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Abstract

Blind source separation (BSS) in time-frequency (TF) do-
main is a versatile framework to recover sources from the
recorded mixture signals in a reverberant environment.
In general, a two-stage strategy is one of the popular
BSS frameworks for the underdetermined BSS case (the
number of mixtures is less than the number of sources),
which is a tough problem due to the mixing matrix is
not invertible. In this paper, we propose a new two-stage
scheme combining density-based clustering and sparse re-
construction to estimate mixing matrix and sources, re-
spectively. At the first stage, we transform the mixing ma-
trix estimation as an eigenvector clustering problem based
on a particular local dominant assumption. The eigenvec-
tors are first exploited from the rank-one structure of local
covariance matrices of mixture TF vectors. These eigen-
vectors are then clustered and adjusted to give estimated
mixing matrix by cooperating density-based clustering
and weight clustering. At the second stage, we trans-
form the source reconstruction as a `p norm (0 < p ≤ 1)
minimization by an iterative Lagrange multiplier method.
With a proper initialization, the obtained solution is a
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global minimum for any p in (0, 1] with convergence guar-
antee. The proposed approach is demonstrated to be su-
perior to the state-of-the-art baseline methods in various
underdetermined experiments.

Keywords: Blind source separation (BSS), reverber-
ation environment, underdetermined case, local domi-
nance, clustering, sparse reconstruction, speech.

1 Introduction

Blind source separation (BSS) aims at recovering mul-
tiple unknown sources from mixture signals which are
captured by multiple microphones [ćević7501858, 1, 2].
The application of BSS is found in various areas, e.g.,
speech processing, biomedical signal processing, image
processing [4–6]. Convolutive BSS is proven suitable to
depict the speech signal mixing mechanism in a reverber-
ant environment, where multiple sources are convolved
from multiple delay mixing system model [1, 2]. In time-
frequency (TF) domain, the convolutive BSS problem can
be modeled as a sequence of linear mixing system [7, 8].
The objective of BSS in TF domain is to design a series
of unmixing filters to separate latent sources by exploiting
prior knowledge of sources, e.g., nonnegative feature of
source spectrum [9] or sparsity of source [10]. In this pa-
per, BSS in TF domain is mainly discussed under the sce-
nario where the mixing system can be underdetermined,
i.e., the number of mixtures is less than the number of
sources. This underdetermined BSS in TF domain is iden-
tified as an open problem [11,12] because the mixing ma-
trix is not invertible, leading to a difficulty in designing
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the unmixing filters.
Some underdetermined BSS methods utilize nonneg-

ative matrix factorization (NMF) to exploit the nonneg-
ativeness of sources [9, 13]. In general, NMF for BSS
aims to decompose the spectrum of mixture TF vectors
into a product of spectral basis matrix and its coefficient
matrix. In the work of [14], it tries to combine maximum-
likelihood estimation and NMF based on Itakura-Saito
divergence measurement to solve single channel audio
source separation problem. The authors in [15] seek to
extend the NMF-based framework into a multichannel
case by estimating the basis matrix and coefficient ma-
trix with expectation-maximization (EM) and multiplica-
tive update NMF methodology, respectively. Further-
more, other works like [16, 17] provide supervised NMF
method to enhance the source separation performance.
These methods introduce additional training procedure to
learn the basis matrix with a portion of pure sound sam-
ples generated by the target source signals. Currently, the
implementation of NMF-based methods to the underde-
termined BSS case is still ongoing by cooperating with
various priori knowledge of sources. For example, [18]
takes the sparsity of sources into account on designing the
NMF-based algorithm.

Several underdetermined BSS approaches employ TF
masking strategy to separate sources from observed mix-
tures [19]. Yilmaz introduces a condition called approx-
imately Window-disjoint orthogonal (WDO) assumption
in [20], which means that source components are disjoint
at each TF slot. Based on this assumption, it provides
a degenerate unmixing estimation technique (DUET) to
design binary masking and extract source components.
The method proposed in [21] tries to extend the binary
masking into complex-value version by utilizing a su-
pervised learning method. Furthermore, the TF masking
technique is combined with the K-means clustering in the
work of [22]. This strategy designs a hard TF masking
to classify each mixture TF vector into a particular clus-
ter, thus separate the sources without scaling alignment.
It is worth noting that the above TF masking methods are
mainly designed based on the mentioned WDO assump-
tion. However, this disjoint assumption may not usually
hold beyond a certain scale, e.g., the spectrum of mixtures
at some TF slots may be mixed by more than one source
component, which results in a so-called inter-interference
problem [23].

A major class of underdetermined BSS algorithms
adapt the sparse component analysis (SCA) with a two-
stage framework to unmix latent sources from the mix-
ture signals [24, 38]. In general, the two-stage strat-
egy includes mixing matrix estimation and source re-
construction. At the first stage, the mixing matrix es-
timation problem is converted to a joint-approximate-
diagonalization (JAD) minimization model by exploiting
the non-stationary property of source signals from a se-
quence of local covariance matrices of mixtures [26, 27].
The authors in [28, 29] transform the JAD minimization
into a tensor decomposition problem. It is worth not-
ing that these tensor-based methods are only suitable for
some particular under-determined cases due to the alge-
braic uniqueness restriction of tensor decomposition, e.g.,
the number of microphones must be greater than three.
Since the unmixing operation of underdetermined case
has no unique solution, at the second stage, the source
reconstruction is transformed as building various opti-
mization models to reconstruct most likely version of true
sources. For example, the authors in [30] utilizes the vol-
ume minimization to exploit the sparsity of source and
recover them. The method proposed in [31] transforms
the source reconstruction as a minimization problem of
Bayes risk with the squared loss measurement. Further-
more, a `p norm-based optimization model is proposed
for the source reconstruction problem based on a Lapla-
cian distribution assumption of sources in [32]. However,
it shows that the solution of [32] may stuck in a local min-
imum when p is less than 0.75. In general, the source re-
construction in the underdetermined case is still a tricky
problem.

