
SCAD: Subspace Clustering based Adversarial Detector
Anonymous Author(s)

ABSTRACT
Adversarial examples pose significant challenges for Natural Lan-
guage Processing (NLP) model robustness, often causing notable
performance degradation. While various detection methods have
been proposed with the aim of differentiating clean and adversar-
ial inputs, they often require fine-tuning with ample data, which is
problematic for low-resource scenarios. To alleviate this issue, a
Subspace Clustering based Adversarial Detector (termed SCAD) is
proposed in this paper, leveraging a union of subspaces to model
the clean data distribution. Specifically, SCAD estimates feature
distribution across semantic subspaces, assigning unseen examples
to the nearest one for effective discrimination. The construction of
semantic subspaces does not require many observations and hence
ideal for the low-resource setting. The proposed algorithm achieves
detection results better than or competitive with previous state-of-
the-arts on a combination of three well-known text classification
benchmarks and four attacking methods. Further empirical analysis
suggests that SCAD effectively mitigates the low-resource setting
where clean training data is limit.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; Natural lan-
guage processing; Cluster analysis.

KEYWORDS
Adversarial example detection, Sparse subspace clustering, Low-
resource training, Model Robustness

ACM Reference Format:
Anonymous Author(s). 2024. SCAD: Subspace Clustering based Adversarial
Detector. In WSDM ’24: The 17th ACM International Conference on Web
Search And Data Mining, March 4 to March 8, 2024, Mérida, Mexico. ACM,
New York, NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In recent years, Transformer-based models have been widely uti-
lized in various fields. Despite the remarkable performance achieved,
they remain susceptible to adversarial attacks [3, 11, 19]. These
attacks manipulate clean/normal samples by introducing subtle per-
turbations, resulting in misleading outputs from the victim mod-
els [3, 11, 19]. In response to this issue, approaches such as adversar-
ial defense and adversarial sample detection, aimed at mitigating the
impact of adversarial samples, have been proposed [9, 13, 26, 29].
While the former focuses on achieving a robust model accuracy on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Illustration of the proposed SCAD. The four blocks of
different colors indicate four subspaces of all clean data iden-
tified by subspace clustering algorithm. A probability density
function is estimated for each cluster separately. Adversarial
features as outliers tend to distribute in low probability regions,
indicated by the union of the “outside” areas of the dotted curves
as they curve towards the high probability regions which are the
centers of the clusters.

both the clean and adversarial inputs [10, 18], the detection methods
differentiate between adversarial and normal samples, subsequently
discarding the adversarial ones during the inference stage [21, 29].
Our paper is on a novel method for adversarial example detection.

Existing detection methods can be broadly cast into three cat-
egories: 1) perturbation-based methods [4, 20–22], 2) inference-
based methods [26, 31], and 3) distribution-based methods[13, 29].
Among them, perturbation-based techniques assess shifts in the
victim model’s response due to slight targeted perturbations, such
as word replacement [21, 22]; inference-based methods scrutinize
model properties, such as input loss landscape [31] or output uncer-
tainty [26]; distribution-based methods characterize the clean data
distribution, capitalizing on the tendency of adversarial samples to
locate around decision boundaries.

While significant progress has been made in achieving remarkable
performance, current methods remain heavily reliant on the victim
model for subsequent detection tasks. This dependency often neces-
sitates a sizable and meticulously labeled training dataset, posing
challenges in real-world situations due to the resource-intensive and
time-consuming nature of annotations. As a result, the low-resource
setting with limited training data, leading to underperforming victim
models and subsequent degradation in detection performance.

To the best of our knowledge, our research represents the first
attempt to conduct adversarial example detection in low-resource
scenarios. The idea is to identify a group of semantic subspaces such
that the observations within each subspace have high coherence in
terms of semantics while exhibiting necessary variation for diver-
sity independent of observations from other subspaces. Withe the
presence of severely limited training resources, our method exhibits

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico Anon.

exceptional performance and efficacy under such testing circum-
stances. This is primarily attributed to the efficiency of constructing
these semantic subspaces, which inherently demand fewer observa-
tions. The advantages of our approach include: 1) independence from
the model for training and validation; 2) lower time consumption;
3) near-zero modifications required to adapt to different architec-
tures. Experimental results, validated using a combination of three
datasets, four attacks, and varying percetanges of training samples,
demonstrate that our method offers superior performance both in
regular scenarios and in low-resource scenarios1.

2 RELATED WORK
2.1 Adversarial Detection
Given an input sample 𝑋 , an adversarial sample 𝑋 ′ is created by
introducing a perturbation 𝛿 to 𝑋 , resulting in 𝑋 ′ = 𝑋 + 𝛿 . The
purpose is to mislead the victim model 𝑓 so that 𝑓 (𝑋) ≠ 𝑓 (𝑋 ′).
In practical scenarios, the perturbation 𝛿 is often imperceptible to
human observers, but pose significant challenges to the robustness
of the model.

Existing attack methods primarily focus on two aspects: character
and word. Character-level attacks implement the perturbation 𝛿 to
make 𝑋 and 𝑋 ′ indistinguishable visually, such as order swapping or
substitution of characters [3]. On the other hand, word-level attacks
generate 𝛿 by employing strategies such as word deletion, insertion,
or substitution, while minimizing semantic dissimilarity between 𝑋

and 𝑋 ′ [5, 11].
Adversarial example detection (AED) is a efficient approach

against attacks. Via training a binary classifier, AED distinguishes
between normal and adversarial samples within the input data, and
subsequently discard the perturbed ones during the inference stage.
Existing detection methods often utilize the victim model to train
the adversarial example detector, and there exists three categories of
AED: perturbation-based [4, 20–22], inference-based [26, 31], and
distribution-based methods.

Specifically, perturbation-based methods manipulate input sam-
ples by substituting, masking, or adding character/words. They then
compare model outputs before and after these modifications to iden-
tify adversarial instances. FGWS [21] substitutes words using the
disparity in word frequency between pre-collected clean and adver-
sarial samples. CHECKHARD [22] replaces words with synonyms,
while WDR [20] masks words based on their significance. Addi-
tionally, UAPAD [4] initially injects a random noise and refines it
during the model fine-tuning.

Inference-based, on the other hand, only operates on the output
level of the model. For instance, ADDMU [26] conducts detection
through both the model and data uncertainty. The assumption is the
model is uncertain about predictions with the adversarial examples.
Sharpness estimates the input loss landscape from the geometric
perspective, and concludes that the adversarial samples have a deep
and sharp local minima on the input loss landscape.

Another line of research relies on the feature distribution, and
RDE [29] and MLE [13] are typical examples. Specifically, RDE
applies a parametric density estimation model to cluster samples with
different labels. Later those clusters are regarded as representations

1 The source code will be made available upon acceptance.

of raw inputs to differentiate samples. In addition, MLE measures
the probability density of testing sample on feature spaces using the
Mahalanobis distance and achieve promising detection results.

It’s evident that many current methods still rely on the victim
model for training, potentially restricting their appilcation, particu-
larly in low-resource scenarios. In contrast, our research introduces
a novel perspective by leveraging semantic subspaces, which de-
mand fewer observations and are thus well-suited for low-resource
settings.

2.2 Semantic Subspace Clustering
As mentioned earlier, our approach is to divide data into several
independent semantic groups where the distributions can be sepa-
rately modelled. The semantic coherence can be expressed by the
successful reconstruction of any observation by using others within
the same group. This connects perfectly to subspace clustering in
machine learning.

