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Abstract

This paper systematically discusses how the inherent properties of chaotic attractors influence the results

of discovering causal relationships from time series using convergent cross mapping, particularly how

convergent cross mapping misleads the bidirectional causal relationship as unidirectional when the chaotic

attractor exhibits symmetry. We propose a novel method based on the k-means clustering method to

address the challenges when the measurement function defines the even parity, which may cause this

issue. This method is demonstrated to recover the symmetry of the latent chaotic attractor and discover

the correct causal links between time series without introducing information from other variables. We

validate the accuracy of this method using time series derived from numerical simulations and a real-world

system for which convergent cross mapping may conclude erroneous results.

Keywords: Convergence Cross Mapping; Symmetric Chaos; Attractor Manifold; Causal Discovery;

Chaotic Dynamic System

Discovering nonlinear causal interactions in complex chaotic systems is essential for un-

covering the underlying physical phenomena. Convergent cross mapping is the crucial tool

for this causal discovery which is based on embedding the time series into a shadow manifold

that is topologically equivariant to the original attractor through delay embedding. How-

ever, despite the problem of selecting embedding parameters, the accuracy of the obtained

causal relationships is also highly related to the intrinsic properties of the original attrac-

tor, especially when the chaotic attractor exhibits rotation symmetry, such as Lorenz63

and Burke & Shaw. Under this circumstance, the shadow manifold reconstructed from the

variable that defines even parity may lose the original symmetry, causing the convergent

cross mapping to mislead bidirectional causal links as unidirectional. In this work, we illus-

trate this as the reconstructing mapping mods out the symmetry, thereby no longer being
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a one-to-one mapping. We propose a new framework based on k-means clustering to solve

this problem without introducing any information from another variable. The efficiency of

this method is demonstrated using various time series derived from numerical simulations

and a real-world system.

1. Introduction

Identifying the causation between signals from complex systems has garnered significant interest and

is essential in ecology, epidemiology, and climatology, where causal relations are inferred from observa-

tional signals. Granger causality, as outlined by [1], is a prevalent method for detecting causal links in

signals based on the principle of predictability and has been widely used to analyze economic growth

and neuroscience for effective brain connectivity [2, 3]. However, the effectiveness of Granger causality

is contingent on the separability of the system, making it inadequate for signals from nonlinear or de-

terministic physical systems, particularly systems with attractors characterized by non-separability and

moderate coupling.

Addressing the limitations of Granger causality, Sugihara [4] proposed the Convergent Cross Map-

ping(CCM) method. This method leverages the principles of chaotic dynamics to detect the causal

relationship between signals from nonlinear, nonseparable, and moderately coupled dynamic systems.

The key idea of CCM for detecting the causal relationship between two signals is determining whether

the historical states of one signal can reliably predict the states of another by checking the existence of the

mapping between two attractors reconstructed from two signals. Recently, CCM has been successfully

applied in several fields, including climatology [5], neuroscience [6], and ecology [7].

The application of CCM relies heavily on the embedding technique, mainly the delay-coordinate

mapping, which serves as a diffeomorphism between the reconstructed manifold, also termed the shadow

manifold M, and the original attractor manifold. Ideally, this diffeomorphism ensures that the dynamics

of the original system are faithfully captured in the shadow manifold. However, the delay-coordinate

mapping can not reach a diffeomorphism in practical scenarios. This discrepancy can arise due to various

external factors, including noise, missing values, and improper selection of reconstruction parameters,

e.g., the inappropriate lags for the delay-coordinate mapping. Furthermore, we point out that even in

cases where the signals are clean and sufficiently lengthy, intrinsic properties of the chaotic system, such

as the observability of the variables and inherent symmetries, may also influence the embedding quality.

Despite the significance of these factors, few studies have thoroughly examined the impact of such inherent

factors on CCM results.

Moreover, special attention should be given to cases when signals from the attractor exhibit rotation

symmetry since the shadow manifold reconstructed from the signals of the symmetric invariant variable

of this attractor may lose the symmetry such that the delay-coordinate mapping is no longer one-to-one.
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For example, the shadow manifold reconstructed from the z-coordinate projection of the Lorenz63 system

does not exhibit the same butterfly attractor as the original ones, as noted in counterexamples provided in

[8, 9] and the supplementary material of [4]. Although such time series arising from symmetric attractors

are abundant in real scenarios, such as output signals from chaotic circuits, the previous works have yet

offer a practical solution to address this issue.

In this work, we make the following contributions:

1. We systematically discuss how the inherent properties of chaotic systems, particularly those with

symmetric characteristics, influence the results of CCM and derive a general conclusion.

2. We propose a new framework based on the k-means clustering method to address the challenges

when the measurement function defines the even parity, which may cause the misleading result

caused by CCM.

3. We validate the correctness and efficiency of our method via several examples.

The rest of this article is organized as follows. Section 2 introduces CCM and discusses related work

in this field. Section 3 describes the challenge of CCM for several counterexamples. In section 4, we

explain the reason by systematically discussing the influence of symmetry and propose our framework.

Section 5 assesses the proposed method in several cases. Finally, conclusions are discussed in Section 6.

2. Background

In this section, we provide a self-contained introduction to the CCM methodology, specifically focus-

ing on its ability to identify causal relationships between two variables X and Y , generated from two

deterministic dynamic systems.

2.1. Attractor Reconstruction

In practical applications, signals from dynamic systems with attractors are often shown as time series

of real numbers generated from observations. The goal is to reconstruct the state space of the unknown

attractor for analysis. We introduce both discrete-time and continuous-time dynamic systems.

A discrete-time dynamic system is represented in the form xt+1 = ϕ(xt), where the state xt ∈

M is defined at some time t ∈ Z on a compact n-dimensional manifold M where ϕ : M → M is a

diffeomorphism, also called the iteration map, describing the evolution of the system with time. A

continuous-time dynamic system is a set of first-order ordinary differential equations which is represented

in the form ẋ = v(x), where the state x ∈ M is defined at all time t ∈ R, M is a smooth compact n-

dimensional manifold and v is smooth (C2) vector field on M . The unique solution ψ(x, t) :M ×R →M

is the flow generated by the vector field v, denoted as ψt(x) = ψ(x, t) satisfying ψt1 ◦ ψt2 = ψt1+t2 for
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t ∈ R. Give a certain initial condition x0 ∈ M , the solution to the dynamic system is the trajectory,

which is denoted as {ψ(xt)}, for t = 0, 1, 2, ... or a curve {ψt(x0)}t≥0. Moreover, if the vector field v or

the iteration map ϕ is time-independent, the dynamic system is an autonomous dynamic system. In this

paper, our analysis is confined to autonomous systems. This focus is justified because a non-autonomous

dynamical system can be transformed into an autonomous system by introducing the time variable as

an additional dimension in the phase space. For example, the non-autonomous system ẋ = v(x, t) is

equivalent to the autonomous system in one higher dimension ẋ = v(x, s), with ṡ = 1 where s = t.

It is important to note that although the system is inherently continuous, practical constraints ne-

cessitate that measurements are taken at a regular sampling interval T . Given this sampling rate, the

discrete flow denoted as ξT :M →M , can be defined and characterized by the equations ξT (xt) = xt+T

and ξ−1
T (xt)) = xt−T which associate each point state x ∈ M the vector ξT (x). The sampling rate T

represents an integer multiple of the iteration step for discrete dynamic systems.

In the theoretical framework of CCM, signals are causally linked if they share the common attractor

manifold A. The attractor A is defined as a closed subspace on a smooth compact manifold M with

dim(A) ≤ n which satisfies the following three axioms [10]:

1. A attracts an open set of initial conditions: There is an open set U containing A such that if the

initial state x0 ∈ U , then

lim
t→∞

dist(xt,A) = 0

2. Invariant set: If xt0 ∈ A, then xt ∈ A for all t ≥ t0

3. Minimal: No proper subset of A also satisfies these conditions.

The first two axioms ensure that points within the "basin of attraction"are drawn towards A, while

the third establishes that every part of A is crucial. The existence of attractors has been studied for

several decades, and it is established that every smooth, compact dynamical system possesses at least

one attractor [11]. Without loss of generality, we assume that the initial state x0 is contained within the

attractor, ensuring that the trajectory remains within the attractor A during the periods of interest, such

that xt ∈ A ⊂ RN for t ≥ 0.