To alleviate the problems as mentioned above based
on the two-stage framework, in this paper, we design a
different two-stage strategy to estimate the mixing ma-
trix and reconstruct sources for the underdetermined BSS
problem in TF domain. Inspired by the local dominance
of sources [33, 34], i.e., each source component is as-
sumed to be locally dominant at least in one successive
TF slots, at the first stage, we transform the mixing ma-
trix estimation to an eigenvector clustering problem. In
the proposed clustering scheme, the objects are the lead-
ing eigenvectors by exploiting the rank-one structure of
local covariance matrices. Next, a density-based cluster-
ing method [35] is developed to choose particular eigen-
vectors as the cluster centers. These eigenvectors are re-
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quired to be satisfying criterion of dense local density and
distinctive distance from other eigenvectors with higher
local density. To overcome the interference of outliers,
these clusters are further adjusted by additional weight
clustering scheme. At the second stage, we transform
the source reconstruction to a sparse reconstruction min-
imization model based on a `p norm (0 < p ≤ 1) mea-
surement. The `p norm based minimization is a flexible
framework to exploit sparsity of various source signals.
Next, this minimization problem is solved by a developed
iterative Lagrange multiplier strategy with a proper ini-
tialization procedure. Finally, the constructed sources are
converted back into the time-domain.

The main contributions of this paper are as follows:

A1. The proposed clustering strategy reveals the inherent
connection of local dominance of sources and mix-
ing matrix estimation in terms of eigenvector clus-
tering. The proposed scheme is improved by cooper-
ating density-based clustering and weight clustering,
which is a robust scheme to estimate the mixing ma-
trix with the presence of outliers.

A2. The proposed `p norm based iterative Lagrange mul-
tiplier approach can be viewed as a generalization
of [32] for the source reconstruction, whose solution
is a global minimum for any p in (0, 1] with conver-
gence guarantee.

A3. The provided new two-stage BSS strategy has been
demonstrated to be competitive to the state-of-the-
art methods with various synthetic and real-recorded
experiments.

The remainder of this paper is organized as follows.
First, the system model and assumptions are discussed in
Section II. Next, the proposed algorithm including mix-
ing matrix estimation and source reconstruction are pro-
vided respectively in Section III. Numerical results are
presented in section IV. Finally, conclusions are drawn in
Section V. Table I is the list of notations to be used in the
rest of this paper.

Table 1: Conventional Symbols
? Linear convolutive operator
b·c Rounding down operator
diag Retain only the diagonal elements

and make the diagonal elements as a vector
(·)∗ Complex conjugation
(·)T Transpose
(·)H Hermitian transpose
(·)−1 Inverse
E(·) Expectation operator
‖ · ‖0 `0 norm
‖ · ‖p `p norm
‖ · ‖F Frobenius norm

2 System Model and Problem De-
scription

2.1 Convolutive Mixing System Model
In the following system model, we consider multiple
sources are recorded by multiple microphones in the re-
verberant environment. Let M , N denote the number
of microphones and sources, respectively. Let x(t) =
[x1(t), . . . , xM (t)]T and s(t) = [s1(t), . . . , sN (t)]T de-
note as mixture signals and source signals, respectively.
With the above notations, we consider the convolutive
blind source separation (BSS) problem based on a se-
quence of multiple input multiple output (MIMO) finite
impulse response system with order L as

x(t) = H ? s(t) =

L−1∑
τ=0

H(τ)s(t− τ), (1)

where H(τ) ∈ RM×N is the mixing matrix at time lag
τ . The elements of H(τ) denoted by hi,j(τ) are the room
impulse response coefficients (RIRs) between the ith mi-
crophone and the jth source.

Similar to the works of [36, 37], the formulation of
(1) can be approximately transformed to a multiplicative
narrowband model in the time-frequency (TF) domain
by performing a F -length short-time Fourier transform
(STFT) to the mixture signals x(t), such as

xf,d = Hfsf,d + ef,d, (2)
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Figure 1: Illustration of local dominance assumption in TF domain. The sub-blocks pointed by arrows exhibit the
local dominance of speech sources. (a) N = 3, (b) N = 4.

where xf,d = [xf1,d, . . . , xfM,d]
T, sf,d =

[sf1,d, . . . , sfN,d]
T, ef,d = [ef1,d, . . . , efM,d]

T are
the complex-valued vectors of mixture, source and error
resulted by the narrowband approximation at TF slot
(f, d), respectively. The length of xf,d at frequency
bin f is denoted as D. In the system model of (2),
Hf =

[
hf1, . . . ,hfN

]
is a M × N complex valued

mixing matrix at the f th frequency bin. Each column of
Hf , e.g., hfi, is called as steering vector representing
each direction of mixing matrix, i = 1, . . . , N . It is
worth noting that the system model of (2) holds when the
window length of F satisfies F ≥ L/2 + 1.

2.2 Local Covariance Matrix
The second-order statistics of xf,d, i.e., local covariance
matrix, is introduced to exploit the non-stationary prop-
erty of latent sources. We divide the mixture TF vectors
into Q non-overlapping blocks, such that each sub-block
contains P = bD/Qc successive vectors. In this case, we
define the qth local covariance matrix of mixture TF vec-
tors by Rx

f,q , E(xf,dx
H
f,d), d = (q − 1)P + 1, . . . , qP .

The local covariance matrix of Rx
f,q can be further ex-

panded as

Rx
f,q = HfR

s
f,qH

H
f , (3)

where Rs
f,q , E(sf,ds

H
f,d). Suppose that the source TF

vectors at each sub-block are wide-sense quasi-stationary
with zero-mean and uncorrelated from each other, the co-

variance of Rs
f,q in (3) can be written in a diagonal matrix

formulation,

Rs
f,q =

σ
2
f1,q . . . 0
...

. . .
...