Subspace Clustering (SC) has attracted considerable research in-
terest in machine learning. The basic assumption of SC is that the
true data generating source is multiple subspaces and the observed
data may be affected by additive noise. SC concerns recovering
the underlying subspace structure of the data, and the data within
one subspace may exhibit independent distribution characteristics
to others. Sparse models sparked the explosion of methods for SC
represented by sparse subspace clustering [2], many innovative meth-
ods were proposed to greatly improve SC outcomes for various data
modalities [6, 25, 27, 28] and computational efficiency [7, 8].

The principle underlying sparse subspace clustering (SSC) is that
for any observation x in a subspace of dimension 𝑑, only 𝑑 peers
are needed to reconstruct it perfectly in noise-free case. When the
number of the total observation 𝑁 ≫ 𝑑 , which is normally true, this
implies sparsity in linear regression. To formalize this, let x𝑖 ∈ R𝐷
be the 𝑖th observation living in the ambient space of dimension 𝐷,
X = [x1, . . . , x𝑁] ∈ R𝐷×𝑁 the data matrix and X− 𝑗 the matrix with
the 𝑗 th column removed. Then for x𝑖 , SSC solves the following
optimization problem

min
w𝑖

∥w𝑖 ∥𝑝 s.t. x𝑖 = X−𝑖w𝑖 , ∀𝑖 = 1, . . . , 𝑁

where w𝑖 ∈ R𝑁−1 is the reconstruction coefficients vector and
∥w𝑖 ∥𝑝 is a sparsity encouraging ℓ𝑝 norm such as ℓ1 norm. In reality,
noise is inevitable, in which case, an additive noise model is assumed
to extract clean data:

min
w𝑖

∥w𝑖 ∥𝑝 + _∥e𝑖 ∥22 s.t. x𝑖 = X−𝑖w𝑖 + e𝑖 , ∀𝑖 = 1, . . . , 𝑁

where e𝑖 ∈ R𝐷 is the noise and _ ≥ 0 is the regularisation to control
the trade-off between the goodness-of-fit (represented as ∥e𝑖 ∥) and
sparsity. This can be expressed in matrix form as

min
W

∥W∥𝑝 + _∥E∥22 s.t. X = XW + E, diag(𝑊) = 0, (1)

where W ∈ R𝑁×𝑁 and 𝐸 ∈ R𝐷×𝑁 are reconstruction coefficients
matrix and noise matrix respectively, and diag(𝑊) is the diagonal
vector of 𝑊 and the corresponding condition is to prevent an ob-
servation from reconstructing itself. Note that in (1), the equality
constraint reflects semantics coherence with deviations captured by
error E. There are numerous solvers for (1). Many of them were
sought from compressive sensing research.𝑊 is interpreted as a new

SCAD: Subspace Clustering based Adversarial Detector WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico

representation of the original data that contains all subspace informa-
tion. A traditional clustering algorithm such as 𝑘-means is applied to
𝑊 to finalize the subspace membership of individual observations.
We highlight that the identification of each subspace is not part of
the SSC. One has to apply other methods such as principal compo-
nent analysis (PCA) [12] for this purpose. Moreover, the number of
subspaces 𝑘 has to be given or estimated. We use the Eigen-gap [24]
to compute 𝑘 (the number of subspace) in this work, although it is
still a vibrant research area in subspace clustering.

3 PROPOSED METHOD
We propose to use a union of subspaces to model the distribution
of normal (clean data that are not attacked/perturbed), leading to
a much preciser model than those in other works such as the one
in [29]. The hypothesis is that the clean (normal) documents (their
vectorized representations) reside in some semantic subspaces fol-
lowing some distributions such as multivariate Gaussian. While the
attacked ones, which would be unusual in some sense and hence
different to the cleans ones, are outliers that do not belong to any
of the semantic subspaces. Fig. 1 pictorially illustrates this idea,
the core of SCAD. Each color blob represents a semantic subspace
with a probability distribution. The dotted curve of the same color
of the semantic subspace shows the “outskirt” of the distribution,
beyond which (further away from the center of the semantic sub-
space) the probability is very low. Each semantic subspace has such
a “soft” boundary. Jointly, they form semantic bubbles for all clean
documents. The adversarial samples are excluded from any of these
bubbles and attract low probabilities. SCAD has the advantage of
capable of modeling the total distribution of clean data in fine detail.
Furthermore, it serves as a framework as it offers great flexibility, for
example, the distributions within individual semantic subspaces can
be totally independent. As a proof of concept, we start from simple
assumption that the data within a semantic subspace is following
Gaussian distribution. However, we point out that the joint distribu-
tion of all clean data is complex and it is not necessarily a mixture
of Gaussian as the configuration of subspaces is arbitrary and their
dimensionality could be very different.

SCAD starts from identifying semantic subspaces using available
clean data using efficient algorithms such as [8]. After subspace
clustering, the membership of each data point, i.e. the segmentation
of subspaces, is known. Assume we have 𝑆 total subspaces and the
data for 𝑠 subspace is written as X𝑠 ∈ R𝑁𝑠×𝐷 , where 𝑁𝑠 is the
number of observations in subspace 𝑠 and 𝐷 is the ambient space
dimension, for example, 768 in BERT.

Based on Gaussian assumption, we run PCA for each subspace to
find its structure. We outline the procedure here. Assume Y ∈ R𝑁×𝐷

and Y = [y1, . . . , y𝑁]⊤ as the data matrix in certain subspace. Then

m =
1
𝑁

∑︁
𝑖

y𝑖

and

𝚺 =
1

𝑁 − 1

∑︁
𝑖

(y𝑖 − m)⊤ (y𝑖 − m) .

The eigendecomposition of Σ gives all components of Y, and the
first 𝑑 of them corresponding to the largest 𝑑 eigenvalues are the

PC’s. Write the eigendecomposition of Σ as

Σ = UΛU⊤

where U = [u1, . . . , u𝐷] contains all orthonormal components and
Λ = diag(_1, . . . , _𝐷) is a diagnoal matrix with all eigenvalues as-
suming all eigenvalues are sorted by decreasing order. Then we
have

𝑑 = arg𝑘 min
∑𝑘
𝑖 _𝑖∑𝐷
𝑖 _𝑖

≥ 𝜏

where 𝜏 ∈ (0, 1] is the pre-specified threshold called variance ex-
plained in PCA. Normally 𝜏 = 0.95. So we retain the first 𝑑 eigenvec-
tors from U as the subspace coordinates centred at m derived from
all observations in Y. We write P = [u1, . . . , u𝑑]. For any subspace 𝑠,
we write (P𝑠 ,m𝑠 ,Σ𝑠) as its coordinates, centre and covariance triplet.
Under our assumption, data from subspace 𝑠 follow multivariate
Gaussian N(m𝑠 ,Σ𝑠).

SCAD utilizes the following three steps to detect adversarial at-
tack for a given new observation x. The first is subspace assignment,
i.e. finding the closest subspace 𝑙 to x by

𝑙 = arg𝑠 min ∥(I − P𝑠P⊤𝑠) (x − m𝑠)∥2𝐹
where I is the identity matrix with compatible dimensions and ∥ · ∥
is the Frobenius norm. Second is to compute the likelihood of x, i.e.
L(x), being from subspace 𝑙 . This is straightforward as

L(x) = 𝑝 (x′ |m𝑙 ,Σ𝑙)
where x′ = P𝑙P⊤𝑙 (x − m𝑙), 𝑝 (·|m,Σ) is the density function of
Gaussian N(m,Σ). Finally, we make decision on whether x is
normal or attacked. It is manifested as a threshold 𝛾 , satisfying
𝑝 (0|m𝑙 ,Σ𝑙) ≫ 𝛾 > 0, such that x is an outlier, i.e. attacked, if
𝐿(x) > 𝛾 and normal otherwise.

