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Abstract. Extractive Question Answering (EQA) tasks have gained in-
tensive attention in recent years, while Pre-trained Language Models
(PLMs) have been widely adopted for encoding purposes. Yet, PLMs
typically take as initial input token embeddings and rely on attention
mechanisms to extract contextual representations. In this paper, a simple
yet comprehensive framework, termed perturbation for alignment (PFA),
is proposed to investigate variations towards token embeddings. A robust
encoder is further formed being tolerant against the embedding variation
and hence beneficial to subsequent EQA tasks. Specifically, PFA consists
of two general modules, including the embedding perturbation (a trans-
formation to produce embedding variations) and the semantic alignment
(to ensure the representation similarity from original and perturbed em-
beddings). Furthermore, the framework is flexible to allow several align-
ment strategies with different interpretations. Our framework is evalu-
ated on four highly-competitive EQA benchmarks, and PFA consistently
improves state-of-the-art models.

Keywords: Extractive Question Answering · Token embedding · Con-
textual representation · Wasserstein distances · Divergence

1 Introduction

Extractive Question Answering (EQA) is a fundamental task for Machine Read-
ing Comprehension (MRC), that aims to identify the answer span (a sequence of
continuous words) over the given question and passage. Recent years have wit-
nessed a remarkable success in utilizing Pre-trained Language Models (PLMs)
to address EQA [2, 6, 9]. Approaches usually consist of a three-step process.
In the first step, each input token is linked with an embedding vector via a
pre-determined lookup table. The second step is to further utilize those token
embeddings and estimate their contextual representation, followed by a deci-
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sion layer (i.e., a binary classifier to identify the start and end position of the
answer span) as the last step4.

The majority research on EQA has focused on extracting contextual-aware
representation (the second step) using a variety of attention mechanisms, rang-
ing from the standard self-attention [2], block based [10, 12], gated adapter [16],
and hierarchical flow [14, 18], etc. While the contextual representation has been
tremendously critical, token embeddings (from the first step) still remain funda-
mentally significant: (1) as the input to the second step, embeddings have a direct
impact on forming the subsequent contextual representation; (2) each token has
one initial and fixed embedding (regardless of surrounding context), while the
variation of token embeddings towards the downstream task is underexplored.
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Fig. 1. PFA perturbs initial token embed-
dings (circles) to form their variations (tri-
angles), and later align their semantic to
increase the model robustness and general-
izability.

To alleviate the aforementioned
gap, a simple yet comprehensive
framework, termed Perturbation for
Alignment (PFA), is proposed in this
paper (illustrated in Fig 1). Our
framework consists of two main mod-
ules, including embeddings perturba-
tion and semantic alignment. The for-
mer takes as input the original token
embedding to produce its perturbed
version. With the presence of per-
turbed embeddings, the latter module
is then enforced to form perturbation-
invariant representation via flexible alignment strategies of the Wasserstein dis-
tances or other divergence.

Our work differs from existing methods in the following perspectives: (1)
PFA strengthens the model generalizability via tolerating variations of token
embeddings, which is neglected by the majority of existing work (focusing on
subsequent contextual representations). (2) a few studies apply the noise ad-
dition ([8], requires the prior knowledge) and dropout mask ([13], depends on
the hyperparameter setting) to distort token embedding. Yet, our work offers a
more general framework for the embedding perturbation and the representation
alignment, embracing previous methods as special cases. The main contributions
of our proposed work are summarized as follows5:

– Our study introduces a unified framework (Perturbation for Alignment,
PFA) to investigate the variation of token embeddings and its influence to-
wards the subsequent Extractive Question Answering task.

– PFA is characterized by embeddings perturbation and semantic alignment
modules, while the former perturbs original embeddings and the latter en-

4 Without explicitly mentioned, we refer token embeddings as vectors obtained di-
rectly from the lookup table, while token representations as those obtained using
attention mechanisms after the lookup.

5 The source code is available at https://anonymous.4open.science/r/

Perturbation4EQA-1BC5
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sures contextual representations (from perturbed embeddings) remain se-
mantically close to original ones.

