network.

In all of these cases, the client can terminate the session. The behavior seen by code
using the client should be the same as if the server had terminated the session
normally, except that the details of the exception seen by the client might differ.

Similarly, the server end of a session, or a connection within a session, can detect
that the client end has terminated abnormally or become unreachable. It should
behave as if the client had terminated the connection normally, except that the
notification of connection termination indicates a failure.

Detecting Abnormal Termination

Transport protocols such as TCP usually have built-in detection of abnormal
termination. When a Java Virtual Machine exits, any TCP connections it had are
explicitly closed by the TCP protocol, meaning that the other end of the connection
is informed promptly that the connection has been closed. But when a machine
crashes or the network connection fails, this is detected less promptly. For example,
TCP will only notice that a connection is broken if an attempt is made to write on it,
and even then it will typically only signal the problem after a timeout on the order
of minutes. Connectors should close connections that receive errors, but an
additional mechanism is needed if connections are mostly idle or if the time to detect
a failed connection is too long.

For the two connectors defined by this specification, an implementation is not
required to detect failure promptly. However, the following approach is
recommended:

1. A fetch-notifications call from the client should be terminated with zero
notifications if none arrive within a certain period.

Chapter 13 Connectors 213

2. A connector server should close a connection that has not received any client
requests (including fetch-notifications) for a certain time.

3. A client should specify a timeout in each fetch-notifications call. If the call does not
return after the timeout (plus some margin for delays) then the client should close
the connection.

This approach is based on the assumption that a client will always do a new fetch-
notifications call shortly after the previous one returns. So case 2 never happens for a
working connection.

If a session has no listeners, there is no need for it to do a fetch-notifications call. In
this case, a server that follows the approach detailed here will close idle connections.
The client will re-open the connection the next time it needs to do an operation on it.

13.8 Connector Server Addresses

A connector server usually has an address, which clients can use to establish
connections to the connector server. Some connectors can provide alternative ways
to establish connections, such as through connection stubs (see Section 13.9.2
“Connection Stubs” on page 215).

When a connector server has an address, this address is usually described by the
class JMXSer vi ceURL. The API documentation for that class and for the standard
connectors explains the semantics of these addresses.

A user-defined connector can choose to use another address format, but it is
recommended to use JMXSer vi ceURL where possible.
An example of a connector server address is shown below:

service: jnx:jnmknp://host1: 9876
All IMXSer vi ceURL addresses begin with "ser vi ce: j nx: ". The following j mxnp
indicates the connector to use, in this case the JMXMP Connector (see Chapter 15

“Generic Connector”). host 1 and 9876 are respectively the host and the port on
which the connector server is listening.

13.9 Creating a Connector Client

A connector client is represented by an object that implements the JMXConnect or
interface. There are two ways in which a connector client can be created:

= Using an address, as covered in Section 13.9.1 “JMXConnectorFactory” on
page 215

= Using a connection stub, as covered in Section 13.9.2 “Connection Stubs” on
page 215

214 Java Management Extensions Specification, version 1.4 « November 9, 2006

13.9.1

13.9.2

Which way an application uses depends mainly on the infrastructure that is used to
find the connector server to which the client wants to connect.

JMXConnectorFactory

If the client has the address (JMXSer vi ceURL) of the connector server to which it
wants to connect, it can use the JMXConnect or Fact ory to make the connection.
This is the usual technique when the client has found the server through a text-based
discovery or directory service such as SLP.

For example, an application appl that includes an MBean server might export that
server to remote managers as follows:

1. Create a connector server cSer ver

2. Get cServer s address addr, either by using the JMXSer vi ceURL that was
supplied to its constructor to tell it what address to use, or by calling
cServer. get Address()

3. Put the address somewhere the management applications can find it, for example
in a directory or in an SLP service agent

A manager can start managing appl as follows:
1. Retrieve addr from where it was stored in step 3 above

2. Call IMXConnect or Fact ory. connect (addr)

Connection Stubs

An alternative way for a client to connect to a server is to obtain a connector stub. A
connector stub is a JMXConnect or object generated by a connector server. It is
serializable so that it can be transmitted to a remote client. A client that retrieves a
connector stub can then call the stub’s connect method to connect to the connector
server that generated it.

For example, an application appl that includes an MBean server might export that
server to remote managers as follows:

1. Create a connector server cServer
2. Obtain a connector stub ¢St ub by calling cSer ver . t oJMXConnect or

3. Put the stub somewhere the management applications can find it, for example in
a directory, in the]iniTM lookup service, or in an HTTP server

A manager can start managing app1 as follows:

Chapter 13 Connectors 215

13.9.3

13.10

1. Retrieve ¢St ub from where it was stored in step 3 above
2. Call ¢St ub. connect to connect to the remote MBean server through cSer ver

In some circumstances, a connector server might not have all the information needed
to generate a connector stub that any client can use. The details of connection might
depend on the client’s environment. In such cases, the connector stub would need to
be generated by a third party, for example by administrative tools that know the
relevant details of the client and server environments.

Finding a Server

Chapter 17 “Bindings to Lookup Services”, defines how an agent based on JMX
technology can register its connector servers with existing lookup and discovery
infrastructures, so that a JMX Remote API client can create or obtain a
JMXConnect or object to connect to the advertised servers. In particular, that
chapter provides the following information:

= Section 17.3 “Using the Service Location Protocol” on page 254, describes how a
client can retrieve a JMX service URL from SLP, and use it to connect to the
corresponding server

= Section 17.4 “Using the Jini Network Technology” on page 258, describes how a
client can retrieve a connector stub from the Jini lookup service (LUS) and connect
to the corresponding server

= Section 17.5 “Using the Java Naming and Directory Interface (LDAP Backend)” on
page 264, describes how a client can retrieve a JMX service URL from the
Lightweight Directory Access Protocol (LDAP) directory, and use it to connect to
the corresponding server

Creating a Connector Server

A connector server is represented by an object of a subclass of

JMXConnect or Ser ver. The usual way to create a connector server is through the
JMXConnect or Ser ver Fact ory. Using a JMXSer vi ceURL provided as a
parameter, the factory determines what class to instantiate, in a way similar to the
JMXConnect or Fact ory described in Section 13.9.1 “JMXConnectorFactory” on
page 215.

A connector server can also be created by instantiating a subclass of
JMXConnect or Ser ver explicitly.

To be useful, a connector server must be attached to an MBean server, and it must be
active.

216 Java Management Extensions Specification, version 1.4 « November 9, 2006

A connector server can be attached to an MBean server in one of two ways. Either
the MBean server to which it is attached is specified when the connector server is
constructed, or the connector server is registered as an MBean in the MBean server
to which it is attached.

A connector server does not have to be registered in an MBean server. It is even
possible, though unusual, for a connector server to be registered in an MBean server
different from the one to which it is attached.

CODE EXAMPLE 13-1 shows how to create a connector server that listens on an
unspecified port on the local host. It is attached to the MBean server nbs but not
registered in it:

CODE EXAMPLE 13-1 Creating a Connector Server attached to an MBean Server

MBeanServer nbs = MBeanServer Factory. creat eMBeanServer () ;
JMXServi ceURL addr = new JMXServi ceURL("j mxnp", null, 0);
JMXConnect or Server cs =

JMXConnect or Ser ver Fact ory. newJMXConnect or Server (addr, null, nbs);
cs.start();

The address that the connector server is actually listening on, including the port
number that was allocated, can be obtained by calling cs. get Addr ess() .

CODE EXAMPLE 13-2 shows how to do the same thing but with a connector server that
is registered as an MBean in the MBean server to which it is attached:

CODE EXAMPLE 13-2 Creating a Connector Server Registered in an MBean Server

MBeanServer nbs = MBeanServer Factory. creat eMBeanServer ();
JMXServi ceURL addr = new JMXServi ceURL("j mxnp", null, 0);
JMXConnect or Server cs =

JMXConnect or Ser ver Fact ory. newJMXConnect or Server (addr, null, null);
Ohj ect Name csNanme = new Obj ect Name(":type=cserver, nane=nycserver");
nbs. regi st er MBean(cs, csNane);
cs.start();

Chapter 13 Connectors 217

13.10.1

13.11

Publishing a Server

Chapter 17 “Bindings to Lookup Services” defines how an agent can publish its
connector servers with existing lookup and discovery infrastructures, so that a J]MX
Remote API client that does not know about such a server can find it and connect to
it. In particular, that section provides the following information:

= Section 17.3 “Using the Service Location Protocol” on page 254, describes how an
agent registers the JMX service URL of a connector server with SLP, so that a JMX
Remote API client can retrieve it and use it to connect to the server

= Section 17.4 “Using the Jini Network Technology” on page 258, describes how an
agent registers the connector stub of a connector server with the Jini lookup
service, so that a JMX Remote API client can retrieve this stub and connect to the
server

= Section 17.5 “Using the Java Naming and Directory Interface (LDAP Backend)” on
page 264, describes how an agent registers the J]MX Service URL of a connector
server in an LDAP directory, so that a JMX Remote API client can retrieve this
URL and use it to connect to the server.

Class Loading

Every non-primitive Java object has a class, and every class has a class loader. A
subtle pitfall of class loading is that the class a. b. C created by the class loader c!1 is
not the same as the class a. b. Ccreated by the class loader c/2. Here, "created" refers
to the class loader that actually creates the class with its def i neCl ass method. If
cll and cI2 both find a. b. Cby delegating to another class loader cI3, it is the same
class.

A value of type "a. b. Ccreated by c/1" cannot be assigned to a variable or parameter
of type "a. b. Ccreated by c/2". An attempt to do so will result in an exception such
as Cl assCast Excepti on.

When one end of a connection receives a serialized object from the other end, it is
important that the object be deserialized with the right class loader. This section
explains the rules for determining the class loader to use in every case.

These rules for class loading are needed when the types of attributes, or of operation
parameters and return values, are application-specific Java types. To avoid having to
deal with these rules, it is a good idea to use only standard types defined by the Java
platform or by the JMX and JMX Remote APIs. The types defined for Open MBeans
in the JMX API allow arbitrarily complex data structures to be described without
requiring application-specific types. An important side-effect is that interoperation
with non-Java clients is greatly simplified.

218 Java Management Extensions Specification, version 1.4 « November 9, 2006

13.11.1

13.11.2

These rules are also needed when application-specific notification filters are applied.
(See Section 13.4.1 “Filters and Handbacks” on page 208.) To avoid having to
manage class-loading rules, consider using only the three standard notification filter
types from the JMX API, Noti fi cati onFilter Support ,

MBeanSer ver Not i fi cati onFilter, and

Attri but eChangeNotificationFilter. An alternative is to filter in the client’s
listener, though this can increase network traffic with notifications that are discarded
as soon as they are received.

Class Loading on the Client End

A connector client can specify a default class loader when making a connection to a
server. This class loader is used when deserializing objects received from the server,
whether they are returned values from MBeanSer ver Connect i on methods,
exceptions thrown by those methods, or notifications emitted by MBeans to which
the client is listening.

The default class loader is the value of the attribute

jmx. renote.defaul t.cl ass. | oader from the JMXConnect or environment.
The JMXConnect or first looks for this attribute in the environment Map that was
supplied when the JMXConnect or was connected. If there was none, or the
attribute is not found, it then looks in the environment Map that was supplied at
creation time. If there was none, or the attribute is not found, then the default class
loader is the context class loader

(Thread. current Thread() . get Cont ext Cl assLoader ()) that was in place
when the JMXConnect or was connected. It is not specified what happens if the
default class loader determined by these rules is null.

If the value of the j nx. renpt e. def aul t. cl ass. | oader attribute is not a class
loader, then the attempt to connect the JMXConnect or gets an
Il egal Argunent Excepti on.

Note — serialization: When a JMXConnect or is serialized, the environment Map
that was supplied when the JMXConnect or was created is lost: the Map is not
serialized because it is expected to contain objects, like class loaders, which are not
serializable. As a consequence, when a specific default class loader is required for a
JMXConnect or, it is recommended always to specify it in the Map supplied when
connecting.

Class Loading on the Server End

The class loader to be used when deserializing parameters received from the client
depends on the operation. Sometimes the appropriate class loader is the one that
belongs to the target MBean, because that MBean might have parameter types that

Chapter 13 Connectors 219

are not defined by the JMX API or the JMX Remote API. Sometimes the appropriate
class loader is one configured during the creation of the connector server, because
the connector server is intended to be used with a particular management
application. Such an application might define its own subclasses of MBean
parameter types, or it might define its own Not i fi cati onFi | t er classes for
listeners. An MBean being managed cannot be expected to anticipate every
notification filter that a management application might want to use, so it does not
make sense to use only the MBean'’s class loader to deserialize notification filters
with listeners being added to the MBean.

Like a connector client, a connector server has a default class loader that is determined
when the connector server is started. The default class loader is determined as
follows:

= If the connector server’s environment map contains the attribute
j mx. renote.defaul t. cl ass. | oader, the value of that attribute is the default
class loader

= If the environment map contains the attribute
jmx. remote. defaul t. cl ass. | oader. nane, the value of that attribute is the
bj ect Nane of an MBean that is the default class loader. This allows a connector
server to be created with a class loader that is a management applet (m-let) in the
same MBean server

» If neither of the above attributes is defined, the default class loader is the thread’s
context class loader at the time when the JMXConnect or Ser ver was started

If both j mx. renpt e. defaul t. cl ass. | oader and

jmx. renote.defaul t.cl ass. | oader. nane are defined, or if the value of

j mx. renote.defaul t.cl ass. | oader is nota Cl assLoader, or if the value of
jmx. renote. defaul t. cl ass. | oader. nane is not an Obj ect Nane that names a
C assLoader, the attempt to start the connector server gets an

Il egal Argunment Excepti on.

For certain operations that interact with a single "target" MBean, M, objects are
deserialized using M's extended class loader. This is a class loader that loads each class
X, as follows:

1. The class loader that loaded or is loading M is asked to load X

2. If that fails with a Cl assNot FoundExcept i on, the default class loader is asked
to load X

3. If step 1 fails with an exception other than Cl assNot FoundExcept i on, or if
step 2 fails with any exception, that exception is the result of loading X

The rules for deserialization of MBeanSer ver Connect i on operations are as
follows:

= The parameters to set Attri bute, and set Attri but es are deserialized using
the target MBean’s extended class loader

220 Java Management Extensions Specification, version 1.4 « November 9, 2006

13.12

= The Qbj ect array in i nvoke is deserialized using the target MBean's extended
class loader

= The Cbj ect array in the cr eat eMBean forms that have one is deserialized using
the target MBean's extended class loader. Here, "the class loader that loaded or is
loading M" is the class loader described in the API documentation for the
particular cr eat eMBean form. In the case of the form that uses the Class Loader
Repository, it is a class loader that always delegates to that repository

= The Quer yExp in the quer yNanmes and quer yMBeans operations is deserialized
using the default class loader

« The NotificationFilter and the Obj ect handback in the
addNot i ficationLi stener andrenoveNoti ficati onLi st ener operations
(all forms) are deserialized using the target (notification broadcaster) MBean’s
extended class loader

Remaining parameters are of type St ri ng (which is a final class known to the
bootstrap class loader), St ri ng[], or Obj ect Nane.

If a user-defined subclass of Obj ect Nane is sent from client to server, it is not
specified how it is deserialized, so this is not guaranteed to work in general.

Connector Server Security

Connector servers typically have some way of authenticating remote clients. For the
RMI connector, this is done by supplying an object that implements the

JMXAut hent i cat or interface when the connector server is created. For the JMXMP
connector, this is done using SASL.

In both cases, the result of authentication is a JAAS Subj ect representing the
authenticated identity. Requests received from the client are executed using this
identity. With JAAS, you can define what permissions the identity has. In particular,
you can control access to MBean server operations using the MBeanPer ni ssi on
class. For this to work, though, you must have a Securi t yManager.

If a connector server does not support authentication or is not set up with
authentication, then client requests are executed using the same identity that created
the connector server.