PROPOSITION 1. Given the assumption that the clean data are
distributed within 𝑆 subspaces following multivariate Gaussian, and
the x is assigned to subspace 𝑙 with dimension 𝑑𝑙 , then for any

𝛾 ≤ 𝑒−
𝑑𝑙 log 2𝜋

2 the success probability of SCAD, written as P{SCAD}
is at least

1 − 𝑆

(
2 − 2Φ(

√︄
− 2
𝑑𝑙

log𝛾 − log 2𝜋)
)𝑑𝑙

, (2)

where Φ(𝑡) =
∫ 𝑡

−∞
1
2𝜋 𝑒

− 𝑥2
2 𝑑𝑥 , i.e. the cumulative probability

function of standard Gaussian.

PROOF. We start by writing the success probability of SCAD

P{SCAD} = P{x ∉ S1 ∩ x ∉ S2 ∩ · · · ∩ x ∉ S𝑆 }

= 1 − P{∪𝑆𝑖 x ∈ S𝑖 }
≥ 1 − 𝑆 max

𝑖
P{x ∈ S𝑖 } (Union bound)

= 1 − 𝑆P{x ∈ S𝑙 } (x ∈ S𝑙 as in SCAD) (3)

Now we need the tail bound on multivariate Gaussian. There are
some works about tight tail bound. However, our purpose is to show
P{SCAD} increases as 𝛾 decreases, and therefore we take a simple
route by sphericalizing a Gaussian. Let x̃ be sphericalized version of
x such that

N(x|m𝑙 ,Σ𝑙) = N(x̃|0, I) = 𝑟

WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico Anon.

10 11 12 13 14 15 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

− log(γ)

P
ro

ba
bi

lit
ie

s

d=2
d=3
d=4
d=5
d=6
d=7
d=8
d=9
d=10

Figure 2: The function of P(SCAD) vs − log(𝛾). We set 𝑆 = 5 and
let 𝑑𝑙 vary from 2 to 10. When 𝛾 is the very small, P(SCAD) is
very close to 1.

for 𝑟 > 0. From above, we derive

P{x ∈ S𝑙 } = P(∥x̃∥ > 𝑟) (4)

≤ P(∀𝑖, |𝑥𝑖 | > 𝑟/
√︁
𝑑𝑙) (5)

=
∏
𝑖

P(|𝑥𝑖 | ≤ 𝑟/
√︁
𝑑𝑙)

= (1 − P(−𝑟/
√︁
𝑑𝑙 ≤ 𝑥𝑖 ≤ 𝑟/

√︁
𝑑𝑙))𝑑𝑙 (6)

= [2 − 2Φ(𝑟/
√︁
𝑑𝑙)]𝑑𝑙 (7)

The inequality (5) comes from expanding the integral region and 𝑥𝑖
is the 𝑖th element in x̃. Independence in standardized Gaussian leads
to (6) and (7). Next we connect 𝑟 to the choice of 𝛾 in SCAD. From
(4) we have

(2𝜋)−𝑑𝑙 /2 exp{−1
2

x̃⊤x̃} = 𝛾 .

It is straightforward to see that

𝑟 =
√︁
−2 log(𝛾) − 𝑑𝑙 log 2𝜋.

Substituting the above into (7) and (3) gives the probability bound
as in the proposition description. □

REMARK 1. The success probability of SCAD approaches 1 when
𝛾 approaches 0 as shown in Fig. 2. In other words, the smaller
the value of 𝛾 , i.e. the threshold for the likelihood, the larger the
probability of SCAD being successful. This provides a confidence
level of SCAD. This coincides with the intuition illustrated in Fig. 1
so that the further away x is from all semantic subspaces, the more
likely that it is attacked. From a desired probability 𝑝, we can work
backwards to determine the value of 𝛾

𝛾 = 𝑒

− 𝑑𝑙
2
©«
[
Φ−1 (1−𝑒

log(1−𝑝)−log(𝑆)
𝑑𝑙 /2)

]2
+log(2𝜋)ª®¬

, (8)

where Φ−1 (·) is the quantile function of standard Gaussian, i.e. the
inverse of Φ(·).

Finally, we discuss the standardization of Gaussian. Let A be a
linear transformation such that AΣA⊤ = I. It is clear that

A = Λ− 1
2 U⊤ (9)

where Λ collects all eigenvalues of Σ in its diagonal. If Λ > 0

strictly, i.e. no zero eigenvalues. Λ− 1
2 is element-wise, i.e. _

− 1
2

𝑖
. If

some eigenvalues are zero, simply ignore then and leave them as
zero in Λ− 1

2 because the corresponding eigenvectors will have zero
projection. The standardisation transformation for x is

x̃ = A(x − m)

and then x̃ ∼ N(0, I). Put the result in the context of subspace 𝑙 , we
have

R𝑑𝑙 ∋ x̃ = Λ
− 1

2
𝑙

U⊤
𝑙
(x′ − m𝑙).

Now we can set the decision rule. Assume 𝑑𝑙 = 3, 𝑆 = 5. If we want

P(SCAD) ≥ 0.95,

by using (8), we can easily compute 𝛾 = 0.006354996. From we can
obtain 𝑟 as well, which is simply

𝑟 = Φ−1 (1 − 𝑒
log(1−𝑝)−log(𝑆)

𝑑𝑙 /2) .

Continue on our example, this connects to the geometric interpreta-
tion that within semantic subspace 𝑙 we have

∥x̃∥ > 𝑟 = 1.238735.

Therefore, with above values of 𝛾 and 𝑟 , one can threshold using
either 𝛾 on likelihood or 𝑟 on projected and standardized version of
of x in subspace 𝑙 to obtain a detection probability of 0.95.

4 EXPERIMENTS
4.1 Setup
Datasets. Experiments are conducted on three text classification
benchmarks (summarized in Table 1), including:

• Stanford Sentiment Treebank 2 (SST-2) [23]: this dataset
is a well-regarded resource for sentiment analysis, focusing
on fine-grained sentiment classification using the Stanford
Sentiment Treebank corpus.

• Yelp Reviews (YELP)[30]: this dataset consists of reviews
sourced from the Yelp platform, widely recognized for its
extensive use in local business ratings and customer feedback.

• Internet Movie Database (IMDB)[17]: this dataset is specif-
ically designed for document polarity classification, encom-
passing a collection of movie reviews collected from the
IMDB database.

Table 1: Statistics for employed text-classification benchmarks.