– The framework is flexible to accommodate many metrics. Specifically, ex-
ploiting the Wasserstein distance used in the optimal-transport theory, PFA
can be also cast as a general min-max optimization.

– Empirically, PFA outperforms recent-strong baselines on four standard EQA
benchmarks, advancing the best state-of-the-arts by on average 1.43 absolute
point in accuracy. Moreover, PFA also demonstrates a strong capability in
the setting of low-resource fine-tuning and out-of-domain generalizability.

2 Related work

Given the input pair of question (q) and passage (p), Extractive Question An-
swering (EQA) aims to identify the start and end positions of the answer span
(as/e) from p. Specifically, the input of EQA is a tokenized sequence, i.e.,
[CLS]p1p2· · ·p|p|[SEP]q1q2· · · q|q|[SEP], where pi and qj represents the i-th
and j-th token from p and q, respectively. At first, individual tokens (say pi)
are represented by their own static embeddings (say S(pi)) from a preset lookup
table. Then the encoder (F , a Pre-trained Language Model (PLM) such as BERT
[2] or RoBERTa [9]) is applied to induce the following probability distribution:

p(pi = as/e) ≜
exp(F(S(pi))

Tws/e)∑|p|
j exp(F(S(pj))Tws/e)

, (1)

where ws/e is the learnable parameter from a decision layer (usually performed
as a multilayer perceptron (MLP)). Accordingly, the loss function is defined as
follows:

LEQA ≜ −
|p|∑
i

1(pi = as/e) log p(pi = as/e), (2)

where 1(·) is the indicator function that returns 1 if the condition is true and
returns 0 otherwise. Notably, the majority of existing models focus on utiliz-
ing PLMs to form contextual-aware representations via different enhancement
strategies. For instance, a block-based attention method is proposed in [12],
which predicts answers and supporting words (i.e., contexts highly-relevant to
answers). Another similar work is found in [10]. In [14], different-level attention
mechanisms are implemented to simulate the process of back-and-forth read-
ing, highlighting, and self-assessment, while [18] simulates the human-reading
strategy of reading-attending-excluding to train PLMs. In addition, the work
[16] integrates a gated-attention adapter with PLMs to identify answers. More
recently, KALA [7] is proposed to integrate the contextual representation of in-
termediate PLM layers with related entity and relational representations (from
the external Knowledge Graph). With knowledge-augmented representations,
KALA improves the performance of the vanilla PLM on various EQA tasks.

On the other hand, another line of work considers the embedding-focused
strategy. Typically, input tokens are manipulated to produce crafted examples
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(including token deletion [17] or replacement [11]), which is equivalent to mod-
ifying input embeddings. Additionally, Srivastava et al. consider to apply the
dropout mask on embeddings [13], and SWEP [8] augments them with adjustable
noises. The subsequent EQA model is further trained using both original and
perturbed embeddings simultaneously. Yet, token manipulation methods could
decrease the model accuracy due to over-fitting crafted examples, while other
methods require the prior knowledge to select the dropout masking rate [13] or
to follow a multivariate Gaussian distribution [8]. In contrast, our work provides
a hyperparameter-free transformation framework to perturb token embeddings
and later align their semantic to improve the robustness of the encoder.

3 Methodology

The proposed perturbation-for-alignment (PFA) framework is detailed in this
section via introducing two general modules: embedding perturbation (EP) and
semantic alignment (SA). Specifically, the EP module perturbs input embed-
dings, while the SA module ensures the semantic-representation similarity from
original and perturbed embeddings. Proposed modules are integrated into a uni-
fied framework and are fully end-to-end trainable (shown in Fig 2).

Fig. 2. Illustration of the proposed PFA framework for EQA. Original inputs are dis-
torted via a embedding perturbation module, while their representation similarity is
later maximized via a semantic alignment module.