0 . . . σ2
fN,q

 ,
where σ2

fi,q , E(sfi,ds
∗
fi,d), d = (q − 1)P +

1, . . . , qP, i = 1, . . . , N . In practical implementation, the
local covariance matrix of Rx

f,q can be approximately cal-
culated by

R̂x
f,q =

1

P

qP∑
d=q(P−1)+1

xf,dx
H
f,d. (4)

2.3 Assumptions
We introduce the following assumptions to the system
model of (2):

A1) The number of microphones is less than the number
of sources, i.e., M < N .

A2) For each source i at any frequency bin f , there ex-
ists at least a sub-block indexed by qi, such that
σ2
fi,qi

> 0 and σ2
fj,qi

= 0, ∀ j 6= i, where ∀qi ∈
{1, 2, . . . , Q}, i = 1, . . . , N .

Assumption A1) considers the under-determined sce-
nario, which is a tough problem in convolutive BSS.
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Figure 2: Block diagram of the proposed two-stage framework.

In this case, the mixing matrix is not invertible and re-
sult in difficulty of designing unmixing filters. A2) is
the so-called local dominance assumption introduced in
[33, 34, 38], which stems from the observation of some
signals, e.g., speeches, exhibiting sparsity feature in that
each of them is locally dominant in the time domain or
TF domain. As an example shown in Fig. 1, the local
dominance of speech signals can be easily observed in TF
domain.

It is worth noting that A2) has relaxed the assumption
of WDO [20] to a great extent, which refers that the source
components are required to be disjoint at each TF slot, i.e.,
sfi,d×sfj,d = 0, i, j = 1, ..., N, i 6= j. Alternatively, A2)
infers that the source components are only required to be
disjoint at several sub-blocks. In this paper, A2) is a key
assumption to ensure that the steering vector of the mixing
matrix is detectable as long as those particular indices of
TF sub-block, i.e., q1,. . . ,qN , are correctly identified.

2.4 Objectives
In this paper, the under-determined BSS problem in TF
domain will be discussed in a new two-stage framework
based on the system model (2) and provided assump-
tions. First, we develop an eigenvector clustering ap-
proach to estimate the mixing matrix. Second, we present
a sparsity-based reconstruction approach to estimate la-
tent sources based on the estimated mixing matrix.

3 Proposed Algorithm

3.1 Overview
We provide a flowchart to show the significant steps of the
proposed two-stage strategy in Fig.2. At the first stage,
the mixture TF vectors Xf , [xf,1, . . . ,xf,D] are first
used to obtain a sequence of local covariance matrices,

e.g., Rx
f , [Rx

f,1, . . . ,R
x
f,Q]. Then, the eigenvector with

the largest eigenvalue of each local covariance matrix is
extracted and all of these eigenvectors are collected as
Af . Third, the columns of Af are clustered to give the
estimated mixing matrix H̃f . At the second stage, the
estimated mixing matrix H̃f is first rescaled to give Ĥf .
Then, the mixture vectors Xf are column-wisely unmixed
along with the estimated Ĥf to give Ŝf . Third, additional
permutation alignment is performed to give reconstructed
sources Ŝ∗f . Detailed description of the steps mentioned
above will be given in the following Sections. The pur-
pose of this paper is to estimate the source signals under
a two-stage framework combining density-based cluster-
ing and sparsity-based reconstruction. As the two-stage
strategy are discussed frequency wisely, the superscript f
of provided symbols, e.g., xf,d, Hf , sf,d, are omitted in
following discussion for simplicity.

3.2 Mixing Matrix Estimation
In this part, we show that the mixing matrix estimation
can be cast as an eigenvector clustering problem. This
clustering scheme includes three steps: 1) extract lead-
ing eigenvectors from local covariance matrices; 2) obtain
clusters by a density-based clustering method; 3) identify
the mixing matrix via an additional adjustment of clusters.

3.2.1 Eigenvector Extraction

To begin, the local covariance matrix of (3) is expanded
as follows,

Rx
q =

N∑
i=1

σ2
i,qhih

H
i . (5)

Based on the assumption of A2), there exists at least one
sub-block indexed by qi, where the corresponding local
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covariance of Rx
qi can be approximately expanded as fol-

lows,

Rx
qi ≈ σ

2
i,qihih

H
i . (6)

In (6), it indicates that the local covariance matrix is
roughly a rank-one structure if the local dominance con-
dition holds.

To exploit approximate rank-one structure of the lo-
cal covariance matrix, we try to employ the eigenvec-
tor extraction approaches similar to the works of [39–
41]. Specifically, we perform eigenvalue decomposition
(EVD) to the local covariance matrix of Rx

q , such that

Rx
q = UqΣqU

H
q , (7)

where Uq and Σq are the eigenvector matrix and eigen-
value matrix, respectively. The extracted vector denoted
by aq is the first eigenvector in Uq corresponding to
the largest eigenvalue of Σq . Without loss of general-
ity, the first entry of eigenvector aq is restricted to be a
positive. The eigenvector extraction is performed sub-
block wisely to give an eigenvector matrix defined by
A , [a1, . . . ,aQ]. Based on local dominance assump-
tion of A2), the particular eigenvectors dominated by only
one source component, i.e., aq1 , . . . ,aqN , are crucial to
the mixing matrix estimation. In the following, we focus
on how to estimate the steering vectors by the proposed
eigenvector clustering strategy.

3.2.2 Density-based Clustering

In this part, we will exploit the directions of steering vec-
tors based on the extracted eigenvectors. Here, we com-
pute a similarity matrix from eigenvectors A, such as,

V ,

v11 v12 . . . v1Q

...
...

...
vQ1 vQ2 . . . vQQ

 , (8)

where vqk =‖ aq − (aHq ak)ak ‖2F , q, k = 1, .., Q. Utiliz-
ing the similarity matrix of V, we can visualize the distri-
bution of eigenvectors by projecting the high-dimensional
eigenvectors into a two-dimensional space by maintaining
the similarity of any pair of eigenvectors. As an exam-
ple shown in Fig.3 (a), we observe that the eigenvectors

are mostly concentrated around various perfect steering
vectors. The distribution of eigenvectors of Fig.3 (a) has
two significant characteristics: 1) there are N local re-
gions with high density; 2) the local density regions are
far from each other. Based on these observations, it is
reasonable to employ the density-based clustering strat-
egy [35] to identify the steering vectors based on the sim-
ilarity matrix of V.