Dataset #Train #Test #Avg Length
SST-2 67,300 1,821 16
YELP 560,000 38,000 152
IMDB 25,000 25,000 161

Attacking algorithms. Four adversarial attacking methods are im-
plemented using TextAttack [19] to pollute input sequences, that
is 2,

2 Pretrained attacking models can be accessed through https://huggingface.co/textattack.
These models are then used directly for generating adversarial samples, following the
approach outlined in [26, 29].

https://huggingface.co/textattack

SCAD: Subspace Clustering based Adversarial Detector WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico

• TextBugger[14] performs perturbations of space insertion,
char deletion/swapping, and synonym substitution;

• DeepWordBug [3] deletes, replaces, and inserts characters
to inputs;

• BERT-Attack [15] substitutes key words using a pre-trained
masked model;

• TextFooler [11] replaces important words with their syn-
onyms;

Notably, the first two methods primarily focus on character-level
attacks, whereas the latter two are mainly employed for word-level
attacks. The diversity in adopted different attacking algorithms pro-
vides a variety of options to effectively explore the capability of
detection models.
Implementation details. For the proposed SCAD, the BERT-base
model [1] is employed as the context encoder. The dropout rate
across all layers is set as 0.1. The Adam optimizer with a dynamic
learning rate is adopted, for which the learning rate is warmed up
for 10 thousand steps to a maximum value of 2𝑒−5 before decaying
linearly to a minimum value of 1𝑒−6 and a gradient clip of (-1, 1).
The batch size is set as 32 with the maximum length of 512 tokens for
each input sequence. The training process is bounded by a maximum
of 5 epochs.

Again, existing detection methods require fine-tuning the victim
models before they can differentiate the normal and adversarial
inputs. To investigate how the variations of training data sizes impact
the performance and flexibility of the detection, we specifically
consider the low-resource setting via limiting the scale of training
data. That is, let 𝑟 be the portion of samples randomly selected from
the full dataset. We then systematically form five training subsets,
commencing from 𝑟 = 10% to 50%, incrementally increasing in size
by 10% intervals. The proposed method is then applied on these data
to form subspaces, while the Eigen-gap [24] is applied to compute
the number of subspace (SST-2: 6, YELP:5, IMDB:8). At last, to
make fair comparison we adopt the same inferring process presented
in [26, 29]. That is, 𝑚 clean samples are randomly selected from
the testing dataset, out of which half are subjected to the attacking
methods to produce adversarial data. For the employed SST-2, YELP,
and IMDB dataset, 𝑚 is set as 2000, 4000, and 4000, respectively.
Detection methods are accordingly employed to differentiate the
normal and attacked testing samples.
Evaluation metrics. Following recent work [20, 26, 29], three mea-
surements are employed to assess the effectiveness of adversarial
detection. Specifically, True Positive Rate (TPR) quantifies the
ratio of accurately identified adversarial examples to the total num-
ber of samples predicted to be adversarial; F1 evaluates the balance
between precision and recall capabilities of the models; Area Under
the Curve (AUC) provides an aggregated measure of model per-
formances across all possible classification thresholds. Accordingly,
higher values for TPR, F1, and AUC indicates the better detection
accuracy.

4.2 Main results
To start, the vanilla model of BERT is fine-tuned with varying per-
centages of training samples (denoted by 𝑟). Then perturbed samples
are generated via applying attacking methods on those fine-tuned
models, except the case of 𝑟=100% where existing perturbed models

are sourced directly from the official TextAttack [19]. Notably, the
adversarial dataset could consist of both successful and unsuccess-
ful attack samples. We focus on those successful samples hereafter,
while an ablation study is conducted in a later session to further
investigate the impact from unsuccessful ones.

Next, the proposed method is compared with several state-of-
the-art approaches, including MLE[13], FGWS[21], WDR[20],
RDE[29], and ADDMU[26]. It is important to note that existing
detection models are fine-tuned with the full dataset (i.e., 𝑟=100%).
Hence, their performance concerning the entire dataset is directly ob-
tained from original papers. However, to evaluate their performance
in low-resource settings (i.e., when 𝑟 ranges from 10% to 50%),
we re-run these methods using provided open-source codes while
ensuring consistent key configurations for all hyper-parameters as
reported.

The averaged results, over five runs, from the proposed method
and state-of-the-arts, are presented in Table 2 and Table 3 for character-
level and word-level attacks, respectively. Our proposed SCAD sub-
stantially outperforms all baseline methods, demonstrating superior
performance across a combination of three benchmarks, four attack-
ing methods, and varying percentages of training samples.

Specifically, when provided with the full-size training data (100%),
SCAD surpasses other methods. This is exemplified in its perfor-
mance on the Yelp dataset, where SCAD achieves a remarkable
surge exceeding 15% in TPR and an advancement of over 10% in F1
score compared to the strongest baseline (ADDMU). Furthermore, in
the low-resource setting (where training samples range from 10% to
50%), SCAD maintains its robust performance, especially in terms
of TPR and F1 scores. These results essentially validate the robust-
ness of SCAD, as the marginal change rate is merely 2.5% (𝑟 : 100%
→ 10%). This is significantly smaller than that of RDE (5.8%) and
ADDMU (4.3%), highlighting the superior stability and consistency
of our proposed method. We also implement the significance test
for five runs via randomly selecting various seeds and performing
the Student’s T-test on each dataset. The averaged 𝑝-values obtained
from SST-2, YELP, and IMDB are 6.19𝑒−4, 9.18𝑒−5, and 5.19𝑒−5,
respectively, which verifies the effectiveness of the proposed method.

Empirically, the proposed SCAD method not only demonstrates
superiority in full-scale data samples but also showcases remarkable
adaptability in low-resource settings. This is a critical advantage,
as real-world scenarios often involve limited data availability and
resource constraints. The capability to perform well even with a
reduced number of training samples makes SCAD a promising ap-
proach for adversarial sample detection.

4.3 Ablation study
On the encoder flexibility. To start with, we evaluate the impact
from the fundamental encoder towards the proposed method. Specif-
ically, the RoBERTa encoder [16] is implemented, and the most
strongest baselines, i.e., RDE and ADDMU, are employed for com-
parison purposes. To make the fair comparison, again, we directly
utilize pre-trained publicly-available attacking models of TextAt-
tack [19], on SST-2 and IMDB, to generate the adversarial samples.

The performance comparison among the proposed method and
two recent baselines is shown in Fig. 3. The proposed method demon-
strates superior performance in terms of F1 score across all datasets,

WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico Anon.

Table 2: The comparison of various detection models in detecting character-level adversarial attacks (i.e., TextBugger and DeepWord-
Bug). Specifically, 𝑟 represents the proportion of training samples utilized for fine-tuning the encoder, relative to the full dataset size.
FGWS is excluded, as it is designed for detecting word-level attacks. The best performance is highlighted in bold, and the presented
results are based on the average of five runs conducted with random seeds. Statistical significance testing at 𝑝-value < 0.01 (using
T-test) are marked with †.

Attacks Textbugger Deepwordbug

Dataset SST-2 Yelp IMDB SST-2 Yelp IMDB
𝑟 Methods TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC

10%

MLE 42.1 54.7 75.6 58.3 67.1 77.5 58.6 64.7 80.6 35.7 52.9 75.8 62.4 71.9 82.5 54.6 65.8 84.9
WDR 50.1 55.7 73.3 63.8 68.7 80.1 80.2 82.8 84.7 38.8 53.1 76.1 64.7 72.7 83.4 71.3 78.3 87.4
RDE 63.5 72.4 86.2 67.3 74.7 86.3 84.8 83.7 87.2 44.6 57.3 81.4 69.4 73.3 89.4 78.3 82.5 89.3
ADDMU 66.3 75.3 88.3 69.2 77.4 88.5 89.0 89.5 95.2 47.2 60.0 84.3 74.3 80.6 91.0 80.1 84.5 93.2
SCAD 74.9† 81.2† 92.2† 96.4† 94.1† 97.6† 91.5† 91.5† 95.9† 50.7† 63.1† 85.1† 96.8† 93.6† 97.2† 82.8† 85.9† 94.2†

