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Abstract

In machine learning it is common to interpret each data sample as
a multivariate vector disregarding the correlations among covariates.
However the data may actually be functional i.e. each data point is a
function of some variable such as time and the function is discretely
sampled. The naive treatment of functional data as traditional mul-
tivariate data can lead to poor performance due to the correlations.
In this paper we focus on subspace clustering for functional data or
curves, and propose a new method robust to shift and rotation. The
idea is to define a function or curve and all its versions generated by
shift and rotation as an equivalent class, and then find the subspace
structure among all equivalent classes as the surrogate for all curves.
Experimental evaluation on synthetic and real data reveals that this
method massively outperforms prior clustering methods in both speed
and accuracy when clustering functional data.
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1 Introduction

In machine learning it is common to interpret each data point as a vector
in Euclidean space [1]. Such a discretisation is chosen because it allows for
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easy manipulations and fast computation, even with large datasets. How-
ever these methods choose to ignore that the data may not naturally fit into
this assumption. In fact much of the data collected for practical machine
learning are actually functions or curves. In contrast to feature vectors,
functional data encode gradient information, which is vital to analysis. For
example financial data such as stock or commodity prices are functions of
monetary values over time [2]. Recently functional data have become in-
creasingly important in many scientific and engineering research areas such
as ECG (electrocardiogram) or EEG (Electroencephalography) in health-
care [3], subject outlines in both macro and micro-biology [4], weather or
climate data [5], astronomy [6] and motion trajectories from computer vision
[5, 7].

Analyzing functional data has been an emerging topic in statistical re-
search [8, 9, 10, 11] and has attracted great attention from machine learning
community in recent years [12, 13]. One of the important challenges in an-
alyzing functional data for machine learning is to efficiently cluster and to
learn better representations for functional data. Theoretically functional
data are of infinite dimension. Due to discretisation, there are only limited
samples taken from a functional observation. Strong correlation between
neighbouring samples and information loss during discretisation are major
challenges for analysis. A desired model for functional data is expected to
properly and parsimoniously characterise the nature and variability hidden
in the data. The classic functional principal component analysis (fPCA)
[14, 15] is one of such examples to discover dominant modes of variation
in the data. However fPCA may fail to capture patterns if the functional
data are not well aligned in its domain. For time series, a special type
of functional data, dynamic time warping (DTW) has long been proposed
to compare time series based on shape and distortions (e.g., shifting and
stretching) along the temporal axis [16, 17].

Another important type of functional data is shape [10, 18]. Shape is an
important characterizing feature for objects, and in computer vision shape
has been widely used for the purpose of object detection, tracking, classi-
fication, and recognition. In fact, a natural and popular representation for
shape analysis is to parametrise boundaries of planar objects as 2D curves.
In object recognition, images of the same object should be similar regardless
of resolution, lighting, or orientation. Hence an efficient shape representa-
tion or shape analysis scheme must be invariant to scale, translation and
rotation.

Our intention in this study is to consider functional data clustering by
accounting for the possible invariance in scaling/stretching, translation and
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rotation of functional data. The focus of this paper is upon functional data
including continuous functions parameterised by a single variable such as
time and shapes in Euclidean spaces. The main characteristic we are inter-
ested in is that the functions are actually clustered in underlying subspaces.
In other words, the original functions are sampled from several subspaces,
which is embedded in a space with infinitely many dimensions. However,
the observed functions are affected by geometric distortions and noise for
some reason. The distortions creep in the multivariate representations of the
functions and effectively breaks down the subspace identification methods
built on classic multivariate data, even for those with robustness designed in
the models to handle fairly large noises. Our experiments shown in Section
5 reveal this quite clearly. The reason is straightforward as the geomet-
ric distortions are themselves structural and do not fit into any probability
distribution.

The solution to this problem relies on countering distortions, and the
way we approach it is to manipulate the observed functions such that the
transformed versions are invariant to distortions. Or in other words, we
group the distorted versions of one function to be an equivalent class and
treat the whole class as a datum in clustering. The equivalent class as a new
representation accommodates all possible distortions and hence an infinite
class. However, the cost is that the new representation of functions has
some geometric structure, which has to be dealt with to achieve the final
goal. This geometric structure in particular is a quotient manifold where
each point is an equivalent class of functions that are transformed version of
each other. The original subspace then becomes subspaces in this quotient
manifold. However, it has no obvious coordinate representation, and hence
no computation can be carried out directly. We get around this problem by
projecting points into tangent space, a vector space regarded as a local ap-
proximation of the manifold, where we model the relations among the images
of the points for clustering purpose. A very useful shape representation we
consider is the square-root velocity function (SRVF) representation [10, 19].
In general, the resulting SRVF of a continuous shape is square integrable,
belonging to the well-defined Hilbert space where appropriate measurement
can be applied. Refer to Section 3 for more details. By acknowledging the
true nature of the data we develop more robust clustering method that ex-
ploit features that would otherwise be ignored or lead to erroneous results
with simple linear models.

The rest of the paper is organised as follows. In section 2 we discuss
related work in this field. In Section 3, we review the preliminaries about
the SRVF and more importantly the manifold of open curves and introduce
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our robust functional manifold clustering model. Section 4 is dedicated to
explaining an efficient algorithm for solving the optimisation in the realisa-
tion of our model based on the linearised alternative direction method with
adaptive penalty (LADMAP) and the algorithm convergence and complex-
ity are also analysed. In Section 5, the proposed model is assessed on both
synthetic and real world databases against several state-of-the-art methods.
Finally, conclusions are discussed in Section 6.