3.1 PFA

Embedding perturbation. Let S(X) be the embedding for the tokenized pas-
sage sequence X(=p1p2· · ·p|p|). The traditional perturbation mainly involves

adding the noise element-wisely (i.e. S̃(X) = S(X) + noise) or sampling with a
dropout mask (i.e. S̃(X) = dropout(S(X))). In contrast, this paper introduces a
more-general transformation to produce S̃(X). Specifically, a multilayer percep-
tron (MLP), written as M(·), with one-hidden layer is employed. Accordingly,
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the proposed embedding perturbation is formulated as follows:

S̃(X) = M(S(X)). (3)

Note that M(·) can be any function, for example the existing dropout or noise
superimposition, which effectively makes the previous methods special cases.
The application of MLP here however, provides a family of transformations due
to its functional form and well known universal approximation capability.

Additionally, to avoid triviality, i.e., M(·) being an identity mapping, we
employ the bottleneck-structure technique to implement the MLP [4, 5], i.e.,
from which the hidden layer has a smaller size than its adjacent layers. However,
we point out that it might not be necessary due to the complex nature of the
loss function landscape, especially the non-convexity. Interestingly, the size of the
bottleneck becomes a controllable factor, towards generating a better performing
F (which is evaluated in our ablation study). Overall, different from the additive
noise or the random dropout, M(·) offers much greater flexibility to program
the perturbed (embedding) distribution within the same space.
Semantic alignment. With perturbed embeddings, the semantic alignment
module is further employed to robustify the encoder F via tolerating perturbed
signals conveyed in S̃(X). This is done by explicitly encouraging the representa-
tion similarity after encoding original and perturbed embeddings. Let C and C̃
represent latent representation associated with original and perturbed embed-
dings, i.e., C = F(S(X)) and C̃ = F(S̃(X)), where C/C̃ ∈ R|X|×l and l is the
hidden dimension. The alignment objective can be formulated as minimizing the
following instance-wise distance:

Li
ali = dist(C, C̃), (4)

where dist(·, ·) is a distance function. As such, this proposed loss minimization
ensures the original semantic is preserved even with perturbations, to further im-
prove the model tolerance to input variations. Moreover, in addition to matching
collections of instances as in Eq. (4), one can also align their representations at
the distribution level. Let PC and PC̃ be the corresponding distributions of

C and C̃. Therefore, the alignment objective can also be reformulated as:

Ld
ali = dist(PC, PC̃). (5)

The analysis of alternative implementations (including the distance function)
will be detailed in Section 3.2.
Overall objective function. In summary, the following joint loss is utilized
for the proposed Perturbation-for-Alignment (PFA) framework:

L = LS(X) + LS̃(X) + Li/d
ali , (6)

where LS(X) represents the standard (cross-entropy) loss using the original em-
beddings (followed by Eq. (2)), while LS̃(X) is the loss obtained by swapping

S(·) with S̃(·) in Eq. (1) and further inferring answers as Eq. (2). The last
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term then ensures that perturbed embeddings remain semantically close to the
original ones. During inference, the EP and SA modules are discarded, and test-
ing samples follow the traditional three steps to: (1) lookup token embeddings,
(2) extract latent representation via the trained encoder, (3) apply the trained
decision layer to identify the start and end position of answers.

3.2 Analysis

There are many choices for aligning original and perturbed representations, ei-
ther from the instance (Eq. (4)) or distribution level (Eq. (5)). For instance,
the matrix Frobenius Norm and cosine similarity can be leveraged for the in-
stance alignment, e.g. forcing representation vectors being similar. In this paper,
we are particularly interested in the distribution-level alignment, for which the
Wasserstein distance [15] is employed as a measurement:

Definition 1 (Wasserstein distance [15]) Let (X , d) be a Polish metric space,
and p ∈ [1,∞]. For any two probability measures µ, ν on X , the Wasserstein
distance of order p between µ and ν is defined by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X
d(x, y)pdπ(x, y)

) 1
p

, (7)

s.t.

∫
X
π(x, y)dy = µ,

∫
X
π(x, y)dx = ν.

where Π(µ, ν) is the set of all couplings of µ and ν.