20%

MLE 53.5 59.7 78.3 60.7 68.6 80.8 60.7 68.3 81.5 44.7 57.6 77.7 63.8 72.6 84.1 63.9 72.4 86.5
WDR 61.7 67.2 80.8 65.3 70.1 81.7 81.6 82.2 85.3 48.1 59.4 80.1 65.4 73.4 85.5 84.2 87.3 89.7
RDE 64.1 74.8 86.1 68.6 76.1 87.2 86.2 85.3 88.3 53.6 65.6 82.6 70.1 75.6 90.1 87.3 89.2 91.6
ADDMU 67.9 76.4 89.0 71.7 79.2 89.3 90.8 89.5 95.2 55.4 67.0 84.1 75.7 81.6 91.7 88.9 89.6 95.4
SCAD 74.8† 81.2† 92.4† 97.1† 94.0† 97.7† 92.6† 92.0† 96.2† 60.0† 70.7† 87.9† 97.1† 93.6† 97.1† 91.4† 90.7† 96.8†

30%

MLE 53.2 60.8 80.5 61.1 70.3 81.9 62.1 69.8 82.6 43.2 56.7 76.7 64.2 73.8 85.4 62.4 71.1 85.8
WDR 63.1 68.8 81.4 67.2 71.2 82.3 83.7 84.7 86.9 47.2 61.3 79.4 65.8 74.1 86.3 82.4 85.2 89.2
RDE 68.1 77.3 87.7 70.3 77.6 88.6 87.5 86.9 89.8 52.4 64.6 82.2 70.8 76.3 89.9 85.7 88.7 91.8
ADDMU 70.4 78.2 90.1 73.4 80.3 90.5 91.4 90.2 95.6 54.6 66.3 83.7 76.9 82.1 91.5 86.3 89.3 95.2
SCAD 74.7† 81.2† 91.7† 97.9† 93.9† 97.9† 93.5† 92.5† 96.8† 58.1† 69.2† 86.3† 97.0† 93.5† 97.3† 89.6† 90.1† 96.4†

40%

MLE 54.6 62.2 81.7 62.7 71.6 82.6 64.2 70.3 84.5 50.2 62.9 82.4 65.7 74.7 86.1 63.2 71.7 86.2
WDR 64.6 70.7 83.7 69.1 73.4 83.9 85.4 85.3 87.2 51.1 64.6 82.7 67.1 76.3 88.9 87.7 87.1 90.7
RDE 70.1 76.3 89.3 71.8 78.3 89.3 91.2 88.1 90.1 55.3 67.8 85.3 72.4 77.9 90.2 90.1 90.8 92.1
ADDMU 73.4 79.8 91.8 75.2 81.4 91.3 94.7 92.6 95.8 61.4 71.4 86.2 79.4 83.6 91.6 90.5 91.2 95.3
SCAD 76.5† 82.1† 92.1† 98.3† 94.2† 97.8† 95.2† 93.1† 97.2† 64.5† 74.1† 88.1† 97.2† 93.7† 97.8† 93.7† 92.3† 97.3†

50%

MLE 59.6 68.4 82.6 63.8 72.3 83.6 66.4 72.1 85.2 54.1 65.4 84.1 67.2 76.5 88.6 66.7 74.5 87.4
WDR 67.7 73.5 84.1 70.9 74.1 84.4 86.3 86.4 88.9 55.7 66.7 85.5 69.5 77.8 89.5 89.1 88.4 91.1
RDE 72.5 79.1 90.7 74.2 79.5 89.7 92.6 89.5 90.7 57.2 69.3 86.4 73.7 79.5 90.8 93.0 90.5 92.6
ADDMU 75.3 81.3 92.2 77.5 82.7 91.9 95.2 92.9 96.0 64.7 72.7 87.8 80.1 84.3 92.9 93.2 91.8 96.6
SCAD 81.0† 84.9† 93.5† 99.1† 95.9† 98.9† 96.8† 94.2† 97.9† 67.1† 75.8† 89.3† 97.5† 94.1† 98.0† 96.8† 93.7† 97.4†

100%

MLE 67.6 72.3 84.3 61.8 70.6 82.7 67.9 73.4 86.6 53.7 64.2 83.3 65.8 74.9 87.4 64.3 72.5 86.8
WDR 70.7 77.8 88.4 63.2 72.8 87.2 87.7 87.3 89.7 53.8 63.6 84.1 66.4 75.4 88.1 87.7 87.6 90.1
RDE 72.4 79.6 89.6 66.2 75.2 89.2 93.4 90.1 91.0 55.5 67.0 86.1 70.5 78.1 90.4 90.6 90.8 92.0
ADDMU 73.3 80.0 90.9 70.8 78.3 91.0 95.7 93.1 97.5 62.1 71.0 87.4 78.2 83.2 92.2 90.8 90.5 95.3
SCAD 75.3† 81.3† 91.5† 98.6† 94.6† 98.0† 96.1† 93.3† 97.6† 63.5† 73.3† 87.9† 95.7† 93.1† 97.1† 93.4† 91.8† 96.0†

10% 20% 30% 40% 50% 100%

40

50

60

70

80

90

RDE
ADDMU
SSCD

(a) SST-2 & TextBugger

10% 20% 30% 40% 50% 100%

40

50

60

70

80

90

RDE
ADDMU
SSCD

(b) SST-2 & DeepWordBug

10% 20% 30% 40% 50% 100%

40

50

60

70

80

90

RDE
ADDMU
SSCD

(c) SST-2 & BERT-Attack

10% 20% 30% 40% 50% 100%

40

50

60

70

80

90

RDE
ADDMU
SSCD

(d) SST-2 & TextFooler

10% 20% 30% 40% 50% 100%30

40

50

60

70

80

90 RDE
ADDMU
SSCD

(e) IMDB & TextBugger

10% 20% 30% 40% 50% 100%30

40

50

60

70

80

90 RDE
ADDMU
SSCD

(f) IMDB & DeepWordBug

10% 20% 30% 40% 50% 100%30

40

50

60

70

80

90 RDE
ADDMU
SSCD

(g) IMDB & BERT-Attack

10% 20% 30% 40% 50% 100%30

40

50

60

70

80

90 RDE
ADDMU
SSCD

(h) IMDB & TextFooler

Figure 3: Impact analysis from the underlying encoder (i.e., RoBERTa) on the adversarial detection.

SCAD: Subspace Clustering based Adversarial Detector WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico

Table 3: The comparison of various detection models in detecting word-level adversarial attacks (i.e., Bert-Attack and TextFooler).
Specifically, 𝑟 represents the proportion of training samples utilized for fine-tuning the encoder, relative to the full dataset size. The
best performance is highlighted in bold, and the presented results are based on the average of five runs conducted with random seeds.
Statistical significance testing at 𝑝-value < 0.01 (using T-test) are marked with †.