2 Related Work And Motivation

The simplest approaches for clustering functional data have relied heavily
on Dynamic Time Warping (DTW). DTW is an alignment technique which
aims to warp the time axis of the data until the difference between the two
sequences is minimised [20]. DTW also provides a distance measurement
between the two sequences, once aligned. Historically DTW has been mainly
used for large scale data mining, where queries are performed to quickly find
the nearest neighbours to sequences of data [6]. However the aligned distance
produced by DTW has been used for clustering of functional data. In its
simplest form DTW is used to produce a pairwise distance matrix for the
entire dataset [21, 22]. Then the distance matrix is used by a hierarchical
or spectral clustering method to produce the final clusters. Although these
DTW based approaches are computationally cheap, their clustering accuracy
leaves much to be desired. This is due to two flaws in DTW. Firstly, the
distance measurement for DTW is based on Euclidean distance between each
point in the sequence. This totally ignores any gradient based information in
the sequence. Secondly, the warping accuracy is dependant on the correct
choice of window size. Poor choices of warping window size can have a
dramatic impact on warping and alignment accuracy [23]. Other methods
such as DTW-HMM [24] have used DTW based clusters as an initialisation
point for more advanced methods such as Hidden Markov Models.

A more sophisticated approach for functional data clustering is to use
probabilistic methods [20]. Early methods used simple Gaussian probability
models [5, 25, 26, 27]. However these models only hold for Euclidean vector
data where the notions of cluster centres and cluster variance can be easily
quantified [28]. In [29] Zhang e.t. al proposed Bayesian clustering of curves,
which is similar in nature to DTW pairwise distance clustering with advances
that address most of the drawbacks. The distance matrix is based on analysis
of the data points in the curve manifold. Then the clustering is performed
on the distance matrix by using a probabilistic method that simultaneously
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finds the cluster assignment and the number of clusters automatically.
We now draw the readers attention to subspace clustering methods, as

they apply to many situations that traditional clustering methods cannot
handle well [30, 31]. Different from finding spatially concentrated clusters
measured by usual Euclidean metric, these methods aim to segment the
data into clusters with each cluster corresponding to a unique subspace.
More formally, given a data matrix of observed column-wise data samples
A = [a1,a2, . . . ,aN] ∈ Rp×N and ai ∈ Rp, ∀i = 1, . . . , N , the objective of
subspace clustering is to assign each data sample to its underlying subspace.
The basic assumption is the following.
Subspace assumption: The data is drawn from a union of c subspaces {Si}ci=1

with bases {Bi}ci=1, and intrinsic dimensions {di}ci=1.
Based on above assumption, simple linear algebra shows that for any

given point in a subspace, the most parsimonious or consistent (measured
by matrix rank) reconstruction of it is formed by the points from the same
subspace as that of the given one. Many methods are constructed on this
observation such as Sparse Subspace Clustering (SSC) [32] and low-rank
representation (LRR) [33] while different methods seek different structures
in the reconstruction matrices in their formulations. For any given datum
ai, the reconstruction is expressed as

wi = arg min
zi
‖ai −A−iwi‖, (2.1)

where A−i is the matrix of A with the ith column removed, and wi is a vector
with the reconstruction weights for ai. Let W = [w1, . . . ,wN ] be the matrix
consisting of all reconstruction weights. The restriction to W as being sparse
or low rank has the effect of selecting points from subspaces. Therefore, W
can be used as an affinity matrix to form a graph and a spectral clustering
method like nCUT [34] to obtain the final subspace labels. Of course, there
is always noise in the observed data, which has to be modelled for robustness.

Let us go back to functional data case where ai is actually a function of
time t without loss of generosity, i.e. ai(t) ∈ R∞. The subspace assumption
can still be valid for the bases being functions as well. This is obvious in
spectroscopy where some material spectrum is a mix of several spectra of
pure materials [35] which is one set of bases. Segmenting spectra according
to their constituents is exactly subspace clustering. Similar applications like
this are abundant in many areas such as computer vision where the data
are essentially functions, and therefore subspace clustering is very useful in
functional setting. As a consequence of validity of the subspace assumption,
the reconstruction in (2.1) still holds. This justifies the direct application of
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the subspace clustering to the multivariate representation of functional data
when they are clean. However, the observed functionals can be affected by
many things except for additive noise. The most serious one is distortions
in shape. For example in thermal infra-red data of geological substances, a
curve may contain a key identifying feature such as a dip near a particular
frequency. This dip may shift or vary position even for the same substance
due to impurities as shown in Fig. 4. Or in other cases the feature may
be elongated, shrunk or subject to some non-uniform warping or scaling.
Unfortunately, these distortions commonly exist in functional data. For
example, the trajectories of writing a letter look very similar but never quite
the same with different orientation, starting point and features, nonetheless
they are the same letter. These distortions effectively break down (2.1) in
obvious way, e.g. a shifted version of a function can not even reconstruct its
original version using the formulation of (2.1), and therefore multivariate
subspace clustering is no long appropriate.

DTW correction can alleviate the problem to some extent, with the lim-
itation of only dealing with shift effectively. Moreover, when two functions
are from different subspaces, the optimal alignment is not clear and the
alignment outcome can be misleading as the shape features of functions can
be misaligned during the process. Nonetheless the DTW idea is interesting.
What if we take another route? Instead of carrying out the alignment ex-
plicitly, we pack all the common distortions into a map F from a function
to its equivalent class, i.e. F : a(t) 7→ [a(t)], meaning that if one function is
the distorted version of the other, they end up in the same equivalent class
by using F . [x] stands for equivalent class containing all objects that are
equivalent to x in some sense. Now the data in the subspace assumption
becomes equivalent classes instead of individual functions. Although the
equivalent class has no explicit vector form, its geometric structure may be
used for computational purpose to recover the subspaces underpinning these
equivalent classes. So we need two components at the same time, the map
F accounting for distortions which has a suitable geometric structure. The
next section is dedicated to explaining the details of the development of our
method.

3 Robust Functional Manifold Clustering

Please note that differential geometry is involved in this method. [36] is an
excellent reference for all the concepts used in this paper.

