
 
 

 
 

 
 

A Sparsity-Relaxed Algorithm for the Under-determined Convolutive 
Blind Source Separation 

 
Junjie Yang*a, Yi Guob, Zuyuan Yang a, Chao Yang a 

aSchool of Automation, Guangdong University of Technology, Guangzhou, 510006, China 
(yangjunjie1985@gmail.com, yangzuyuan@aliyun.com, chyang513@gdut.edu.cn); 

bSchool of Computing, Engineering and Mathematics, Western Sydney University, Parramatta, 
NSW, 2150, Australia 

(Y.Guo@westernsydney.edu.au). 

ABSTRACT 

Convolutive blind source separation (CBSS) is a kind of signal processing method by separating multiple sources 
from a convolutive mixing model. The concept of CBSS is to recover the latent sources in a reverberant 
environment. Usually, a two-stage scheme including the mixing matrix estimation and the source recovery are 
proposed to fulfill this target. In this paper, we mainly discuss the source recovery problem based on the 
knowledge of estimated mixing matrix. Specifically, this problem can be categorized as a sparse source 
construction optimization model, especially for the under-determined case where the number of sources is greater 
than the number of microphones. Inspirited by the fact that only few source components are active at each time-
frequency slot, a new augmented Lagrange method is proposed to find the optimal sparse solution of sources 
with the  norm ( ) based measurement function. The proposed method relaxes the strict sparse 
assumption on sources, hence improve the source separation performance. The experiment results demonstrate 
that the proposed algorithm is superior than the state-of-the-art methods. 
Keywords: Blind source separation, sparsity.  

1. INTRODUCTION 
   Blind source separation refers a kind of signal processing technique of recovering multiple sources from mixture signals 
recorded by multiple microphones. The application of BSS can be found in various of area, e.g., the speech processing, 
biomedical signal processing, image processing and so on [1][2][3][4]. Herein, we mainly discuss the problem of 
convolutive blind source separation (CBSS), where multiple sources are convolved from a multiple delay mixing system 
model. One class of CBSS method is de-mixing latent sources from the mixture samples based on the time-frequency (TF) 
domain. Usually, a two-stage scheme is adopted to solve the problem of CBSS in the TF domain, which includes the 
mixing matrix estimation and the recovery of sources [2]. At the first stage of CBSS, the mixing matrix estimation has 
been widely studied in the existing works, such as [5] [6]. Considering the non-stationary of sources, the mixing matrix 
estimation problem is transformed into a sequence of joint-approximate diagonalization optimization model in spatial 
covariance domain. At the second stage of CBSS, the problem of source recovery is still not fully investigated. First, the 
solution of source components construction are not unique to the under-determined case, i.e., the number of sources is 
greater than the number of microphones [7]. Second, the source components ambiguity of scaling and permutation should 
be carefully corrected before transforming them back to the time-domain [3] [8].  
   To solve the under-determined CBSS problem, Yilmaz provides a condition called approximately window-disjoint 
orthogonal (WDO) assumption to solve the source separation problem, which refers that source components are disjoint 
in each TF point [9]. [10] utilizes a supervised learning method to estimate the complex mask, which is applied to separate 
the reverberant mixture speech signals. The authors in [7] tries to combine the K-means clustering method and TF masking 
scheme to separate the source components in the TF domain. This method classifies each TF mixture point into a specific 
clustering group, which may result in the so-called inter-interference problem. Note that the mentioned works on CBSS 
are based on a latent assumption, i.e., the sources are strictly sparse in the time domain or TF domain. However, such 
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assumption cannot hold in most circumstance, e.g., the spectral of audio sources are usually overlapped, especially when 
the number of sources are over two. 

In this paper, we try to relax the strict sparse assumption on sources and provide a sparsity-relaxed optimization approach 
to recover the sources for the under-determined case. The proposed source components are recovered by the proposed 
sparsity-relaxed optimization method; third, the permutation ambiguity of sources and scaling ambiguity are revised by 
the existing methods, respectively. The proposed method relaxes the WDO assumption on sources, i.e., source components 
are no longer require to be disjoint at each time-frequency slot. Moreover, a  norm ( ) based measurement 

function is developed based on the sparsity-relaxed assumption, which is demonstrated superior to depict various of sparse 
sources in the experiments. The rest of paper is organized as follows. First, the system model and assumptions are presented 
in Section II. Next, the sparsity-relaxed source reconstruction algorithm is provided in Section III. Later, the experimental 
results are discussed in Section IV. Finally, the conclusion is completed in Section V. 