Attacks Bert-Attack TextFooler

Dataset SST-2 Yelp IMDB SST-2 Yelp IMDB
𝑟 Methods TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC

10%

MLE 48.8 58.1 73.4 68.1 75.1 87.4 56.8 64.1 74.1 38.7 55.9 75.4 36.8 49.1 60.8 78.1 80.7 70.1
FGWS 32.6 43.5 66.7 61.9 72.1 72.4 42.6 57.3 61.2 28.2 40.7 73.6 60.9 66.4 73.3 60.7 69.4 75.6
WDR 42.1 48.9 74.1 70.6 78.2 89.2 60.4 72.1 82.4 30.5 43.3 74.3 63.6 70.4 77.1 76.3 78.4 80.4
RDE 62.6 71.9 85.2 74.7 82.1 90.2 76.2 80.1 89.4 58.8 68.4 83.8 66.7 74.3 87.8 86.6 87.4 93.7
ADDMU 64.1 73.8 87.5 78.5 83.5 91.5 78.6 82.8 90.4 60.9 70.2 85.6 72.1 78.4 90.3 89.0 89.5 95.2
SCAD 68.0† 76.4† 88.5† 97.3† 93.9† 97.7† 80.1† 84.3† 91.8† 61.3† 71.6† 86.5† 97.3† 94.0† 98.2† 90.8† 90.4† 95.6†

20%

MLE 53.2 42.8 75.4 68.6 75.7 87.9 73.4 80.1 88.7 43.9 58.1 77.2 37.2 50.4 62.6 80.3 82.4 72.4
FGWS 50.8 54.1 74.3 62.7 72.7 73.1 52.1 63.7 67.1 58.4 69.3 75.8 62.6 68.7 75.8 72.4 77.4 78.3
WDR 57.5 70.9 79.5 68.1 77.0 88.4 65.9 76.3 84.2 60.3 70.4 78.5 64.2 71.2 79.8 83.4 84.6 86.3
RDE 69.3 77.3 86.7 73.4 81.3 89.5 88.4 87.6 90.8 64.7 74.7 85.1 67.8 75.9 87.9 90.1 89.7 93.8
ADDMU 71.3 78.0 88.6 76.2 82.1 91.1 90.1 90.0 92.4 67.8 76.3 87.6 73.5 80.4 90.9 92.4 91.3 94.2
SCAD 73.4† 80.3† 89.7† 96.8† 93.7† 97.6† 91.3† 91.2† 94.3† 68.3† 77.5† 88.0† 97.5† 94.1† 98.8† 94.6† 92.5† 95.3†

30%

MLE 54.6 43.7 76.6 68.1 75.2 87.7 75.1 81.4 90.8 45.3 59.8 79.7 37.7 51.3 63.1 81.2 83.7 73.6
FGWS 51.1 56.2 72.7 62.6 72.1 72.4 56.7 65.1 68.9 62.1 73.9 77.8 63.1 69.2 77.5 75.4 80.4 80.4
WDR 58.8 71.1 80.8 67.8 76.7 88.2 67.2 77.1 86.4 63.4 74.4 81.1 65.6 72.5 80.8 84.1 85.7 87.1
RDE 70.7 78.3 87.3 72.7 80.1 89.6 90.4 89.2 92.1 65.5 74.9 85.3 68.2 76.6 88.2 90.4 90.1 94.8
ADDMU 73.2 80.5 87.1 75.4 81.7 90.7 92.1 91.1 93.7 70.3 78.1 86.8 74.7 81.2 91.1 92.7 91.0 95.6
SCAD 75.8† 81.6† 89.9† 96.6† 93.6† 97.9† 93.7† 92.3† 95.3† 72.5† 79.5† 88.9† 98.6† 94.7† 98.7† 94.0† 92.1† 96.0†

40%

MLE 54.8 61.3 77.6 67.4 74.8 87.3 76.4 82.1 91.3 44.3 58.4 78.2 39.1 52.5 65.1 83.8 85.4 74.9
FGWS 50.5 58.1 71.4 62.2 71.7 72.2 58.4 67.4 70.4 61.7 73.1 76.1 65.4 70.2 78.7 80.3 84.6 82.6
WDR 57.6 70.9 80.7 67.2 76.1 87.8 67.4 77.6 87.7 65.9 73.5 82.2 67.9 72.8 81.6 85.4 86.8 88.4
RDE 70.1 75.7 85.7 71.9 78.8 89.1 91.7 89.4 92.7 63.8 73.7 84.0 69.8 77.4 88.7 91.3 90.9 95.2
ADDMU 72.1 78.6 88.2 74.1 80.2 90.5 93.1 91.3 94.3 68.3 76.8 85.9 75.3 81.7 91.7 92.8 91.4 95.8
SCAD 74.8† 81.0† 90.0† 96.1† 93.4† 97.8† 94.4† 92.7† 95.8† 70.6† 78.2† 88.4† 98.4† 95.7† 98.7† 93.5† 92.1† 96.2†

50%

MLE 55.1 63.6 78.5 69.4 76.3 89.1 78.2 83.7 91.6 48.2 60.5 81.7 40.3 53.9 65.7 85.1 86.7 75.6
FGWS 51.4 61.5 72.3 63.9 72.8 73.1 59.6 70.8 71.6 63.2 72.4 77.1 66.7 71.4 79.3 82.1 86.4 85.7
WDR 57.3 70.3 81.2 68.8 78.7 87.5 68.9 80.4 88.4 65.8 75.2 83.2 68.4 73.8 82.1 87.6 88.7 90.7
RDE 70.7 76.2 86.5 72.5 79.8 89.6 92.5 90.5 93.3 64.2 74.1 84.2 70.2 78.4 89.5 94.6 92.0 96.8
ADDMU 73.0 79.8 87.6 75.8 81.6 90.7 94.2 92.3 95.9 70.1 77.9 86.8 76.8 82.3 92.1 95.2 92.4 97.1
SCAD 75.6† 81.7† 89.9† 96.7† 93.9† 98.0† 95.7† 93.1† 97.0† 72.1† 79.4† 88.7† 98.3† 94.9† 98.7† 96.4† 93.5† 97.5†

100%

MLE 56.8 64.3 79.4 68.7 75.3 88.7 76.9 82.3 91.4 33.3 46.5 79.8 41.3 54.6 66.5 86.3 87.9 76.9
FGWS 52.8 63.7 73.6 63.5 72.6 72.1 58.9 69.3 70.6 62.9 72.8 76.5 67.1 72.7 80.6 84.6 87.1 87.1
WDR 59.2 72.3 83.5 67.5 77.4 86.9 67.8 78.2 87.1 63.4 73.4 82.6 69.6 76.3 83.4 89.3 90.2 91.2
RDE 74.6 80.9 90.3 72.0 79.2 90.2 89.3 88.6 92.7 62.9 72.8 86.5 72.0 79.2 89.6 96.6 93.5 97.7
ADDMU 77.7 82.8 92.3 74.6 80.8 91.4 91.3 90.8 95.7 67.1 75.8 88.8 78.7 83.5 91.6 97.0 93.9 97.7
SCAD 80.2† 85.7† 92.7† 97.7† 94.1† 97.6† 92.2† 91.2† 96.0† 68.1† 76.6† 88.8† 98.1† 94.3† 97.1† 97.1† 94.2† 98.1†

outperforming both RDE and ADDMU. This result aligns with the
pattern observed in Table 2 and 3, where our approach consistently
outperforms the competing methods.

Furthermore, this comparison strengthens the evidence for the
stability and effectiveness of our approach using different underlying
encoders. That is, our method outperforms the current best models,
RDE and ADDMU, utilizing either RoBERTa or BERT as the en-
coder. This consistent advantage across different encoders reinforces
the robustness and generalizability of our proposed method. Without
explicitly mentioning, the following ablation studies are conducted
using the BERT-base encoder.
On the Far-Boundary attacking. The Far-Boundary (FB) attack,
introduced in [26], generates adversarial samples that are deliber-
ately pushed far away from the model decision boundaries. These
FB examples pose an even greater challenge for detection models
compared to regular adversarial samples, as the detection perfor-
mance is significantly worse than random guessing [26]. To ensure a
fair comparison, we reproduce the FB adversarial samples using the

Textfooler and Textbugger attacking methods on both the SST-2 and
YELP datasets, following the methodology outlined in ADDMU[26].
Additionally, we evaluate our model performance in scenarios where
only 30% and the full-scale of training samples are available. The
inclusion of FB adversarial samples and low-resource settings al-
lows us to thoroughly assess the effectiveness of the proposed SCAD
method under hard detection conditions.