As an alternative to JAAS, you can control access to MBean server operations by
using an MBeanSer ver For war der. This is an object that implements the
MBeanSer ver interface by forwarding its methods to another MBeanSer ver object,
possibly performing additional work before or after forwarding. In particular, the
object can do arbitrary access checks. You can insert an MBeanSer ver For war der
between a connector server and its MBean server using the method

set MBeanSer ver For war der.

Chapter 13 Connectors 221

13.12.1 Subject Delegation

Any given connection to a connector server has at most one authenticated Subj ect .
This means that if a client performs operations as or on behalf of several different
identities, it must establish a separate connection for each one.

However, the two standard connectors also support the notion of subject delegation. A
single connection is established between client and server using an authenticated
identity, as usual. With each request, the client specifies a per-request Subj ect . The
request is executed using this per-request identity, provided that the authenticated
per-connection identity has permission to do so. That permission is specified with
the permission Subj ect Del egati onPer i ssi on.

For each delegated Subj ect, the client obtains an MBeanSer ver Connecti on from
the JMXConnect or for the authenticated Subj ect . Requests using this

MBeanSer ver Connect i on are sent with the delegated Subj ect .

MBeanSer ver Connect i on objects for any number of delegated identities can be
obtained from the same JMXConnect or and used simultaneously.

13.12.2 Access Control Context

MBean Server operations on behalf of a remote client are executed in an access
control context (see j ava. security. AccessControl Cont ext) where checked
permissions must be held both by the authenticated Subj ect (or delegated

Subj ect) and by the Subj ect that created the connector server. Without the latter
check, an entity that had permissions to create a connector server but not some other
permissions might be able to obtain those other permissions by creating a connector
server and sending requests to it.

If the Subj ect that created the connector server has a

Subj ect Del egat i onPer mi ssi on for every Pri nci pal in the authenticated (or
delegated) Subj ect, then its permissions are not checked for MBean Server
operations. This means that there are two ways to configure the permissions of the
connector server creator. Either it must have all the permissions that any remote
client will need for its operations; or it must have a

Subj ect Del egat i onPer i ssi on for every Pri nci pal that a remote client will
authenticate or delegate.

Suppose a security context (subject and/or codebase and/or code signers), say
creator, makes a JMXConnect or Ser ver. Later, a connection arrives and is
authenticated with the Pri nci pal remote. An MBeanServer. get Attribute
operation is performed over the connection, and needs to access a file. This means
that the permissions being checked are MBeanPer i ssi on and Fi | ePer mi ssi on.
The operation will succeed if either of the following conditions is true:

222 Java Management Extensions Specification, version 1.4 « November 9, 2006

= both remote and creator have the MBeanPer mi ssi on and the Fi | ePer ni ssi on,
or

= remote has the MBeanPer mi ssi on and the Fi | ePer m ssi on, and creator has
Subj ect Del egat i onPer ni ssi on(remote).
A policy file for the second case might look like this:
grant codebase "file:/agent.jar" {
permi ssi on javax. managenent . renot e. Subj ect Del egati onPer m ssi on

"j avax. managenent . renot e. JMXPri nci pal . renot e";

grant principal javax.managenent.renote. JMXPrincipal "renote" {
perm ssion javax. management. MBeanPerm ssion "Stats", "getAttribute";
perm ssion java.io.FilePermssion "stats.txt", "read";

Chapter 13 Connectors 223

224 Java Management Extensions Specification, version 1.4 « November 9, 2006

14

RMI Connector

14.1

14.2

The RMI connector is the only connector that must be present in all implementations
of this specification. It uses the RMI infrastructure to communicate between client
and server.

RMI Transports

RMI defines two standard transports, the Java Remote Method Protocol (JRMP) and
the Internet Inter-ORB Protocol (IIOP).

JRMP is the default transport. This is the transport you get if you use onl¥ the
java.rm . * classes from the Java 2 Platform Standard Edition (the J2SE™
platform).

IIOP is a protocol defined by CORBA. Using RMI over IIOP allows for
interoperability with other programming languages. It is covered by the
javax.rm .* and or g. ong. * classes from the J2SE plaform.

RMI over these two transports is referred to as RMI/JRMP and RMI/IIOP.

The RMI connector supports both transports. Refer to the API documentation (in
particular the description of the j avax. management . renot e. rm package) for
details.

Mechanics of the RMI Connector

For every RMI connector server, there is a remotely-exported object that implements
the remote interface RM Ser ver. A client that wants to communicate with the
connector server needs to obtain a remote reference, or stub, that is connected to this
remote object (how the stub can be obtained is described in Section 14.3 “How to
Connect to an RMI Connector Server” on page 229). RMI arranges that any method

Chapter 14 RMI Connector 225

called on the stub is forwarded to the remote object. So, a client that has a stub for
the RM Ser ver object can call a method on it, resulting in the same method being
called in the server’s object.

FIGURE 14-1 shows two clients that both have stubs for the same server object. The
server object is labeled impl because it is the object that implements the functionality
of the RM Ser ver interface.

server ‘

-

FIGURE 14-1 Several Clients can Have Stubs Connected to the Same Server Object

226 Java Management Extensions Specification, version 1.4 « November 9, 2006

. newClient
newClient server - server
— = =
stub impl

1. client calls newClient method on server stub

server server
stub impl

connection
impl

2. server creates new RMI connection object

ewClient server server
stub impl

cohnection
stub

connection
impl

3. stub for new object is result of newClient method

FIGURE 14-2 A New Client Connection Is a New Remote Object on the Server

In addition to the remote object representing the connector server, there is one
remote object for every client connection made through the connector to the MBean
server. When a client wants to invoke methods on the remote MBean server, it
invokes the newCl i ent method in its server stub. This causes the newCl i ent
method in the remote server object to be invoked. This method creates a new remote
object that implements the remote interface RM Connect i on, as shown in

FIGURE 14-2. This interface contains all the remotely-accessible methods of the MBean

Chapter 14 RMI Connector 227

14.2.1

14.2.2

server. The value returned from the client’s newCl i ent method is a stub that is
connected to this new object. When the client calls an MBean server method such as
get Attri but e, this produces a call to the corresponding method in the

RM Connect i on stub, and hence a remote call to the corresponding implementation
object in the server.

Wrapping the RMI Objects

User code does not usually interact directly with the RM Ser ver and
RM Connect i on objects.

On the server side, the RM Ser ver object is created and exported by an

RM Connect or Server. RM Connect or Server is a subclass of

JMXConnect or Ser ver, and as such is a connector server for the purposes of this
standard. RM Connect i on objects are created internally by the RM Ser ver
implementation, but user code in the server never sees them.

On the client side, an RM Ser ver stub can be obtained explicitly, as described in
Section 14.3 “How to Connect to an RMI Connector Server” on page 229. More
usually, it is obtained as part of the process of looking up a URL for the RMI
connector, but is wrapped in an RM Connect or object. User code usually only deals
with this RM Connect or object. RM Connect or implements the JMXConnect or
interface and it is through this interface that it is usually accessed.

In normal use, user code never invokes any methods from RM Ser ver, and never
sees any objects of type RM Connect i on. These objects are hidden by the
RM Connect or class.

RMIConnection

The RM Connect i on interface is similar to the MBeanSer ver Connecti on
interface defined by the JMX specification, but has some important differences:

= Parameters that are subject to the class loading rules detailed in Section 13.11
“Class Loading” on page 218 are wrapped inside a Mar shal | edCbj ect so that
they can be unwrapped by the server after it has determined the appropriate class
loader to use

= The addNotificationLi steners and renpoveNoti fi cati onLi stener
methods use listener IDs instead of listeners, as detailed in Section 13.4 “Adding
Remote Listeners” on page 208

= There are additional methods to get the connection ID and to close the connection

= There is an additional method to obtain outstanding notifications

228 Java Management Extensions Specification, version 1.4 « November 9, 2006

14.2.3

14.3

The RM Connect i on object represents a connection, not a session, in the terminology
of Section 13.1 “Sessions and Connections” on page 206. Either end of the connection
can close it at any time without affecting the session. The server closes the
connection by unexporting the RM Connect i on object. Ongoing RMI calls on the
object run to completion and return normally, but new calls will fail. When the client
sees such a failure, it will obtain a new RM Connect i on object as described in
Section 14.2 “Mechanics of the RMI Connector” on page 225.

Notifications

The RMI connector uses the techniques described in Section 13.4 “Adding Remote
Listeners” on page 208. The connector server has a stateless notification buffer
(Section 13.4.3 on page 210). If the connector client has listeners, it uses the
fetchNotifications call on the RM Connect i on object to receive notifications
for them.

The list of (Obj ect Name,Not i fi cati onFi | t er) pairs corresponding to the client’s
listeners is not passed in every call to f et chNoti fi cati ons. Rather, it is
established with a single addNot i fi cati onLi st eners call when the

RM Connect i on object is created. Changes to the notification list while the
connection is open are made with further calls to addNot i fi cati onLi steners
and to renmoveNot i fi cati onLi stener.

How to Connect to an RMI Connector
Server

Broadly, there are three ways to connect to an RMI connector server:

1. Supply a IMXSer vi ceURL to the JMXConnect or Fact ory that specifies the r i
or i i op protocol. This is the most usual way to connect. The JMXSer vi ceURL
either contains the stub in an encoded form, or indicates a directory entry in
which an RM Ser ver stub can be found. This is further described in the API
specification of the j avax. managenent . renot e. r mi package. The details of
looking up this directory entry and creating a JMXConnect or from it are hidden
from the caller

2. Obtain a JMXConnect or stub from somewhere, for example a directory such as
LDAP, the Jini Lookup Service, or as the returned value of an RMI method call.
This stub is an object generated by RM Connect or Ser ver . t oJMXConnect or. It
is an object of type JMXConnect or. It is not an RMI stub and should not be
confused with the RMI stubs of type RM Ser ver or RM Connect i on. However,
it references an RM Ser ver stub which it uses when its connect method is called

Chapter 14 RMI Connector 229

14.4

14.4.1

3. Obtain an RM Ser ver stub from somewhere and use it as a parameter to the
constructor of RM Connect or

Basic Security With the RMI Connector

The RMI connector provides a simple mechanism for securing and authenticating
the connection between a client and a server. This mechanism is not intended to
address every possible security configuration, but provides a basic level of security
for environments using the RMI connector. More advanced security requirements are
better addressed by the JMXMP connector (see Section 15.3.3 “Security Features in
the JMXMP Connector” on page 241).

To make an RMI connector server secure, the environment supplied at its creation
must contain the property j mx. r enot e. aut hent i cat or, whose associated value
is an object that implements the interface JMXAut hent i cat or. This object is
responsible for examining the authentication information supplied by the client and
either deriving a JAAS Subject representing the client, or rejecting the connection
request with a Securi t yExcepti on.

A client connecting to a server that has an JMXAut hent i cat or must supply the
authentication information that the JMXAut hent i cat or will examine. The
environment supplied to the connect operation must include the property

jmx. renmote. credenti al s, whose associated value is the authentication
information. This object must be serializable.

This specification does not include any predefined authentication system. The
simplest example of such a system is a secret string shared between client and
server. The client supplies this string as its j nx. renot e. credenti al s, and the
server’s JMXAut hent i cat or checks that it has the correct value.

As a slightly more complicated example, the authentication information could be a
String[2] thatincludes a username and a password. The JMXAut hent i cat or
verifies these, for example by consulting a password file or by logging in through
some system-dependent mechanism, and if successful derives a Subj ect based on
the given username.

How Security Affects the RMI Connector Protocol

The authentication information supplied by the client is passed as an argument to
the newCl i ent call (see FIGURE 14-2). The connector server gives it to the

JMXAut hent i cat or. If the JMXAut hent i cat or throws an exception, that
exception is propagated to the client. If the JMXAut hent i cat or succeeds, it returns
a Subj ect, and that Subj ect is passed as a parameter to the constructor of the new

230 Java Management Extensions Specification, version 1.4 « November 9, 2006

14.4.2

RM Connect i on object. All of the MBean server methods in RM Connect i on
perform privileged work as this particular Subj ect, so that they have the
permissions appropriate to the authenticated client.

Achieving Real Security

The solution outlined above is enough to provide a basic level of security. A number
of problems have to be addressed to achieve a real level of security, however:

1. If the authentication information includes a password, and if the network is not
secure, then attackers might be able to see the password sent from client to server

2. Attackers might be able to substitute their own server for the server that the client
thinks it is talking to, and retrieve the password that the client sends to
authenticate itself

3. Attackers might be able to see the RMI object ID of a legitimately-created
RM Connect i on object as it is accessed remotely. They could then use RMI to
call that object, executing MBean server methods using the Subj ect that was
authenticated when the object was created

4. Attackers might be able to guess this RMI object ID, for instance if object IDs are
allocated as consecutive small integers

The first three problems can be solved by using an RMI socket factory so that the
connection between client and server uses the Secure Socket Layer (SSL). This is
covered in more detail elsewhere (see for example "Using RMI with SSL" [RMI/
SSL]).

A special case of problem 2 is that attackers might be able to modify the contents of
a directory or lookup service that is used during connection establishment. This
might be either the directory that is used to find the RM Ser ver stub, or the
directory that is used to find the URL. If an RMI Registry is used for the RM Ser ver
stub, it should be secured with SSL.

The fourth problem can be solved by setting the standard RMI system property
java.rm .server.randoml Ds to "t rue". This causes the 64-bit object ID of every
export RMI object to be generated using a cryptographically strong random number
generator. (See the documentation for the class j ava. rni . server. Qbj I D.)

Chapter 14 RMI Connector 231

14.5

Protocol Versioning

The remote RM Ser ver interface includes a method get Ver si on that returns a
string including a protocol version number. This standard specifies version 1.0 of the
RMI connector protocol, which is currently the only version. Any given future
version of this standard might or might not include an updated version of the
protocol.

Each protocol version will have a version number which is the same as the version
of this standard that first defines it. For example, if version 1.1 of this standard does
not change the protocol but version 1.2 does, then the next RMI connector protocol
version number will be 1.2.

All future versions of the RMI connector will include a remote RM Ser ver object
that has at least the same methods as the current version, 1.0, and in particular the
get Ver si on method. A future version might add further methods too.

If a future version adds methods to the RM Ser ver interface, it must ensure that the
methods that a 1.0 client calls work as expected.

If the client side of the RMI connector defined in a future version uses methods
added to the server in that version, it must check, using get Ver si on, that the
server it is communicating with supports that version. Otherwise, it must limit itself
to the methods that the server does support, perhaps losing some functionality as a
consequence.

232 Java Management Extensions Specification, version 1.4 « November 9, 2006

15

Generic Connector

15.1

The JMX Remote API includes a generic connector as an optional part of the API. This
connector is designed to be configurable by plugging in modules to define the
following:

= The transport protocol used to send requests from the client to the server and to
send responses and notifications from the server to the clients

= The object wrapping for objects sent from the client to the server whose class loader
can depend on the target MBean

The JMXMP Connector is a configuration of the generic connector where the
transport protocol is based on TCP and the object wrapping is native Java
serialization (as defined by j ava. i 0. Cbj ect Qut put St r eametc.). Security is
based on JSSE [JSSE], JAAS [JAAS], and SASL [JSR28][RFC2222].

The generic connector and its JMXMP configuration are optional, which means that
an implementation can choose not to include them. An implementation that does
include them must conform to their specification here and in the API
documentation.

Pluggable Transport Protocol

Each configuration of the generic connector includes a transport protocol, which is an
implementation of the interface MessageConnect i on. Each end of a connection
has an instance of this interface. The interface defines three main methods:

= The wri t eMessage method writes a Java object to the other end of the
connection. The Java object is of the type Message defined by the connector. It
can reference other Java objects of arbitrary Java types. For the JMXMP Connector,
the possible types of messages are contained in the package
j avax. managenent . r enot e. message.

= The r eadMessage method reads a Java object from the other end of the
connection. The Java object is of type Message and again can refer to objects of
arbitrary other types.