We start with a few observations. The first is the distinct features of
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functions are usually in rate of changes such as valleys and peaks which
can be better captured by first derivative. The second is that shift, stretch
and compression of functions can be regarded as re-parametrisation of the
time t, i.e. the distorted version is actually a(γ(τ)), where γ(τ) is the re-
parametrisation function replacing t. The third is that the rotation is a
simple linear operation whose matrix representation is a rotation matrix.
These observations lead us to the square-root velocity function (SRVF) rep-
resentation [10, 19] with rotation group detailed in the following sections.

3.1 The Curve Manifold

We formalise the function as a smooth parameterised n-dimension curve
a : D → Rn, where D = [0, 1]. Here the smoothness requirement means
that the function has continuous first order derivative. We represent it
using the square-root velocity function (SRVF) representation given by

q(t) =
ȧ(t)√
‖ȧ(t)‖

,

where ȧ(t) is the derivative of a(t) and ‖ȧ(t)‖ the L2 norm of ȧ(t). Ap-
parently we exclude constant curve which has norm 0. The SRVF mapping
transforms the original curve a(t) into a gradient based representation, which
facilitates the comparing of the shape information.

In this paper, we focus on the set of open curves, i.e. a(0) 6= a(1).
For handling general curves, we refer readers to [10]. The SRVF facilitates
a measure and geometry bearing invariance to scaling, shifting and repa-
rameterising in the curves domain. For example, all the translated curves
(in Rn) from a curve a(t) will have the same SRVF. Robinson [37] proved
that if the curve a(t) is absolutely continuous, then its SRVF q(t) is square-
integrable, i.e., q(t) is in a functional Hilbert space L2(D,Rn). Conversely
for each q(t) ∈ L2(D,Rn), there exists a curve a(t) whose SRVF corresponds
to q(t). Thus the set L2(D,Rn) is a well-defined representation space of all
the curves. The most important advantage offered by the SRVF framework
is that the natural and widely used L2-measure on L2(D,Rn) is invariant to
reparameterisation. That is, for any two SRVFs q1 and q2 and an arbitrarily
chosen reparametrisation function (non-decreasing) t = γ(τ), we have

‖q1(t)− q2(t)‖L2 = ‖q1(γ(τ))− q2(γ(τ))‖L2 .

This property give us the invariance to some distortions we mentioned
earlier. Furthermore, this reparameterisation together with L2(D,Rn) form
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a quotient manifold. To see this, we introduce some more notations. Let Γ be
the set of all diffeomorphisms from D = [0, 1] to D = [0, 1]. This set collects
all the reparametrisation mappings. Γ is a Lie group with composition as
the group operation and the identity mapping as the identity element. Then
all the orbits [q] = {q ◦ γ = q(γ(t)) | ∀γ ∈ Γ} together define the quotient
manifold L2(D,Rn)/Γ, i.e. all reparametrised q(t) are treated as the same.

Without loss of generality, we assume that all curves are normalised
to unitary length, i.e.,

∫
D ‖ȧ(t)‖dt = 1. The SRVFs associated with these

curves are elements of a unit sphere in the Hilbert space L2(D,Rn) because∫
D ‖q(t)‖

2dt = 1. Therefore, under the curve normalisation assumption,
instead of L2(D,Rn), we consider the following unit sphere manifold

Co =

{
q ∈ L2(D,Rn) :

∫
D
‖q(t)‖2dt = 1

}
.

The manifold Co has some nice properties, see [38]. For any two points
q0 and q1 in Co, the geodesic, i.e. the shortest path connecting two points
on the manifold, is given by α : [0, 1]→ Co,

α(τ) =
1

sin(θ)
(sin(θ(1− τ))q0 + sin(θτ)q1), (3.1)

where θ = cos−1(〈q0, q1〉) is the length of the geodesic and 〈·, ·〉 is the inner
product defined in L2(D,Rn). Taking the derivative of α at τ = 0, we obtain
the tangent vector at q0

v =
θ

sin(θ)
[q1 − 〈q0, q1〉q0]. (3.2)

The above formula is regarded as the Logarithm mapping logq0(q1) on the
manifold Co, i.e. the map that takes the points on the manifold to the
tangent space rooted at some point.

As we are concerned with the shape invariance, i.e., we need to addi-
tionally remove the shape-preserving transformations: rotation and curve
reparametrisation. For this purpose, we introduce rotation group SO(n) for
all the rotations in Rn. Combining SO(n) with Γ, we define the equivalence
relation between pair of points qi and qj , i.e. we claim qi equivalent to qj ,
written as qi ∼ qj , if they are rotated and reparametrised version of each
other. The quotient manifold So = Co/(SO(n) × Γ) then has the property
we need. Each element [q] ∈ So is an equivalence class defined by

[q] =
{
Oq(γ(t))

√
γ̇(t) | O ∈ SO(n) and γ ∈ Γ

}
.
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Figure 1: Illustration of projection to tangent space. Different symbols are
for different subspaces on sphere. The black dots in (b) and (d) are the
origin of the tangent spaces. (a) (b) show the original points on S2 and
their projections to a tangent space footed on on one of the point. (c) and
(d) are for two 2-D subspaces in S3. (c) shows one view of the projection
and (d) is the rotation of (c) to reveal the reduced subspace.

Now [qi] is the a family of curves that are transformed version of each other.
More concretely, given a set of N unit-length curves {a1(t), ..., aN (t)}, their
SRVFs are {q1(t), ..., qN (t)} such that [qi] ∈ So and qi(t) is a representative
of the equivalent class [qi]. So if ai(t) is the distorted version of aj(t) and
then [qi]=[qj ] and these two will be reflected as a single point in So.