Direct observation of the full state of the dynamic system is often infeasible. Instead, we have access

to observations via a real-valued measurement function h : A → R, producing the signals {si}i∈N =

{h(xi·T )}i, for i = 0, 1, 2..., where x0 is the initial state. A homeomorphism between two manifolds M1

and M2 is a continuous bijection f : M1 → M2, where its inverse function f−1 : M2 → M1 is also

continuous. Moreover, if the homeomorphism and its inverse are smooth, it is a diffeomorphism. An

embedding is a diffeomorphism from a manifold M1 into another manifold M2, defined as f : M1 →

f(M1) ⊂M2. An important point is that embeddings are always injective and without self-intersections.

Moreover, our goal is to find an embedding to reconstruct the attractor A from the signal {si}i. Given
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the certain measurement function h, the following theorem forms the theoretical foundation for attractor

reconstruction.

Theorem 1 (Takens). [12] Let M be an n-dimensional smooth manifold. If v is a vector field on M

with flow ψt and h is a measurement function on M , then for generic choices of v and h, the differential

mapping Fh,m :M → Rm of the continuous dynamic system into Rm is given by:

Fh,m(x) = (h(x),
d

dt

∣∣∣
0
h(ψt(x)), ...,

dm−1

dtm−1

∣∣∣
0
h(ψt(x))) (2.1)

which is an embedding when m = 2n+1, where m is the embedding dimension, d
dt

∣∣∣
0

means the derivatives

are evaluated at t = 0 and the flow ψ satisfies

d

dt

∣∣∣
0
ψt(x) = v(ψ0(x)) (2.2)

for every time t ∈ R.

The above theorem also holds for discrete dynamic systems with a diffeomorphism ψ on a compact n-

dimensional manifold M and a measurement function h, for which the embedding is defined as Equation

(2.3), where the value of the lag value τ is an integer multiple of the iteration size. The generic in

this theory means that the differential mapping Fh,m is an open and dense embedding in the set of

all mappings under the measurement function h and the flow ψt. The best way to understand this is

regarding this theorem as a generalization of the Weak Whitney Embedding Theorem [13].

Theorem 2 (Weak Whitney Embedding). Every n-dimensional manifold M embeds in R2n+1.

This theorem states that any manifoldM can be embedded in R2n+1 without self-intersections given an

arbitrary mapping. Whitney proves that the optimal linear bound for the minimum embedding dimension

is 2n. Takens theorem demonstrates that the differential mapping (2.1) satisfies this condition, embedding

the compact n-dimensional manifold M into the reconstructed space R2n+1, even when considering finite

discrete samples.

For practical use, discrete versions of the differential mapping (2.1) are required when working with

signals {si}i generated by the discrete flow ξT with a specific sampling interval T . The most common

approach is the delay-coordinate mapping Fh,τ,m(xi·τ ) :M → Rm, which is defined as:

Fh,τ,m(xi·τ ) =


h(xi·τ )

h(x(i−1)·τ )
...

h(x(i−m+1)·τ )

 =


h(xi·τ )

h(ξ−1
τ (xi·τ ))

...

h(ξ−m+1
τ (xi·τ ))

 (2.3)

where the parameter τ = k · T , for k ∈ Z is the lag value, and m is the embedding dimension. Theo-

retically, for minimal time delay τ , a linear combination of coordinates can approximate the derivative
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such that the delay-coordinate mapping plays the same role as the differential mapping. The well-defined

differential mapping is suitable for analytical purposes. This paper explores the properties of shadow man-

ifolds reconstructed through differential mappings while implementing experiments using delay-coordinate

mappings.

In practical scenarios, the sampling rate T of signals often cannot be small enough to accurately

approximate the differential and higher-order differentials at the given point. However, by selecting an

appropriate lag value τ , the delay-coordinate mapping method can obtain the same result in reconstruct-

ing the shadow manifold using a sufficiently small τ . Since chaotic dynamic systems consist of highly

nonlinear and coupled variables, the signal obtained from the projection function, which serves as the

measurement function, has the potential to recover information from other dimensions. The differen-

tial mapping method works by separating coupled information and projecting the observed data—via

differentiation—in the direction of maximum linear independence, thereby isolating information about

variables that are not directly observed. The critical part lies in accurately recovering information from

the unknown dimensions using the observed data.

Thus, selecting the lag value τ plays a critical role in reconstructing the shadow manifold. If the

lag value is suitable, the delay-coordinate mapping Fh,τ,n(x(t)) is equivalent to the differential mapping

Fh,n(x) under an affine transformation [14], and plays as a diffeomorphism between the shadow manifold

and the original attractor. However, the selection of the lag value is not only restricted by external

factors like the sampling rate T but also its intrinsic properties. For a continuous-time dynamic system

with discrete flow, if τ is too small, the resulting vectors may be highly linear dependent and redundant,

leading to a "squeezed" shadow manifold. Conversely, if τ is excessively large, the new coordinates

may become essentially unrelated [15], causing the shadow manifold to collapse. Based on the above

analysis, we can observe that as τ increases, the shadow manifold undergoes a "stretch-and-fold" process,

as depicted in Fig. 1. For convenience, we omit the sampling interval T for τ such that the number of τ

shown in this paper refers to the k in the definition, indicating the number of times the sampling interval

T , for example, τ = 5 means τ = 5T , where T is the sampling rate or the iteration steps for the discrete

dynamic system.

Although the selection of lag value for delay-coordinate mapping is an open problem, several works

have been done in this field [16, 17]. The most widely-used method to choose the suitable lag value τ is

the mutual information method [18]. The basic idea is to calculate the mutual information between the

system’s observed values at different lag values and the original observed data and then select the first lag

value at which the mutual information transitions from decreasing to increasing as the optimal τ since this

represents the lag value that contains sufficient new information while still maintaining some correlation

with the original data. This information-based method is theoretically intuitive, but the resulting values

often do not correspond to the points at which the shadow manifold is fully stretched before collapsing.
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Figure 1: Sequential figures representing the changes in reconstructed shadow manifold Mx of Lorenz63 system with

increasing lag value τ .

Furthermore, in cases where mutual information monotonically decreases with increasing lag value, this

method does not work.

According to Takens’ theorem, a dynamic system can be embedded in an Euclidean space without self-

intersection through any mapping. However, it should be noted that the ideal dimension for embedding

an n-dimensional dynamic system is n. In many cases, the optimal dimension for the shadow manifold

generated by differential embedding is also n. However, embedding an n-dimensional dynamic system into

a higher dimension (greater than n) does not significantly affect the results of CCM, which is consistent

with the results of tests using false nearest neighbors [19], as the redundant information introduced

by the extra dimensions does not provide extra information about the original dynamic system and,

therefore, does not impact the prediction. Therefore, when the dimension of the original dynamic system

is known, the differential embedding method can be directly used to obtain a shadow manifold of the

same dimension. In cases where information about the dimensions of the original dynamic system is

lacking, false nearest neighbors are a practical approach for dimension selection.

7



Notation Meaning

xt The state of dynamic system

M Compact n-dimensional smooth manifold

M Reconstructed shadow manifold

h Measurement function

ϕ Iteration map for discrete-time dynamic system

xt State at time t, where xt ∈M

ψt Flow generated by the vector field v

v Smooth vector field on M

ψ(xt) Trajectory of the system

ξT Discrete flow with sampling rate T

A Attractor

Fh,m The differential mapping

τ Lag value for the delay-coordinate mapping Fh,τ,m

Fh,τ,m The delay-coordinate mapping

Table 1: A list of mathematical notations in Section 2.

2.2. Convergent Cross Mapping

Here, we demonstrate how Takens’ embedding theorem can be applied to detect causal relationships.

Given two-time series variables, X and Y , which originate from two deterministic dynamic systems by

using projection functions. Here we say X causes Y means the evolution of yt depends on xt. The solid

mathematical framework of CCM based on Takens’ theorem is developed by Cummins et al. [20] by

interpreting causal relationship and bidirectional causal relationship as projection and homeomorphism

between two shadow manifolds separately. More precisely, ifX unidirectionally causes Y (meaning Y does

not cause X), then the joint dynamic system with an attractor Axy can be constructed by concatenating

X and Y as follows: xt+1

yt+1

 =

 ψx(xt)

ψy(xt, yt)

 = ψxy(xt, yt). (2.4)

The attractor Ax is then only a subset of the joint attractor Axy, which is identical to Ay and there is

a noninjective projection πyx : Ay → Ax between them. Consequently, there is also a noninjective map

Πyx : My → Mx from the shadow manifold My to Mx and the induced noninjective map Π̃y,x. In

other words, we can reconstruct the shadow manifold Mx from My, while the inverse is not guaranteed.