Chapter 15 Generic Connector 233

15.2

= The cl ose method closes the connection

The connection is a full-duplex connection between the client and the server. A
stream of requests is sent from client to server, and a stream of responses and
notifications is sent from server to client. See FIGURE 15-1.

client server
conhnection] requests - connection

MessageConnection | MessageConnection

-] responses e

<] notifications |« N EcanEC Y

FIGURE 15-1 MessageConnect i on Defines a Full-Duplex Transport Between Client and
Server

When client code issues an MBeanSer ver Connect i on request such as

get MBeanl nf o, the request is wrapped inside an MBeanSer ver Request Message
object and written to the server using MessageConnecti on. wi t eMessage. The
client code then waits for the corresponding response. Meanwhile, another thread in
the client can write another request. When a response arrives, its message ID is used
to match it to the request it belongs to, and the thread that issued that request is
woken up with the response.

Pluggable Object Wrapping

The arguments to an MBean method called through MBeanSer ver . i nvoke, and
the attribute values supplied to set Attri but e or set Attri but es, can be of Java
classes that are known to the target MBean but not to the connector server. If these
objects were treated like any other, the connector server would get a

Cl assNot FoundExcept i on when it tried to deserialize a request containing them.

To avoid this problem, deserialization at the server end of a connection proceeds in
two stages. First, the objects that are necessarily of classes known to the connector
server are deserialized. This is enough to determine what kind of request has been
received, which MBean it is destined for (if any), and therefore what class loader is
appropriate for use. Then the remaining objects (arguments to invoke or attribute
values for set At tri but e(s)) can be deserialized using this class loader.

The Obj ect W appi ng interface allows object wrapping to be customized. By
default, it constructs a byte array containing the output of

Obj ect Qut put St ream wri t eObj ect on the object or objects to be wrapped. But
this would be inappropriate if, for example, the MessageConnect i on is using the

234 Java Management Extensions Specification, version 1.4 « November 9, 2006

Extensible Markup Language (XML). So, in such a case an Obj ect W appi ng object
could be plugged into the connector that wraps the objects in XML. This XML can
then be included in the larger XML text constructed by the MessageConnect i on.

15.3 Generic Connector Protocol

The generic connector protocol defines a set of protocol messages that are exchanged
between the client and the server ends of the connection, and the sequence these
message exchanges must follow. Implementations of this specification must
exchange these messages in the defined sequence so that they can interoperate with
other implementations. FIGURE 15-2 depicts the UML diagram of all the messages
defined by the generic connector protocol.

HandshakeBeginMessage

HandshakeEndMessage

HandshakeErrorMessage

VersionMeszage

FIGURE 15-2 Generic Connector Protocol Messages

O

Meszsage

CloseMessage

Profile
Messzage

TLEMeszage

SaSlMeszage

MBeanServerRequestMeszage

MBeanServerResponselMeszage

NotificationRequestMeszage

NotificationResponszeMeszsage

The generic connector protocol messages can be divided into four categories:

= Handshake messages:

HandshakeBegi nMessage
HandshakeEndMessage

Chapter 15 Generic Connector 235

15.3.1

HandshakeEr r or Message
Ver si onMessage

= Profile messages:

TLSMessage (JMXMP Connector only)
SASLMessage (JMXMP Connector only)

= MBean server operation messages:

MBeanSer ver Request Message
MBeanSer ver ResponseMessage
Noti fi cati onRequest Message
Not i fi cati onResponseMessage

= Connection messages

Cl oseMessage

Handshake and Profile Message Exchanges

The handshake message exchanges are started by the server end of the connection as
soon as the connect method on the JMXConnect or class is called by the client and
the connection between the client and the server is established.

The server end of the connection sends a HandshakeBegi nMessage to the client
with the profiles supported by the server. These profiles are retrieved from the
environment map through the j mx. renot e. profil es property. The client then
starts the profile message exchanges for the profiles chosen from the server’s
supported profiles.

The JMXMP profile is used to negotiate the version of JMXMP to use. This profile is
always implicitly enabled, but is only negotiated if the client and server differ in
their default versions. See Section 15.3.5 “Protocol Versioning” on page 243.

For the other profiles, the client will first check that all the profiles requested in its
environment map are supported by the server. If not, it will send a

HandshakeEr r or Message to the server and close the connection. (This is the
behavior of the standard JMX Remote API. Other APIs for JMXMP can provide ways
to pick which of the proposed profiles to use.)

Then, for each profile asked for in the client’s environment map, the client will
negotiate that profile. The order in which profiles are negotiated is the order they
appear in the client’s environment map. This order can be important. For example, if
the client negotiates the SASL/PLAIN profile before the TLS profile, it will send a
password in clear text over the connection. If it negotiates TLS first, the connection
will become encrypted before the password is sent.

It is not specified how the server accepts or denies the sequence of profiles run by
the client. However, it is recommended that if the profiles in the server’s
environment map imply a certain level of security, the server should reject a

236 Java Management Extensions Specification, version 1.4 « November 9, 2006

(StandardConnector only) TLS profile (PROCEED)

SASL profile
(StandardConnector only) | SASL profile (challenge blob)

connection whose negotiated profiles do not ensure that level of security. For
example, if the server is configured with only the TLS profile, then it should reject
connections that do not negotiate TLS. If the server is configured with the TLS
profile and with the SASL/DIGEST-MDS5 profile specifying the same level of security
as regards authentication and encryption, then it should reject connections that
negotiate neither profile.

The profile exchanges are performed one at a time and always started by the client.
Once the profile exchanges are completed the client sends a
HandshakeEndMessage to the server. No further profile exchanges are then
possible. The server replies either with the same HandshakeEndMessage if it
accepts the profiles that have been negotiated, or with a HandshakeEr r or Message
if it does not. In the latter case, the connection is closed.

After the handshake phase has been completed the client can get a reference to the
remote MBean server, send MBean server requests, and register listeners for
receiving notifications. The server will send responses to the client MBean server
requests and will forward notifications to the interested clients. FIGURE 15-3 depicts
the initial handshake and profile message exchanges.

Client Server

Handshake begin (profiles)

A

JMXMP profile (version)

JMXMP profile JMXMP profile (version)

A

TLS profile (READY)

TLS profile

TV Kandshake”
// ///'/S fl}«l/,\,lﬁl/;@ﬂ//lﬂ.\é/ /

SASL profile (response blob)

Handshake end

-
-

o Handshake end

FIGURE 15-3 Handshake and Profile Message Exchanges

Chapter 15 Generic Connector 237

Notice that only the handshake begin and handshake end messages are mandatory.
The profile message exchanges depend on the configuration of the server and the
client by means of the j nx. r enot e. prof i | es property in the environment map
passed in at the creation of the JMXConnect or and JMXConnect or Ser ver.

At any time during the handshake phase, if an error is encountered by either peer
(client or server), it must send an indication (HandshakeEr r or Message) as to why
the operation failed. The peer that encountered the problem will send the error
message to the other peer and immediately close the connection. The peer that
receives the message on the other end of the connection will also close the
connection immediately on reception of a handshake error message. FIGURE 15-4
depicts how an error is indicated by either a client or a server to the other peer
during the initial handshake message exchanges.

Client Server

Handshake begin (profiles)

The client detected an error Handshake error

Client Server

Handshake begin (profiles)

Handshake error

- The server detected an error

FIGURE 15-4 Handshake Error Message Exchanges

238 Java Management Extensions Specification, version 1.4 « November 9, 2006

15.3.2

MBean Server Operation and Connection Message
Exchanges

Once the initial handshake phase has been terminated, and all profiles negotiated,
the client can retrieve a reference to the remote MBean server by calling the

get MBeanSer ver Connect i on method on the JMXConnect or instance. Through
the MBeanSer ver Connect i on interface the client can perform operations on the
registered MBeans, including registration for receiving notifications. These MBean
server operations will be mapped by the protocol to

MBeanSer ver Request Message messages. For each such message the server will
receive it, decode it, perform the operation on the MBean server, and return the
result of the operation in an MBeanSer ver ResponseMessage message.

If several client threads are performing MBean server operations at the same time,
there can be several MBeanSer ver Request Messages that have been sent without
yet having received the corresponding MBeanSer ver ResponseMessages. There is
no requirement that a client receive a response for each request before sending the
next request.

Each MBeanSer ver Request Message contains an identifier that the matching
MBeanSer ver ResponseMessage must also contain. At any time, the client has a
set of identifiers {id1, id2, ...} for requests it has sent that have not yet received a
response. Each new request must have an identifier that is not in the set, and that is
added to the set when the request is sent. Each response must have an identifier that
is in the set, and that is removed from the set when the response is received. It is a
protocol error for these conditions to be violated. The peer that detects the error
must close the connection, optionally after sending a Cl oseMessage to the other
peer.

Notifications are handled using the techniques described in Section 13.4 “Adding
Remote Listeners” on page 208. The connector server has a stateless notification
buffer (Section 13.4.3 on page 210). If the connector client has listeners, it uses the
Noti fi cati onRequest Message to receive notifications for them. Each such
message solicits a Not i fi cati onRepl yMessage.

The list of (Obj ect Name,Not i fi cati onFi | t er) pairs corresponding to the client’s
listeners is not passed in every Noti fi cat i onRequest Message. Rather, it is
established with a single addNot i fi cati onLi st ener s in an

MBeanSer ver Request Message when the connection is established. Changes to
the notification list while the connection is open are made with further

MBeanSer ver Request Messages containing addNot i fi cati onLi st eners or
renoveNot i ficationListener.

FIGURE 15-5 depicts the MBean server operation message exchanges.

Chapter 15 Generic Connector 239

Client Server

Handshake begin (profiles)

i

Handshake end
Handshake end

Y

A

MBean server request

Y

MBean server response

Notification request

Y

Notification response

i

FIGURE 15-5 MBean Server Operations Message Exchanges

At any time after the handshake phase and during the MBean server operation
message exchanges, either the client or the server can want to close the connection.
On the one hand, the client can achieve that by calling the close method on the
JMXConnect or instance. On the other hand, the server can achieve that by calling
the stop method on the JMXConnect or Ser ver instance. Additionally, the client or
server can close the connection at any time, for example as detailed in Section 13.7.1
“Detecting Abnormal Termination” on page 213. The peer initiating the connection
close action will send a message of type Cl oseMessage to inform the other peer
that the connection must be closed and that the necessary clean-up should be carried
out.

When a client sends or receives a Cl oseMessage it must not send any further
requests to the server over that connection. The server will continue to process
existing requests and send the corresponding replies before closing the connection.

FIGURE 15-6 depicts the close-connection message exchanges.

240 Java Management Extensions Specification, version 1.4 « November 9, 2006

Client Server

Handshake begin (profiles)

Handshake end
Handshake end

A

The client informs the server Close connection
that the connection is going

Client Server

Handshake begin (profiles)

Handshake end >
Handshake end

A

o Close connection g}ht lslcrvcr infoims $h; c!ic;t
) wbedosed o
Client Server

Handshake begin (profiles)
Handshake end
Handshake end

MBean server request

Close connection Replies to outstanding requests are
sent before the connection is

MBean server response actually closed

FIGURE 15-6 Close-Connection Message Exchanges

A A

15.3.3 Security Features in the JMXMP Connector

The JMXMP Connector provides support for authentication and authorization
through the TLS and SASL profiles. The JMX Remote API does not mandate the
implementation and support of any specific SASL mechanism. It simply relies on
third-party implementations that can be plugged in using the standard SASL
interface [JSR28].

Chapter 15 Generic Connector 241

15.3.3.1

15.3.3.2

TLS Profile

The TLS profile allows the client and server ends of a connection to negotiate a TLS
encryption layer. Certificate-based authentication and mutual client/server
authentication are optional features configurable through properties in the
environment map (see Section 15.3.6 “Properties Controlling Client and Server” on
page 244).

SASL Profile

When using a SASL profile the way authentication is carried out is defined by the
selected SASL mechanism and can vary from one mechanism to another.

However, at the end of the SASL handshake exchanges an authorization identity has
been negotiated between the SASL client and the SASL server. Thus, the SASL
profile has to make this identity available to allow the MBean server and the
underlying MBeans to perform access control checks based on this identity.

The SASL profile implementation uses the JAAS framework to construct a

JMXPri nci pal based on this authorization identity, and stores this JMXPr i nci pal
in a Subj ect . Then, when the JMXMPConnect or Ser ver performs any of the
subsequent MBean server operations, it must do so with the given subject for the
required privileged action using an appropriate access control context.

An MBean interested in retrieving the authorization information can do so (if it has
the appropriate permissions) by calling:

AccessControl Context acc = AccessControll er. getContext();
Subj ect subj ect = Subject. get Subj ect (acc);
Set principals = subject.getPrincipals();

15.3.4

Protocol Violations

If a peer receives a message from the other peer that does not respect the protocol
described here, its behavior is unspecified. The recommended behavior is to send a
C oseMessage indicating the detected violation and to close the connection
immediately afterwards.

242 Java Management Extensions Specification, version 1.4 « November 9, 2006

15.3.5

Protocol Versioning

This standard specifies version 1.0 of the JMXMP protocol, which is currently the
only version. Any given future version of this standard might or might not include
an updated version of the protocol.

Each protocol version will have a version number which is the same as the version
of this standard that first defines it. For example, if version 1.1 of this standard does
not change the protocol but version 1.2 does, then the next JMXMP protocol version
number will be 1.2.

The first message sent over a newly-opened connection is a handshake begin
message from the server to the client. This message includes the latest JMXMP
version that the server understands. If the client also understands that version, then
the subsequent communication will take place using that version. If the client only
understands an earlier version, then it will send a Ver si onMessage requesting that
the earlier version be used. If the server understands this earlier version, then it will
reply with the same Ver si onMessage, and the subsequent communication will
take place using that version. Otherwise, the server will send a

HandshakeEr r or Message and the communication will be aborted.

In other words, suppose the server version is S and the client version is C. Then the
version V to be used for communication is determined as follows:
= Server to client: "Version S"
= If client understands S, V=S
s Otherwise:
« Client to server: "Version C"
« If server understands C:
- Server to client: "Version C"
-v==C
« Otherwise (server does not understand C):
- Server to client: "Handshake error."
- Connection aborted
A consequence of this negotiation is that every version of the protocol must
understand every other version’s HandshakeBegi nMessage and

Ver si onMessage. This will be true provided that Java serial compatibility is
respected. See the section Type Changes Affecting Serialization in [Serial].

It is expected but not required that every implementation of any version of this
standard understand all protocol versions from previous versions of the standard.

Chapter 15 Generic Connector 243

15.3.6 Properties Controlling Client and Server

When creating a JMXConnect or or a JMXConnect or Ser ver, an environment map
can be supplied. One of the functions of this environment is to provide configuration
parameters for the underlying profiles. The following subsections describe these
parameters.

15.3.6.1 Global Properties of the Generic Connector

These properties control global aspects of the connection, that is they are valid
regardless of the profiles that are selected.

= jnx.remote.profiles

A string that is a space-separated list of profile names to be supported by the
client and/or the server. Examples of profile names are: JMXMP, TLS, SASL/
EXTERNAL, SASL/OTP. If this property is unspecified, no profiles will be used.

= j nx.renote.context

An arbitrary Qbj ect to be conveyed by the handshake messages from one peer
to the other. The Obj ect should be serializable and of a class that is known to the
other peer. If this property is unspecified, a null context will be conveyed.

The JMXMP Connector currently makes no use of this object and does not expose
it to user code on the client or server.

= j nx.renote. aut henti cator

A JMXAut hent i cat or that is used at the end of the handshake phase to validate
the new connection. The aut hent i cat e method of this object is called with a
two-element Qbj ect [] as a parameter. The first element is the connection ID of
the new connection. The second element is the authenticated Subj ect, if any.
The method returns the authenticated Subj ect to use for the connection, or null
if there is no authenticated ID. The returned Subj ect is usually the same as the
Subj ect passed as a parameter, but it can have different Pri nci pal s. If the
authenticator does not accept the connection id or Subj ect, it can throw a
SecurityException.