3.2 The Proposed Clustering Method

It is clear that So is a good representation for curves which is invariant to
many distortions we focus on. From the line of its development, we see that
the functional subspace assumption holds because the gradient and rotation
are linear operators and reparameterisation works on function bases as well.
However, the obstacle now is that So is an abstract unitary sphere with no
obvious vector form. Recovering the subspace structure is not straightfor-
ward. Nonetheless the tangent space of any smooth manifold at any point
is a well defined vector space with the same dimensionality as the manifold
[39]. Observe that the projection to tangent space on unitary sphere Sn in
Rn+1 preserves subspace structure of the points on the sphere. If the foot
of a tangent space is from one subspace, then this subspace will have one
less dimension in the tangent space. This is illustrated in Fig. 1. This
prompts us to use tangent space on So. Fortunately, the computation is
readily available.

Given any two points [q0] and [q1] in So, a tangent representative [38] of
[q1] in the tangent space T[q0](So) can be calculated in the following way, as
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suggested in [40, 41] based on (3.2),

ṽ = log[q0]([q1]) =
θ̃

sin(θ̃)
[q̃1 − 〈q̃0, q̃1〉q̃0]. (3.3)

where q̃ is the representative of [q] given by the well-defined algorithm in
[40, 41] and θ̃ = cos−1(〈q̃0, q̃1〉). In fact, ṽ is the lifting representation
of tangent vector log[q0]([q1]) in T[q0](So) for [q1], or in other words, the
projection of [q1] in T[q0](So).

We are ready to recover the subspace structure now in tangent space.
We start with

N∑
j=1

wij log[qi]([qj ]) = 0, ∀i = 1, . . . , N. (3.4)

Note that log[qi]([qi]) = 0, i.e. [qi] is the origin of its tangent space. This in-

troduces indeterminacy for [qi]. Therefore, we have the constraint
∑N

j=1wij =
1, i = 1, 2, . . . , N to avoid trivial solution and other indeterminacy such as
arbitrary scaling. Moreover, tangent space of every point is utilised as in
(3.4) to form a multiple view of the subspaces. The advantage of doing
this is not only avoiding a vanishing point, but also increasing the stability
of subspace recovery process. The next step is to consolidate the multiple
views. One critical observation is that although every tangent space is differ-
ent depending on the support point, the null space is the same. If [qi]’s have
subspace structure, the most efficient way to recover null space is to pick
points from subspaces consistently which is reflected as the lowest rank in
coefficient matrix W, whose ijth element is wij . This leads to the following
objective

min
W

λ‖W‖∗ +

N∑
i=1

1

2
‖

N∑
j=1

wij log[qi]([qj ])‖
2
[qi]
,

s.t.

N∑
j=1

wij = 1, i = 1, 2, . . . , N.

(3.5)

where ‖ · ‖[q] is the metric defined on the manifold, which is defined by the
classic L2 Hilbert metric on the tangent space, quantifying the deviation
from 0, and ‖W‖∗ is the nuclear norm as a convex approximation to matrix
rank. Note that the above objective function reflects the trade-off between
low rank and null space recovery, i.e. (3.4), controlled by λ.
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Denote wi the i-th row of matrix W and define

Bi
jk = 〈log[qi]([qj ]), log[qi]([qk])〉. (3.6)

Then with some algebraic manipulation we can re-write (3.5) into the fol-
lowing simplified form,

min
W

λ‖W‖∗ +

N∑
i=1

wiB
iwT

i ,

s.t.
N∑
j=1

wij = 1, i = 1, 2, . . . , N.

(3.7)

where Bi = (Bi
jk).

Once solved, W can be used as affinity to build graph. As W has
consistent pattern within each subspace, the graph should consist of several
connected components corresponding to subspaces and graph cut can then
be applied to segment them.

4 Optimisation

4.1 Algorithm

To solve the objective function in (3.7) we use the Linearised Alternative
Direction Method with Adaptive Penalty (LADMAP) [42, 43]. First take
the augmented Lagrangian of the objective (3.7)

L =λ‖W‖∗ +
1

2

N∑
i=1

wiB
iwT

i + 〈y,W1− 1〉

+
β

2
‖W1− 1‖2F

(4.1)

where y is the Lagrangian multiplier (vector) corresponding to the equality
constraint W1 = 1, ‖ · ‖F is the matrix Frobenius-norm, and β is the
proximal parameter which will be updated in the iterative algorithm to be
introduced.

Denote by F (W) the function defined by (4.1) except for the first term
λ‖W‖∗. We adopt a linearisation of F (W) at the current location W(k)

in the iteration process, that is, we approximate F (W) by the following
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linearisation with a proximal term

F (W) ≈F (W(k)) + 〈∂F (W(k)),W −W(k)〉

+
ηWβk

2
‖W −W(k)‖2F ,

where ηW is an approximate constant with a suggested value given by ηW =
max{‖Bi‖2}+N + 1 (this value is presented in the convergence theorem in
the next section), and ∂F (W(k)) is the gradient matrix of F (W) at W(k).
Denote by B the 3-order tensor whose i-th frontal slice is Bi. Write W�B
the matrix whose i-th row is given by wiB

i. Then it is easy to show

∂F (W(k)) = W �B + y1T + βk(W1− 1)1T . (4.2)

Then (4.1) can be approximated by linearisation and W will be updated
by the following

W(k+1) = arg min
W

λ‖W‖∗ (4.3)

+
ηWβk

2

∥∥∥∥W −
(
W(k) − 1

ηWβk
∂F (W(k))

)∥∥∥∥2
F

.

Problem (4.3) admits a closed form solution by using SVD thresholding
operator [44], given by

W(k+1) = UWS λ
ηW βk

(ΣW )V T
W , (4.4)

where UWΣWV
T
W is the SVD of W(k) − 1

ηW βk
∂F (W(k)) and Sτ (·) is the

Singular Value Thresholding (SVT) [44, 45] operator defined by

Sτ (Σ) = diag(max{|Σii| − τ, 0}). (4.5)

The updating rule for y is

y(k+1) = y(k) + βk(W
(k)1− 1) (4.6)

and the updating rule for βk

βk+1 = min{βmax, ρβk}, (4.7)

where

ρ =

{
ρ0, if βk‖Wk+1 −Wk‖ ≤ ε1,
1, otherwise.