Furthermore, if X causes Y and Y also causes X, then the attractors Ax and Ay are equal to the

joint attractor Axy. In this case, the shadow manifold Mx and My are diffeomorphic to the joint

attractor. There exists a homeomorphism f : Mx → My between two shadow manifolds and an induced
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homeomorphism f ′ between Ax and Axy. Consequently, each shadow manifold can be reconstructed from

the other. The corresponding relationship of mapping is shown in Fig. 2.

Mx My

Axy

Fx,m Fy,m

f

(a)

Mx My

AxyAx

Fx,m Fy,m

f ′

f

(b)

Mx Ax

AxyMy

Fy,m

πyxΠy,x

Fx,m

(c)

Mx Ax

AxyMy

Fy,m

Π̃y,x

Fx,m

Πy,x

(d)

Figure 2: First line: Bidirectional causal relationship X⇔Y . (a). Induced homeomorphism f between Mx and My . (b).

Induced homeomorphism f ′ between Ax and Axy . Last line: Unidirectional causal relationship X⇒Y when f exists. (c).

Induced noninjective projection Πy,x between My and Mx. (d). Induced noninjective projection Π̃y,x when Πy,x exists.

Based on the above illustration, Sugihara et al. proposed the CCM algorithm to infer causal links

between two signals. It aims to do this by using k-nearest-neighbor regression on one shadow manifold

to make predictions of another and evaluating the forecasting skill via the Pearson correlation coefficient.

Given two time series {x1, x2, ..., xl} and {y1, y2, ..., yl} from two time series variables X and Y with finite

length l, CCM tests the causal relationship from X ⇒ Y in the following three steps:

1. Reconstruct two shadow manifolds Mx and My using the delay-coordinate mappings Fh,τ,n.

2. For each point yt in the shadow manifold My, collect its n+1 nearest points yti , i = 1, 2, ..., n+1.

Estimate x̂t|My using locally weighted averages of the corresponding xti values from the original

time series X, calculated as:

x̂t|My =

n+1∑
i=1

wixti (2.5)

where the weights wi depends on the distance between yt and its i-th closest neighbor in My,

computed as:

wi =
ui∑n+1

j=1 uj
(2.6)
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with ui:

ui = exp{−d[yt,yti ]

d[yt,yt1 ]
} (2.7)

where d[yt,yt1 ] represents the Euclidean distance between two vectors yt and yt1 . Similarly, cross

mapping in the other direction is defined by swapping variables.

3. Calculate the Pearson correlation coefficient between x̂t|My and xt, and its absolute value is the

corresponding forecast skill ρxy. Repeat 1 and 2 sequentially as the library length l increases, and

observe whether the value of ρxy converges to a nonzero value.

If X causes Y , then as the library length l increases, the shadow manifold becomes denser, allowing

the estimator x̂t|My converge to xt. Consequently, the Pearson correlation between the ground truth

and the predictor gradually converges. In other words, as we increase the length of the signal if the

predictability of newly added points aligns with the previous points, it suggests the presence of causal

relationship rather than a mere statistical coincidence. The Pearson correlation ρ value may converge to

a high plateau; otherwise, the cause-and-effect relationship does not exist.

Moreover, it is important to note that in cases of strong coupling, for instance, when X significantly

influences Y , it may exhibit behaviors that are not independent of X. In such scenarios, the causal links

may appear reversible, leading to an erroneous interpretation of unidirectional causal relationship as

bidirectional. This phenomenon is known as the problem of generalized synchrony. Further research on

detecting generalized synchrony within the CCM framework is discussed in [21].

2.3. Related Work about CCM

Several factors, such as noisy data, irregular or sporadic sampling, and improper selection of embed-

ding parameters, significantly influence the correctness of CCM. Here, we introduce some related work

as refinements of CCM. A key limitation of CCM is its sensitivity to missing data, necessitating long,

uninterrupted data for regular sampling [22]. Latent-CCM has been developed to address this in repeated

short, sporadic time series. It leverages a Neural ODE model to learn the inherent dynamics of the data,

a method that provides more state space information than the multi-spatial CCM [23]. The TD-CCM

method, employing denoising techniques like wavelet methods and empirical mode decomposition, has

been proposed in noisy data and trending noise signals.

Furthermore, Feng [24] introduced a Bayesian version of CCM, using a deep Gaussian process based

on Cross Mapping Smoothness (CMS) [25]. This approach shifts from the traditional online k-nearest-

neighborhood approximation to a deep Gaussian process, underlining the correlation between map smooth-

ness and the strength of time series relationships. It also includes a method for dimension reduction of

the shadow manifold using the Gaussian Process Latent Model. The CMS aims to detect causal relations
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in short-term time series by equating map smoothness with causal detection, using a Radial Basis Func-

tion Network for training. While theoretically sound, this method struggles with differentiating whether

the neural network’s fitting ability or significant training errors contribute to the model’s performance,

making model selection crucial. Moreover, CMS’s effectiveness for short-term data may be limited due

to potential overfitting issues, as smoothness is a necessary but insufficient condition for cross mapping.

Finally, Bulter [9] highlights the importance of auto-predictability and recurrence as prerequisites

for employing CCM effectively. Autopredictability ensures the deterministic nature of the system for

reliable prediction based on its history, while recurrence validates the presence of neighborhoods on the

attractor manifold. Fulfilling these criteria is crucial for successful state space construction, and additional

experiments [26, 27] are recommended to test the statistical significance of CCM results.

3. Problem Formulation

For a complex system with interacting variables connected, there are two kinds of causal relationships:

direct and indirect. A prototypical example of an indirect causal link is the variable Y within the Lorenz63

system, which acts as an interacting variable, introducing indirect causal links between X and Z. CCM

can indiscriminately detect such indirect causal relationship due to the causation transitivity [28, 29].

Although CCM cannot distinguish those two types of links, [28] provides the Partial Cross Mapping

method to eliminate indirect causal influence. Based on this, we do not discuss whether the causal

relationship detected by CCM is indirect or direct in this paper. This section shows that CCM may not

provide the correct causal links for the Lorenz63 system. Notably, this counterexample is not a statistical

anomaly. We have identified similar counterexamples originating from various systems; for example, the

Chen & Ueta dynamic system [30] wherein CCM fails to detect cross maps introduced by the interacting

variable Y .

The classical chaotic Lorenz63 system is:

dx

dt
= σ(y − x)

dy

dt
= ρx− y − xz

dz

dt
= xy − βz

(3.1)

where the parameters are defined as σ = 10, ρ = 28, and β = 8
3 with the initial condition x0 = [1, 1, 1].

In the Lorenz63 system, X influences both Y and Z, Y affects both X and Z, and Z affects Y and

X. However, as shown in Fig. 3, CCM mistakes bidirectional causal relationships Y ⇔ Z and X ⇔ Z

as unidirectional Z ⇒ Y and Z ⇒ X. Multiple experiments have also been carried out to avoid the

influence of parameters to test the influence of the value of τ and n shown in Fig. 4.

The fluctuation of lag values in a reasonable range may only fluctuate the convergent score of CCM
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Figure 3: True causal relationships versus CCM’s result. a. Graphical model of causal relations within the Lorenz63

system. b. Graphical model of causal relations obtained by CCM. The Lorenz63 system is simulated using the

fourth-order Runge-Kutta method, where the temporal domain is t ∈ [0, 100], the time step for discretization is ∆t = 0.01

which could be regarded as the sampling rate T for continuous-time systems, the initial condition is x0 = [1, 1, 1], and

τ = 9, n = 3 for CCM.

Figure 4: Influence of embedding parameters. Left. The influence of lag value τ when n = 3. Right. The influence of

embedding dimension n when τ = 9.

in a small range, thus persisting in the same casual direction. However, the condition of the embedding

dimension is different. The score is almost stable when the embedding dimension reaches the suitable

number (n = 3 in this case) because information obtained by increasing the dimension is redundant and

never provides additional information for improving predicting skills. The failure in the Lorenz63 system

poses a significant query: Is this a statistical anomaly? Further investigation should be done to find more

similar counterexamples. Moreover, such counterexamples should be distinct from the Lorenz63 system,

neither transformable into it nor derivable from it through linear or nonlinear coordinate transformations

(i.e., diffeomorphisms).