Two factors are taken into account in the eigenvector
clustering, i.e., local density ρq and minimum distance δq
from the eigenvectors of higher density. First, the local
density ρq is defined by using a sum of Gaussian kernel
functions,

ρq ,
∑
k 6=q

e
−
v2qk

τ2c , (9)

where τc is a cutoff distance used to define a region for
each data point. Usually, parameter τc is often empirically
chosen to ensure around 6% to 8% of the total number
of points in local region. Second, the minimum distance
between point q and any other points with a higher density
is defined as

δq = min
k:ρk>ρq

(vqk). (10)

It is worth noting that the point with global maximum in
the density, indexed as q∗, whose minimum distance δq∗
is defined as follows,

δq∗ = max
q,k=1,...,Q

(vqk), if ρq∗ = max
q=1,...,Q

(ρq). (11)

Third, the two factors are multiplied together to obtain a
score as follows,

γq = ρq × δq. (12)

The scores applying (12) are performed for all of the
sub-blocks to give {γq}Qq=1. The obtained scores are fur-
ther ranked in a descending order. In this way, the eigen-
vectors with the first highest N scores are extracted as the
clusters, which can be denoted by C , [c1, . . . , cN ].

3.2.3 Adjustment of weight clustering

It is worth noting that in practical implementation, the
eigenvectors may not be well distributed at each fre-
quency bin as shown in Fig. 3 (b), e.g., there may be
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Figure 3: Scatter plot of eigenvectors in Case (M,N) = (2, 3). The eigenvectors are compressed into a two dimen-
sional space by maintaining the similarity of any pair of eigenvectors. This procedure can be performed by Matlab
function of ’mdscale’. (a) case of few outliers (f = 80); (b) case of heavy outliers (f = 244).

lots of outliers at some frequency bins. In this circum-
stance, it would be difficult to cluster eigenvectors by only
using above density-based method. To alleviate this prob-
lem, we further adjust the estimated clusters by a weight
clustering scheme proposed by our previous work of [42].
This scheme aims to suppress the effects of outliers during
clustering by introducing weight penalty, thus it is able
to identify the clusters robustly. In this case, the density-
based method provides an initialization of the weight clus-
tering scheme.

The procedures of weighted eigenvector clustering can
be concluded in the following three steps. First, we
weight the eigenvector by a kernel function as follows,

bqk , e−w
2
qk/τ

2
0 aq, k = 1, . . . , N, (13)

where wqk =‖ aq − (aHq ck)ck ‖2F and τ0 is a pre-
set threshold, e.g., τ0 = 0.05. Second, we construct a
weighted covariance matrix as follows,

Rb
k =

Q∑
q=1

bqkb
H
qk. (14)

Third, we still perform EVD to the wighted covariance
matrix of Rb

k , such that

Rb
k = UqkΣqkU

H
qk
. (15)

The eigenvector corresponds to the largest eigenvalue
from (15) is extracted as an updated version of cluster ck,

k = 1, . . . , N . More details of above procedures can be
found in [42]. The implementation of mixing matrix esti-
mation is concluded in Algorithm 1.

3.3 Source Reconstruction
3.3.1 The `p Norm-based Minimization Model

In the under-determined case, the source reconstruction
is impossible via directly inversing the estimated mixing
matrix to the system of (2) since it is a fat matrix. Alterna-
tively, we employ a sparsity-based method to reconstruct
the sources as follows. To begin, each source component
is assumed to satisfy the following complex-valued super-
Gaussian distribution [32], such as

P (| si,d |) = p
γ1/p

Γ(1/p)
e−|si,d|

p

, (16)

where 0 < p ≤ 1 and γ > 0 control shape and variance of
the probability function, respectively; Γ(·) is the gamma
function. The objective of source reconstruction is to find
the sparsest term of sd based on the linear mixing system
of (2). For this purpose, a maximum posterior likelihood
of sd is given by

max
sd

N∏
i=1

P (| si,d |)

s.t. xd = Ĥsd,

(17)
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Algorithm 1 Implementation of Mixing Matrix Estima-
tion

1: Input: X = [x1, . . . ,xD].
2: Whitening X applying (25).
3: Stage 1: Eigenvector extraction
4: for q = 1 to Q do
5: Calculate R̂x

q applying (4).
6: Calculate aq applying (7).
7: end for
8: Construct eigenvector matrix as A = [a1, . . . ,aQ].
9: Stage 2: Eigenvector clustering

10: Calculate similarity matrix V applying (8).
11: for q = 1 to Q do
12: Calculate ρq applying (9).
13: Calculate δq applying (10).
14: Calculate γq applying (12).
15: end for
16: Calculate δq∗ applying (11).
17: Obtain score sequence of Υ = [γ1, . . . , γQ].
18: Reorder the eigenvector matrix with the same per-

mutation of a descending alignment to the score se-
quence of Υ.

19: Truncate the first N reordered eigenvectors to give
the estimated clusters C = [c1, . . . , cN ].

20: Stage 3: Mixing matrix estimation
21: for k = 1 to N do
22: repeat
23: for q = 1 to Q do
24: Using aq and ck, calculate weighted eigen-

vector bqk applying (13).
25: Calculate Rb

qk applying (14).
26: Using Rb

qk, calculate h̃k applying (15).
27: end for
28: until some stopping criterion is satisfied.
29: end for
30: Output estimated mixing matrix: H̃ , [h̃1, . . . , h̃N ].
31: De-whitening and re-scaling the estimated mixing

matrix to give Ĥ by applying (26), (28), respectively.

where Ĥ is the estimated mixing matrix. The optimiza-
tion model of (17) is equivalent to

min
sd
‖sd‖pp

s.t. xd = Ĥsd,
(18)

where ‖sd‖pp ,
N∑
i=1

| si,d |p. In the work of [32], the op-

timization of (18) is solved by transforming it into a sub-
space minimization problem. However, the global mini-
mal solution based on the method of [32] may not exist for
all values of p, i.e., it can only guarantee the global con-
vergence when p ≤ 0.75. To avoid this problem, we pro-
pose the following strategy to solve (18) based on the La-
grange multiplier method. In the next part, we will show
that the proposed method can achieve a global solution
with convergence guarantee for any p in (0, 1].