It is metrized version of the optimal transportation (OT) cost, where d(x, y)
is replaced by a cost function c(x, y) ≥ 0 that is not necessarily a metric. The
one we are particularly interested in is W1, i.e., when p = 1, usually called
Kantorovich-Rubinstein distance. In a nutshell, the Wasserstein distance or OT
cost is measuring the dissimilarity of two sets exhausting all possible joint prob-
abilities given that the marginal probabilities are fixed. This is an ideal choice
towards our purpose of aligning representations from original and perturbed
embeddings. Notably, there are many variants for the OT cost, for example the
Sinkhorn distance [1], defined for discrete observations. Therefore, the proposed
SA module is not limited to a particular measure but open to vast possibilities.
One interesting extension comes from the dual form of Eq. (7) [15]:

W1(µ, ν) = sup
f,∥f∥Lip≤1

{∫
X
fdµ−

∫
X
fdν

}
, (8)

where f is a measurable function defined from X to R and ∥f∥Lip is the Lipschitz
constant of f , a.k.a ∥f∥Lip = inf{c : cd(x, y) ≥ |f(x) − f(y)|},∀x, y ∈ X . The
dual form of W1 distance indicates that one can maximize Eq. (8) over all nicely
smooth functions defined on X to obtain its value. In our context, if we choose
µ and ν to be probability measures of embeddings, i.e., S(X) and S̃(X), then
Eq. (8) shows that W1 distances between these two distributions is the largest
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mode differences under all smooth transformations as the integrals are exactly
the expectations of f . This not only gives us the interpretation of the distribution
alignment, but also provides a way to compute the W1 distance approximately,
for example, via a regularization

W1(µ, ν) ≈ max
f

∫
X
fdµ−

∫
X
fdν − γ

∫
X
∥∇f∥2dξ, (9)

for a hyperparameter γ ≥ 0 (e.g. γ = 1). Note that the regularization term, the
last term in Eq. (9), which is an integral with respect to some Radon measure
ξ, is to clamp f roughly to be 1-Lipschitz. To further simplify the computation,
we choose

ξ = (1− α)µ+ αν, (10)

for any α ∈ (0, 1). Accordingly, Eq. (9) can be effectively rewritten as the fol-
lowing

W1(µ, ν) ≈ max
f

∫
X
(f − γ(1− α)∥∇f∥2)dµ−

∫
X
(f + γα∥∇f∥2)dν, (11)

where the integrals can be computed easily by evaluating expectation. We point
out that the value of α is not critical as we minimize this distance so that µ and
ν become more or less the same.

Additionally, although f is nothing more than a dummy function in Eq. (9),
one can have a preference on its structure and hence assign some meaning to it
at the cost of further restricting the approximation capacity to the original W1

distance. Specifically, in this paper we consider

f = H ◦ F , (12)

where H is a function that maps the output of F to R. If we set H to be a
binary MLP classifying instances from either S(X) or S̃(X), which is the choice
in our numerical experiments, then the proposed PFA can be cast as a min-
max optimization, i.e., combining Eq. (9) with the minimization of Eq. (6),
such that f cannot differentiate two distributions. Based on this understanding,
we reach to Eq. (5) that admits more choices, such as the Kullback-Leibler (KL)
divergence and Jensen-Shannon (JS) divergence. These divergences also serve
for the purpose of Eq. (5) exactly to align PC and PC̃.

4 Experiment

4.1 Setup

Experiments and analysis are carried out on four benchmark datasets from
MRQA 2019 [3], including SQuAD (1.1), HotpotQA, NewsQA, and NaturalQ.
Their statistics are shown in Table 1.
Training Details. The RoBERTa-base model [9] is adopted as the contextual
encoder, with the dropout rate of 0.1. The Adam optimizer with a dynamic
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Table 1. Employed datasets for the
EQA task, where Domain represents
the passage resource, and #Train and
#Test is the number of training and
test samples, respectively.