Besides the Lorenz63 system, we also discover numerous counterexamples for which CCM fails to

detect the correct causal links. This section focuses primarily on three examples: the Chen & Ueta

system, the Burke & Shaw system [31], and the three-scroll chaotic attractor [32]. Generally speaking,

all three systems are Lorenz-like systems since they share some common properties with the Lorenz63
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dynamic system [33], for example, similar butterfly attractors like the Lorenz63 attractor. However, they

are topologically different and nonequivalent to the Lorenz63 system. Additional examples are elaborated

in Section 5.

The first example is the Chen & Ueta dynamic system; its mathematical representation is formulated

as follows:
dx

dt
= α(y − x)

dy

dt
= (γ − α)x− xz + γy

dz

dt
= xy − βz

(3.2)

where the initial condition is set as x0 = [−10, 0, 37]. This system, characterized by its chaotic nature

and multiple attractors, is shown in Fig. 5, with parameters α = 35, β = 3, and γ = 28. Despite its

Figure 5: x-z plane projections of attractors. a. Chen & Ueta system, b. Lorenz63 system, c. Burke & Shaw system, d.

three-scroll chaotic system.

mathematical similarity to the Lorenz63 system, the Chen & Ueta system exhibits topological differences,

primarily in the number of equilibria: three in this case, as opposed to two in the Lorenz63. The causal
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structure of this system is the same as the Lorenz63. Another Lorenz-like system, the Burke & Shaw

system, is described as follows:
dx

dt
= −α(x+ y)

dy

dt
= −y − αxz

dz

dt
= β + αxy

(3.3)

with parameters α = −10.0, β = 4.272 and initial state x0 = [0.5, 0.5, 0.5]. The attractor produced by

equation (3.3) is also topologically different from the one of the Lorenz63 system [34].

We simulated both systems using the fourth-order Runge-Kutta method. For the Chen & Ueta system,

the temporal domain is t ∈ [0, 50], and ∆t = 0.005. Here, we choose a smaller ∆t because this system

has a larger vector field, and a small step size allows for better illustration and simulation. The lag value

and embedding dimension we optimized of the delay coordinate map as τ = 20 and n = 3. For the Burke

& Shaw system, the trajectories are simulated in the temporal domain t ∈ [0, 100] with ∆t = 0.01, and

the embedding parameters we optimized are τ = 10 and n = 3.

The last counterexample is the three-scroll chaotic system:

dx

dt
= 40(y − x) + 0.16xz

dy

dt
= 55x+ 20y − xz

dz

dt
= −0.65x2 + xy +

11

6
z

(3.4)

with the initial point x0 = [2, 2, 2], temporal domain t = [0, 150], ∆t = 0.0015, and τ = 20, n = 3. This

dynamic system generates a toroidal attractor bounded by a genus-3 torus, which is shown in Fig. 5. Six

causal links exist within this chaotic system as X ⇔ Y , X ⇔ Z, and Y ⇔ Z. Causal results of these

three systems obtained through CCM are listed in Table 2, where we can see that CCM fails to provide

the correct result. These instances suggest that the failure observed in the Lorenz63 is not merely an

anomaly but indicative of an underlying commonality that warrants further investigation.

4. Explanation and Proposed Solution

In the previous section, we proposed that CCM may provide incorrect causal links for several cases.

Here, we explain the reason and extend it to general cases. We point out that for the n-fold dynamic

system, which is equivariant under a nontrivial cyclic group Cn of order n, the differential mapping of

the invariant variable is a n-to-one mapping rather than an embedding. Consequently, when there is a

bidirectional causation between invariant and non-invariant variables, there is no longer a homeomorphism

between two shadow manifolds, misleading a wrong causal relationship between two variables. To address

this problem, we propose a practical method for the case when the dynamic system is equivariant under

the order two cyclic group C2.
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4.1. Preliminary

Here, we briefly introduce some basic definitions and properties that will be used later. Group theory

is the mathematical tool to study symmetry. For a finite group G, the order of the group refers to the

number of elements it contains, denoted by |G|. A group action "·" of a group G on Rn is defined as a

map G × Rn → Rn which satisfies: (a). e · x = x for all x ∈ Rn, where e is the identity element of the

group G and (b). (gh) · x = g · (h · x) for x ∈ Rn and g, h ∈ G. Here g · x means the image of x under

the action of g ∈ G.

A dynamic system ẋ = v(x) with flow ψt(x) is |G|-fold symmetric or G-equivariant if

g · ẋ = g · v(x) = v(g · x). (4.1)

for every g ∈ G and x ∈ Rn. For every g ∈ G, the fundamental domain Dg ∈ Rn under the group G is a

representative region such that the action of G tessellates the entire space without overlaps. Formally, it

satisfies:

g1 · Dg1 ∩ g2 · Dg2 ̸= ∅ ⇒ g1 = g2 (4.2)

for g1, g2 ∈ G. For example, the fundamental domain of the Lorenz63 system can be chosen as DRz
=

{(x, y, z)|x ≥ 0}. If G is a reflection group, then the dynamic system is reflection symmetric. If G is the

cyclic group Cn, then the dynamic system is rotation symmetric. If the dynamic system is equivariant

under the inversion group G = {e, P} where P denotes the inversion operation as P : (x1, x2, ..., xn) →

(−x1,−x2, ...,−xn), then the dynamic system is inversion symmetric.

There are several crucial factors we should notice for a symmetric attractor. Firstly, the group G

should satisfy certain algebraic conditions when the reflection planes exist such that the G-equivariant

dynamic system may generate a symmetric attractor [35, 36]. Moreover, not all symmetric attractors are

connected because of the existence of the reflection plane of the symmetry group. The system gives a

typical example of this [37]:

ẋ = x− xy

ẏ = z

ż = −y − az + x2

(4.3)

which is G-equivariant under the group G = {e, σx}, where σx : (x, y, z) → (−x, y, z), producing the so-

called "kissing" attractor shown in Fig. 6. It is evident that the symmetric pair of strange attractors nearly

touch each other on opposite sides of the reflection plane x = 0, as ẋ = 0 in this plane. Consequently,

a trajectory originating from an initial point in one part of its disconnected symmetric attractor may

not exhibit symmetry behavior. Based on the above analysis, when the symmetry group has a reflection

plane, as in such cases, the corresponding trajectory may not show the expected symmetry. In this paper,

we focus on investigating the impact of the symmetry of rotation symmetric systems with no reflection

plane on detecting causal relationships by CCM.
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Figure 6: A symmetric pair of attractor "kissing" of the reflection equivariant system, when a = 0.7 and two initial values

x1 = [−2, 2, 0] and x2 = [2, 2, 0]. Two parts of trajectories can become arbitrarily close but never cross the plane x = 0.

The following are two useful results for differential mapping. For g ∈ G, if the function u satisfying:

u(g · x) = ±u(x), (4.4)

we say that u defines the (even or odd) parity under g. For a G-equivariant dynamic system ẋ = v(x)

with flow ψt(x), by the definition of the derivative, we have:

d

dt

∣∣∣
0
u[ψt(x)] = lim

t=0

u[ψt(x)]− u(x)

t
= lim

t=0

u[x+ tv(x)]− u(x)

t
(4.5)

where d
dt

∣∣∣
0

denotes that the derivative is evaluated at time t = 0, and ψt(x) represents the flow of the

system. By using the property in (4.1), and transforming x to g · x, we obtain:

d

dt

∣∣∣
0
u[ψt(g · x)] = lim

t=0

u[ψt(g · x)]− u(g · x)
t

= lim
t=0

u[g · x+ tv(g · x)]− u(g · x)
t

= lim
t=0

u[g · (x+ tv(x))]− u(g · x)
t

=
d

dt

∣∣∣
0
u[g · ψt(x)]

(4.6)

Thus, it implies that the time derivative of u also preserves the same parity. By mathematical induction,

we can conclude that the n-th derivative of u inheres the same parity.