15.3.6.2 TLS Properties

The following properties control the TLS profile:
= jmx.remote.tls.socket.factory

244 Java Management Extensions Specification, version 1.4 « November 9, 2006

15.3.6.3

An object of type j avax. net . ssl . SSLSocket Fact ory that is an already
initialized TLS socket factory. The SSLSocket Fact ory can be created and
initialized through the SSLCont ext factory. If the value of this property is not
specified, the TLS socket factory defaults to

SSLSocket Factory. get Defaul t ().

= jmx.renote.tls.enabl ed. protocols
A string that is a space-separated list of TLS protocols to enable. If the value of

this property is not specified, the TLS enabled protocols default to
SSLSocket . get Enabl edPr ot ocol s() .

= jnx.renote.tls. enabl ed. cipher.suites
A string that is a space-separated list of TLS cipher suites to enable. If the value of

this property is not specified the TLS enabled cipher suites default to
SSLSocket . get Enabl edCi pher Sui tes() .

= jnx.renmote.tls.need.client.authentication
A string that is "t rue" or "f al se" according to whether the connector server

requires client authentication. If t r ue, a client that does not authenticate during
the handshake sequence will be refused.

= jmx.renmote.tls.want.client.authentication
A string that is "t rue" or "f al se" according to whether the connector server
requires client authentication if appropriate to the cipher suite negotiated. If true,

then if a client negotiates a cipher suite that supports authentication but that
client does not authenticate itself, the connection will be refused.

SASL Properties

The following properties control the SASL profile:
= jnmx.renote.sasl.authorization.id
A string that is the connector client’s identity for authorization when it is

different from the authentication identity. If this property is unspecified, the
provider derives an authorization identity from the authentication identity.

= jnx.renote. sasl.call back. handl er

An object of type j avax. securi ty. aut h. cal | back. Cal | backHandl er that
is the callback handler to be invoked by the SASL mechanism to retrieve user
information. If this property is unspecified, no callback handler will be used.

Chapter 15 Generic Connector 245

246 Java Management Extensions Specification, version 1.4 « November 9, 2006

16

Defining a New Transport

The standard protocols defined by this specification might not correspond to all
possible environments. Examples of other protocols that might be of interest are:

= A protocol that runs over a serial line to manage a JMX API agent in a device that
is not networked

= A protocol that uses HTTP/S because it is a familiar protocol that system
administrators might be more willing to let through firewalls than RMI or JMXMP

= A protocol that formats messages in XML (perhaps in an XML-based RPC
protocol such as SOAP) to build on an existing XML-based infrastructure. Such a
transport could potentially be used by non-Java clients

There are two ways to implement a user-defined protocol. One is to define a
transport for the generic connector using the MessageConnect i on and
MessageConnecti onServer classes as described in Chapter 15 “Generic
Connector”. The other is to define a new provider for the JMXConnect or Fact ory.

Defining a transport for the generic connector has the advantage that many of the
trickier implementation details, in particular concerning listeners, are already
handled. The transport has to take care of establishing the connection and serializing
and deserializing the various Message classes. Potentially, the transport can include
other exchanges, for example to set up a secure connection, that are not the result of
a MessageConnecti on. w it eMessage and are never seen by a
MessageConnect i on. r eadMessage. For example, this is the case for the TLS and
SASL exchanges in the JMXMP Connector.

Defining a provider for the JMXConnect or Fact ory is explained in the API
documentation for that class. A provider can be based on the generic connector, or it
can implement a protocol completely from scratch.

Chapter 16 Defining a New Transport 247

248 Java Management Extensions Specification, version 1.4 « November 9, 2006

17

Bindings to Lookup Services

17.1

This standard specifies connectors that make it possible for a JMX Remote API client
to access and manage MBeans exposed through a JMX API agent (an MBean server)
running in a remote JVM. It also defines a JMXSer vi ceURL class, which represents
the address of a JMX Remote API connector server, and makes it possible for a client
to obtain a JMX Remote API connector connected to that server. However, this
standard does not provide any specific API that would make it possible for a client
to find the address of a connector server attached to an agent it knows about, or to
discover which agents are running, and what the addresses of the connector servers
are that make it possible to connect to them. Rather than reinventing the wheel, this
standard instead details how to advertise and find agents using existing discovery
and lookup infrastructures.

This specification discusses three such infrastructures:

= The Service Location Protocol [SLP], as defined by [RFC 2608] and [RFC 2609]

= The Jini Network Technology [Jini]

» The Java Naming and Directory Interface™ ("I.N.D.I") API [JNDI] with an LDAP
backend

The goal of this chapter is to specify how a J]MX API agent can register its connector
servers with these infrastructures, and how a JMX Remote API client can query these
infrastructures in order to find and connect to the advertised servers.

This chapter imposes no requirements on implementations of the JMX Remote APIL.
It details the conventions to be followed so that a server can be registered and found
by clients, without having to share special knowledge between client and server.

Terminology

The term JMX Remote API Agent (or agent) is used throughout this section to identify
a logical server application composed of:

= One MBean server

Chapter 17 Bindings to Lookup Services 249

17.2

17.2.1

= One or more JMX Remote API connector servers allowing remote clients to access
the MBeans contained in that MBean server

The term JMX Remote API client (or client) is used to identify a logical client
application which opens a client connection with a JMX Remote API agent.

Note that a single JVM machine can contain many agents and/or clients.

General Principles

Although the APIs with which to register and query a server access point using a
lookup service vary from one infrastructure to another, the general principles remain
the same:

= The agent creates one or more JMX Remote API connector servers

= Then for each connector to expose, the IMXSer vi ceURL (SLP, JNDI/LDAP) or
the JMXConnect or stub (Jini networking technology, IJNDI/LDAP) is registered
with the lookup service, possibly giving additional attributes which qualify the
agent and/or connector

= The client queries the lookup service, and retrieves one or more JMXSer vi ceURL
addresses (or JMXConnect or stubs) that match the query

= Then, it either uses the JMXConnect or Fact ory to obtain a JMXConnect or
connected with the server identified by a retrieved JMXSer vi ceURL (SLP, JNDI/
LDAP), or it directly connects to the server using the provided JMXConnect or
stub (Jini, JNDI/LDAP)

JMXServiceURL Versus JMXConnector Stubs

When using SLP, it is natural to register and retrieve a service URL from the lookup
service. However, it is not as natural when using networking technologies like Jini.
In the Jini networking technology, the Service object you register and get from the
lookup service is usually a stub that directly implements the interface of the
underlying service, and not an object that gives you back some information on how
to connect to the service. Therefore this standard specifies different ways of
advertising a connector server, depending on the underlying lookup service used:

= SLP: register the URL string representation of the JMX Service URL

(JMXSer vi ceURL. t oSt ri ng()). This is natural as SLP is a URL-based protocol.
See Section 17.3 “Using the Service Location Protocol” on page 254.

= Jini networking technology: register a JMXConnect or stub. The JMXConnect or
interface is directly the interface of the JMX Connector Service. See Section 17.4
“Using the Jini Network Technology” on page 258

250 Java Management Extensions Specification, version 1.4 « November 9, 2006

17.2.2

= JNDI API/LDAP: register the URL string representation of the JMX Service URL
(IMXSer vi ceURL. t oSt ri ng()). The JNDI API can be configured on the client
side (via St at eFact ori es and Obj ect Fact ori es - see [[NDI - Java Objects])
to create and return a new JMXConnect or automatically from the Di r Cont ext
containing the J]MX Service URL, or simply return the Di r Cont ext from which
that JMX Service URL can be extracted. See Section 17.5 “Using the Java Naming
and Directory Interface (LDAP Backend)” on page 264.
An alternative way to use JNDI/LDAP is to store a JMXConnector stub directly,
as described for Jini. This specification does not define a standard way to do that.

Lookup Attributes

All three infrastructures considered in this specification have the notion of lookup
attributes. These attributes are properties that qualify the registered services. They
are passed to the infrastructure when the service is registered, and can be used as
filters when performing a lookup.

A client can then query the lookup service to find all the connectors that match one
or more attributes. A client that obtains several services as a result of a lookup query
can also further inquire about the lookup attributes registered for those services to
determine which of the returned matching services it wants to use.

For a client to be able to format a query to the lookup service independently of the
JMX Remote API implementation used on the agent side, and to understand the
meaning of the retrieved attributes, this standard specifies a common set of JMX
Remote API lookup attributes whose semantics will be known by all agents and
clients. In the remainder of this specification we will use the term Lookup Attributes
for these.

When registering a connector server with a lookup service, an agent will:

1. Build the JMXSer vi ceURL describing its connector server (SLP, JINDI/LDAP), or
obtain a JMXConnect or stub from that server (using Jini networking technology)

2. Register that URL (SLP, JNDI/LDAP), or JMXConnect or stub (using Jini
networking technology) with the lookup service

3. Provide any additional lookup attributes that might help a client to locate the
server

TABLE 17-1 defines the set of common lookup attributes that can be provided at
connector registration and that can be used to filter the lookup. Most of these
attributes are optional: an agent can choose whether it wants to specify them when it
registers a JMXSer vi ceURL with the lookup service.

Chapter 17 Bindings to Lookup Services 251

Note — The name format of the lookup attributes is different depending on the back-
end lookup service (see Section 17.4 “Using the Jini Network Technology” on
page 258)

TABLE 17-1 Lookup Attributes for Connectors

Multi-
Name / ID Type valued Optional Description
Agent Nane String No Mandatory A simple name used to identify the agent

in a common way. Can also be viewed as
a logical name for the service
implemented by the agent. Makes it
possible to search for all connectors
registered by a given agent.

This specification does not define the
format of an agent name. However, the
characters colon (:) and slash (/) are
reserved for future use.

252 Java Management Extensions Specification, version 1.4 « November 9, 2006

TABLE 17-1 Lookup Attributes for Connectors

Multi-

Name / ID Type valued Optional

Description

Prot ocol Type String No Optional

Agent Host String Yes Optional

Property String Yes Optional

The protocol type of the registered
connector, as returned by

JMXSer vi ceURL. get Prot ocol ().
Makes it possible to retrieve only the
connectors using a given protocol that
the client supports.

The name(s) or IP address(es) of the host
on which the agent is running. This
attribute is multivalued in order to allow
aliasing - namely, if one single host is
known under several names. This
attribute is multivalued only if the
underlying lookup protocol supports
multivalued attributes.

A string containing a Java-like property,
in the form "<pr operty-

name>=<val ue>" - for example,

"com sun. j mx. renot e. t cp. connect
. timeout =200".

This attribute is multivalued so that it
can be used to map several properties. It
might be used by agents as a means to
provide additional information to client
applications. For instance, this attribute
could be used to hold some of the
attributes that were passed to a
connector server within the environment
map at construction time. However, an
agent must not rely on the fact that a
Client will read these attributes, and a
client must not rely on the fact that an
agent will provide them. All the
information that any client will need to
connect to a specific server must be
contained in the server’s JMX Service
URL, or in its JMX API connector stub.

Chapter 17

Bindings to Lookup Services 253

17.3

17.3.1

17.3.2

17.3.3

17.3.4

Using the Service Location Protocol

The Service Location Protocol [SLP] is is an IETF standards track protocol [RFC
2608], [RFC 2609] that provides a framework to allow networking applications to
discover the existence, location, and configuration of networked services in
enterprise networks. You may wish to read the [SLP White Paper] for a concise
description of SLP, and its positioning with respect to other technologies, like
DNSSRV and LDAP.

SLP Implementation

The Java SLP API is the object of [JSR 140]. At the time of writing, this JSR is not yet
finalized. The code extracts in this section are based on Sun’s proprietary Java
implementation of SLP, which closely follows [RFC 2614]. Code based on other
implementations of that RFC will work similarly.

SLP Service URL

The JMXSer vi ceURL defined by this standard is directly compliant with [RFC
2609]. Therefore there is a direct mapping between JMX Service URLs and SLP
Service URLSs, since their String representation is identical.

SLP Lookup Attributes

SLP supports multivalued attribute registrations; these attributes are provided at
registration time, when registering the Service URL of the connector server. The
filtering method used for lookup is an LDAPv3 filter string. The attributes that must
or may be provided by an agent when registering a connector server URL are those
defined in Section 17.2.2 “Lookup Attributes” on page 251.

Code Templates

The following sections provide some code templates for SLP.

254 Java Management Extensions Specification, version 1.4 « November 9, 2006

17.3.4.1 Discovering the SLP Service

With SLP, discovering the lookup service is transparent to the user; the running SLP
daemon is responsible for finding the Service Agent or Directory Agent (depending
on the configuration of the daemon).

In fact, one line is enough to locate the lookup service, as shown in
CODE EXAMPLE 17-1:

CODE EXAMPLE 17-1 Discovering the SLP Service

i nport com sun. sl p. Servi ceLocat i onManager ;

i nport com sun. sl p. Servi ceLocati onExcepti on;
i mport com sun. sl p. Adverti ser;

i mport com sun. sl p. Locat or;

try {
/1 CGetting the Advertiser (for registration purposes)

Advertiser sl pAdvertiser = ServicelLocati onManager. get Adverti ser(Local e. US);

/1 Cetting the Locator (for |ookup purposes)
Locat or sl pLocator = ServicelLocati onManager. get Locat or (Local e. US);

} catch(ServicelLocati onException e) {...}

Chapter 17 Bindings to Lookup Services 255

17.3.4.2 Registering a JMX Service URL With SLP

The class Adverti ser is used to perform the SLP registrations, as shown in
CODE EXAMPLE 17-2:

CODE EXAMPLE 17-2 Registering a Service URL With SLP

i nport com sun. sl p. Servi ceURL;
i mport com sun. sl p. Servi ceLocati onAttri bute;

try {
/1l Create a new JMXMPConnectorServer, let the systemallocate a
/1 a port nunber.
/1

JMXServi ceURL jmxUrl = new JMXServi ceURL("service:jnmx:jnknmp://nyhost:0");
final JMXConnector Server cserver = new JMXMPConnect or Server (j nxUrl,null);

/1 Get the Connector Server address
final JMXServi ceURL srvAddr = cserver. get Addres();

/1 Note: It is recommended that the JMX Agents make use of the |easing
I feature of SLP, and periodically renew their |ease.
final ServiceURL serviceURL =

new Servi ceURL(srvAddr.toString(), ServiceURL.LIFETI ME_DEFAULT);

final Vector attributes = new Vector();
final Vector attrValues = new Vector();

/1 Using the default SLP scope
attrVal ues. add(" DEFAULT") ;
final ServicelLocationAttribute attrl =
new Servi ceLocationAttri bute("SCOPE", attrVal ues);
attributes.add(attrl);

/1 Agent Nane attribute
attrVal ues. renoveAl | El enents();
attrVal ues. add(new String("ny-jnx-agent"));
final ServicelLocationAttribute attr2 =
new Servi ceLocati onAttri bute("Agent Name", attrVal ues);
attributes.add(attr?2);

/'l Registration
sl pAdvertiser.register(serviceURL, attributes);

} catch(ServicelLocationException e) {...}

256 Java Management Extensions Specification, version 1.4 « November 9, 2006

17.3.4.3 Looking up a JMX Service URL With SLP

The class Locat or is used to perform the SLP lookup, as shown in
CODE EXAMPLE 17-3:

CODE EXAMPLE 17-3 Looking up a JMX Service URL With SLP

i nport com sun. sl p. Servi ceType;
i mport com sun. sl p. Servi ceLocati onEnuner ati on;
try {

/1 1 ookup in default SCOPE.

final Vector scopes = new Vector();
scopes. add(" DEFAULT") ;

/'l Set the LDAPv3 query string

I Here we | ook for a specific agent called "ny-jnx-agent",
I but we coul d have asked for any agent by using a wildcard:
/1 final String query = "(& Agent Nane=*))";

I

final String query = "(& Agent Nane=my-j nx-agent))";

/1 1 ookup
final ServicelLocati onEnuneration result =

sl pLocat or. fi ndServi ces(new Servi ceType("service:jnx"), scopes, query);

/1l Extract the list of returned ServiceURL
whi | e(resul t. hasMoreEl ements()) {

final ServiceURL surl = (ServiceURL) result.next();

/]l Get the attributes

final ServicelLocationEnuneration slpAttributes =
sl pLocator. findAttributes(surl, scopes, new Vector());
whi | e(sl pAttributes. hasMreEl ements()) {
final ServicelLocationAttribute slpAttribute =

(ServicelLocationAttribute) slpAttributes. nextEl ement();

}

/1 Open a connection
final JMXServiceURL jmUrl

= new JMXServiceURL(surl.toString());
final JMXConnector client

= JMXConnect or Factory. connect (j nxUrl);

}

} catch(ServicelLocationException e) {...}

Chapter 17 Bindings to Lookup Services 257

17.4

17.4.1

17.4.2

Using the Jini Network Technology

The Jini Network Technology [Jini] is an open software architecture that enables
developers to create network-centric services that are highly adaptive to change.