3.3.2 Proposed Lagrange Multiplier Method

To begin with, the model of (18) is reformulated to an
unconstrained optimization problem as follows:

min
sd,α
F(sd,α) , ‖sd‖pp +αH(xd − Ĥsd), (19)

where α ∈ CM is denoted as Lagrange multiplier. Ap-
plying Lagrange multiplier method, the optimal solution
of (19) can be deduced as follows (See appendix A),

sd = Ψ−1(sd)Ĥ
H(ĤΨ−1(sd)Ĥ

H)−1xd, (20)

where

Ψ−1(sd) ,

|s1,d|2−p . . . 0
...

. . .
...

0 . . . |sN,d|2−p

 .
Since (20) is an implicit function, we apply iterative
scheme to obtain the solution of sd as shown in (21).
The iterative scheme can be measured by ‖ŝ(iter)

d ‖pp −
‖ŝ(iter+1)
d ‖pp and terminate when it is below a preset

threshold, e.g., 10−2. The convergence of proposed La-
grange multiplier method has been discussed in [43], and
included here for completeness.
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ŝ
(iter+1)
d =

{
Ψ−1(̂s

(iter)
d )ĤH(ĤΨ−1(̂s

(iter)
d )ĤH)−1xd, if ‖ŝ(iter)

d ‖0 ≥M,

Ψ−1(̂s
(iter)
d )ĤH(Ĥ(Ψ(̂s

(iter)
d ) + εI)−1ĤH)−1xd, elseif ‖ŝ(iter)

d ‖0 < M.
(21)

Theorem 1. For 0 < p ≤ 1, let {ŝ(iter)
d }+∞iter=0 denote

as the iterative sequences, assuming 1) ŝ
(0)
d 6= 0 and 2)

Ĥ is a column-wise linearly independent mixing matrix,
then the sequence {ŝ(iter)

d }+∞iter=0 obtained by (21) is con-
vergent.

3.3.3 Initialization Issue

It is worth mentioning that since (20) is a non-convex op-
timization model, the iterative solution of (21) may stuck
in a local minimum with an inappropriate initialization of
ŝ

(0)
d . Inspired by the work of [31], we provide the fol-

lowing scheme to avoid the local minimum problem. It is
worth noting that a local minimum solution of (21) can be
obtained when a portion of N −M components of sd are
inactive. Let CMN be the number of M combinations of
set {1, . . . , N} and denote yj,d as the jth local minimum,
j = 1, . . . , CMN , satisfying

xd = Ĥyj,d. (22)

The local minimum of yj,d in (22) can be estimated by

yj,d ,

[
Ĥ−1
j xd
0

]
}M nonzero indices,
}N −M zero indices,

(23)

where Ĥj is the jth sub-matrix of Ĥ whose columns cor-
respond to the non-zero indices of yj,d. Based on the
above definitions, the initialization of sources is selected
as a summation of CMN local minimums with weight
penalty, such as

ŝ
(0)
d =

CMN∑
j=1

ωjyj,d, (24)

where ωj is the jth weight parameter. In the work of [31],
the weight ωj is exploited from a Bayes-risk probabilistic
model, which results in a sophisticate procedure of finding
optimal weights. Here, we only adapt the Monte Carlo

strategy to randomly generate the weight but restricting

that
CMN∑
j=1

ωj = 1, where ωj ∈ (0, 1).

The detail of source reconstruction is concluded in
Algorithm 2. As an example shown in Fig.4, we il-
lustrate the performance of source reconstruction for
Case (M,N) = (2, 3). In Fig.4 (a), it is observed that
the iterative error of ‖ŝ(iter)

d ‖pp − ‖ŝ
(iter+1)
d ‖pp decreases

along with the iterative step for d = 1, . . . , D. The pro-
posed method can be convergent with several iterations,
e.g., less than 25 steps. In Fig.4 (b), it shows a compari-
son between the spectrum of original sources and the re-
constructed version by the proposed method. We see that
the sources are precisely reconstructed with minor distor-
tions.

Algorithm 2 Implementation of proposed `p Norm Mini-
mization based Source Reconstruction

1: Input: Mixtures X = [x1, . . . ,xD], estimated mix-
ing matrix Ĥ.

2: for d = 1 to D do
3: Initialize ŝ

(0)
d applying (24).

4: repeat
5: Update ŝ

(iter)
d applying (21).

6: iter = iter + 1.
7: until some stopping criterion is satisfied, e.g., the

iterative error of (‖ŝ(iter)
d ‖pp − ‖ŝ

(iter+1)
d ‖pp) is less

than a given threshold, e.g., 10−2.
8: Output: ŝ∗d.
9: end for

3.4 Pre- and Post- Processing Issue

At the stage of mixing matrix estimation, each xd is
whitened as the pre-processing step such that

xW
d = Σ

− 1
2

x UH
x xd, (25)
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Figure 4: Example of speech source reconstruction for Case (M,N) = (2, 3) when f = 52. The reverberant time is
set as 200ms. (a) Iterative errors with iterative steps. The curve represents the reconstruction error of ŝd, d = 1, . . . , D;
(b) spectrum comparison between original sources and reconstructed sources.

where Ux and Σx are the eigenvector matrix and eigen-
value matrix of E(xdx

H
d ), d = 1, .., D. At the post-

processing step, the estimated mixing matrix are de-
whitened by

Ĥ = UxΣ
1
2
x H̃. (26)

In general, the inherent connection between the esti-
mated mixing matrix and the true one is given by

Ĥ = HΛΠ, (27)

where Λ and Π are a diagonal matrix with arbitrary scal-
ing and a permutation matrix with arbitrary order, respec-
tively. It shows that the estimated mixing matrix is re-
stricted by ambiguities of scaling and permutation. Such
ambiguities are the inherent problem of BSS methods, a
more detail description of these ambiguities can be found
in [1, 2, 30].