Through the differential mapping Fh,n defined as (2.1), the shadow manifold is constructed from

consecutive derivatives. The corresponding vector field of the shadow manifold is:

V i =
d

dt

∣∣∣
0
F i
h,n(ψt(x)) (4.7)

where F i
h,n and V i denote the i-th component of Fh,n(x) and V separately, and we have the following

rules:
d

dt

∣∣∣
0
F 2
h,n(ψt(x)) = F 3

h,n(x). (4.8)
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Since V 1 = F 2, by mathematical induction, we have the general rule:

V i(x) =
d

dt

∣∣∣
0
F i
h,n(ψt(x)) = F i+1

h,n , i < n (4.9)

Thus, the n-dim shadow manifold always has the analytic canonical form:

V 1 =
d

dt

∣∣∣
0
F 1
h,n = F 2

h,n,

V 2 =
d

dt

∣∣∣
0
F 2
h,n = F 3

h,n,

...

V n−1 =
d

dt

∣∣∣
0
Fn−1
h,n = Fn

h,n,

V n =
d

dt

∣∣∣
0
Fn
h,n = f(F 1

h,n, . . . , F
n
h,n).

(4.10)

for some function f , which is the only unknown term.

The following theorem explains the preservation of symmetry in the reconstructed system when using

differential mapping to reconstruct a symmetric system from a single observation function [38].

Theorem 3 (Cross). A differential reconstruction of any nonlinear dynamic system preserves, at most,

a two-fold symmetry.

Specifically, there are only two possibilities for reconstructed shadow manifolds: either (a). The

shadow manifold has no symmetry, and (b). The shadow manifold is equivariant under the inversion

group G = {e, P}.

4.2. Explanation

We begin with a few key observations. First, all three dynamic systems are two-fold symmetric,

specifically three-dimensional ones that rotate around the z-axis. In such systems, the differential mapping

Fz,n generates two symmetric shadow manifolds, Mx and My, along with a nonsymmetric one, Mz.

Second, all trajectories of these shadow manifolds are connected. These observations lead us to investigate

the properties of symmetric systems under differential mappings. Here, we give the following remark as

an explanation for the general case.

Proposition 1 . If the dynamic system ẋ = v(x) ∈ Rn is symmetric under the order-two cyclic

group C2 = {e,Rxn
(π)}, where Rxn

(π) : (x1, x2, ..., xn) → (−x1,−x2, ..., xn), CCM may mislead the

bidirectional causal relationship xn ⇔ xi between the invariant variable xn and xi, i ̸= n as unidirection

relationship xn ⇒ xi.

Proof. It is sufficient to show that there is a noninjection mapping Πxixn : Mxi → Mxn between Mxi

and Mn. Since the dynamic system is two-fold symmetric under C2, then when the measurement function
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h is taken to be the xn-coordinate projection, it defines even parity as h(Rxn(π) · x) = h(x). Using the

results (4.6) and (4.9), the differential mapping Fxi,n and the new vector field also inherit the same even

parity as h. Therefore, the Fxn,n is noninjective and is two-to-one at the nicest case. Because of the

bidirectional causal relationship xn ⇔ xi, we can find the induced homeomorphism f : Axn
→ Axixn

and

f ′ : Axixn → Axn . Then the homeomorphism f̃ : Mxi → Axn can be obtained by f̃ : f ′ ◦ F−1
xi,n, since

Fxi,n is a diffeomorphism. So the map

Πxixn : = Fxn,n ◦ f̃

= Fxn,n ◦ f ′ ◦ F−1
xi,n

(4.11)

constructed from Fig. 7 is the desired noninjective mapping since Fxn,n is noninjective. ■

Mxn Axn

Axixn
Mxi

f̃

Fxn,n

Fxi,n

f ′Πxixn

Figure 7: Induced projection Πxixn : Mxi → Mxn , homeomorphism f ′ : Axixn → Axn and f̃ : Mxi → Axn .

Next, we use the Lorenz63 and the Burke & Shaw systems to show concrete examples. Both systems

are two-fold symmetric system under the cyclic group C2 = {e,Rz(π)}. For the Lorenz63 system, when

the measurement function is taken to be the x-coordinate projection which defines odd parity under the

action of Rz(π), the corresponding differential mapping Fx,3 : (x, y, z) → (u, v, w) is as follows:

u = x

v = σ(y − x)

w = σ[(ρ+ σ)x− (σ + 1)y − xz]

(4.12)

where we use (u, v, w) to denote new coordinate to avoid confusion. The new vector field of the x-induced

shadow manifold also referred to as the induced Lorenz system, is:

u̇ = v

v̇ = w

ẇ = βσ(ρ− 1)u− β(σ + 1)v − (1 + β + σ)w − u2v − σu3 +
v

u
(w + (1 + σ)v)

(4.13)

where the domain is {(u, v, w) ∈ R3|u ̸= 0}.

The same process applies to obtain the invariant system generated by Fz,3 for the Burke & Shaw
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equation (3.3) as:

u̇ = −(α+ 1)u− α(1− w)v + (1− α)ρ

v̇ = α(1− w)u− α(1 + w)ρ− (α+ 1)v

ẇ =
α

2
v + β

(4.14)

where ρ =
√
u2 + v2. The invariant image of Lorenz63 and Burke & Shaw is shown in Fig 8.

Figure 8: Left: Strange attractors generated by the Lorenz63 system (3.1) and Burke & Shaw system (4.14). Right:

Invariant images of the Lorenz63 and Burke & Shaw systems.

We have systematically examined the structure of two-fold rotation symmetric systems in R3, the

reconstruction of their shadow manifolds, and the characteristics of the differential mapping Fh,3. This

analysis explains why CCM fails to provide a correct causal graph consistent with other counterexamples.

Specifically, the variable that defines even parity and remains invariant under the representation of

the order-two group lacks sufficient information about the attractor’s symmetry, making it unable to

distinguish between different fundamental domains in the phase space.

4.3. Proposed Method

The previous analysis demonstrates that CCM may misinterpret the bidirectional causal relationship

as unidirectional when the underlying dynamic system exhibits two-fold symmetry under the cyclic group
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C2. The key to resolving this issue lies in reconstructing a one-to-one homeomorphism between two

shadow manifolds, enabling CCM to provide correct causal relationship. An intuitive approach is to

recover the rotational symmetry of Mz, modded by the delay coordinate map, thereby restoring the one-

to-one mapping. Existing methods achieve this by incorporating symmetry information from another

variable, for example, using (y, z) or (x, z) to reconstruct the Lorenz63 system. However, when applying

CCM to detect causal relationships, it is crucial to avoid introducing information from other variables of

shadow manifold reconstruction. In other words, we cannot use the shadow manifold reconstructed from

the set (x, z) to detect the causal relationship between X and Z. We find another way to recover the

one-to-one mapping without introducing additional information about another variable and propose the

segment convergent cross mapping (sCCM) method to address this issue.

Instead of recovering the modded-out symmetry to reconstruct the one-to-one mapping, we propose

another way by projecting the inversion-symmetric shadow manifold (i.e. Mx of Lorenz63) into its

fundamental domain DP and its reflected counterpart P ·DP . This segmentation results in two equivalent

time sets:

[t1] = {t ∈ T |xt ∈ DRz
}, [t2] = {t ∈ T |xt ∈ Rz ·DRz

}. (4.15)

Moreover, two equivalent sub-manifolds, Mx|[t1] and Mx|[t2], depending on which fundamental domain

the trajectory is in at time t. Next, we split the invariant shadow manifold Mz into two sub-manifolds

Mz|[t1] and Mz|[t2], corresponding to the time sets [t1] and [t2]. In other words, the segmentation of Mz|[ti]

depends on the indices of Mx|[ti], the final step is applying CCM on those two pairs of sub-manifolds

for detecting the causal relationship. Through this segmentation process, we eliminate the influence

of symmetry, which makes the reconstruction mapping two-to-one (under the nicest case) during the

reconstruction process. Moreover, we preserve the local geometry structure of each sub-manifold during

the segmentation process. If the bidirectional causal relationship exists, that is the one-to-one mapping

f̃ : Mx|[ti] → Mz|[ti] exists, then the forecasting skill score ρ obtained on two separate experiments

should both high and closed to one. Here, we calculate the average as the final score as the final score.

In a practical scenario, without any analytic information about the dynamic system, the first step is to

check the recurrence property of the dynamic system via the recurrence plot or the method shown in [9],

which is a necessary condition for the usage of CCM and details are discussed in Appendix Appendix B.