The Jini specification offers a standard lookup service. A running Jini lookup service
can be discovered with a simple API call. A remote service (device, software,
application, etc.) that wants to be registered in the Jini lookup service provides a
serializable Java object. When looked up by a remote client, a copy of this Java object
is returned. Usually, this object acts as a proxy to the remote service.

In addition, Jini networking technology offers various APIs and mechanisms to
download code from a remote HTTP server (necessary to get the classes required for
instantiating the proxy objects), and the Jini specification supports security for code
download based on the RMI security manager.

Jini Networking Technology Implementation

The Jini networking technology is Java-based software the implementation of which
is available for download under the Sun Community Source Licence v3.0 (with Jini
Technology Specific Attachment v1.0). See http://wwws.sun.com/software/
communitysource/jini/download.html

Service Registration

The Jini specification is based on service registration. A service is registered through
a serializable Java object, which can be a stub, a proxy or a simple class providing
information about the service. Usually, the registered service is a stub which
provides a direct link to the underlying service. Thus, although it would be possible
to use the JMXSer vi ceURL as the service, this standard specifies the use of a JMX
Remote API connector stub, implementing the JMXConnect or interface, as the
service. This is consistent with the Jini specification’s philosophy, where objects
retrieved from the Jini lookup service are usually proxies implementing the interface
of the service looked up.

The Jini lookup service, which uses Java RMI marshalling and dynamic class loading
semantics, will make use of RMI annotations to download automatically from the
server side all the classes needed to deserialize the service object on the client side.
This makes it possible for a server to register any private implementation class, and
for a client to use that class (through its generic JMXConnect or interface) without
any a-priori knowledge of the server implementation. However, this requires a
certain amount of configuration from the server-side. This standard completely
specifies the JMX Remote API connector stubs for the protocols it describes, so that

258 Java Management Extensions Specification, version 1.4 « November 9, 2006

http://wwws.sun.com/software/communitysource/jini/download.html

17.4.3

an instance of such a class serialized from the J]MX Remote API implementation on
the server side can be deserialized in an instance of the same class using the
implementation on the client side, without having to download any new classes.
Thus, no special configuration is needed on the server side when using standard
connectors. Providers and users of non-standard connectors should however
perform the required configuration steps if they want to make their non-standard
connectors available to generic JMX API clients.

Using JMX Remote API Connector Stubs

When registering a JMX Remote API connector stub, the server application will
either call the JMXConnect or Fact ory. newConnect or method to obtain an
unconnected stub, or call the t oJMXConnect or method on the

JMXConnect or Ser ver it wants to register. The t 0JMXConnect or method returns
a serializable connector stub that can be directly registered as the service provided
by that connector.

When the client looks up the registered connector from the Jini lookup service, the
returned connector stub is not yet connected to its corresponding server. The client
application needs to call the JMXConnect or. connect () method on that object
before using it.

Calling JMXConnect or . connect () on the server side is shown in
CODE EXAMPLE 17-4:

CODE EXAMPLE 17-4 Calling JMXConnect or . connect () on the Server Side

/1 get the connector stub:
JMXConnector ¢ = server.toJMXConnector (null);

/1 register ¢ as the Jini Service.

Chapter 17 Bindings to Lookup Services 259

Calling JMXConnect or . connect () on the client side, as shown in
CODE EXAMPLE 17-5:

CODE EXAMPLE 17-5 Calling JMXConnect or . connect () on the Client Side

/] Obtain the service from Jini
hj ect service = ...
JMXConnector ¢ = (JMXConnector) service;

/1 Build the env Map, add security paraneters,
Map env = new HashMap();
env.put(...)

/1 Connect with the server
c. connect (env);

17.4.4 Jini Lookup Service Attributes

Like SLP, the Jini lookup service supports the specification of additional lookup
attributes, called entries. The Java class of these attributes must implement the
net.jini.core.entry. Entry interface. The Name entry defined by the Jini
specification is interpreted as meaning the Agent Nane as defined in Section 17.2.2
“Lookup Attributes” on page 251. As this specification was being completed, the
other entries were being standardized through the Jini Community Decision Process
(JDP). Refer to the JMX technology home page for current information:

http://java. sun. com product s/ JavaManagenent /

17.45 Code Templates

The following sections provide some code templates for the Jini lookup service:

260 Java Management Extensions Specification, version 1.4 « November 9, 2006

17.4.5.1 Discovering the Jini Lookup Service

The Jini lookup service is represented by the

net.jini.core. |l ookup. Servi ceRegi strar class. There are two ways to
discover the Jini lookup service. The first and most simple way assumes that you
know the address of the lookup service, as shown in CODE EXAMPLE 17-6:

CODE EXAMPLE 17-6 Discovering the Jini Lookup Service Using an Address

i mport net.jini.core.lookup.ServiceRegistrar;
i mport net.jini.core.discovery.LookuplLocator;

LookupLocat or | ookup = new LookupLocator("jini://ny_host");
Servi ceRegi strar registrar = | ookup. get Registrar();

The second solution uses a broadcast mechanism to retrieve the lookup services
running on the accessible network, as shown in CODE EXAMPLE 17-7:

CODE EXAMPLE 17-7 Discovering the Jini Lookup Service Using a Broadcast Mechanism

i mport net.jini.discovery.LookupDi scovery;

i mport net.jini.discovery.D scoverylListener;
i mport net.jini.discovery.Di scoveryEvent;

i mport net.jini.core.lookup. ServiceRegistrar;

LookupDi scovery | ookupDi scovery = null;

try {
| ookupDi scovery = new LookupDi scovery(null);

} catch (1 COkxception e) {...}
| ookupDi scovery. addDi scoveryLi st ener (new LookupDi scoveryLi stener());

private class LookupDi scoverylListener inplenents Di scoverylListener {

publ i ¢ LookupDi scoverylListener() {

}

public void discovered(Di scoveryEvent evnt) {
ServiceRegistrar[] regs = evnt.getRegistrars();
for(int i =0; i <regs.length; i++) {

Chapter 17 Bindings to Lookup Services 261

CODE EXAMPLE 17-7 Discovering the Jini Lookup Service Using a Broadcast Mechanism

String[] regGoups = regs[i].getGoups();
/1 Must verify here that the ServiceRegistrar
/1 contains the groups | want to register in...

}

/1 It is generally better here to | aunch another Thread to use
/'l the discovered ServiceRegistrar; this avoids bl ocking the
/1 discovery process.

}

public void discarded(Di scoveryEvent evnt) {}

17.4.5.2 Registering a JMX Remote API Connector Stub With the Jini
Lookup Service
Registering a JMX Remote API Connector Stub with the Jini Lookup Service is
shown in CODE EXAMPLE 17-8:

CODE EXAMPLE 17-8 Registering a JMX Remote API Connector Stub With the Jini Lookup
Service

i mport net.jini.core.lookup. ServiceRegistrar;

i mport net.jini.core.lookup. Serviceltem

i mport net.jini.core.lookup. ServiceRegistration;
inmport net.jini.core.entry. Entry;

i mport net.jini.core.lease. Lease;

i mport java.rm . RenoteException;

/1 Get the Jini ServiceRegistrar with one of the above nethods
Servi ceRegi strar registrar = ...;

/Il Get a connector stub for the server you want to export
I
JMXConnect or proxy = jnxConnector Server.toJMXConnector (null);

/1l Prepare Service’'s attributes entry
Entry[] serviceAttrs = new Entry[] {
new net.jini.lookup.entry. Nane(" MyAgent Nanme") ;
/] Add here the | ookup attributes you want to specify.

}s

262 Java Management Extensions Specification, version 1.4 « November 9, 2006

CODE EXAMPLE 17-8 Registering a JMX Remote API Connector Stub With the Jini Lookup

Service

/] Create a Serviceltemfromthe service instance
Serviceltem srvcltem = new Servicelten(null, proxy, serviceAttrs);

/'l Register the Service with the Lookup Service
try {
Servi ceRegi stration srvcRegistration =
regi strar.register(srvcltem Lease. ANY);
Systemout. println("Registered ServicelD: " +
srvcRegi stration.getServicelD().toString());
} catch(RenoteException e) {...}

17.4.5.3 Looking up a JMX Connector Stub From the Jini Lookup
Service

Looking up a JMX Connector stub from the Jini lookup service is shown in
CODE EXAMPLE 17-9:

CODE EXAMPLE 17-9 Looking up a JMX Connector Stub From the Jini Lookup Service

i mport net.jini.core.lookup.ServiceTenpl at e;
i mport net.jini.core.lookup. ServiceMatches;

i mport net.jini.core.lookup. ServiceRegistrar;
i mport net.jini.core.entry.Entry;

/1l Get the Jini ServiceRegistrar with one of the above nethods
Servi ceRegi strar registrar = ...;

/1 Prepare Service's attributes entry to be matched

Entry[] serviceAttrs = new Entry[] {

/1 Retrieve all services for which a Nane entry was registered,
/1l whatever the nane is (null = wildcard).
new net.jini.|ookup.entry. Nane(null)

/1 Add here any other matching attribute.
b
/1 Look for a specific JMXMP Connector (you nay al so pass
/'l JMXConnector.class if you wish to get all types of JMXConnector)

11
Servi ceTenpl ate tenplate = new Servi ceTenpl ate(nul I,

Chapter 17 Bindings to Lookup Services

263

CODE EXAMPLE 17-9 Looking up a JMX Connector Stub From the Jini Lookup Service

new C ass[] {JMXMPConnector.class}, serviceAttrs);

Servi ceMat ches matches = nul | ;
try {

mat ches = regi strar.| ookup(tenpl ate, |nteger. MVAX VALUE);
} catch (RenoteException e) {...}

// Retrieve the JMX Connector and initiate a connection
for(int i = 0; i < matches.total Matches; i++) {
if(matches.itens[i].service I=null) {

/] Get the JMXConnect or
JMXConnector ¢ = (JMXConnector) (matches.itens[i].service);

/1 Prepare env (security paraneters etc...)
Map env = new HashMap();
env.put(...);

// Initiate the connection
c.connect (env);

/'l Get the renpte MBeanServer handl e
MBeanSer ver Connecti on server = c.get MBeanServer Connecti on();

17.5 Using the Java Naming and Directory
Interface (LDAP Backend)

The Java Naming and Directory Interface [JNDI] is a standard extension to the Java

platform, providing Java technology-enabled applications with a unified interface to
multiple naming and directory services in the enterprise. In particular, it provides a

means to access X.500 directory services through the Lightweight Directory Access
Protocol (LDAP). This standard defines how an LDAP server can be used to store
information about J]MX API agents, and how JMX Remote API clients can look up
this information to connect to the agents.

A good understanding of using JNDI API with an LDAP backend can be obtained

by following the [LDAP Thread in the JNDI Tutorial].

264 Java Management Extensions Specification, version 1.4 « November 9, 2006

17.5.1 LDAP Schema for Registration of JMX Connectors

Nodes in the LDAP directory tree are typed. A node can have several object classes.
JMX Connectors should be registered in nodes of class j mxConnect or. The

j mcConnect or class contains two attributes, which are the J]MX Service URL of the
corresponding connector (j nxSer vi ceURL), and the name of the JMX API agent
exporting this connector (j mxAgent Nane). The JMX Service URL can be absent if
the agent is not accepting connections. The j mxConnect or class also includes
optional attributes, like j mkAgent Host and j mxPr ot ocol Type. The agent name
makes it possible for a client application to get a connection to an agent it knows by
name. Together with the j nkAgent Host and j mxPr ot ocol Type it also makes it
possible to perform filtered queries, for instance, "find all the JMXMP connectors of
<this> [MX API agent" or "find all connectors of all agents running on <that> node".
CODE EXAMPLE 17-10 is the schema definition (as specified in [RFC 2252]) that should

be used to register JMX Remote API connectors:

CODE EXAMPLE 17-10 LDAP Schema for Registration of JMX Remote API Connectors

-- jnxServiceURL attribute is an A5 String

(1.3.6.1.4.1.42.2.27.11. 1.1 NAME ' j nxServi ceURL’
DESC " String representation of a JMX Service URL
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 26 SI NGLE- VALUE)

-- jmxAgent Nane attribute is an | A5 String
(1.3.6.1.4.1.42.2.27.11. 1.2 NAME ' j nxAgent Nane’
DESC ' Nanme of the JMX Agent’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SI NGLE-VALUE)

-- jmxProtocol Type attribute is an A5 String

(1.3.6.1.4.1.42.2.27.11.1. 3 NAME ' j nxProt ocol Type’
DESC ' Protocol used by the regi stered connector’
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 26 SI NGLE- VALUE)

-- jnmxAgent Host attribute is an I A5 String
(1.3.6.1.4.1.42.2.27.11. 1. 4 NAME '’ j nxAgent Host’

DESC ' Nanmes or | P Addresses of the host on which the
agent is running. Wien nultiple values are
given, they should be aliases to the sanme host.’

SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 26)

-- jmxProperty attribute is an 1 A5 String
(1.3.6.1.4.1.42.2.27.11.1.5 NAME ' j nxProperty’
DESC ' Java-li ke property characterizing the registered object.
The form of each val ue shoul d be: "<property-nane>=<val ue>".
For instance: "com sun.jnx.renote.tcp.timeout=200""
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 26)

Chapter 17 Bindings to Lookup Services

265

CODE EXAMPLE 17-10 LDAP Schema for Registration of JMX Remote API Connectors

-- jmxExpirationDate attribute is a Generalized Tine
-- see [RFC 2252] - or X 208 for a description of
-- Generalized Tine
(1.3.6.1.4.1.42.2.27.11.1. 6 NAME ' j nxExpirati onDat e’
DESC 'Date at which the JMX Service URL will
be consi dered obsol ete and can be renoved
fromthe directory tree’
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 24 S| NGLE- VALUE)

-- from RFC- 2256 --
(2.5.4.13 NAME ’description’
EQUALI TY casel gnor eMat ch
SUBSTR casel gnor eSubst ri ngsiat ch
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 15{1024})

-- jmConnector class - represents a JMX Connector.
-- nmust contain the JMX Service URL
-- and the JMX Agent Nane
(1.3.6.1.4.1.42.2.27.11.2.1 NAME ' j nxConnector’
DESC 'A class representing a JMX Connector, and
containing a JMX Service URL.
The jnxServiceURL is not present if the server
is not accepting connections’
AUXI LI ARY
MUST (j mxAgent Name)
MAY (jmxServiceURL $ jnxAgentHost $ jnxProtocol Type $
jmxProperty $ jnxExpirationDate $ description))

The j mxConnect or class is an AUXI LI ARY class, which means that its properties
can be added to any node in the directory tree - namely, it does not impose any
restriction on the structure of the directory tree.

To create a node in the directory tree, you also need a STRUCTURAL class. This
specification does not impose any restriction on the structural classes that can
contain JMX Remote API connectors. You can, for instance, reuse the

j avaCont ai ner class from the Java Schema [JNDI - Java Schema] as defined in [RFC
2713], namely, create a node whose object classes would be j avaCont ai ner
(STRUCTURAL) and j mkConnect or (AUXI LI ARY). The node containing the

j mxConnect or can also have any additional auxiliary classes.