Dataset Domain #Train #Test

SQuAD(1.1) Wikipedia 86,588 10,507
HotpotQA Wikipedia 72,928 5,904
NewsQA News articles 74,160 4,212
NaturalQ Wikipedia 104,071 12,836

learning rate is adopted, for which the learning rate is warmed up for 10 thousand
steps to a maximum value of 1e−4 before decaying linearly to a minimum value
of 2e−5 (by the cosine annealing). The training is performed with batches of
8 sequences of length 512. The maximal number of training epoch is 10. The
F1-evaluation metric, measured by the number of overlapping tokens between
the predicted and ground-truth answers, is adopted. At last, all models are
performed using a machine of the NVIDIA A100 GPU server.

4.2 Main results

Our proposed PFA method is compared with several baseline models:

– Base [9] is implemented via fine-tuning the RoBERTa-base model.
– BLANC [12] applies a block-attention strategy to predict answers and sup-

porting contexts (spans surrounding around answers) simultaneously6;
– SSMBA [11] randomly substitutes tokens with [Mask] to modify input em-

beddings, and then recovers them to produce new samples7;
– SWEP [8] augments the data by perturbing the input embedding with an

adjustable Gaussian noise8;
– KALA [7] augments the original contextual representation using related en-

tity and relational representation from the external Knowledge Graph9.

Notably, SSMBA, SWEP and KALA can be cast as the data-augmentation
methods, from the perspectives of either modifying input tokens or introduc-
ing external knowledge. Therefore, PFA is compared with them specifically to
evaluate its capability on the data augmentation, as perturbed embeddings also
play a role in bringing additional training samples. All contender methods are
re-implemented using their released code packages and kept with the original
configurations. Additionally, the embedding perturbation (EP) module is imple-
mented using a one-hidden-layer MLP with the bottleneck structure, where the
size for the input, hidden (or bottleneck) and output layer is 768, 500, and 768,
respectively, and a LeakyReLU activation function. For the semantic alignment
(SA) module, the W1 distance is adopted together with a binary classifier for H
(from Eq. (12)), and α=0.5.

The comparison from Table 2 provides the strong evidence for the proposed
PFA in addressing the EQA task. The proposed method consistently improves

6 available from https://github.com/yeonsw/BLANC
7 available from https://github.com/nng555/ssmba
8 available from https://github.com/seanie12/SWEP
9 available from https://github.com/Nardien/KALA
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Table 2. Comparison
among PFA and existing
methods, in which the best
result is bolded. Statis-
tically significant gains
achieved by the proposed
method at p-values <0.01
are marked with †.

SQuAD HotpotQA NewsQA NaturalQ

Base 90.3±0.2 78.7±0.3 69.8±0.4 79.6±0.2
BLANC 91.1±0.2 77.8±0.1 70.7±0.5 80.3±0.1
SSMBA 90.1±0.3 77.3±0.4 69.2±0.2 79.8±0.2
SWEP 91.0±0.1 78.6±0.2 71.7±0.1 80.2±0.3
KALA 90.9±0.4 77.3±0.5 72.7±0.3 80.1±0.4
PFA 92.4±0.2† 79.3±0.1† 73.3±0.4† 82.2±0.3†

the state-of-the-art models. For instance, PFA outperforms the strongest base-
line (SWEP) by 1.4, 0.7, 1.6, and 2.0 absolute points with respect to the SQuAD,
HotpotQA, NewsQA, and NaturalQ datasets, respectively. We also notice that
the KALA method relies on the quality of the constructed Knowledge Graph,
which leads to a notable performance variation. For instance, KALA achieves
a even worse result than the Base model on the HotpotQA dataset. In addi-
tion, the significance test (i.e., the one-sample T-test) is also implemented, and
the p-values of our results being greater than relevant strongest baselines are
6.2e−6, 1.3e−7, 5.6e−7, and 4.9e−8, respectively. The results clearly verifies the
effectiveness and stability of our proposed method.