Next, it is necessary to check the symmetry property of the time series by checking whether the shadow

manifolds pose inversion symmetry, which can be achieved by using the indicator shown in [39]. If one

poses inversion symmetry while the other is non-symmetric, our method should be applied under this

circumstance to get the correct causal relationship.

Here, we use the k-means clustering method as the implementation for the segmentation since k-

means performs well on datasets with symmetric properties [40]. For the Lorenz63 system, the pipeline

is illustrated in Fig. 9. Specifically, we first segment the symmetric shadow manifold Mx into two
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sub-manifolds, Mx|[t1] and Mx|[t2], using k-means clustering methods (k=2). Subsequently, the indices

derived from Mx|[ti] are applied to segment Mz into Mz|[t1] and Mz|[t2].

Algorithm 1 Segment Convergent Cross Mapping for two-fold symmetric system under C2

Input: Give two data sets {hx} and {hz} generated from the coordinate projections, and embedding

parameters τ and n

Output: The causal relationship between X and Z

1: Test the recurrence property for the dynamic system.

2: Use delay-coordinate mappings Fx,τ,3 and Fz,τ,3 to embed those two data sets into two shadow

manifolds Mx, and Mz.

3: if One is inversion symmetric Mx and the other is non-symmetric Mz then

4: Use k-means clustering method to partition the symmetric shadow manifold Mx into two parts,

Mx|[t1] and Mx|[t2].

5: Segment Mz into Mz|[t1] and Mz|[t2] according to the time index derived from Mx|[ti].

6: Do CCM for (Mx|[t1],Mz|[t1]); (Mx|[t2],Mz|[t2]) and obtain ρx1z1 , ρz1x1 , ρx2z2 , ρz2x2

7: Combine the results as ρxz =
ρx1z1

+ρx2z2

2 and ρzx =
ρz1x1

+ρz2x2

2

8: else

9: Do CCM on Mx and Mz.

10: end if

Another point to note is that the shadow manifold is when the length of the signal is limited, the

number of trajectories lying in the fundamental domain DP and its reflection counterpart P · DP of the

inversion symmetric shadow manifold may differ; that is, one domain may be denser than the other. This

can be clearly observed in Fig. 9, where Mx|[t2] looks denser than Mx|[t1]. This difference is due to the

asymmetric periodic motions of the Lorenz63 system; however, as the number of observations increases,

both Mx|[ti] and Mz|[ti] would become denser to the same extent.

For attractors in higher-dimensional space than three, the complexity far exceeds that of three-

dimensional attractors, and the observability dramatically affects the effectiveness of CCM since the

quality of reconstructed shadow manifolds faces substantial challenges due to the intricate complicated

dynamics. For instance, the system is often unobservable from a single variable, and multiple variables

are usually required to obtain an effective embedding [41]. More details are discussed in Appendix

Appendix A.

5. Experiments

In this section, we test the efficiency of our method through several numerical simulation results and

one real-world case. Moreover, we also discuss symmetric systems in the higher dimension.
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Figure 9: A schematic depicting the details for implementation of sCCM between Mx and Mz for the Lorenz63.

5.1. Case 1: Rotation symmetric systems under order-two group C2 in R3

We implement our method on several C2 symmetric systems in R3, including the counterexamples

mentioned in Section 3 and causal relationships between X and Z are shown in Table 2. Similarly, the

correct relationship between Y and Z can be obtained using the same steps. The Pearson correlation

coefficients ρx1z1 , ρx2z2 , ρz1x1 , ρz2x2 all converge to nonzero values close to 1 as the length of the library

increases, indicating a bidirectional causal relationship between X and Z. We can observe that CCM

misleads the bidirectional causal relationship between two signals as unidirectional due to the influence

of modded-out symmetry, while sCCM provides the correct causal link.

Moreover, we test the robustness of sCCM by varying noise levels in the Lorenz63 system. Gaussian

noise n ∼ N (µ, σ) is added to the observations and run our experiments for ten times. In our tests, µ

is set to zero, and we explore different noise levels with standard deviations σ at 0.1, 0.5, and 1. The

trajectories are generated as described in Section 3, ensuring consistency in other experiments. Results

are shown in Table 3. The findings indicate that our method maintains considerable effectiveness even

under moderate noise levels, underscoring its robustness. This conclusion is consistent with the other

examples and scenarios in this study section.
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Dynamic systems CCM Segment CCM

Lorenz63 ρxz = 0.471, ρzx = 0.995 ρxz = 0.992, ρzx = 0.997

Chen & Ueta ρxz = 0.244, ρzx = 0.997 ρxz = 0.965, ρzx = 0.997

Burke & Shaw ρxz = 0.283, ρzx = 0.999 ρxz = 0.989, ρzx = 0.999

Three scroll chaotic attractor ρxz = 0.131, ρzx = 0.928 ρxz = 0.869, ρzx = 0.926

Wang [42] ρxz = 0.013, ρzx = 0.999 ρxz = 0.994, ρzx = 0.999

Shimizu & Morioka [43] ρxz = 0.535, ρzx = 0.983 ρxz = 0.965, ρzx = 0.982

Rucklidge [44] ρxz = 0.392, ρzx = 0.973 ρxz = 0.939, ρzx = 0.973

Sprott B [45] ρxz = 0.034, ρzx = 0.999 ρxz = 0.995, ρzx = 0.999

Sprott C [45] ρxz = 0.326, ρzx = 0.995 ρxz = 0.970, ρzx = 0.996

Rikitake [46] ρxz = 0.582, ρzx = 0.991 ρxz = 0.988, ρzx = 0.987

Liu & Yang [47] ρxz = 0.358, ρzx = 0.989 ρxz = 0.983, ρzx = 0.967

Chongxin et al. [48] ρxz = 0.185, ρzx = 0.998 ρxz = 0.968, ρzx = 0.999

Lü, Chen & Cheng [49] ρxz = 0.035, ρzx = 0.986 ρxz = 0.946, ρzx = 0.986

Table 2: Results for a range of C2 symmetric systems in R3.

5.2. Case 2: Rotation Symmetric Systems under order-two group C2 in High Dimension

In this part, we apply our method to three high-dimensional, two-fold rotation symmetric systems, in-

cluding two four-dimensional and one five-dimensional system. These high-dimensional dynamic systems

are visualized by projecting them onto lower-dimensional planes. Observability is critical in determin-

ing whether a shadow manifold can be successfully reconstructed in such cases. Consequently, poor

observability can lead to incorrect results from CCM.

The first case is a four-dimensional dissipative Lorenz-like dynamic system, representing a self-excited

oscillatory modular circuit with the following mathematical formulation [50]:

dx

dt
= a(y − x)

dy

dt
= xz + w

dz

dt
= b− xy

dw

dt
= yz − cw

(5.1)

where parameters are set as a = 6, b = 11, c = 5, with the initial value (x, y, z, w) = (10, 10, 0, 0).

We simulate this system using the fourth-order Runge-Kutta method over the temporal domain t =

[0, 100.0] with a time step of ∆t = 0.01. This system is rotation symmetric under the order-two group

C2 = {e,Rz(π)}, where Rz : (x, y, z, w) → (−x,−y, z,−w), producing two distinct types of attractors:

four-wing and two-wing attractors which are shown in Fig. 10.
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noise level (σ) CCM Segment CCM

0.1
ρxz = 0.0993(0.010), ρzx = 0.991(0.0003) ρxz = 0.988(0.0004), ρzx = 0.992(0.0002)

ρyz = 0.140(0.0126), ρzy = 0.961(0.0014) ρyz = 0.990(0.0005), ρzy = 0.965(0.0014)

0.5
ρxz = 0.0183(0.0135), ρzx = 0.9665(0.0012) ρxz = 0.973(0.0007), ρzx = 0.962(0.0014)

ρyz = 0.0430(0.0276), ρzy = 0.934(0.0013) ρyz = 0.976(0.0010), ρzy = 0.939(0.0012)

1
ρxz = 0.0438(0.0213), ρzx = 0.931(0.0019) ρxz = 0.942(0.0018), ρzx = 0.934(0.0022)

ρyz = 0.0263(0.0176), ρzy = 0.8904(0.0039) ρyz = 0.949(0.0012), ρzy = 0.892(0.0003)

Table 3: Performance of Segment CCM under different noise levels. We show the mean over ten runs, and the values in

parentheses represent the corresponding standard deviation.