266 Java Management Extensions Specification, version 1.4 « November 9, 2006

17.5.2

17.5.3

Mapping to Java Objects

This specification only requires that the J]MX Service URL is stored in LDAP. JMX
API agents can additionally store a serialized JMX Remote API connector stub, but
this is not required by this specification. Clients should only rely on the J]MX Service
URL. The JNDI API makes it possible for a client to use St at eFact ori es and
Obj ect Fact ori es [JNDI - Java Objects] to recreate a JMXConnect or from the
URL when performing a | ookup() , even if there is no Java Object bound to the
containing Di r Cont ext . Alternatively, a client can directly retrieve the

j mxSer vi ceURL attribute to obtain a JMXConnect or from the

JMXConnect or Fact or y. Whether the JNDI API | ookup() returns a
JMXConnect or or a Di r Cont ext depends on the configuration settings on the
client side (I ni ti al Cont ext), and remains local to that client.

Structure of the JMX Remote API Registration
Tree

The actual structure of a directory varies from one organization to another. Each
organization, or enterprise, has its own directory tree structure, with guidelines,
policies, etc. In order for JMX API agents to be able to integrate with any pre-
existing directory structure, this specification does not impose a fixed directory tree
structure for registering agents and J]MX Remote API connector servers. Connectors
must simply be located in nodes of the class j mxConnect or. This makes it possible
for an organization to set up its own structure for registering agents in an LDAP
server. For instance, if an organization has an existing directory containing a node
for each host in its network, it could decide to register each agent below the node of
the host it is running on.

Chapter 17 Bindings to Lookup Services 267

17.5.4

Leasing

JNDI/LDAP does not provide any built-in lease service. If an agent goes down, its
service URLs might remain in the directory server forever . The

j mXExpi r at i onDat e attribute in the j nkConnect or auxiliary class can be used to
avoid that happening, as shown in CODE EXAMPLE 17-11:

CODE EXAMPLE 17-11 Leasing using the j nKExpi r at i onDat e Attribute

-- jmxExpirationDate attribute is a Generalized Tine
-- see [RFC 2252] - or X 208 for a description of

(1.3.6.1.4.1.42.2.27.11.1. 6 NAME ' j nxExpirationDat e’
DESC ' Date at which the JMX Service URL will
be consi dered obsol ete and may be renoved
fromthe directory tree’
SYNTAX 1.3.6.1.4.1.1466.115. 121. 1. 24 SI NGLE- VALUE)

Ceneralized Tine

17.5.5

17.5.5.1

A JMX API agent would have to update the j mkExpi r at i onDat e attribute
periodically. A Directory administrator might then write a daemon that would
remove the j mxConnect or nodes (or more generically the j nxSer vi ceURL
attributes) for which the j mxExpi r at i onDat e is obsolete.

Code Templates

The following sections provide some code templates for the JNDI API lookup service

Discovering the LDAP Server

JNDI/LDAP does not provide any standard means for discovering the LDAP server.
Assuming the standard port (389) on the local host is the entry point is usually not
an option, since the LDAP server is usually centralized, rather than having one
server per host. The JNDI API specifies a means to discover the LDAP server(s)
through DNS [JNDI - LDAP Servers Discovery], but this is operating system
dependent, and not always feasible either since the LDAP servers cannot always be
registered in DNS. This specification thus does not address the issue of discovering
the LDAP server.

The JNDI API tutorial gives an example of how to configure an | ni ti al Cont ext
with a list of LDAP URLs [JNDI - Multi URL].

268 Java Management Extensions Specification, version 1.4 « November 9, 2006

17.5.5.2 Registering a JMXSer vi ceURL in the LDAP server

This specification does not impose any structure on the directory tree for registering
JMX Service URLs. It is assumed that the JMX API agent knows where to register its
connectors, either from configuration, or from some built-in logic adapted to the
environment in which it is running. This specification defines the form of the data
that is registered in the directory (the how rather than the where), so that any JMX
Remote API client can look it up in a generic way. See CODE EXAMPLE 17-12.
CODE EXAMPLE 17-12 Registering a JMXSer vi ceURL in the LDAP server

i mport javax.naming. | nitial Context;

i mport javax. nam ng. directory. Di r Cont ext;

i mport javax. nam ng.directory. Attri bute;

i mport javax.nam ng.directory. Basi cAttribute;

i nport javax.nam ng.directory. Attri butes;

j avax. nam ng. di rectory. Basi cAttri butes;

i mport

/Il Create initial context

Hasht abl e env = new Hasht abl e(11);

env. put (I nitial Context. PROVIDER URL, | dapServerUrls);
env.put(...);

Initial

/1l Assuming that the Directory Administrator has created a
/1l context for this agent, get the DN of that context
/1 fromconfiguration (e.g. Java property)

Il Stri
11
String

Di r Cont ext myContext = (DirContext)root.| ookup(mOmnLdapDN);

/] Create connector server
JMXServi ceURL jnmxUrl = new
JMXSer vi ceURL("service: jm:jmnp:/ /1 ocal host: 9999");
JMXConnect or Server connect or Server =
JMXConnect or Ser ver Fact ory. newJMXConnect or Server (jnxUrl, null, null);

/'l Prepare attributes for register connector server
Attributes attrs = new BasicAttributes();

/'l Prepare objectC ass attribute: we’'re going to create
/1 a javaContai ner (STRUCTURAL) containing a
/'l jmxConnector (AUXILIARY).

Context root = new Initial Context(env);

ng nyOwmLdapDN =
System get Property("com sun. j nx. myapplication.dn");
myOmLdapDN = . ..

Chapter 17 Bindings to Lookup Services 269

CODE EXAMPLE 17-12 Registering a JMXSer vi ceURL in the LDAP server

Attribute objclass = new BasicAttribute("objectdass™);
obj cl ass. add("top");

obj cl ass. add("j avaCont ai ner");

obj cl ass. add("j mxConnector");

attrs. put (objcl ass);

/1 Add jmxServiceURL of the connector.
attrs. put("jnmxServiceURL",jnxUrl.toString());

/1 Add j nxAgent Nare
attrs. put ("j nxAgent Nane", " MyAgent Nane") ;

/1 Add optional attributes, if needed
attrs. put("jnxProtocol Type","jnxnp");
attrs. put("j nxAgent Host", | net Addr ess. get Local Host (). get Host Nane()) ;

/1 Now create the sub context in which to register the URL

/1 of the JMXMP connector.

/1 (we assune that the subcontext does not exist yet -

/1l ideally the agent should contain sone nore conplex |ogic:

/1 if the context already exists, sinply nodify its attributes,
/'l otherwise, create it with its attributes).

nmyCont ext . cr eat eSubcont ext ("cn=service:jm:rm", attrs);

270 Java Management Extensions Specification, version 1.4 « November 9, 2006

17.5.5.3 Looking up a JMX Service URL From the LDAP Server

CODE EXAMPLE 17-13 shows how to look up a JMX service URL from the LDAP
server.

CODE EXAMPLE 17-13 Looking up a JMX Service URL From the LDAP Server

i nport javax.nam ng. I nitial Context;

i mport javax. nam ng. Nam ngEnunerati on;

i mport javax.nam ng. directory. D r Cont ext;

i mport javax. nam ng.directory. Attribute;

i mport javax.nam ng.directory. Attri butes;

i mport javax.nam ng.directory. SearchResul t;

i nport javax. nam ng. directory. SearchControl s;

/1l Create initial context

Hasht abl e env = new Hashtabl e();

env. put (I nitial Context.PROVI DER_URL, | dapServerUrls);
env.put(...);

Initial Context root = new Initial Context(env);

/1 Prepare search filter
String filter = " (& objectd ass=j mxConnector) (jnxServiceURL=*))";

/1 Prepare the search controls
SearchControls ctrls = new SearchControl s();

/1 Want to get all jmxConnector objects, wherever they’ ve been
/'l registered.
ctrls. set Sear chScope(Sear chControl s. SUBTREE_SCOPE) ;

/1 Want to get only the jnmxServiceURL (comrent this |ine and
I/ all attributes will be returned).
ctrls.setReturningAttributes(new String[] { "jmServiceURL" });

/'l Search. ..
final Nam ngEnuneration results = root.search("", filter, ctrls);

Il Get the URL...
for (;results.hasMre();) {
final SearchResult res = (SearchResult) results.nextEl ement();

Chapter 17 Bindings to Lookup Services

271

CODE EXAMPLE 17-13 Looking up a JMX Service URL From the LDAP Server

final Attributes attrs = res.getAttributes();
final Attribute attr = attrs.get("j mkServiceURL");
final String url Str = (String)attr.get();

/1 Make a connector. ..

final
final

JMXServi ceURL url = new JMXServi ceURL(url Str);
JMXConnect or conn =
JMXConnect or Fact ory. newConnector (url, nul |);

/1 Start using the connector...
conn. connect (nul I');

17.6

Registration With Standards Bodies

In parallel with the completion of this specification, the following registrations are
being made with standards bodies:

= For SLP, the j nX service type and associated service template are being registered
with JANA

= For LDAP, the OIDs for the lookup attributes defined in Section 17.5.1 “LDAP
Schema for Registration of J]MX Connectors” on page 265 are defined in Sun’s
OID namespace

= For the Jini networking technology, the entries for the lookup attributes are being
defined through the Jini Community Decision Process (JDP)

272 Java Management Extensions Specification, version 1.4 « November 9, 2006

18

Summary of Environment
Parameters

The environment parameters defined by this standard all begin with the string
"] mx. renot e. ". Implementations that define further parameters can use one of the
following conventions:

= The reverse domain name convention used by Java platform packages, for
example "com sun. j nx. r enot e. sonet hi ng"

= A name beginning with the string "j mx. r enot e. x. " (including the final period)

An implementation must not define non-standard parameters that begin with
"j mx. r enot e. " unless they begin with "j nx. renote. x. ".

Names beginning with "j nx. r enot e. x. " can be shared between different
implementations. They are useful for agreed-on experimental extensions, but they
run the risk of collision, where two implementations use the same name to mean
two different things.

In TABLE 18-1, each parameter is defined by the following characteristics:

= The name after the initial "j nx. r enot e. " string

= The type that the associated value must have

= Whether the parameter applies to connector clients, to connector servers, or both

= For server parameters, whether the parameter is visible, that is whether it appears
in the Map returned by JMXConnect or Ser ver MBean. get At tri but es()

Chapter 18 Summary of Environment Parameters 273

274

TABLE 18-1 Environment Parameters

Name jnx. renote. +

Type

Client/
Server

Visible

Meaning

aut henti cat or

cont ext

credential s

defaul t. cl ass.
| oader

defaul t.cl ass.

| oader . nane

j ndi . rebind

nBssage.conneCtion

JMXAut hen
-ticator

oj ect

oj ect

Cl ass
Loader

oj ect

Name

String

MessageCo
nnection

Server

Both

Client

Both

Server

Server

Client

No

N/A

Yes

Yes

N/A

Object to authenticate
incoming connections to the
connector. See Section 14.4
“Basic Security With the RMI
Connector” on page 230, and
Section 15.3.6.1 “Global
Properties of the Generic
Connector” on page 244.

Context transmitted during
handshake. See Section 15.3.6
“Properties Controlling Client
and Server” on page 244

Client credentials to
authenticate to the RMI
connector server. See
Section 14.4 “Basic Security
With the RMI Connector” on
page 230

Default class loader to
deserialize objects received
from the other end of a
connection. See Section 13.11
“Class Loading” on page 218

Name of class loader MBean
that will be used to
deserialize objects received
from the client. See

Section 13.11 “Class Loading”
on page 218

“true” or “false” according as
an RMI stub object can
overwrite an existing object at
the JNDI address specified in
a JMXServiceURL

Object describing the
transport used by the Generic
Connector. See Section 15.1
“Pluggable Transport
Protocol” on page 233

Java Management Extensions Specification, version 1.4 « November 9, 2006

TABLE 18-1 Environment Parameters

Client/
Name jnx. renpote. + Type Server Visible Meaning
message. connecti on MessageCo Server No Object describing the
.server nnectionS transport used by the Generic
erver ConnectorServer. See
Section 15.1 “Pluggable
Transport Protocol” on
page 233
obj ect. wr appi ng Obj ect Wa Both No Object describing how
ppi ng parameters with non-default
serialization are handled. See
Section 15.2 “Pluggable
Object Wrapping” on
page 234
profiles String Both Yes List of profiles proposed
(server) or required (client)
by the connector. See
Section 15.3.6 “Properties
Controlling Client and
Server” on page 244
protocol . provi der. Cl ass Client N/A See JMXConnect or Fact ory
cl ass. | oader Loader documentation.
prot ocol . provi der. String Client N/A See JMXConnect or Fact ory
pkgs documentation.
rm.client.socket. RM Client Server No Client socket factory for
factory Socket connections to the RMI
Factory connector. See Section 14.4
“Basic Security With the RMI
Connector” on page 230
rm.server. socket. RM Server Server No Server socket factory for
factory Socket connections to the RMI
Factory connector. See Section 14.4
“Basic Security With the RMI
Connector” on page 230
sasl . aut hori zation String Client N/A Authorization ID when this is
.id different from the
authentication ID . See
Section 15.3.6 “Properties
Controlling Client and
Server” on page 244
sasl . cal | back. Cal | back Both No Callback handler for SASL
handl er Handl er mechanism. See Section 15.3.6

“Properties Controlling Client
and Server” on page 244

Chapter 18

Summary of Environment Parameters

275

TABLE 18-1

Environment Parameters

Name jnx. renpote. +

Type

Client/
Server

Visible

Meaning

server. address.
wi | dcard

tls. enabl ed. ci pher
.Suites

tls. enabl ed.
protocol s

tls.need.client.
aut henti cati on

tls.socket.factory

tls.want.client.
aut henti cati on

String

String

String

String

SSLSocket
Factory

String

Server

Both

Both

Server

Both

Server

Yes

Yes

Yes

Yes

Yes

"true"or "f al se" according
to whether connector server
should listen on all local
network interfaces or just
one. See

JMXMPConnect or Ser ver
documentation.

TLS cipher suites to enable.
See Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

TLS protocols to enable. See
Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

"true" or "fal se" according
to whether connector server
requires client authentication.
See Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

TLS socket factory for this
connector. See Section 15.3.6
“Properties Controlling Client
and Server” on page 244

"true" or "f al se" according
to whether connector server
requires client authentication
if supported by the
negotiated cipher suite. See
Section 15.3.6 “Properties
Controlling Client and
Server” on page 244

Java Management Extensions Specification, version 1.4 « November 9, 2006

Service Templates

A.l

This appendix defines the service templates that describe the ser vi ce: j nx services
in conformance to [RFC 2609]. These service template are a formal description of the
bindings between the Service Location Protocol and JSR 160 connectors.

Note — The following templates are a copy of the submissions that have been made
to svrloc-list@iana.org.

Service Template for the ser vi ce: j nx
Abstract Service Type

= Template Filename: jmx.1.0.en
= Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>
= Language of service template: en
= Security considerations:
Security is defined by each of the concrete service types.
See those templates for further details.

= TemplateText:

CODE EXAMPLE A-1 Service template for the servi ce: j mx Abstract Service Type

Narme
Lang
Secu

Tenp

tenp

of submitter: JSR-160 Expert G oup <jsr-160-coments@ cp.org>
uage of service tenplate: en

rity considerations:

Security is defined by each of the concrete service types.

See those tenplates for further details.

| at eText :

| at e-t ype=j nx

Chapter A Service Templates 277

CODE EXAMPLE A-1 Service template for the servi ce: j mx Abstract Service Type

tenpl at e-versi on=1.0

tenpl at e-descri pti on=
This is an abstract service type. The purpose of the jnx service
type is to organize in a single category all JMX Connectors that
make it possible to access JMX Agents renptely.
JMX Connectors are defined by the Java Specificati on Request 160
(JSR 160). More information on JSR 160 can be obtained fromthe
Java Community Process Home Page at:

http://wwmv. jcp.org/en/jsr/detail ?i d=160

templ at e-url - synt ax=
url-path= ; Depends on the concrete service type.
Agent Name= string L

The name of the JMX Agent - see JSR 160 specification.