On the other hand, in terms of the computational complexity, PFA has a
similar scale of parameters as the vanilla model (RoBERTa-base). Specifically,
during training PFA only needs additional parameters of two MLP classifiers
for Eq. (3) and Eq. (12); that is, approximately 2.4M parameters are added
(compared to the original 128.0M of RoBERTa-base). During inference, both
the EP and SA modules are discarded as PFA only requires the trained encoder.

4.3 Ablation study

Experiments are conducted using the SQuAD dataset, and all results are re-
ported as an averaged F1 over 10 runs.

Table 3. Impact analysis of the underlying
encoder.

Base SWEP KALA PFA

SQuAD 88.6 89.4 89.2 89.7

HotpotQA 74.9 75.1 75.3 75.8

NewsQA 64.7 65.4 65.8 66.6

NaturalQ 77.1 77.7 77.5 78.8

On the encoder flexibility. We
first evaluate the impact from the
fundamental encoder. Specifically, the
BERT-base encoder [2] is employed as
the Base, and the strongest baseline
SWEP and KALA from Table 2 is also
re-implemented. Most of the experi-
mental settings, such as the batch size
and the sequence length, are the same
as RoBERTa, except the learning rate is set as 3e−5. Comparison results are pre-
sented in Table 3, where PFA demonstrates highest F1 scores across all datasets.
These findings highlight the stability/robustness of PFA on the underlying en-
codes (both RoBERTa and BERT), outperforming current best models. To main-
tain consistency, subsequent ablation studies are still conducted using RoBERTa.
On the breakdown. We investigate individual aspects of EP and SA to man-
ifest their efficacy. Specifically, for comparison purposes we take “Base” to rep-
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resent the vanilla training; “Base+EP” applies both original and perturbed em-
beddings for fine-tuning the model; “Base+SA” considers to utilize original em-
beddings, without perturbed ones, for the model training, in addition to the
semantic similarity of original-perturbed pairs. The EP is implemented using a
MLP with a Bottleneck layer of the size 500 and the W1 distance for SA.

Table 4. Effect of individual modules on
F1.

Base Base+EP

F1 90.3 91.2

Base+SA Base+EP+SA

F1 91.7 92.4

The results are summarized in Ta-
ble 4, while all variants stably improve
F1 scores. Specifically, with both orig-
inal and perturbed embeddings (i.e.,
Base+EP), the model obtains 91.2,
indicating the benefit of employing
perturbation as a special data aug-
mentation. Interestingly, we also ob-
serve that the Base+SA model achieves a even higher performance (91.7). No-
tably, the SA module enforces the similarity representation of original-perturbed
pairs. That is, the encoder is fine-tuned so that the presentation of perturbed
embeddings is similar to that of original ones. The perturbation tolerance of the
encoder is enhanced, leading to a better F1 score. Empirically, SA brings a larger
performance boost, in comparison with EP, which indicates the importance of
imposing the semantic alignment to the embedding perturbation.

Table 5. Effect of different EP implemen-
tations including the noise addition and
dropout mask.

∆ 0.1 0.3 0.5 0.7 0.9

Noise 91.1 91.4 91.4 91.2 91.3

Dropout 91.0 91.1 91.3 91.2 90.8

On the EP module. In addition to
the MLP generator in Eq. (3), we also
consider to perturb embeddings via
an element-wise noise addition and a
dropout mask, respectively, while the
SA module is fixed using the W1 dis-
tance. Specifically, let ∆(> 0) be a
pre-determined hyperparameter (∆ ∈
{0.1, 0.3, 0.5, 0.7, 0.9}). Accordingly, the noise is then introduced to follow a
uniform distribution on [−∆,∆] or applying a dropout rate as ∆. The compar-
ison is shown in Table 5, while the performance from the noise and dropout
perturbation is clearly worse than that of MLP (92.4). The reason could be the
structural change as a perturbation introduced by the MLP is stronger than
that of noise and dropout, and therefore better in robustifying the encoder F
(to tolerate more variation).