From equation (5.1), we infer bidirectional causal links between variables: X ⇔ Z, Y ⇔ Z, and

W ⇔ Z. However, CCM results show unidirectional causal links Z ⇒ X, Z ⇒ Y , and Z ⇒ W , because

of the nonsymmetric shadow manifold Mz. By applying sCCM, we successfully recover the correct

causalities, and results are shown in Table 4.

Figure 10: From left to right: Two-wing butterfly chaotic attractors in the (x, y, z) plane, the four-wing butterfly chaotic

attractors in the (x, y, w) plane, and the (x, y, w) projection of the reconstructed shadow manifold Mz , where τ = 50,

n = 4.

Another four-dimensional Lorenz-like hyperchaotic dynamic system is given by [51]:

dx

dt
= 10(y − x)

dy

dt
= 28x− y − xz + w

dz

dt
= −8

3
z + xy

dw

dt
= −k1x− k2y

(5.2)

where k1 = −9.3, and k2 = −5. This dynamic system is constructed by adding a linear controller to

the second equation of the Lorenz63 system. This dynamic system is rotational symmetric under the

order-two group C2 = {e,Rz}, where Rz : (x, y, z, w) ⇒ (−x,−y, z, w). We simulate this dynamic system

in the temporal domain t = [0, 50] with ∆t = 0.005, and parameters for the embedding are τ = 15, n = 4.
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Similarly, all shadow manifolds except Mz are symmetric. Consequently, CCM incorrectly identifies

bidirectional causal links X ⇔ Z, Y ⇔ Z, and W ⇔ Z as unidirectional. True causal links are correctly

detected by applying sCCM, and results are shown in Table 4.

The last case is a five-dimensional hyperchaotic system. Similarly, this system is obtained by adding

a nonlinear quadratic controller to the first equation and a linear controller to the second equation of

the modified Lorenz63 system. Moreover, this system can be realized via an electronic system [52]. It is

mathematical formulation is:
dx

dt
= 10(y − x) + u

dy

dt
= 28x− y − xz − v

dz

dt
= −8

3
z + xy

du

dt
= −xz + k1u

dv

dt
= k2y

(5.3)

where k1 = 1 and k2 = 30. This system is simulated in the temporal domain t = [0, 100] with ∆t = 0.01,

and embedding parameters are τ = 60, n = 5. This hyperchaotic system is rotation symmetric under the

order-two group C2 = {e,Rz(π)}, where Rz : (x, y, z, u, w) ⇒ (−x,−y, z,−u,−w) as shown in Fig. 11,

which exhibits a genus-1 attractor in the (v, z) plane.

Similarly, the nonsymmetric shadow manifold Mz causes CCM to mislead bidirectional causal links

X ⇔ Z, Y ⇔ Z, and W ⇔ Z as Z ⇒ X, Z ⇒ Y , and Z ⇒ W . However, true causal links are correctly

identified using our framework. Results are shown in Table 4.

Equations CCM Segment CCM

4D dissipative system (5.1)

Z ⇒ X (ρxz = 0.547, ρzx = 0.994) X ⇔ Z (ρxz = 0.967, ρzx = 0.973)

Z ⇒ Y (ρyz = 0.474, ρzy = 0.990) Y ⇔ Z (ρyz = 0.971, ρzy = 0.931)

Z ⇒W (ρwz = 0.273, ρzw = 0.978) W ⇔ Z (ρwz = 0.950, ρzw = 0.904)

4D Lorenz-like system (5.2)

Z ⇒ X (ρxz = 0.597, ρzx = 0.988) X ⇔ Z (ρxz = 0.973, ρzx = 0.964)

Z ⇒ Y (ρyz = 0.583, ρzy = 0.962) Y ⇔ Z (ρyz = 0.966, ρzy = 0.905)

Z ⇒W (ρwz = 0.609, ρzw = 0.954) W ⇔ Z (ρwz = 0.912, ρzw = 0.861)

5D Lorenz-like system (5.3)

Z ⇒ X (ρxz = 0.151, ρzx = 0.999) X ⇔ Z (ρxz = 0.994, ρzx = 0.999)

Z ⇒ Y (ρyz = 0.194, ρzy = 0.999) Y ⇔ Z (ρyz = 0.985, ρzy = 0.986)

Z ⇒ U (ρuz = 0.098, ρzu = 0.999) U ⇔ Z (ρuz = 0.991, ρzu = 0.999)

Z ⇒W (ρwz = 0.105, ρzw = 0.999) W ⇔ Z (ρwz = 0.993, ρzw = 0.999)

Table 4: Performance of Segment CCM for high dimensional rotational symmetric systems under C2.
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Figure 11: Projections of the attractor generated by equation (5.3) a. (v,z) plane projection. b. (y,u) plane projection. c.

(x,z) plane projection. d. (x,y) plane projection.

5.3. Application in Real-world system

To evaluate our the performance of our framework with respect to a real-world system, we built a

nonlinear chaotic circuit for which implementation requires two multipliers with multiple op-ams or using

two multipliers with a couple of resistors and capacitors. The signals recorded from these two channels

are referred to as X and Z. As an illustration, the following symmetric chaotic system can be realized

using the AD633 multiplier and resistor-capacitor coupling for current control, which is provided in Fig

. 12, where the set parameters are as follows: C1 = C2 = 1nF , C3 = 10nF , R1 = 10kΩ, R2 = 1kΩ,

R3 = 200Ω, R4 = 2kΩ, Vcc = 4V [53]. The input voltage Vcc powers the circuit, ensuring the proper

operation of the system. The initial conditions of the system are typically set by the initial voltages across

the capacitors and the configuration of resistors in the system. We chose four pairs of initial conditions

for X, Y and Z. In the experimental setup, there is a bidirectional causal link between X and Z. We

run our sCCM method and CCM for five times and the results are plotted in Fig . 13. Interestingly, our

algorithm detect the correct causal direction, identifying a bidirectional causal link between X and Z,

whereas CCM incorrectly inferred unidirectional coupling.
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Figure 12: Circuit diagram used for generating the real-world data.

Figure 13: performance of Segment CCM on the circuit case.

5.4. Further discussion: High dimensional four-fold rotational Laser system

For symmetric attractors with n-fold symmetry (n>2), our method can still correct the misleading

results produced by CCM due to the variable that defines even parity. We use the five dimensional Laser

system [54], which take into account the detuning parameter δ between the normalized steady state laser

frequency and the molecular resonance frequency. This is a five dimensional, four-fold rotation symmetric

system, and its mathematical expression is:

dx1
dt

= −σ(x1 + δx2 − y1)

dx2
dt

= −σ(x2 − δx1 − y2)

dy1
dt

= Rx1 − y1 + δy2 − x1z

dy2
dt

= Rx2 − δy1 − y2 − x2z

dz

dt
= −γz + x1y1 + x2y2

(5.4)

27



where R, σ, and γ have the same physical meaning. This dynamic system is rotation symmetric under

the following matrix of the representation:

0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 −1


. (5.5)

Here, we simulate this dynamic system with parameters σ = 2, δ = 0.1, R = 24, γ = 0.25 in the temporal

domain t = [0, 250], ∆t = 0.025, initial point x0 = [4, 0, 1, 0, 30], and embedding parameters are τ = 30

and n = 5. We both implement CCM and our framework on this system and the results are shown in the

following Table 4. We find that our framework detect the correct causal relationship Y2 ⇔ Z, whereas

the CCM shows the misleading bidirectional causal inference.

CCM sCCM

Z ⇒ Y2 (ρy2z = 0.133, ρzy2
= 0.956) Z ⇔ Y2 (ρy2z = 0.825, ρzy2

= 0.944)

Table 5: Performance of Segment CCM.

6. Conclusion

This paper explores the complexities of detecting causal relations in nonlinear dynamic systems using

CCM, explicitly focusing on the addressing the challenges when the measurement function defines the

even parity, which may cause the misleading result caused by CCM. The result reveals that shadow

manifolds reconstructed by the differential/delay-coordinate mapping from the measurement function

which defines even parity, lacking symmetry information, can potentially mislead the causal relation

detection in CCM since the delay-coordinate mapping is no longer a one-to-one mapping. We proposed

a new framework based on the k-means clustering method, partitioning the symmetric shadow manifolds

into two sub-manifolds, thus transforming the two-to-one mapping into two one-to-one for solving this

problem. We evaluate the efficiency of our method on various numerical simulation cases, as well as a

real-world application involving a nonlinear circuit, to verify its accuracy.