Prot ocol Type= string OL

The type of the protocol supported by the JMX Connector.

Currently only two protocols are mandatory in the specification: "rm" and
"iiop". Athird optional protocol is also standardized: "jmxnmp".

However this could be extended in the future to support other types

of protocols, e.g. "http", "https", "soap", "beep", etc...

Thus, the allowed values of this attribute are at least "rm" and "iiop"
for every inplenmentation; additionally "jnxnmp" for inplenentations that

support it; and other protocol nanes that are understood by client and

server.

The value of this attribute is the sane as the protocol nane that appears
after "service:jnx:" in the Service URL. Registering the Protocol Type

#

attribute means clients can search for connectors of a particular type.

Agent Host= string O ML

The host name or | P address of the host on which the JMX Agent is running.

If multiple values are given they nust be aliases to the sane host.

Property= string O ML

Additional properties qualifying the agent, in the formof Java-like
properties, e.g. "comsun.jnx.renote.connect.timeout=200"

Note that in order to include '=" in an attribute value, it nust be
escaped. Thus the exanple would be encoded as

278 Java Management Extensions Specification, version 1.4 « November 9, 2006

CODE EXAMPLE A-1 Service template for the servi ce: j mx Abstract Service Type

"com sun. j nx. renot e. connect . ti neout\ 3D200"

A2 Service Template for the

servi ce: | nx: j nknp Concrete Service

Type

» Template Filename: jmx;jmxmp.1.0.en

= Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>
= Language of service template: en

= Security considerations:

Security for the JMXMP connector is defined by JSR 160 specification and is
based on SASL mechanisms.

For further details please refer to JSR 160 specification available at
http:/ /www.jcp.org/en/jsr/detail?id=160
= TemplateText:

CODE EXAMPLE A2 Service Template for the servi ce: j nx: j mknp Concrete Service
Type

Name of submitter: JSR-160 Expert G oup <jsr-160-coments@ cp. org>
Language of service tenplate: en
Security considerations:
Security for the JMXMP connector is defined by JSR 160
specification and is based on SASL mechani sns.
For further details please refer to JSR 160 specification
avail able at http://ww jcp.org/en/jsr/detail ?i d=160

Tenpl at eText :

tenpl at e-type=j nx: j nxnp
tenpl ate-versi on=1.0

tenpl at e-descri ption=
This tenpl ate describes the JMXMP Connector defined by JSR 160.

Chapter A Service Templates

279

http://www.jcp.org/en/jsr/detail?id=160

CODE EXAMPLE A-2 Service Template for the servi ce: j nx: j nknp Concrete Service
Type

More information on this connector can be obtained fromthe
JSR 160 specification available fromthe JCP Hone Page at:
http://ww. jcp.org/en/jsr/detail ?i d=160

tenpl ate-url - synt ax=
url-path=; There is no URL path defined for a jnmx:jmnp URL.

Exanple of a valid Service URL:

service:jnx:jnmxnmp://nyhost: 9876

There are no default values for the host or port nunber, so in
general these nust be supplied when registering the URL.
------------------------- tenplate ends here-----------------------

A3 Service Template for the
service: | nx: rm Concrete Service

Type

= Template Filename: jmx:rmi.1.0.en

= Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>
= Language of service template: en

= Security considerations:

Java Specification Request (JSR) 160 defines a secure configuration of the
jmx:rmi connector, based on SSL socket factories.

For further details please refer to JSR 160 specification available at
http:/ /www.jcp.org/en/jsr/detail?id=160
= TemplateText:

CODE EXAMPLE A-3 Service Template for the servi ce: j mx: rmi Concrete Service Type

Name of submitter: JSR-160 Expert G oup <jsr-160-coments@ cp. org>
Language of service tenplate: en
Security considerations:
Java Specification Request (JSR) 160 defines a secure
configuration of the jmx:rm connector, based on SSL socket
factories.
For further details please refer to JSR 160 specification
avail able at http://ww. jcp.org/en/jsr/detail ?i d=160

280 Java Management Extensions Specification, version 1.4 « November 9, 2006

http://www.jcp.org/en/jsr/detail?id=160

CODE EXAMPLE A-3 Service Template for the servi ce: j mx: rmi Concrete Service Type

Tenpl at eText :
tenmpl ate-type=jnx: rm

tenpl at e-versi on=1.0
tenpl at e-descri pti on=
This tenpl ate describes the RM Connector defined by JSR 160.
More information on this connector can be obtained fromthe
JSR 160 specification available fromthe JCP Hone Page at:
http://wwmv. jcp.org/en/jsr/detail ?i d=160

templ at e-url - synt ax=

url -path = jndi-path / stub-path
st ub- path = "/stub/" *xchar

;. serialized RM stub encoded as BASE64 wi t hout new i nes
j ndi - pat h = "/jndi/" *xchar

; name understood by JNDI APl, shows where RM stub is stored
; The following rules are extracted from RFC 2609

safe S A B B

extra S A G A I A B

uchar = unreserved / escaped

xchar = unreserved / reserved / escaped

escaped = 1*(°\'" HEXDI G HEXDI §

reserved = "yt o pr@ & =

unr eserved ALPHA / DIAT / safe / extra

Exanpl es of the stub form

service:jnx:rm://myhost: 9999/ st ub/ r COABX<270 chars del et ed>gAAAeA==
service:jnx:rm:///stub/r QOABX<270 chars del et ed>gAAAeA==

This formcontains the serialized formof the Java object representing
the RM stub, encoded in BASE64 without newines. It is generated by
the connector server, and is not intended to be human-readabl e.

Exanpl es of the JNDI form

service:jnx:rm://myhost: 9999/ ndi /| dap:// nanehost: 389/ a=b, c=d
service:jmk:rm:///jndi/ldap://nanehost: 389/ a=b, c=d

If the client has an appropriate JNDI configuration, it can use
a URL such as this:

service:jmk:rm:///jndi/a=b, c=d

In both the /stub/ and /jndi/ forms, the hostnane and port nunber
(myhost: 9999 in the exanples) are not used by the client and, if

HoH HH OH H R HHH R HHHH

Chapter A Service Templates 281

CODE EXAMPLE A-3 Service Template for the servi ce: j mx: rm Concrete Service Type

present, are essentially coments. The connector server address
is actually stored in the serialized stub (/stub/ fornm or in the
directory entry (/jndi/ form.

For more information, see the JSR 160 specification, notably the
package javax. managenent.renote.rm .
------------------------- tenplate ends here-----------------------

A4 Service Template for the
service: | nx:ii op Concrete Service

Type

= Template Filename: jmx:iiop.1.0.en

= Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>
= Language of service template: en

= Security considerations:

There is no special security defined for the j mx: i i op connector, besides the
mechanisms provided by RMI over IIOP itself. In its default configuration, the
j mx:iiop connector is not secure. Applications that are concerned with
security should therefore not advertise their j mx: i i op connectors through
this template, unless they have taken the appropriate steps to make it secure.

For further details please refer to JSR 160 specification available at
http:/ /www.jcp.org/en/jsr/detail?id=160
= TemplateText:

CODE EXAMPLE A-4

Nane of submitter: JSR-160 Expert G oup <jsr-160-coments@ cp.org>
Language of service tenplate: en

Security considerations:

There is no special security defined for the jnx:iiop connector,

besi des the nechani sns provided by RM over IIOP itself. Inits
default configuration, the jnx:iiop connector is not

secure. Applications that are concerned with security should therefore
not advertise their jnx:iiop connectors through this tenplate, unless
they have taken the appropriate steps to nake it secure.

For further details please refer to JSR 160 specification avail able at

282 Java Management Extensions Specification, version 1.4 « November 9, 2006

http://www.jcp.org/en/jsr/detail?id=160

CODE EXAMPLE A-4

http://wwmv. j cp.org/en/jsr/detail ?i d=160

Tenpl at eText :

templ ate-type=sjnx:rm-iiop
tenpl at e-versi on=1.0

tenpl at e-descri pti on=
This tenpl ate describes the RM/I10OP Connector defined by JSR 160.
More information on this connector can be obtained fromthe
JSR 160 specification available fromthe JCP Hone Page at:
http://wwmv. j cp.org/en/jsr/detail ?i d=160

templ at e-url - synt ax=

url -path = jndi-path / ior-path

ior-path = "lior/IOR " *HEXD G
; CORBA I OR

j ndi - pat h = "/jndi/" *xchar

; name understood by JNDI APl, shows were RM/I1OP stub is stored
; The following rules are extracted from RFC 2609

safe S L A B B

extra SR A e (R A I A B

uchar = unreserved / escaped

xchar = unreserved / reserved / escaped

escaped = 1*(°\'" HEXDI G HEXDI G§

reserved = "y @ & =
unr eserved = ALPHA / DIAT / safe / extra

Exanpl es of the IOR form

service:jnx:iiop://myhost:9999/i or/1 OR 000000000000003b<350 chars del et ed>00
service:jnx:iiop:///ior/1OR 000000000000003b<350 chars del et ed>00

This formcontains the CORBA IOR for the renpote object representing

the connector server. It is generated by the connector server, and

is not intended to be human-readabl e.

Exanpl es of the JNDI form

service:jnx:iiop://nmyhost: 9999/ ndi/| dap:// nanehost: 389/ a=b, c=d
service:jnx:iiop:///jndi/ldap://nanehost: 389/ a=b, c=d

If the client has an appropriate JNDI configuration, it can use
a URL such as this:

service:jnmk:iiop:///jndi/a=b,c=d

HoH O HOH R HHHHHHHR

In both the /ior/ and /jndi/ forns, the hostnane and port nunber

Chapter A Service Templates 283

CODE EXAMPLE A-4

(nyhost: 9999 in the exanples) are not used by the client and, if

present, are essentially comments. The connector server address is
actually stored in the IOR (/ior/ fornm) or in the directory entry
(/jndi/ form.
#
#
#

For more information, see the JSR 160 specification, notably the
package javax. managenent.renote.rm.
------------------------- tenplate ends here-----------------------

CODE EXAMPLE A-5 Service Template for the servi ce: j nx: i i op Concrete Service Type

tenpl ate-typesjnx:rm-iiop
tenpl at e-versi on=1.0

tenpl at e-descri pti on=
This tenplate describes the RM/110OP Connector defined by JSR 160.
More information on this connector can be obtained fromthe
JSR 160 specification available fromthe JCP Hone Page at:
http://wwmv. j cp.org/en/jsr/detail ?i d=160

tenpl ate-url - synt ax=

url -path = jndi-path / ior-path
jndi -path = "/jndi/" *xchar

; name understood by JNDI API, shows were RM/I11OP stub is stored
ior-path = "lior/IOR " *HEXD G

; CORBA I OR
; The following rules are extracted from RFC 2609
safe R A A B
extra S A (R A R Y B
uchar = unreserved / escaped
xchar = unreserved / reserved / escaped
escaped = 1*(*” HEXD G HEXDI G

reserved R B B A B B) A L B
ALPHA / DIGA T / safe / extra

unr eserved

284 Java Management Extensions Specification, version 1.4 « November 9, 2006

Non-standard environment
parameters

This appendix lists non-standard environment parameters that are understood by
the Reference Implementation of this specification. These attributes are defined in
the j nx. r enot e. X namespace. As described in Chapter 18 “Summary of
Environment Parameters, this namespace is reserved for non-standard extensions to
the parameters defined in this specification.

Implementations are not required to support the parameters defined here. However,
implementors are encouraged to use the same name and semantics where applicable.

The format of this table is the same as for the table in TABLE 18-1 on page 274.

Where the type of an attribute is “integer”, the value can be of any subclass of
java.l ang. Nunber, typically | nt eger or Long. It can also be a string, which is
parsed as a decimal integer.

When the type of an attribute is “boolean”, the value must be one of the strings
“true” or “f al se”, ignoring case.

Chapter B Non-standard environment parameters 285

TABLEB-1 Environment Parameters

Name Client/

jmx. renote. x. + Type Server Visible Meaning

access.file String Server No Name of a file containing access levels for simple
RMI and JMXMP connector access control. Uses
Properties file format: property name is user name,
property value is “readonly” or “readwrite”.

check. bool ean Server Yes If true, a client will only receive a given notification

notification. if it has permission to call

em ssion addNot i fi cati onLi st ener on the MBean that
sent the notification. It must have had that
permission to register its listener, but may have lost
it since.

check. st ub bool ean Client N/A If true, the RMI connector client will require the RMI
stubs it is given to contain the standard SSL/TLS-
based RM O i ent Socket Fact ory.

client. i nt eger Client N/A Time in milliseconds between client probes of an

connecti on. open connection. The client will do a harmless

check. peri od operation on the connection with this period in order
to detect communication problems on otherwise-idle
connections. The value can be negative or zero to
disable this probing.

fetch. Executor Client N/A java.util.concurrent. Executor tobe used for

notifications. the remote f et chNot i fi cati ons operation.

execut or

I ogin.config String Server Yes JAAS Logi nCont ext configuration entry name for
authentication. The Cal | backHandl er will make
the username and password (supplied as an array of
two Strings via j nx. renot e. credenti al s)
available to the Logi nModul e through the
NameCal | back and Passwor dCal | back.

notification. i nteger Server Yes Minimum size of the buffer that stores notifications

buffer.size for one or more connector servers. A connector
server will remember a notification if there have not
been this many others since it was sent.

notification. i nteger Client N/A Maximum number of notifications that a client (RMI

f et ch. max or JMXMP) will request in a single
fetchNotifications request.

notification. i nt eger Client N/A Timeout in milliseconds that a client (RMI or

fetch. tineout

JMXMP) will specify in each f et chNot i fi cati ons
request.

286

Java Management Extensions Specification, version 1.4 « November 9, 2006

TABLEB-1 Environment Parameters

Name Client/

jnx. renmote. x. + Type Server Visible Meaning

password.file String Server No Name of a file containing username and password
entries for RMI authentication. Uses Properties file
format: property name is user name, property value
is password.

request. i nteger Client N/A Timeout in milliseconds for the response to each

wai ti ng. JMXMP client request. If a response does not arrive

ti meout within this time, the connection is assumed to be
broken and is terminated. Specifying too short a
value will cause this to happen for requests whose
treatment happens to be slow. Default value is
infinite.

server. i nteger Server Yes Time in milliseconds that the server will keep a

connecti on. connection open after answering the most recent

ti meout client request.

server. max. i nt eger Server Yes Maximum number of server threads for each JMXMP

t hreads connection. If more than this many requests arrive
simultaneously, the surplus ones will be blocked
until others complete.

server. mn. i nt eger Server Yes Minimum number of server threads for each JMXMP

t hr eads connection. The server will keep at least this many

threads alive, even if the current number of requests
is less than this.