Table 6. Effect of α

α 0.1 0.3 0.5 0.7 0.9

F1 92.3 92.4 92.4 92.3 92.7

On the other hand, as discussed in
the Analysis section, the choice of α
(from Eq. (10)) is not critical. Herein
we also evaluate the impact from α
empirically. The result from Table 6
illustrates that PFA is insensitive to
α, as a stable performance (with std. of ±0.15) is achieved.
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Fig. 3. Boxplot of F1 performance as the function
of the size of the bottleneck layer in the EP module.
The red curve shows the trend of the mean F1.

On the bottleneck layer.
The EP module implements a
bottleneck structure of MLP
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(as shown in Eq. (3)) to avoid
the trivial solution (i.e., an
identity mapping), although
it is very unlikely to happen
in the optimization process
(due to complex loss func-
tion landscapes in terms of
model parameters). To inves-
tigate the impact from the
structure, specifically, we vary
the size of the hidden (or bot-
tleneck) layer, in {1, 2, 10, 50, 300, 500, 768, 1000}, and the corresponding result,
using the SQuAD dataset, is reported in Fig. 3. Clearly, we observed the larger
size leads to the better performance in the statistical sense. Even with 1 hidden
neuron, our method still achieves an averaged 91.95 F1 score (better than 90.30
of Base). We conjecture that more neurons increase the MLP modeling power,
which may in turn give stronger perturbation and hence further improves the
encoder’s tolerance to the embedding variation.

On the SA module. Additionally, the SA’s effect is also studied while fix-
ing EP as the MLP. In other words, we simply replace the W1 distance with
the instance-level alignment (i.e., cosine similarity) and the distribution level of
the Kullback-Leibler (KL) and Jensen-Shannon (JS) divergence, respectively; all
other hyperparameters and structures are unchanged, although they might be
suboptimal for those variants.

Table 7. Effect of the SA module with
different implementations, including the
instance-level (cos) and the distribution-
level (KL, JS, and W1) alignment.

cos KL JS W1

SQuAD 92.2 92.4 92.3 92.4
HotpotQA 78.6 79.1 78.8 79.3
NewsQA 73.0 73.4 73.5 73.3
NaturalQ 82.1 82.2 82.2 82.2

Comparisons are summarized in Table 7, and cos is associated with a lowest
result, suggesting the rigidness of aligning from the instance level that slightly
compromises the performance. Yet, the averaged performance from cos is still
notably higher than that of Base (using the vanilla RoBERTa-base model). Other
than that, both the KL and JS divergence lead to competitive performances as
W1, which empirically indicates the flexibility of the proposed SA module.

On the low-resource fine-tuning. The following experiment validates PFA
with the low-resource setting, as perturbed embeddings also play a role in pro-
viding additional (training) data. Accordingly, only a small amount (say k) of
(randomly-selected) training samples are utilized for fine-tuning PFA, where
k = {20%, 40%, 60%, 80%, 100%} (100% represents the full dataset).

Fig 4 shows the averaged F1-performance obtained with different percentages
of training samples for the SQuAD dataset. Compared to the Base and SWEP
(the strongest baseline from Table 2), PFA significantly improves the model
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performance with all percentages of the training samples. For instance, with
only 40% of labeled data, PFA has achieved even higher accuracy than SWEP
with 80% samples. Empirically, the result demonstrates the superiority of the
proposed PFA on training robust encoders with the presence of perturbation
samples; accordingly, the latent representation is strengthened thanks to the
robustness of the encoder, and in turn enhances the downstream performance.

On out-of-domain generalizability. At last, PFA is evaluated via the model
generalizability. Specifically, following SSMBA and SWEP, the model is first
trained on a single source dataset (SQuAD in this case), and further evaluated
on unseen datasets (i.e., HotpotQA, NewsQA, and NaturalQ) without further
fine-tuning.