To solve the ambiguity of scaling, similar as the work of
[31], we rescale the estimated mixing matrix by restricting
the first row of all 1’s, i.e.,

Ĥ =


1 . . . 1

ĥ2,1/ĥ1,1 . . . ĥ2,N/ĥ1,N

...
. . .

...
ĥM,1/ĥ1,1 . . . ĥM,1/ĥ1,N

 . (28)

To solve the ambiguity of permutation, similar as the work
of [44], we align the order of reconstructed sources by

clustering the adjacent source TF vectors based on their
correlation in terms of power ratio. It is skipped here as
the focus of this paper is the two-stage scheme in under-
determined case rather than permutation alignment.

4 Simulation results
In this section, we will introduce data sets, evaluation
criterion and algorithm settings, we then apply proposed
two-stage scheme to process these data to evaluate the
performance of mixing matrix estimation and source re-
construction, respectively.

4.1 Datasets
In the following experiments, various scenarios are con-
sidered based on three public benchmark audio data sets
(see Dataset A, B and C). In the provided data sets, the
speech signals are recorded by various female or male
speakers with sampling rate Fs = 16 kHz. The data sets
also provide synthetic RIRs in a virtual room or authen-
tic RIRs recorded in a real room environment. Using the
provided source signals and RIRs function, we can gen-
erate various convolutive mixture signals by varying re-
verberant time of RT60, which is crucial to reflect the
room reverberation by measuring the transmission time
of signal decay to 60 dB. Four under-determined cases
were introduced in the following experiments, such as
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Case (M,N) = (2, 3), (2, 4), (3, 4) and (4, 5), respec-
tively.

• Dataset A is a data collection artificially generated
by convolving speech data with the authentic RIRs
from real room, which is recorded with the aid of
an acoustic impulse response measuring software
named as ”Sample Champion” [45]. In this Dataset,
three sources and two microphones are located in a
room size of 4.9m × 2.8m × 2.65m, whose posi-
tions are shown in Fig.5 (a). The reverberation time
RT60 from source to microphone is 127ms, whose
RIRs are shown in Fig.5 (b). Source s1(t) and s2(t)
are collinear, i.e., they have the same directions to
the center of microphones.

• Dataset B is a data collection created by a group of
speeches and the artificial RIRs function [46], which
can simulate various reverberant scenarios with ar-
bitrary settings, e.g., the physical sizes of room, the
locations of sources and microphones. The reverber-
ation time RT60 is varied from 100ms to 500ms with
duration time of 20ms. The synthetic room size is
5m× 5m× 2.3m. The coordinate of sources is (2m,
1m, 1.6m), (2m, 1.4m, 1.6m), (2m, 1.8m, 1.6m),
(2m, 2.2m, 1.6m), and (2m, 2.6m, 1.6m), respec-
tively. The coordinate of microphones is (3m, 1m,
1.6m), (3m, 1.5m, 1.6m), (3m, 2m, 1.6m), and (3m,
2.5m, 1.6m), respectively.

• Dataset C is a data collection provided by the Signal
Separation Evaluation Campaign (SiSEC 2011) [47].
The first development data set includes 28 differ-
ent sets of synthetic and live recorded mixtures with
varying speech types, reverberation time and micro-
phone spacing. It is worth noting that the synthetic
recorded mixtures is generated by the Roomsi tool-
box for a rectangular room and omni-directional mi-
crophone arrays [48]. The room reverberation time
RT60 is 130ms and 250ms in a room size of 4.45m
×3.55m × 2.5m. Here, we use 8 sets of mixtures
of female and male speech sources obtained from an
array of microphones. The spacing distance of mi-
crophones is 5cm or 1m and the distances between
sources and microphone pair center is 1.2m.

4.2 Estimation Evaluation Criteria
First, the estimated mixing matrix is evaluated by the
mean square errors (MSEs) [30] as follows:

MSEs = min
πi∈Π

1

N

N∑
i=1

‖ hi
‖ hi ‖2

− ĥπi

‖ ĥπi ‖2
‖2F , (29)

where Π is the set of all permutations of {1, .., N}, hi
and ĥi are the original steering vector and the estimated
version, respectively. The overall performance of mixing
matrix estimation is obtained by averaging the calculated
MSEs for all frequency bins.

Second, the estimated sources is evaluated by the cri-
terion of [49], which is to calculate signal distortion ratio
(SDR) between the target source signal and a series of
decomposed terms of source signal including distortion,
noises or errors. In general, the source signal can be de-
composed into a sum of several components, such as

ŝi(t) = stargeti (t) + einterfi (t) + enoisei (t) + eartifi (t),
(30)

where stargeti (t), einterfi (t), enoisei (t), eartifi (t) are the
target source with allowed distortion, interferences, noises
and artifacts error terms, respectively. Based on above de-
composition, SDR at the ith source component is defined
by

SDRi = 10log10×
‖stargeti (t)‖2F

‖einterfi (t) + eartifi (t) + enoisei (t)‖2F
.

(31)

The average SDR is calculated by SDR =

(
N∑
i=1

SDRi)/N , which reflects the overall accuracy

of source reconstruction performance.