We summarise the above as Algorithm 1. Once the coefficient matrix W

is found, a spectral clustering is applied to the affinity matrix |W|+|W|
T

2 to
obtain the segmentation of the data. In particular we use nCUT [34] for its
good performance in both accuracy and efficiency in spectral clustering. We
call our method robust functional manifold clustering, or rFMC for short.
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Algorithm 1 Optimisation for (3.7)

Require: {Xi}Ni=1, λ
1: Initialise: W = 0, y = 0, β = 0.1, βmax = 10, ρ0 = 1.1, η =

max{‖Bi‖F }+N + 1, ε1 = 1e−4, ε2 = 1e−4

2: Construct each Bi as per (3.6)
3: while not converged do
4: Update W using (4.4)
5: Check convergence criteria

β(k)‖W(k+1) −W(k)‖F ≤ ε1
‖W1− 1‖F ≤ ε2

6: Update Lagrangian Multiplier

y(k+1) = yk + β(k)(W1− 1)T

7: Update ρ

ρ =

{
ρ0 if β(k)‖W(k+1) −W(k)‖F ≤ ε1
1 otherwise,

8: Update β

β(k+1) = min(βmax, ρβ
(k))

9: end while
10: return W
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4.2 Complexity Analysis

For ease of analysis, we firstly define some symbols used in the following.
Let K and r denote the total number of iterations and the lowest rank of the
matrix W, respectively. The size of W is N ×N . The major computation
cost of our proposed method contains two parts, calculating all Bi’s and
updating W. In terms of the formula (3.6) through (3.2) and (3.3), the
computational complexity of Log algorithm is O(T 2) where T is the number
of terms in a discretised curves; therefore, the complexity of Bi

jk is at most

O(T 2) and Bi’s computational complexity is O(N2T 2). Thus the total for
all the Bi is O(N3T 2). In each iteration of the Algorithm, the singular value
thresholding is adopted to update the low rank matrix W whose complexity
is O(rN2) [33]. Suppose the algorithm is terminated after K iterations, the
overall computational complexity is given by

O(N3T 2) +O(KrN2)

4.3 Convergence Analysis

Algorithm 1 is adopted from the algorithm proposed in [43]. However due to
the terms of Bi’s in the objective function (4.1), the convergence theorem
proved in [43] cannot be directly applied to this case as the linearisation
is implemented on both the augmented Lagrangian terms and the term
involving Bi’s. Fortunately we can employ the revised approach, presented
in [46], to prove the convergence for the algorithm. Without repeating all
the details, we present the convergence theorem for Algorithm 1 as follows.

Theorem 1 (Convergence of Algorithm 1) If ηW ≥ max{‖Bi‖2}+N+

1,
+∞∑
k=1

β−1k = +∞, βk+1 − βk > C0

∑
i ‖Bi‖2

ηW −max{‖Bi‖2} −N
, where C0 is a

given constant and ‖ ·‖ is the matrix spectral norm, then the sequence {W k}
generated by Algorithm 1 converges to an optimal solution to problem (3.7).

In all the experiments we have conducted, the algorithm converges very
fast with K < 100.

5 Experimental Analysis

In this section we evaluate the clustering performance of rFMC on syn-
thetic, semi-synthetic and real world datasets. We compare our algorithm
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Figure 2: Examples of clusters and their curves generated in the synthetic
data experiment. Each cluster has a base sine curve (the left most blue
curve) which is progressively warped with each successive instantiation.

to two baseline algorithms k-means and spectral clustering of a DTW dis-
tance matrix, and the state of the art Bayesian Clustering of Curves. We
also compare against LRR and SSC, two highly cited multivariate subspace
clustering methods. Note that we used nCUT to find final clustering solution
for LRR and SSC as well.

In an effort to maximise transparency and repeatability, all code and data
used for these experiments can be found online at https://staff.scem.uws.edu.au/~yiguo/code/rfmc.

To help evaluate consistency we fixed the parameters to the same values
for every experiment. Parameters were selected by testing a wide range of
values over all datasets so that the best average result for each method was
obtained. For rFMC and LRR, λ was set to 0.1, and for SSC, λ was 0.05.
Overall we found that the segmentation accuracy of LRR and SSC did not
vary that much with changes in λ. For our DTW baseline algorithm we set
the warping window to 10% of the data length, which has been shown to be
suitable in most cases [23].

Segmentation accuracy was measured using the subspace clustering ac-
curacy (SCA) metric [32], which is defined as

SCA = 1− num. of misclassified points

total num. of points
, (5.1)

where higher SCA means greater clustering accuracy. The SCA metric is
taken over all possible pairwise assignments of clusters.

5.1 Toy Synthetic Data Clustering

First we attempt to verify that rFMC achieves its design purpose for robust-
ness against distortions in subspace recovery. While other methods without
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Mean Median Max Min Std T̄

kmeans 44.1% 41.7% 60.0% 35.0% 7.4% 0.01
DTW 58.9% 59.2% 81.7% 36.7% 12.0% 0.11
LRR 69.5% 68.3% 91.7% 36.7% 14.7% 0.04
SSC 59.6% 51.7% 93.3% 38.3% 15.6% 0.10

Bayesian 62.9% 65.0% 100.0% 25.0% 23.7% 48.71
rFMC(3) 80.5% 83.3% 98.3% 36.7% 17.7% 11.18

kmeans 35.1% 35.0% 48.0% 23.0% 6.4% 0.01
DTW 47.3% 48.0% 61.0% 24.0% 9.0% 0.30
LRR 56.9% 59.0% 83.0% 27.0% 13.9% 0.14
SSC 46.0% 42.0% 79.0% 25.0% 12.3% 0.11