The averaged F1 scores obtained using the proposed and existing methods
is presented in Fig. 5. Clearly, a direct application of the Base model to down-
stream dataset (the vanilla RoBERTa-base model trained from SQuAD) achieves
the worst F1 (60.1 on average), which indicates the distribution difference from
diverse datasets and the low model generalizability (from SQuAD to others). Ad-
ditionally, SWEP is observed with a better F1 performance (61.3), while PFA
scores the best performance (63.5) on average across three target datasets. Due to
perturbed embeddings, PFA enforces the encoder to produce more perturbation-
invariant (in comparison with original token embeddings) representation, which
significantly contributes to the model flexibility and generalizability. The result
further indicates that PFA offers a robust starting point for fine-tuning down-
stream tasks, that can also be regarded as a supplementary pre-training strategy.

20% 40% 60% 80% 100%
Training sample percentage

88

89

90

91

92
Base
SWEP
PFA

F1

Fig. 4. Averaged F1-accuracy as a func-
tion of the training sample size.

HotpotQA NewsQA NaturalQ
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66
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.8

65
.3

4

59
.6

58
.9

67
.2

60
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62
.7
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PFA

Fig. 5. Comparative F1-accuracy for
the out-of-domain generalizability.

4.4 Qualitative study

We further investigate the model characteristic via visualizing the iterative loss
evolution and the formed embedding/representation space.
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Fig. 6. Loss visualization as the function of
the training iteration. The orange and blue
curves are alignment and EQA loss respec-
tively.

Loss visualization. Fig. 6 illustrates
the iterative training loss obtained
from the EQA loss (i.e. LS + LS̃ from
Eq. (6)) against the semantic align-
ment (Wasserstein) loss (i.e. Ld

ali from
Eq. (6)), for the SQuAD dataset. The
learning curve shows that the EQA
and alignment loss are well balanced,
which justifies the simple choice of the
weights for all loss components (cur-
rently all 1 for three losses). On the
other hand, one can also add weights
during the loss formulation, for exam-

ple, L = LS(X) + λ1LS̃(X) + λ2Li/d
ali , to allow more control. However, a detailed

study on the choice of λ1 and λ2 is required and we leave it as future research.
Token embedding and representation visualization. We further visualize
the latent space formed by the token embedding and subsequent representation,
shown in Fig. 7. This 2D visualization is performed using the PCA to reduce
the token embedding and representation dimension and visualize one passage
sample from the SQuAD dataset.

Clearly, the perturbation projects the initial token embeddings (Fig. 7(a))
to different locations (Fig. 7(b)). This comparison evidences the proposed em-
bedding perturbation module via producing embedding variations. On the other
hand, relevant contextualized representations obtained with/out the perturba-
tion are still similar, shown in Fig. 7(c) and (d) respectively. That demonstrates
the encoder robustness of being tolerant against embedding variations and gen-
erating similar representations, from the semantic alignment module.

5 Conclusion

This paper investigates the task of Extractive Question Answering (EQA), for
which a span of passage tokens are identified as answers to the given question.
Existing methods mainly focus on the contextual-aware representation, while the
impact from input token embeddings is underexplored. In this paper, a Perturba-
tion for Aliment (PFA) framework is introduced to bridge this gap. Concretely,
an embedding perturbation module utilizes a general transformation to produce
embedding variations, while a semantic aliment module ensures the represen-
tation similarity between the original and perturbed embeddings. The goal is
to strengthen the encoder so that the generated representation is stable against
the embedding variation and hence beneficial to subsequent EQA tasks. This
framework is also versatile due to many interpretations in terms of the semantic
alignment unified under the Wasserstein-distance dual form. Intensive experi-
ments based on four benchmarking datasets are conducted, and PFA obtains
notable improvements compared to state-of-the-arts. To our knowledge, this is
the first work that explores the token-embedding variation and its impact on
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Fig. 7. The 2D PCA visualization of token embedding and representation before and
after the EP and SA module, using one SQuAD example (the first 70 tokens) with the
ID of e5348d10-cd31-11ed-b387-97a8ff18f3ed.
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EQA, while existing work focus on the token representation aspect. We will
continue exploring this idea for other downstream tasks as our future work.
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