The average results from five runs are reported in Table 4, show-
casing the outstanding performance of SCAD in detecting FB ad-
versarial samples across low and full resource scenarios. SCAD
consistently outperforms other baseline methods, demonstrating its
effectiveness in handling challenging and distant-from-boundary
attacks. One possible reason for SCAD’s superior performance is
the independence of class labels, unlike other baseline methods that
rely on categorizing detection samples into various class categories.
This allows SCAD to detect FB samples with minimal probability
deviation from normal samples, making it more robust in detecting

WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico Anon.

Table 4: Performance comparison of the proposed method and
current SOTAs on Far-Boundary (FB) adversarial examples
detection.

SST-2 Textfooler-FB Textbugger-FB
𝑟 Methods TPR F1 AUC TPR F1 AUC

30%
RDE 29.2 45.3 73.7 42.1 55.7 71.8
ADDMU 45.8 58.8 82.5 48.6 61.4 81.5
SCAD 58.9 69.7 84.4 65.0 74.3 89.1

100%
RDE 31.9 45.0 81.5 29.5 42.5 81.1
ADDMU 62.0 72.2 88.0 50.5 62.9 86.1
SCAD 67.6 74.1 90.8 53.5 64.6 90.3

YELP Textfooler-FB Textbugger-FB
𝑟 Methods TPR F1 AUC TPR F1 AUC

30%
RDE 38.0 51.4 75.6 43.8 57.0 80.8
ADDMU 62.8 67.2 86.4 64.5 71.9 83.9
SCAD 98.1 94.6 97.9 98.7 94.7 98.4

100%
RDE 31.5 44.6 82.7 63.9 73.5 88.4
ADDMU 72.8 79.7 89.7 74.8 81.0 90.8
SCAD 97.6 94.1 96.8 98.5 94.6 97.3

adversarial samples that may be significantly far away from the
model’s decision boundaries.

Overall, results from Table 4 further reinforce SCAD’s effective-
ness and reliability as a powerful detection method against adversar-
ial attacks, particularly when faced with challenging FB adversarial
samples in various resource scenarios.
On unsuccessful adversarial examples. While the above scenar-
ios investigate the performance on successful adversarial examples,
hereafter we consider those unsuccessful-attack samples. These spe-
cial samples represent a more challenging scenario for detection
methods and closely resemble real-world settings [4]. Hence we
evaluate the proposed method capability to detect those harder sam-
ples in this section. Specifically, we compare SCAD with current
SOTA methods (such as UAPAD), and present results of F1 scores
(with 𝑟=100%) in Table 53.

Table 5: Comparison of detection results on unsuccessful adver-
sarial examples.

F1 SST-2 IMDB
Methods Textfooler Bert-Attack Textfooler Bert-Attack

RDE 73.2 81.0 73.2 81.3
UAPAD 80.9 85.1 76.8 78.0

SCAD (ours) 76.0 85.4 92.8 90.4

Empirically, the performance of all detection methods exhibits a
notable decrease when faced with unsuccessful adversarial examples,
as exemplified by RDE using the IMDB dataset. For instance, the
F1 scores for Textfooler and Bert-Attack are reduced from 93.5
to 88.6 and 73.2 and 81.3, respectively. Moreover, our proposed
method demonstrates a competitive performance, outperforming
other approaches in three out of the four scenarios evaluated. This

3 As no source codes released by UAPAD, their results are directly sourced from the
original paper.

indicates its robustness and potential for practical application in
detecting even unsuccessful adversarial samples.
Complexity. At last, we compare the computational efficiency of
various detection methods. Specifically, Table 6 shows the GPU time
required for training with 1000 and detecting 1500 samples, using
the SST-2 and IMDB datasets.

Particularly, FGWS achieves the quickest inference time by sim-
ply substituting low-frequency words with high-frequency alter-
natives during testing. In contrast, ADDMU necessitates iterative
forward propagations to compute both model and data uncertainty.
Comparable to ours in computational expense, RDE incorporates
additional steps like kPCA and MCD for training and estimating the
data Gaussian distribution. Overall, SCAD offers a computationally
affordable solution, exhibiting efficient time consumption in both
training and detection stages.

Table 6: Computational efficiency of various adversarial detec-
tors, for training 1000 samples and inferring 1500 samples, in
terms of the GPU calculation time (seconds).

Methods Training Testing
SST-2 IMDB SST-2 IMDB

FGWS 52.7 63.1 4.17 5.58
WDR 86.4 99.4 21.4 27.8
RDE 42.7 56.6 76.8 102.3

ADDMU 207.3 251.8 327.8 369.4
SCAD 40.4 53.7 12.2 13.1

5 CONCLUSION
We introduced a novel adversarial example detection (AED) ap-
proach, the Subspace Clustering based Adversarial Detector (SCAD).
While the majority of existing AED methods rely on fine-tuning the
victim model, which can constrain their effectiveness, our method
takes a different route. The proposed SCAD estimates feature distri-
bution across semantic subspaces and categorizes unseen examples
into the nearest one for detection. The main idea is observations
within each subspace exhibit strong semantic coherence and es-
sential diversity. Our experimental results, conducted across three
datasets using four attack methods, showcased SCAD outperforming
existing approaches with superior performance. Notably, SCAD also
effectively addresses the challenge of low-resource scenarios where
clean training data is scarce.

ETHICAL STATEMENT
This work is generally considered ethically unproblematic, as all
datasets and models employed in this study are openly accessible
to the public. Nevertheless, we acknowledge the need to address
the possibility of subtle biases that might arise from the use of
Pre-trained Language Models (PLMs) as encoders for generating
the latent representation of tables and queries. These PLMs might
inherit biases present in the data they were trained on. However, it is
important to note that during our analysis, we did not identify any
concerning outcomes related to bias.

SCAD: Subspace Clustering based Adversarial Detector WSDM ’24, March 4 to March 8, 2024, Mérida, Mexico

REFERENCES
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[2] Ehsan Elhamifar and Rene Vidal. 2013. Sparse Subspace Clustering: Algo-
rithm, Theory, and Applications. https://doi.org/10.48550/arXiv.1203.1005
arXiv:1203.1005 [cs, math, stat].

[3] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-Box
Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers.
2018 IEEE Security and Privacy Workshops (SPW) (2018), 50–56.

[4] SongYang Gao, Shihan Dou, Qi Zhang, Xuanjing Huang, Jin Ma, and Ying Shan.
2023. On the Universal Adversarial Perturbations for Efficient Data-free Adversar-
ial Detection. In Findings of the Association for Computational Linguistics: ACL
2023. Association for Computational Linguistics, Toronto, Canada, 13573–13581.
https://aclanthology.org/2023.findings-acl.857

[5] Siddhant Garg and Goutham Ramakrishnan. 2020. BAE: BERT-based Adversarial
Examples for Text Classification. ArXiv abs/2004.01970 (2020).