2. SYSTEM MODEL AND PROPOSED METHOD 
2.1  System Model and Assumptions 

     Let , denote the number of microphones and sources, respectively. Let and denote as 
mixture signal  and source signal, respectively. With above notations, we can describe the convolutive blind source 
separation (CBSS) system model as summation of a sequence of MIMO system with orders of L , such as 

                                                                                                                                 (1) 

where  refers the convolutive operator, and  refers to the th mixing matrix in time domain. In the time-
frequency (TF) domain, (1) can be transformed as a linear system by Short-Time Fourier Transformation (STFT) with 
length of F, i.e., 

                                                                                                                              (2) 

where  ,  are the mixture vector and the source vector at TF 

slot , respectively;   refers to the th mixing matrix. To simplify the following discussion, we provide some 
necessary assumptions on the system model of (2):  
      A1) The number of sources is greater than the number of microphones, i.e., . 
      A2) The mixing matrices  are known in advance. 

      A3) Any  sub-matrix of the mixing matrix are linearly independent. 
     Assumption A1 is also called as underdetermined case, which is a tough problem in convolutive BSS. If , the 
source separation can be easily obtained by applying . However, in the under-determined case, such 
method is not applicable as the pseudo-inverse of  is not unique again.  Assumption A2 refers that the mixing matrices 
are given in advance. Since we mainly focus on the performance of source reconstruction, thus, we assume that the 
knowledge of mixing matrices has already known in advance. Assumption A3 ensures the source reconstruction can be 
applicable based on the given mixing matrix. 
 
2.2 Proposed Source Reconstruction Method 

    Here, we present a substitute method to separate sources by exploiting the non-strict sparsity of sources. It is based on 
the observation that a dynamic number of source components are active at each TF point, i.e., is a sparse term satisfying 

. Thus, the objective of source reconstruction can be transformed as a sparse construction of based on the 

knowledge of . Next, the source reconstruction problem can be summarized as a sparse optimization model, e.g., 
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Note that the cardinality minimization model of (3) is a non-deterministic polynomial-time-hard (NP) problem, we can 
transform the model of (3) as a relaxed norm ( ) optimization problem. In this case, the optimization model 
of (3) can be rewritten as 

                                                                                                                                                   (4) 

The optimization problem of (4) can be transformed as an unstrained optimization problem as follows: 
 

                                                              (5) 

 
where , is penalty vector and  is a penalty parameter. By applying augmented Lagrange 
method, as shown in Appendix A, the solution of (5) can be iteratively calculated from 
                                                                            (6) 

where  , k+1 refers the iteration step. The update rules can be set as follows: 

                                                                                                                 (7) 

 
In simulation experiment, we can empirically set a maximum iterative step, e.g., , to stop the iteration procedure. 

3. EXPERIMENT RESULTS 
 
3.1 Experiment Settings 
 
     In this part, the provided sparsity-relaxed CBSS algorithm are tested with various experiments. All the experiments 
were carried out by a Lenovo computer equipped with Intel Core i5-4210U, CPU 1.7 GHz under the system of Windows 
10, and the programs were coded by MATLAB R2015b. The proposed algorithm will be compared with two state-of-the-
art algorithms [11,12] in the following experiments, which is labeled as ‘EM-Multichannel NMF’, ‘PARAFAC-SD’, 
respectively. We obtain a sequence of various speech sources from the data base [13]. The speech signals are recorded by 
several female or male speakers, who is reading poem, sentences and numbers with a sampling rate Fs = 16 kHz. We 
truncate all of recorded speech signals in a selected length of 10 seconds for the convenience of comparison. In the 
experiments, the speech sources are convolved by synthetic room impulse responses (RIRs) function using the system 
model of (1). The estimated sources are evaluated by the criterion of [14], which is to calculate signal distortion ratio 
(SDR) between the target source signal and a series of decomposed terms of source signal including distortion, noises or 
errors. Specifically, the source signal can be decomposed into a sum of several components, such as  
                                                                                                     (8) 
 