Chapter B Non-standard environment parameters 287

288 Java Management Extensions Specification, version 1.4 « November 9, 2006

References

J
JAAS
Sun Microsystems, Java Authentication and Authorization Service (JAAS), http
/ljava.sun.com/products/jaas/
Jini
Sun Microsystems, Jini Network Technology, ,http
/Iwwws.sun.com/software/jini/
JNDI ,
Sun Microsystems, Java Naming and Directory Interface,http
/ljava.sun.com/products/jndi/
JINDI - Java Objects
JNDI Tutorial, Java Objects and the Directory, http
/ljava.sun.com/products/jndi/tutorial/objects/index.html
JNDI - Java Schema
JNDI Tutorial, Java Schemafor the Directory,http
/ljava.sun.com/products/jndi/tutorial/config/L DAP/java.schema
JINDI - LDAP Servers Discovery
JNDI Tutorial, Automatic Discovery of LDAP Servers, ,http
/ljava.sun.com/products/jndi/tutorial/ldap/connect/create. htmlI#AUTO
JNDI - Multi URL
JNDI Tutorial, How to specify more than one URL when creating initial context., ,http
/ljava.sun.com/products/jndi/tutorial/ldap/misc/src/MultiUrls,java
JSR 140
Nick Briers, et a, Service Location Protocol (SLP) APl for Java, 2001,http
[lwww.jcp.org/en/jsr/detail 21d=140
JSR28
Lee, Rosanna, et al, Java SASL Specification, http
/ljcp.org/en/jsr/detail 71d=28
JSSE
Sun Microsystems, Java Secure Socket Extension (JSSE), ,http
/ljava.sun.com/products/jsse/
L
LDAP Thread in the INDI Tutorial
Tipsfor LDAP Users, http
/ljava.sun.com/products/jndi/tutorial/ldap/index.html
R
RFC,,,
RFC 2608
E. Guttman, et al, Service Location Protocol, Version 2, 1999, http
Ilwww.ietf.org/rfc/rfc2608.txt
RFC 2609

Chapter References

289

E. Guttman, C. Perkins, J. Kempf, 1999,http
Ilwww.ietf.org/rfc/rfc2609.txt
RFC 2614
J. Kempf, E. Guttman., An API for Service Location, 1999,http
[lwww.ietf.org/rfc/rfc2614.txt
RFC 2713
V. Ryan, et a., Schema for Representing Java Objectsin an LDAP Directory, 1999,http
[lwww.ietf.org/rfc/rfc2713.txt
RFC2222
Myers, J, Simple Authentication and Security Layer (SASL), 1997 ,ftp
[[ftp.rfc-editor.org/in-notes/rfc2222.txt
RMI/SSL
Sun Microsystems, Using RM1 with SSL, 2001
S
Serid
Sun Microsystems, Inc, Java Object Serialization Specification
SLP
IETF SVRLOC working group, Service Location Protocol, http
/lwww.srvloc.org/
SLP White Paper
C. Perkins, http
/Iplayground.sun.com/srvloc/slp_white_paper.html

290 Java Management Extensions Specification, version 1.4 « November 9, 2006

	JavaTM Management Extensions (JMXTM) Specification, version 1.4
	Contents
	Preface

	Introduction to the JMX Specification
	1.1 Benefits of the JMX Architecture
	1.2 Scope of this Specification
	1.2.1 Reference Implementation
	1.2.2 Compatibility Test Suite
	1.2.3 JMX APIs as part of the Java Platform

	1.3 Architectural Overview
	1.3.1 Instrumentation Level
	1.3.2 Agent Level
	1.3.3 Distributed Services Level

	1.4 Component Overview
	1.4.1 Components of the Instrumentation Level
	1.4.1.1 Managed Beans (MBeans)
	1.4.1.2 Notification Model
	1.4.1.3 MBean Metadata Classes

	1.4.2 Components of the Agent Level
	1.4.2.1 MBean Server
	1.4.2.2 Agent Services

	1.5 JMX Remote API
	1.6 What Has Changed
	1.6.1 Changes to the JMX Specification (JSR 3)
	1.6.2 Changes to the JMX Remote Specification (JSR 160)

	I JMX Instrumentation Specification
	MBean Instrumentation
	2.1 Definition
	2.1.1 Public Management Interface
	2.1.2 MBean Public Constructor

	2.2 Standard MBeans
	2.2.1 MBean Interface
	2.2.1.1 The MyClass Example MBean

	2.2.2 Lexical Design Patterns
	2.2.2.1 Attributes
	2.2.2.2 Operations
	2.2.2.3 Case Sensitivity

	2.3 Dynamic MBeans
	2.3.1 DynamicMBean Interface
	2.3.2 Behavior of Dynamic MBeans
	2.3.2.1 Coherence
	2.3.2.2 Dynamics

	2.4 Inheritance Patterns
	2.5 JMX Notification Model
	2.5.0.1 Notification Type
	2.5.1 Notification Class
	2.5.2 NotificationBroadcaster and NotificationEmitter Interfaces
	2.5.3 NotificationListener Interface
	2.5.4 NotificationFilter Interface

	2.6 Attribute Change Notifications
	2.6.1 AttributeChangeNotification Class
	2.6.2 AttributeChangeNotificationFilter Class

	2.7 MBean Metadata Classes
	2.7.1 MBeanInfo Class
	2.7.2 MBeanFeatureInfo Class
	2.7.3 MBeanAttributeInfo Class
	2.7.4 MBeanConstructorInfo Class
	2.7.5 MBeanOperationInfo Class
	2.7.6 MBeanParameterInfo Class
	2.7.7 MBeanNotificationInfo Class

	Open MBeans
	3.1 Overview
	3.2 Basic Data Types
	3.2.1 Representing Complex Data
	3.2.1.1 CompositeData Interface and Support Class
	3.2.1.2 TabularData Interface and Support Class

	3.2.2 Open Type Descriptions

	3.3 Open MBean Metadata Classes
	3.3.1 OpenMBeanInfo Interface and Support Class
	3.3.2 OpenMBeanOperationInfo and OpenMBeanConstructorInfo Interfaces and Support Classes
	3.3.3 OpenMBeanParameterInfo and OpenMBeanAttributeInfo Interfaces and Support Classes

	3.4 Summary of Open MBean Requirements

	Model MBeans
	4.1 Overview
	4.1.1 Generic Notifications
	4.1.2 Interaction with Managed Resources
	4.1.3 Interaction with Management Applications

	4.2 Model MBean Metadata Classes
	4.2.1 Descriptor Interface
	4.2.2 DescriptorAccess Interface
	4.2.3 ModelMBeanInfo Interface
	4.2.4 ModelMBeanInfo Implementation
	4.2.5 ModelMBeanAttributeInfo Implementation
	4.2.6 ModelMBeanConstructorInfo Implementation
	4.2.7 ModelMBeanOperationInfo Implementation
	4.2.8 ModelMBeanNotificationInfo Implementation

	4.3 Model MBean Specification
	4.3.1 ModelMBean Interface
	4.3.2 ModelMBean Implementation
	4.3.3 DynamicMBean Implementation
	4.3.4 PersistentMBean Interface
	4.3.5 ModelMBeanNotificationBroadcaster Interface
	4.3.6 ModelMBeanNotificationBroadcaster Implementation

	4.4 Descriptors
	4.4.1 Attribute Behavior
	4.4.2 Notification Logging Policy
	4.4.3 Persistence Policy
	4.4.4 Behavior of Cached Values
	4.4.5 Protocol Map Support
	4.4.6 Export Policy
	4.4.7 Visibility Policy
	4.4.8 Presentation Behavior

	4.5 Predefined Descriptor Fields
	4.5.1 MBean Descriptor Fields
	4.5.2 Attribute Descriptor Fields
	4.5.3 Operation Descriptor Fields
	4.5.4 Notification Descriptor Fields

	II JMX Agent Specification
	Agent Architecture
	5.1 Overview
	5.2 JMX Compliant Agent
	5.3 Protocol Adaptors and Connectors

	Foundation Classes
	6.1 ObjectName Class
	6.1.1 Domain Name
	6.1.2 Key Property List
	6.1.3 String Representation of Names
	6.1.4 Pattern Matching
	6.1.4.1 Pattern Matching Examples

	6.2 ObjectInstance Class
	6.3 Attribute and AttributeList Classes
	6.4 JMX Exceptions
	6.4.1 JMException Class and Subclasses
	6.4.2 JMRuntimeException Class and Subclasses
	6.4.3 Description of JMX Exceptions
	6.4.3.1 JMException Class
	6.4.3.2 ReflectionException Class
	6.4.3.3 MBeanException Class
	6.4.3.4 OperationsException Class
	6.4.3.5 InstanceAlreadyExistsException Class
	6.4.3.6 InstanceNotFoundException Class
	6.4.3.7 InvalidAttributeValueException Class
	6.4.3.8 AttributeNotFoundException Class
	6.4.3.9 IntrospectionException Class
	6.4.3.10 MalformedObjectNameException Class
	6.4.3.11 NotCompliantMBeanException Class
	6.4.3.12 ServiceNotFoundException Class
	6.4.3.13 MBeanRegistrationException Class
	6.4.3.14 JMRuntimeException Class
	6.4.3.15 RuntimeOperationsException Class
	6.4.3.16 RuntimeMBeanException Class
	6.4.3.17 RuntimeErrorException Class

	MBean Server
	7.1 Role of the MBean Server
	7.1.1 MBean Server Factory
	7.1.2 MBean Server Permission Checking
	7.1.3 Registration of MBeans
	7.1.3.1 MBean Registration Control

	7.1.4 Operations on MBeans
	7.1.5 MBean Proxies

	7.2 MBean Server Delegate MBean
	7.3 Remote Operations on MBeans
	7.4 MBean Server Notifications
	7.5 Queries
	7.5.1 Scope of a Query
	7.5.2 Query Expressions
	7.5.2.1 Methods of the Query Class
	7.5.2.2 Query Expression Examples

	7.5.3 Query Exceptions
	7.5.3.1 BadAttributeValueExpException Class
	7.5.3.2 BadStringOperationException Class
	7.5.3.3 BadBinaryOpValueExpException Class
	7.5.3.4 InvalidApplicationException Class

	7.6 MBeanServerConnection Interface
	7.7 Changing the MBean Server Implementation

	Advanced Dynamic Loading
	8.1 Overview of M-Lets
	8.2 The MLET Tag
	8.3 The M-Let Service
	8.3.1 Loading MBeans From a URL
	8.3.2 Class Loader Functionality
	8.3.2.1 Native libraries

	8.4 The Class Loader Repository
	8.4.1 How to Add Loaders to the Class Loader Repository
	8.4.2 Order of Loaders in the Class Loader Repository
	8.4.3 M-Let Delegation to the Class Loader Repository
	8.4.3.1 New Semantics in the JMX 1.2 Specification

	8.5 Using the Correct Class Loader for Parameters
	8.5.1 getClassLoaderFor
	8.5.2 getClassLoader and getClassLoaderRepository

	Monitoring
	9.1 Overview
	9.1.1 Types of Monitors

	9.2 MonitorNotification Class
	9.2.1 Common Monitor Notification Types

	9.3 CounterMonitor Class
	9.3.1 Counter Monitor Notification Types

	9.4 GaugeMonitor Class
	9.4.1 Gauge Monitor Notification Types

	9.5 StringMonitor Class
	9.5.1 String Monitor Notification Types

	9.6 Implementation of the Monitor MBeans

	Timer Service
	10.1 Timer Notifications
	10.1.1 TimerNotification Class
	10.1.2 Adding Notifications to the Timer
	10.1.3 Receiving Timer Notifications
	10.1.4 Removing Notifications From the Timer

	10.2 Starting and Stopping the Timer

	Relation Service
	11.1 The Relation Model
	11.1.1 Terminology
	11.1.2 Example of a Relation
	11.1.3 Maintaining Consistency
	11.1.4 Implementation
	11.1.4.1 External Relation Types
	11.1.4.2 External Relations

	11.2 Relation Service Classes
	11.2.1 RelationService Class
	11.2.2 RelationNotification Class
	11.2.3 MBeanServerNotificationFilter Class

	11.3 Interfaces and Support Classes
	11.3.1 RelationType Interface
	11.3.2 RelationTypeSupport Class
	11.3.3 Relation Interface
	11.3.3.1 Specified Methods
	11.3.3.2 Maintaining Consistency

	11.3.4 RelationSupport Class

	11.4 Role Description Classes
	11.4.1 RoleInfo Class
	11.4.2 Role Class
	11.4.3 RoleList Class
	11.4.4 RoleUnresolved Class
	11.4.5 RoleUnresolvedList Class
	11.4.6 RoleResult Class
	11.4.7 RoleStatus Class

	Security
	12.1 Permissions
	12.1.1 MBeanServerPermission
	12.1.2 MBeanPermission
	12.1.2.1 MBeanPermission Target
	12.1.2.2 MBeanPermission Actions
	12.1.2.3 Unchecked MBean Server Methods
	12.1.2.4 Permission Checking for Queries
	12.1.2.5 Permission Checking for getDomains
	12.1.2.6 Permission Checking for getAttributes and setAttributes

	12.1.3 MBeanTrustPermission

	12.2 Policy File Examples

	III JMX Remote API Specification
	Connectors
	13.1 Sessions and Connections
	13.2 Connection Establishment
	13.3 MBean Server Operations Through a Connection
	13.4 Adding Remote Listeners
	13.4.1 Filters and Handbacks
	13.4.2 Removing Listeners
	13.4.3 Notification Buffer
	13.4.4 Getting Notifications From the Notification Buffer

	13.5 Concurrency
	13.6 Normal Termination
	13.7 Abnormal Termination
	13.7.1 Detecting Abnormal Termination

	13.8 Connector Server Addresses
	13.9 Creating a Connector Client
	13.9.1 JMXConnectorFactory
	13.9.2 Connection Stubs
	13.9.3 Finding a Server

	13.10 Creating a Connector Server
	13.10.1 Publishing a Server

	13.11 Class Loading
	13.11.1 Class Loading on the Client End
	13.11.2 Class Loading on the Server End

	13.12 Connector Server Security
	13.12.1 Subject Delegation
	13.12.2 Access Control Context

	RMI Connector
	14.1 RMI Transports
	14.2 Mechanics of the RMI Connector
	14.2.1 Wrapping the RMI Objects
	14.2.2 RMIConnection
	14.2.3 Notifications

	14.3 How to Connect to an RMI Connector Server
	14.4 Basic Security With the RMI Connector
	14.4.1 How Security Affects the RMI Connector Protocol
	14.4.2 Achieving Real Security

	14.5 Protocol Versioning

	Generic Connector
	15.1 Pluggable Transport Protocol
	15.2 Pluggable Object Wrapping
	15.3 Generic Connector Protocol
	15.3.1 Handshake and Profile Message Exchanges
	15.3.2 MBean Server Operation and Connection Message Exchanges
	15.3.3 Security Features in the JMXMP Connector
	15.3.3.1 TLS Profile
	15.3.3.2 SASL Profile

	15.3.4 Protocol Violations
	15.3.5 Protocol Versioning
	15.3.6 Properties Controlling Client and Server
	15.3.6.1 Global Properties of the Generic Connector
	15.3.6.2 TLS Properties
	15.3.6.3 SASL Properties

	Defining a New Transport
	Bindings to Lookup Services
	17.1 Terminology
	17.2 General Principles
	17.2.1 JMXServiceURL Versus JMXConnector Stubs
	17.2.2 Lookup Attributes

	17.3 Using the Service Location Protocol
	17.3.1 SLP Implementation
	17.3.2 SLP Service URL
	17.3.3 SLP Lookup Attributes
	17.3.4 Code Templates
	17.3.4.1 Discovering the SLP Service
	17.3.4.2 Registering a JMX Service URL With SLP
	17.3.4.3 Looking up a JMX Service URL With SLP

	17.4 Using the Jini Network Technology
	17.4.1 Jini Networking Technology Implementation
	17.4.2 Service Registration
	17.4.3 Using JMX Remote API Connector Stubs
	17.4.4 Jini Lookup Service Attributes
	17.4.5 Code Templates
	17.4.5.1 Discovering the Jini Lookup Service
	17.4.5.2 Registering a JMX Remote API Connector Stub With the Jini Lookup Service
	17.4.5.3 Looking up a JMX Connector Stub From the Jini Lookup Service

	17.5 Using the Java Naming and Directory Interface (LDAP Backend)
	17.5.1 LDAP Schema for Registration of JMX Connectors
	17.5.2 Mapping to Java Objects
	17.5.3 Structure of the JMX Remote API Registration Tree
	17.5.4 Leasing
	17.5.5 Code Templates
	17.5.5.1 Discovering the LDAP Server
	17.5.5.2 Registering a JMXServiceURL in the LDAP server
	17.5.5.3 Looking up a JMX Service URL From the LDAP Server

	17.6 Registration With Standards Bodies

	Summary of Environment Parameters
	Service Templates
	Non-standard environment parameters
	References