[6] Yi Guo, Junbin Gao, and Feng Li. 2014. Spatial subspace clustering for drill
hole spectral data. Journal of Applied Remote Sensing 8, 1 (April 2014), 083644.
https://doi.org/10.1117/1.JRS.8.083644

[7] Yi Guo, Junbin Gao, and Feng Li. 2015. Random spatial subspace clustering.
Knowledge-Based Systems 74 (Jan. 2015), 106–118. https://doi.org/10.1016/j.
knosys.2014.11.006

[8] Yi Guo, Stephen Tierney, and Junbin Gao. 2021. Efficient sparse subspace cluster-
ing by nearest neighbour filtering. Signal Processing 185 (Aug. 2021), 108082.
https://doi.org/10.1016/j.sigpro.2021.108082

[9] Xinrong Hu, Ce Xu, Junlong Ma, Zijian Huang, Jie Yang, Yi Guo, and Johan
Barthelemy. 2023. [MASK] Insertion: a robust method for anti-adversarial attacks.
In Findings of the Association for Computational Linguistics: EACL 2023. 1028–
1040.

[10] Xinrong Hu, Ce Xu, Junlong Ma, Zijian Huang, Jie Yang, Yi Guo, and Johan
Barthelemy. 2023. [MASK] Insertion: a robust method for anti-adversarial
attacks. In Findings of the Association for Computational Linguistics: EACL
2023. Association for Computational Linguistics, Dubrovnik, Croatia, 1058–1070.
https://aclanthology.org/2023.findings-eacl.78

[11] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2019. Is BERT Really
Robust? A Strong Baseline for Natural Language Attack on Text Classification
and Entailment. In AAAI Conference on Artificial Intelligence.

[12] M. Jolliffe. 1986. Principal Component Analysis. Springer-Verlag, New York.
[13] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A Simple Unified

Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks.
In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2018/
file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf

[14] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2018. TextBugger: Gen-
erating Adversarial Text Against Real-world Applications. ArXiv abs/1812.05271
(2018).

[15] Linyang Li, Ruotian Ma, Qipeng Guo, X. Xue, and Xipeng Qiu. 2020. BERT-
ATTACK: Adversarial Attack against BERT Using BERT. ArXiv abs/2004.09984
(2020).

[16] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[17] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, 142–150. https://aclanthology.org/P11-1015

[18] Zhao Meng, Yihan Dong, Mrinmaya Sachan, and Roger Wattenhofer. 2022. Self-
Supervised Contrastive Learning with Adversarial Perturbations for Defending
Word Substitution-based Attacks. In Findings of the Association for Computational
Linguistics: NAACL 2022. Association for Computational Linguistics, Seattle,
United States, 87–101. https://doi.org/10.18653/v1/2022.findings-naacl.8

[19] John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi.
2020. TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and
Adversarial Training in NLP. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations. 119–126.

[20] Edoardo Mosca, Shreyash Agarwal, Javier Rando-Ramirez, and Georg Groh. 2022.
" That Is a Suspicious Reaction!": Interpreting Logits Variation to Detect NLP
Adversarial Attacks. arXiv preprint arXiv:2204.04636 (2022).

[21] Maximilian Mozes, Pontus Stenetorp, Bennett Kleinberg, and Lewis D Griffin.
2020. Frequency-guided word substitutions for detecting textual adversarial
examples. arXiv preprint arXiv:2004.05887 (2020).

[22] Hoang-Quoc Nguyen-Son, Huy Quang Ung, Seira Hidano, Kazuhide Fukushima,
and Shinsaku Kiyomoto. 2022. CheckHARD: Checking Hard Labels for Adver-
sarial Text Detection, Prediction Correction, and Perturbed Word Suggestion. In
Findings of the Association for Computational Linguistics: EMNLP 2022. Associa-
tion for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2903–2913.
https://aclanthology.org/2022.findings-emnlp.210

[23] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Man-
ning, Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, Seattle, Washington, USA, 1631–1642.
https://aclanthology.org/D13-1170

[24] Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel J. Candès. 2014. Robust
subspace clustering. The Annals of Statistics 42, 2 (April 2014). https://doi.org/
10.1214/13-AOS1199

[25] Stephen Tierney, Junbin Gao, and Yi Guo. 2014. Subspace Clustering for Sequen-
tial Data. In 2014 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, Columbus, OH, USA, 1019–1026. https://doi.org/10.1109/CVPR.2014.134

[26] Fan Yin, Yao Li, Cho-Jui Hsieh, and Kai-Wei Chang. 2022. ADDMU: Detection of
Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation.
arXiv preprint arXiv:2210.12396 (2022).

[27] Ming Yin, Junbin Gao, Zhouchen Lin, Qinfeng Shi, and Yi Guo. 2015. Dual
Graph Regularized Latent Low-Rank Representation for Subspace Clustering.
IEEE Transactions on Image Processing 24, 12 (Dec. 2015), 4918–4933. https:
//doi.org/10.1109/TIP.2015.2472277

[28] Ming Yin, Junbin Gao, Shengli Xie, and Yi Guo. 2019. Multiview Subspace
Clustering via Tensorial t-Product Representation. IEEE Transactions on Neural
Networks and Learning Systems 30, 3 (March 2019), 851–864. https://doi.org/10.
1109/TNNLS.2018.2851444

[29] KiYoon Yoo, Jangho Kim, Jiho Jang, and Nojun Kwak. 2022. Detection of
Adversarial Examples in Text Classification: Benchmark and Baseline via Robust
Density Estimation. In Findings of the Association for Computational Linguistics:
ACL 2022. Association for Computational Linguistics, Dublin, Ireland, 3656–3672.
https://doi.org/10.18653/v1/2022.findings-acl.289

[30] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. Advances in neural information processing systems
28 (2015).

[31] Rui Zheng, Shihan Dou, Yuhao Zhou, Qin Liu, Tao Gui, Qi Zhang, Zhongyu
Wei, Xuanjing Huang, and Menghan Zhang. 2023. Detecting Adversarial Sam-
ples through Sharpness of Loss Landscape. In Findings of the Association for
Computational Linguistics: ACL 2023. Association for Computational Linguistics,
Toronto, Canada, 11282–11298. https://aclanthology.org/2023.findings-acl.717

https://doi.org/10.48550/arXiv.1203.1005
https://aclanthology.org/2023.findings-acl.857
https://doi.org/10.1117/1.JRS.8.083644
https://doi.org/10.1016/j.knosys.2014.11.006
https://doi.org/10.1016/j.knosys.2014.11.006
https://doi.org/10.1016/j.sigpro.2021.108082
https://aclanthology.org/2023.findings-eacl.78
https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/2022.findings-naacl.8
https://aclanthology.org/2022.findings-emnlp.210
https://aclanthology.org/D13-1170
https://doi.org/10.1214/13-AOS1199
https://doi.org/10.1214/13-AOS1199
https://doi.org/10.1109/CVPR.2014.134
https://doi.org/10.1109/TIP.2015.2472277
https://doi.org/10.1109/TIP.2015.2472277
https://doi.org/10.1109/TNNLS.2018.2851444
https://doi.org/10.1109/TNNLS.2018.2851444
https://doi.org/10.18653/v1/2022.findings-acl.289
https://aclanthology.org/2023.findings-acl.717

	Abstract
	1 Introduction
	2 Related work
	2.1 Adversarial Detection
	2.2 Semantic Subspace Clustering

	3 Proposed method
	4 Experiments
	4.1 Setup
	4.2 Main results
	4.3 Ablation study

	5 Conclusion
	References