Bayesian 51.8% 55.5% 78.0% 19.0% 14.7% 137.96
rFMC(5) 63.9% 64.5% 96.0% 27.0% 15.6% 27.55

kmeans 28.0% 27.5% 39.4% 20.0% 4.1% 0.01
DTW 40.0% 40.0% 48.8% 24.4% 5.2% 0.65
LRR 48.6% 48.8% 65.0% 24.4% 8.0% 0.27
SSC 38.2% 40.6% 56.9% 24.4% 6.6% 0.15

Bayesian 42.7% 42.8% 69.4% 21.3% 10.3% 411.06
rFMC(8) 49.6% 49.4% 66.2% 31.2% 7.2% 64.73

Table 1: Synthetic data results with 3,5 and 8 clusters
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Figure 3: SCA means and medians of different methods on synthetic data.
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(d) Base Curves

Figure 4: Example plots of curves used in the Semi-synthetic TIR Data
Experiment. Each cluster has a base curve from the TIR library. The
curves for each cluster have been shifted and stretched randomly from the
base.

the consideration of the special properties of functions such as LRR and k-
means would be inferior. In this test, 2 to 8 clusters were created consisting
of twenty 1-D curves of length 100. The curves in each cluster were sine
waves, with each cluster corresponding to a unique frequency from 0.1 to
40Hz. Within each cluster we applied progressive amounts of warping. See
Figure 2 for an example of data from three synthetically generated clusters.
For each number of clusters setting, we repeated the experiment 50 times
with new data generated each time to obtain basic statistics of SAC.

Results are reported using subspace clustering accuracy and can be found
in Table 1 and Figure 3. Note that in Table 1 and the following ones, the
number besides rFMC indicates the number of clusters tested, and T̄ in the
tables is the average run time for the algorithms in the tests. This is a
challenging dataset due to a large amount of distortions. However in this
experiment rFMC achieves very high clustering accuracy in terms of the
statistics of accuracy values. From Figure 3, it is clearly seen that rFMC
outperforms other methods in terms of SAC mean and median. When the
number of clusters grows, the performance decreases due to increasing dif-
ficulty. Note that when the number of clusters reaches 8, the clustering
accuracies of all methods drop below 50%, which is not informative. More-
over, some methods like Bayesian become unstable for some reason. So
we set 8 as the maximum number of clusters in all tests. In the following
experiments, we test 3, 5, and 8 clusters to observe the behaviour of differ-
ent methods in terms of both clustering accuracy and the trends when the
number of clusters vary.
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Mean Median Max Min Std T̄

kmeans 58.6% 58.3% 73.3% 43.3% 6.1% 0.01
DTW 65.8% 65.8% 81.7% 46.7% 6.0% 0.74
LRR 60.2% 60.8% 66.7% 43.3% 5.0% 0.14
SSC 48.1% 46.7% 61.7% 40.0% 4.8% 0.13

Bayesian 94.7% 100.0% 100.0% 66.7% 12.3% 311.66
rFMC(3) 100.0% 100.0% 100.0% 100.0% 0.0% 190.50

kmeans 35.2% 35.0% 43.0% 29.0% 3.2% 0.01
DTW 50.3% 50.0% 63.0% 37.0% 5.2% 2.36
LRR 33.3% 33.0% 39.0% 27.0% 2.8% 0.26
SSC 37.1% 37.0% 46.0% 31.0% 3.4% 0.27

Bayesian 96.0% 100.0% 100.0% 80.0% 8.1% 1337.20
rFMC(5) 100.0% 100.0% 100.0% 100.0% 0.0% 278.18

kmeans 39.4% 38.7% 46.2% 34.4% 2.5% 0.01
DTW 45.8% 45.6% 55.0% 38.1% 4.1% 5.64
LRR 27.0% 26.9% 32.5% 23.1% 2.1% 0.53
SSC 32.3% 32.5% 38.1% 26.2% 2.7% 0.72

Bayesian 81.9% 87.5% 87.5% 69.4% 6.6% 3246.81
rFMC(8) 92.8% 96.9% 100.0% 78.8% 7.0% 658.50

Table 2: Thermal Infrared Results
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5.2 Semi-Synthetic Thermal Infrared Spectra Clustering

We assemble semi-synthetic data from a library of pure infrared hyperspec-
tral mineral data [30]. For each cluster we pick one spectral sample from the
library as a basis. Each curve basis is then randomly shifted and stretched in
a random portion. This random warping is performed 20 times to produce
the curves for each cluster. See Figure 4 for an example of data used in this
experiment. Again as in the previous experiment we repeated the test 50
times.

Results are reported in Table 2. The results show that non-functional
based methods cannot accurately cluster data with this sort of structural
contamination, which is commonly found in this type of data due to impu-
rities in the mineral samples. On the other hand, rFMC almost perfectly
clustered the data with superb consistency across all cases. The closest com-
petitor was the Bayesian method, which also performed well by clustering
accurately most of the time at the cost of extremely high computation load.
However in some cases the clusters produced were of poor quality, which
can be observed in the minimum accuracy and standard deviation statistics.
Therefore, rFMC is far more reliable and efficient at clustering this data
than other methods.

5.3 Handwriting Character Velocities

In this experiment a real world dataset consisting of a collection of pen tip
trajectories of handwritten English characters were used to evaluate perfor-
mance. The dataset consists of pen position data collected by a digitisation
tablet at 200Hz, which is then converted to horizontal and vertical velocities
[47, 48]. These 2-D trajectory curves are normalised such that the mean of
each curve is close to zero. See Figure 5 for some examples of this data.
Figure 6 shows the example plots of curves used in this experiment.