where , , ,  are the target source with allowed distortion, interferences, noises and 
artifacts error terms, respectively.  The provided experiments were conducted in the virtual room with artificial RIRs in 
order to simulate a more real convolutive environment. Such RIRs are generated by the method in [15], which can simulate 
various situations with arbitrary settings, e.g., the physical sizes of the room, the locations of the sources and microphones, 
and the reverberation time which is defined as the time decay by 60 dB. varies from 0.1 to 0.3 with an interval 
of 0.02 in the following experiments. The sizes of the virtual room were selected as 12m 9m 3m. Three under-

min
s f ,d

s f ,d

0

 s.t. x f ,d ≈H f s f ,d ,

ℓp 0 < p <1

min
s f ,d

s f ,d

p

 s.t. x f ,d ≈H f s f ,d ,

min
λ ,β ,s f ,d

F(λ,β ,s f ,d ) = J (s f ,d ) +λ H (x f ,d −H f s f ,d )+ β
2
‖x f ,d −H f s f ,d‖2 ,

J (s f ,d ) !‖s f ,d‖p λ β

(s f ,d )(k+1) = [pΠs f ,d
(k ) + β(H f )HH f ]−1(H f )H [λ (k ) + βx f ,d ],

Πs f ,d
= diag( s1

f ,d p−2
,..., sN

f ,d p−2
)

β (k+1) = β (0) + kβ ,
λ (k+1) = λ (k ) − β (k+1)[H f (s f ,d )(k ) − x f ,d ].

⎧
⎨
⎪

⎩⎪

kmax = 10
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determined cases by setting various number of sources and microphones were introduces in the following experiments 
where M=3,4 and N=4,5. According to the various number of sources and microphones, these two cases were labeled as 
CaseM3N4

 
and CaseM4N5, respectively. The x, y, z coordinates of each source are set as (2m, 1m, 1.6m), (2m, 1.4m, 

1.6m), (2m, 1.8m, 1.6m) and (2m, 2.2m, 1.6m), while those of each sensor are set as (3m,1m,1.6m), (3m, 1.5m,1.6m), (3, 
2,1.6), respectively. 
 
3.2 Experiment Results 
 
   The settings of proposed method is offered as follows: the STFT length is , the overlapping factor  , 
the  norm parameter is , penalty parameter  and Lagrange vector . As shown in 
Fig.1 (a), three algorithms are tested under CaseM3N4

 
and CaseM4N5, respectively. It can observe that the SIR 

performance degrades slowly with the increase of reverberation . As shown in Fig.1 (a), the proposed method is 
superior than EM-Multichannel NMF and PARAFAC-SD by approximately 5 dB and 1dB for each case, respectively. 
Similar results of  and CaseM4N5 also can be observed from Fig.1 (b). It is concluded that our method can 
find a non-strict sparse solution of source reconstruction from the mixtures, which is a more applicable scheme to enhance 
the source separation performance.  

 
(a) CaseM3N4                                               (b) CaseM4N5 

                             Figure 1. SDR performance with the provided algorithms under various cases. 

4. CONCLUSION 
 

The under-determined source recovery problem for CBSS has been discussed in this paper. This problem was converted 
as a sparsity-relaxed optimization model based on a  norm measurement function. A new augmented 
Lagrange method has been proposed to find the optimal sparse solution of sources from the established sparsity-relaxed 
optimization model. The proposed method tried to relax the strict sparse assumption on sources, which is suitable to real 
source separation problem. The experiment results have demonstrated the validity of proposed method in various under-
determined CBSS cases. 
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                                                                  APPENDIX 
 

The gradient of objective function in (5) can be derived as: 

                                                                   (9) 
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where Let  , we have 

                                                                                    (10) 

The solution of  (10) can be transformed as follows: 
                                                                                       (11) 

Furthermore, we have 
                                                                                           (12) 

 To obtain the solution of , an iterative scheme can be applied as follows: 
                                                                              (13) 

where k refers the iterative step. In addition,  the vector and  can be updated by the following strategy,  

                                                                                                          (14) 

and . 
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