4.3 Algorithm Settings
In the following, the proposed algorithm was tested with
various experiments based on provided Datasets. All the
experiments were carried out by a MacBook Air laptop
with Intel Core i5, CPU 1.8 GHz under the system of
macOS 10.13.6, and the programs were coded by Mat-
lab R2018b. In the proposed algorithm, the window was
selected as Hanning function. The window length F of
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Figure 5: Settings of Dataset A. (a) source-microphone configurations, (b) measured authentic RIRs from first source
to first microphone.
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Figure 6: Channel estimation performance based on Dataset B: MSEs versus RT60 (Sec.). (a) Case (M,N) = (2, 3),
(b) Case (M,N) = (2, 4), (c) Case (M,N) = (3, 4), (d) Case (M,N) = (4, 5).
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Figure 7: Source reconstruction performance of Dataset B: SDRs versus RT60 (Sec.). (a) Case (M,N) = (2, 3),
(b) Case (M,N) = (2, 4), (c) Case (M,N) = (3, 4), (d) Case (M,N) = (4, 5).
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STFT is chosen to exploit local stationarity of speech
signals while maintaining computational efficiency. It is
pointed out in the work of [36] that large window length
can decrease narrowband approximation error, thus we set
the window length and the STFT frame shift as 2048 and
128 samples (8ms) in the following experiments, respec-
tively. The speech signal duration was truncated as 10
seconds and the duration of each sub-block was set as
62.5ms, i.e., the recordings were partitioned into 160 seg-
ments.

For the convenience of following discussion, the pro-
posed approaches on mixing matrix estimation and source
reconstruction are labeled as ‘Density-based Eigenvector
Clustering (DEC)’, ‘`p-Norm-based Minimization (`p-
NorMin) ’, respectively. To demonstrate validity of
provided methods, several state-of-the-art algorithms are
compared in the following experiments. In the work of
[22], the methods on mixing matrix estimation and source
reconstruction are labeled as ‘Fuzzy-C Means cluster-
ing (FCM)’, ‘TF-Masking’, respectively; In the works of
[15,50], and [31], the methods are labeled as ‘EM-based-
Multichannel Nonnegative Matrix Factorization (EM-
Multichannel NMF)’, ‘Convolutive- Proximal Alternating
Linearized Minimization (C-PALM)’ and ‘Bayes Risk-
based-Minimization (Bayes-RisMin)’, respectively. It is
worth noting that C-PALM is developed based on a con-
volutive narrowband system model, which means that the
system in TF domain is still considered as a convolutive
mixing model. In this case, the mixing matrix are esti-
mated as a series of delayed versions. For this reason,
we would not compare the performance of mixing matrix
estimation by utilizing C-PALM in our following experi-
ments.

4.4 Experiment Results

4.4.1 Selection of parameter p in `p-NorMin

Considering the parameter p of proposed `p-NorMin
method plays an important role in source reconstruction
performance, we provide a series of tests with various p
to evaluate the impact of SDRs based on provided Dataset
A, B and C. Table 2 presents the SDRs by setting various
parameter of p ranging from 0.1 to 1 for Case (M,N) =
(2, 3). Based on provided results, we can observe that
SDR slightly grows with increasing of p and reaches the

peak when p = 0.8. In the following experiments, the
parameter p is set as 0.8 for better performance. We can
conclude that the `p-NorMin method is a flexible frame-
work by adjusting the parameter of p to exploit sparsity of
various types of sources.

4.4.2 Results on Dataset A

In this case, the mixtures is artificially convoluted by the
speech signals and authentic RIRs in a real room. It is
worth noting that sources s1(t) and s2(t) are located in the
same direction to the center of microphones in this experi-
ment. It follows that the corresponding steering vectors of
mixing matrix, i.e., h1 and h2, are similar to each other,
which increases the estimation difficulty. The results of
mixing matrix estimation applying provided algorithms
are as follows. The MSEs of proposed DEC is 0.012
while the MSEs of TF-Masking methodEM-Multichannel
NMF and Bayes-RisMin are 0.097, 0.068 and 0.019, re-
spectively. The results of source reconstruction applying
provided algorithms are provided in Table 3. In general,
the proposed `p-NorMin algorithm achieves a better aver-
aged SDRs than other four algorithms by approximately
3.33 dB, 4.49 dB, 1.89 dB and 0.98 dB, respectively. Fur-
thermore, we see that SDR2 is relatively lower than SDR1

and SDR3 in all of algorithms due to the collinear inter-
ference of source s1(t) and s2(t). In general, the pro-
posed method has improved the SDR performance of each
source component, especially for the SDR of source s2(t).

4.4.3 Results on Dataset B

In this experiment, the proposed algorithms were tested
with various parameter settings on Dataset B. In the aspect
of mixing matrix estimation, the proposed DEC method
is compared with the methods of FCM, EM-Multichannel
NMF and Bayes-RisMin, whose results are illustrated in
Fig.6. The mixing matrix performance of proposed DEC
is better than the Bayes-RisMin for all of cases, especially
when the reverberant time RT60 is over 200ms. More-
over, the proposed method outperforms FCM and EM-
Multichannel NMF in all under-determined cases. In ad-
dition, The EM-Multichannel NMF yields better MSEs
performance than FCM.

In the aspect of source reconstruction, the impact on
SDRs performance with reverberant time were tested
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Table 2: SDRs Evaluation of Various Parameter p in proposed `p-NorMin
Lp norm (p) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Dataset A 5.28 5.52 5.66 5.76 5.82 5.81 5.80 5.85 5.76 5.36
Dataset B 11.89 12.04 12.59 13.15 13.36 13.35 13.67 13.76 13.64 13.44
Dataset C 6.89 7.39 7.71 7.92 7.98 7.90 8.22 8.24 8.05 7.50

Table 3: SDRs Evaluation of Dataset A
s1 s2 s3 Average

TF-Masking 2.36 1.81 3.31 2.49
EM-Multichannel NMF 1.69 0.59 1.71 1.33

C-PALM 4.54 2.81 4.45 3.93
Bayes-RisMin 5.12 4.65 4.77 4.84

Proposed `p-NorMin 6.60 4.77 6.08 5.82

Table 4: SDRs Evaluation of Dataset C (Microphone Distance: 1m)
Dataset ’dev1’ (synthetic) ’dev1’ (live record)