For each run of this test, twenty characters were randomly selected from
3, 5 and 8 random character classes. The data as originally released have
been carefully produced and processed so that trajectories for each char-
acters are extremely similar. Far more so than is realistic. For example
the start time for each character has been aligned furthermore the writing
speed, character size and variance in velocity over time is extremely consis-
tent. Therefore to make the data more realistic we randomly globally shift
each character so that their start times vary. Furthermore we randomly
globally stretch and shrink each trajectory to account for different writing
speeds, we also scale the trajectories by applying constant factors to ac-

20



0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Trajectories for “a”

0 20 40 60 80 100 120 140 160 180
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Trajectories for “b”

0 20 40 60 80 100 120 140
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) Trajectories for “c”

−20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

(d) Reconstructed “a”

−20 −15 −10 −5 0 5 10
−40

−35

−30

−25

−20

−15

−10

−5

0

5

(e) Reconstructed “b”

−40 −35 −30 −25 −20 −15 −10 −5 0 5
−20

−15

−10

−5

0

5

(f) Reconstructed “c”

Figure 5: Example data from the character velocity dataset. The top row
plots the x and y pen tip velocities over time for three sample characters. The
bottom row shows the corresponding character reconstruction by integrating
the pen tip velocity data (for visualisation only).
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Figure 6: Example plots of curves used in the character velocity experiment.
Each cluster consists of randomly selected characters from each class that are
then subject to a combination of shifting, warping, stretching or shrinking
and scaling. The top row shows the curves from the pen tip velocity in the
X direction over time and the bottom row shows the same but for the Y
direction.
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Mean Median Max Min Std T̄

kmeans 0.0% 0.0% 0.0% 0.0% 0.0% 0.00
DTW 48.2% 46.7% 63.3% 40.0% 6.4% 0.18
LRR 48.3% 46.7% 70.0% 36.7% 7.7% 0.01
SSC 48.8% 50.0% 70.0% 36.7% 6.7% 0.05

Bayesian 47.5% 33.3% 83.3% 33.3% 16.3% 79.19
rFMC(3) 84.6% 86.7% 100.0% 53.3% 14.4% 46.38

kmeans 0.0% 0.0% 0.0% 0.0% 0.0% 0.00
DTW 37.7% 37.0% 50.0% 30.0% 4.0% 0.48
LRR 37.4% 36.0% 48.0% 28.0% 4.9% 0.03
SSC 37.4% 38.0% 46.0% 30.0% 4.0% 0.09

Bayesian 54.1% 52.0% 78.0% 0.0% 13.1% 291.51
rFMC(5) 67.9% 68.0% 90.0% 50.0% 9.9% 70.10

kmeans 0.0% 0.0% 0.0% 0.0% 0.0% 0.00
DTW 33.4% 33.8% 41.2% 27.5% 3.7% 1.14
LRR 32.7% 32.5% 40.0% 27.5% 3.0% 0.07
SSC 30.8% 30.0% 37.5% 26.2% 2.7% 0.15

Bayesian 48.4% 52.5% 65.0% 0.0% 15.6% 725.15
rFMC(8) 61.3% 60.0% 77.5% 43.8% 7.7% 163.35

Table 3: Character Velocity Results
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(a) “u” character (b) “1” character

(c) “4” character (d) “n” character

Figure 7: Example data from the character classification dataset. Note that
the writing style and typeface varies within each character class. There is
also variance in size and position of the characters.

count for character size and we lastly perform local warping (as done in the
semi-synthetic experiment) to account for variance in speed over time.

Results can be found in Table 3. RFMC shows excellent performance
with a median accuracy of 86% for the case of 3 classes on this extremely
challenging dataset. The closest competitors only reach a median clustering
accuracy of 50%. Similar comparison can be observed in other cases. It is
clear to see that rFMC outperforms other methods in all metrics in all cases
of various numbers of classes.

5.4 Handwriting Character Trajectories

In this experiment we used the Chars74K [49] dataset, which consists of
pen tip positions (different from trajectories) of handwritten English char-
acters. The dataset consists of 62 character classes with 55 samples per
class. Different from the previous English character dataset, the writing
style or the typeface varies within each character class. For example some
people choose to close the top of the character “4” while others leave it open
or they choose to write their characters with differing amounts of serifs as
can be seen with the character “1”. See Figure 7 for visual examples. This
creates a significant problem for clustering as the shape of the data within
a class vary significantly and it is actually best to treat these different font
faces as separate classes for greater accuracy. However we do not divide the
classes into separate font faces.

Similar to the previous experiment for each run of this test twenty char-
acters were randomly selected from 3, 5 and 8 random character classes and
50 runs were performed. However, different from the previous experiment,
we do not apply any further post processing to reduce alignment since this
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Mean Median Max Min Std T̄

kmeans 55.6% 55.0% 80.0% 36.7% 9.8% 0.01
DTW 58.4% 58.3% 85.0% 38.3% 10.2% 0.91
LRR 53.7% 53.3% 73.3% 36.7% 8.9% 0.25
SSC 52.3% 51.7% 75.0% 38.3% 9.2% 0.22

Bayesian 14.6% 0.0% 98.3% 0.0% 32.5% 698.81
rFMC(3) 82.3% 88.3% 100.0% 43.3% 15.2% 155.60

kmeans 46.7% 46.0% 59.0% 36.0% 5.1% 0.01
DTW 48.9% 48.5% 65.0% 34.0% 8.3% 2.31
SSC 27.8% 28.0% 30.0% 26.0% 1.2% 1.09

Bayesian 2.8% 0.0% 80.0% 0.0% 13.8% 1657.19
rFMC(5) 70.2% 70.0% 95.0% 53.0% 8.8% 386.84

kmeans 27.3% 26.9% 38.1% 22.5% 2.9% 0.01
DTW 39.4% 39.4% 49.4% 29.4% 4.4% 7.17
SSC 22.1% 21.9% 25.0% 20.0% 1.1% 2.71

Bayesian 0.0% 0.0% 0.0% 0.0% 0.0% 4589.25
rFMC(8) 59.1% 60.0% 70.6% 43.8% 7.7% 1277.38

Table 4: Character Trajectory Results

dataset is relatively unprocessed. Results can be found in Table 4. In spite
of the aforementioned challenges with this dataset, rFMC leads by a signif-
icant margin. Notably bayesian clustering suffered many clustering failures
leading to very poor accuracy. This was due to implementation limitations
in the original code provided from [29]. We also have to exclude LRR for
the cases where the number of classes is more than 3, because it failed on
most random samples.