Case (M,N) (2, 3) (2, 3)
RT60 130ms 250ms 130ms 250ms

Source type Female Male Female Male Female Male Female Male
TF-Masking 3.84 1.24 0.64 0.25 3.69 0.87 1.81 0.56

EM-Multichannel NMF 2.95 1.32 1.36 1.18 4.54 1.13 2.91 1.50
C-PALM 7.44 5.14 4.35 3.91 7.47 5.72 4.24 3.88

Bayes-RisMin 7.73 5.49 4.69 2.20 7.22 5.76 3.59 3.49
Proposed `p-NorMin 8.76 5.54 4.88 3.71 8.11 5.96 5.18 3.90

Table 5: SDRs Evaluation of Dataset C (Microphone Distance: 5cm)
Dataset ’dev1’ (synthetic) ’dev1’ (live record)

Case (M,N) (2, 3) (2, 3)
RT60 130ms 250ms 130ms 250ms

Source type Female Male Female Male Female Male Female Male
TF-Masking 1.16 0.34 1.02 0.75 1.82 1.32 -0.11 0.09

EM-Multichannel NMF 4.74 2.21 1.58 0.27 3.19 3.81 1.70 1.27
C-PALM 5.94 4.59 4.83 3.61 5.85 4.55 3.42 3.39

Bayes-RisMin 7.34 5.89 4.85 3.12 6.39 5.86 3.37 2.06
Proposed `p-NorMin 8.24 5.52 5.09 3.05 6.42 6.25 3.64 2.53

based on Dataset B. Fig.7 illustrates the average SDR
curves with various RT60. The SDRs of all proposed al-
gorithms descend when RT60 is increasing from 100ms
to 500ms. It is worth noting that the provided `p NorMin

method is slightly better than the results of TF-Masking,
EM-Multichannel NMF, C-PALM and Bayes-RisMin, re-
spectively. Moreover, TF-Masking and EM-Multichannel
NMF exhibit slightly better performance when RT60 is
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less than 160ms. Based on above results, we utilize
Bayes-RisMin for benchmarking as it demonstrates supe-
rior performance to other provided algorithms in provided
underdetermined cases.

4.4.4 Results on Dataset C

In this experiment, the algorithms were tested based on
Dataset C where synthetic data and real recorded data
are both taken into account. Table 4 and Table 5 present
the average SDRs by setting the microphone distance at
5cm and 1m for Case (M,N) = (2, 3), respectively.
The proposed `p-NorMin is slightly better than the Bayes-
RisMin in most of cases including the synthetic and real
recorded data. C-PALM achieves a better SDR result in
several highly reverberant scenario such as the case of
male speech when RT60 is 250ms. Moreover, the pro-
posed `p-NorMin, C-PALM and Bayes-RisMin achieve
stable SDRs performance while EM-Multichannel NMF
and TF-Masking do not work well in these experiments.
The SDR results of proposed `p-NorMin is still approxi-
mately 3 dB higher than EM-Multichannel NMF and TF-
Masking of all cases. Similar results also can be found
in Table 5. Overall, the provided experiments show that
the SDRs of proposed two-stage algorithm is competi-
tive than C-PALM and Bayes-RisMin in various tests,
and it outperforms the other two algorithms, i.e., EM-
Multichannel NMF and TF-Masking.

5 Conclusion
A new two-stage strategy for solving the under-
determined convolutive BSS problem has been proposed
in this paper. At the first stage, we transform the mix-
ing matrix estimation to an eigenvector clustering prob-
lem. First, the eigenvectors were extracted by exploit-
ing the rank-one structure of the local covariance matri-
ces of mixture signals; second, these eigenvectors were
clustered by a density-based clustering method to give
clusters; third, a wight clustering scheme was applied to
adjust the clusters to give the estimated mixing matrix.
At the second stage, we transform the source reconstruc-
tion to a sparse minimization model based on the `p norm
(0 < p ≤ 1), whose solution has solved by an iterative
Lagrange multiplier method with a proper initialization.

The experiment results have demonstrated the effective-
ness of the proposed two-stage algorithm compared to the
state-of-the-art methods in various under-determined BSS
cases. As the future work, we will extend the study of un-
derdetermined BSS in TF domain from a linear narrow-
band system to a convolutive narrowband systems, which
is more suitable to depict the source separation problem
in a highly reverberant environment [50]. The two-stage
scheme based on the convolutive narrowband system will
be an interesting problem to investigate.
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7 Appendix

7.1 Derivation of Proposed `p Norm Mini-
mization Method

According to the optimization model of (19), the gradient
of objective function respects to sd and α are derived as
follows, respectively,{

∂F(α,sd)
∂sd

= ∂J (sd)
∂sd

+ ĤHα,
∂F(α,sd)

∂α = xd − Ĥsd = 0,
(32)

where ∂J (sd)
∂sd

= pΨ(sd)sd. Note that the optimal solu-

tion can be obtained if ∂F(α,sd)
∂sd

= 0, thus we have

ĤHα = −pΨ(sd)sd. (33)

Multiply Ψ−1(sd) on both sides of (33), such as

Ψ−1(sd)Ĥ
Hα = −psd. (34)
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Next, multiply Ĥ on both sides of (34), such as

ĤΨ−1(sd)Ĥ
Hα = −pxd. (35)

Multiply (ĤΨ−1(sd)Ĥ
H)−1 on both sides of (35), such

as
α = −p(ĤΨ−1(sd)Ĥ

H)−1xd. (36)

Using the results of (34) and (36), we finally have

sd = Ψ−1(sd)Ĥ
H(ĤΨ−1(sd)Ĥ

H)−1xd. (37)

It is worth noting that in some circumstance the ac-
tive source component is less than M , i.e., ‖sd‖0 < M .
In this case, we can substitute (Ψ(sd) + εI)−1 instead
of Ψ−1(sd) to avoid the ill-conditioned matrix inversion
problem in (37).
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