5.5 Sign Language Word Clustering

In this final experiment we use the Australian Sign Language (Auslan) Signs
(High Quality) dataset [50]. This dataset consists of a single native Auslan
signer performing 91 different signs (the classes) with 27 samples per sign.
The signer wore motion capture gloves that captured the position (x, y,
z), roll, pitch and yaw of each hand along with finger bend measurements.
This data was captured at 100Hz and no post processing was applied. The
signs were collected three at a time over a period of nine weeks so there is
noticeable variation within each class.

As with the previous experiments, for each run, twenty data points
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Mean Median Max Min Std T̄

kmeans 64.4% 61.7% 95.1% 40.7% 14.8% 0.02
DTW 63.8% 63.0% 92.6% 51.9% 7.8% 0.46
LRR 67.3% 66.0% 96.3% 42.0% 14.3% 0.27
SSC 56.2% 54.9% 84.0% 38.3% 10.2% 0.43

Bayesian 96.7% 100.0% 100.0% 64.2% 9.4% 186.10
rFMC(3) 98.3% 100.0% 100.0% 67.9% 5.4% 98.88

kmeans 51.7% 51.1% 79.3% 31.9% 10.5% 0.01
DTW 62.2% 62.6% 79.3% 45.2% 9.0% 1.25
LRR 59.1% 59.6% 89.6% 34.1% 10.6% 0.38
SSC 45.4% 45.2% 75.6% 31.1% 9.0% 0.99

Bayesian 90.0% 99.3% 100.0% 70.4% 11.6% 628.98
rFMC(5) 91.7% 97.0% 100.0% 63.0% 10.0% 121.79

kmeans 43.9% 44.2% 67.1% 26.9% 7.9% 0.01
DTW 56.0% 56.0% 70.4% 45.4% 5.6% 2.52
LRR 48.7% 48.6% 63.0% 29.6% 6.5% 0.56
SSC 39.8% 40.0% 54.6% 25.9% 6.4% 6.72

Bayesian 87.0% 84.7% 100.0% 69.9% 9.4% 1438.01
rFMC(8) 85.1% 86.1% 95.8% 70.4% 7.3% 313.89

Table 5: Sign Language Results

(signed words) were randomly selected from 3, 5 and 8 random word classes
and 50 runs were performed. Only the position, roll, pitch and yaw chan-
nels were used since the finger bend measurements were far too noisy and
unreliable to be of use. We also performed a parallel test to determine the
effectiveness of smoothing as a first attempt for noise handling. A multi-
channel total variation based smoothing method was used [51]. Results can
be found in Table 5 and 6. Overall rFMC performed slightly better than
or similar to Bayesian clustering and significantly better than the baseline
methods. We noticed that smoothing the data actually decreased clustering
performance of all methods, which indicates non-triviality of noise removal.

6 Conclusions

In this paper, we proposed an algorithm called robust functional manifold
clustering (rFMC) to reliably and accurately cluster functional data in term
of their subspaces. This is a highly challenging problem as functional data
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Mean Median Max Min Std T̄

kmeans 58.0% 56.8% 100.0% 0.0% 19.6% 0.02
DTW 63.3% 63.0% 92.6% 46.9% 7.8% 0.46
LRR 63.0% 62.3% 90.1% 39.5% 12.5% 0.27
SSC 56.3% 55.6% 84.0% 38.3% 10.2% 0.43

Bayesian 95.0% 100.0% 100.0% 63.0% 11.1% 186.64
rFMC(3) 97.7% 100.0% 100.0% 69.1% 5.6% 98.83

kmeans 52.5% 51.1% 31.1% 82.2% 10.3% 0.01
DTW 61.0% 59.3% 42.2% 79.3% 9.3% 1.26
LRR 53.8% 51.9% 33.3% 85.9% 10.0% 0.38
SSC 46.0% 47.0% 31.1% 67.4% 9.1% 0.99

Bayesian 90.6% 98.9% 100.0% 54.8% 11.6% 629.30
rFMC(5) 89.2% 94.8% 100.0% 62.2% 11.6% 121.06

kmeans 43.4% 42.6% 27.3% 60.2% 6.3% 0.01
DTW 55.4% 57.4% 40.3% 64.8% 5.4% 2.48
LRR 44.1% 44.2% 32.4% 59.3% 5.5% 0.58
SSC 40.1% 40.5% 26.4% 53.2% 6.1% 6.48

Bayesian 86.3% 85.9% 100.0% 54.2% 11.0% 1432.16
rFMC(8) 80.9% 82.4% 90.3% 67.1% 6.6% 301.43

Table 6: Smoothed Sign Language Results
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from the same class can vary greatly due to stretching, shrinking, non-
uniformly warping and scaling. We achieved this by representing functional
data in curves manifold invariant to these distortions and addressed the
challenge of lack of vector forms. The analysis is performed in tangent
spaces of each point in the manifold via the recovery of null spaces of the
log maps of the points to solve the multiple view problem. An optimisation
scheme with convergence guarantee was also provided to realise the model.

Nevertheless this paper still leaves many areas open for further research.
Firstly we only address the data on the manifold of open curves, however
much of the data in recognition and computer vision tasks will lie on the
manifold of closed curves. Moreover our focus was on robustness against
geometric distortions. Additive noise will be carried through the trans-
formations onto curve manifold and affect the performance. However, the
mechanism is not fully understood although the proposed algorithm can
be applied in this case. Nonetheless, it is interesting to study the noise
to further improve the results. We leave solving these problems for future
research.
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