Several areas warrant further exploration. First, the result of CCM is highly dependent on the

performance of the delay-coordinate mapping. As we discussed, for high-dimensional dynamic systems,

one-dimensional observations generally provide poor observability of the original attractor, necessitating

the combination of observations from multiple variables for sufficient embedding. However, this approach

may introduce confounding information, complicating the detection of causal relationships. Moreover,

the statistical response of the algorithm under the perturbation of additive noise would be our future

research.
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Appendix A. Observability of nonlinear dynamic system

According to Taken’s embedding theorem, using a delay-coordinate mapping, an n-dimensional dy-

namical system can be reconstructed from a one-dimensional observation. This reconstruction process

is akin to splitting n-dimensional linearly independent information. However, the effectiveness of this

approach diminishes as the dimension of the dynamical system increases. To illustrate these limita-

tions, we consider the nine-dimensional Lorenz system [55] as an example, demonstrating the inefficient

performance of the delay-coordinate mapping in high-dimensional settings.

The mathematical formulation of the nine-dimensional Lorenz system is given by:

ẋ1 = −σ(b1x1 + b2x7) + x4(b4x4 − x2) + b3x3x5,

ẋ2 = −σx2 + x1x4 − x2x5 + x4x5 −
2

σ
x9,

ẋ3 = σ(b2x8 − b1x3) + x2x4 − b4x
2
2 −

b3x1x5
σ

,

ẋ4 = −σx4 − x2x3 − x2x5 + x4x5 +
x9
2
,

ẋ5 = −σb5x5 +
x22
2

− x24
2
,

ẋ6 = −b6x6 + x2x9 − x4x9,

ẋ7 = −b1x7 −Rx1 + 2x5x8 − x4x9,

ẋ8 = −b1x8 +Rx3 − 2x5x7 + x2x9,

ẋ9 = −x9 + (R+ 2x6)(x4 − x2) + x4x7 − x2x8,

(A.1)

where b1 = 5
1.5 , b2 = 0.6, b3 = 1.2, b4 = 0.2, b5 = 2

1.5 , b6 = 4
1.5 , and R = 14.3. The initial state is

x0 = [0.01, 0, 0.01, 0, 0, 0, 0, 0, 0.01], with a time step of ∆t = 0.02 and the simulation time domain of
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[0, 800]. The measurement function is h = x9, with the lag value τ = 12 and an embedding dimension

n = 9. The original attractor and the reconstructed shadow manifold are shown in Fig. 14. It seems that

Figure 14: Left: Chaotic attractor produced by nine-dimensional Lorenz system. Right: Reconstructed

shadow manifold by delay-coordinate mapping.

the reconstructed shadow manifold exhibits a butterfly attractor similar to the Lorenz63 system rather

than reflecting the more complex dynamic behavior in the nine-dimensional attractor. This discrepancy

can be attributed to the observability of the system. Observability refers to the ability to reconstruct

the entire state of the system using a subset of measurable variables over a finite period. Consider the

following nonlinear system:
ẋ = f(x)

s(t) = h(x)
(A.2)

where x ∈ Rm represents the m-dimensional state vector, h : Rm → R is the measurement function,

s(t) ∈ R is the measurement, and f : Rm → Rm denotes the vector field. Differentiating s(t) yields

ṡ(t) =
d

dt
h(x) =

∂h

∂x
ẋ =

∂h

∂x
f(x) = Lfh(x) (A.3)

where Lfh(x) is the Lie derivative of h along the vector field f and the time derivative of s in Lie

derivatives form can be written as sj = Li
fh(x). The j-th order Lie derivative is given by

Lj
fh(x) =

∂Lj−1
f h(x)

∂x
· f(x) (A.4)

where L0
fh(x) = h(x).

A dynamic system is said to be state observable at time tf if its initial state x0 can be uniquely

determined from the measurement vector s(t) over the interval 0 ≤ t ≤ tf . The observability matrix, the

Jacobian matrix of the Lie derivatives of h(x), determines whether a dynamic system is observable. The
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observability matrix O ∈ Rm×m is expressed as:

O(x) =


∂L0

fh(x)

∂x

...
∂Lm−1

f h(x)

∂x

 . (A.5)

For the linear system,
ẋ = Ax+Bu

s = Cx,
(A.6)

where A,B,C are constant dynamics matrices, the observability matrix simplifies to:

O =
[
C CA CA2 · · · CAn−1

]T
. (A.7)

Theorem 1. The m-dimensional dynamic system is said to be state observable if and only if the

observability matrix has full rank, that is, rank(O) = m.

The above theorem is a generalization of the observability property of both linear and nonlinear

systems and has been proved in [56]. It states that if a system is observable for both linear and nonlinear

dynamic systems, it is possible to recover every initial condition from the measured series s(t) for t ≤ 0.

In the case of the nine-dimensional Lorenz system, the system is nearly unobservable from a single

observation, as the observability matrix is deficient. For this system, at least six variables should be

measured to achieve sufficient observability of the high dimensional dynamics [57].

Thus, for high-dimensional dynamical systems, a single variable is generally insufficient to construct

a diffeomorphic shadow manifold, implying that CCM results may be unreliable.

Moreover, a single variable may still provide poor observability even for low-dimensional dynamic

systems (n ≤ 3). For instance, consider the Rössler system, the mathematical formulation is:

ẋ1 = −y − z,

ẋ2 = x+ ay,

ẋ3 = b+ xz − cz,

(A.8)

where a = 0.2, b = 0.2, c = 5.7. The time step is set to ∆t = 0.01, with a total of 400000 iterations,

starting from the initial condition x0 = [1, 1, 0]. The original attractor and the reconstructed shadow

manifold are shown in Fig. 15. Here, we modify the measurement function to h′ = x+ z and obtain the

shadow manifold Mz′ . The lag value is τ = 40 for both shadow manifolds, and the embedding dimension

is n = 3. It can be observed that the single observation h = z yields poor observability, such that

the observability matrix O(x) is deficient near the original point, leading to significant distortion in the

shadow manifold Mz. In contrast, the shadow manifold reconstructed from the multivariate measurement

function h′ provides a better result.
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Figure 15: Left: Chaotic attractor produced by the Rössler system. Middle: Reconstructed shadow

manifold Mz. Right: Reconstructed shadow manifold Mz′ .

Appendix B. The Importance of Recurrence Property: Explanations for a case

Here, we emphasize that the recurrence property is necessary for CCM. The recurrence property is

one of the fundamental properties of the dynamic systems. As stated in the Poincaré recurrence theorem

[58], in any measure-preserving transformation on a dynamic system’s attractor, the trajectories will

eventually reappear at the neighborhood of the former points in the state space. The recurrences can be

captured through distance plots [59]. For a series of trajectories {xi}Ni=1 of a dynamic system in its phase

space, the corresponding distance plot is based on the matrix:

Ri,j =∥ xi − xj ∥, i, j = 1, 2, ..., N (B.1)

where N is the number of considered states xi and ∥ · ∥ represents a norm (e.g., the Euclidean norm).

An example of Lorenz63 system is presented in Fig. 16, it delinates the distances between every pair of

Figure 16: Distance plot using the Euclidean distance and corresponding trajectories of Lorenz63 attractor. This system is

simulated as same as Fig. 3. Left: Distance plot for trajectories lies in t ∈ [1, 12]. Right: Trajectories for the Lorenz63 at

t ∈ [1, 12].

points xi and xj in the state space. The points x400 and x526 would revisit the position within x400.

Consider the counterexample mentioned in [60]. This paper discusses that when the time series have

certain forms – one of the series is a periodic function of time, and the second series has a time trend
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- it may mislead the results of CCM because points from the manifold with a periodic shape are close

to points from the manifold with a linear shape. However, we point out that the second monotonic

increasing time series does not satisfy the recurrence requirement for CCM, which means the shadow

manifold for this monotone time series is not an attractor.

One typical example is:

x(t) =
1

2000
t

y(t) = sin(
π

50
t)

(B.2)

Here t refers to the time. We generate 2000 examples containing 20 complete periods about y(t), and the

results of causal links are shown in the following Figure 17. The monotone variable causes the periodic

Figure 17: Left: Trajectories of Eq. (B.2). Right: Causal links obtained by CCM.

one as the Pearson correlation coefficient rhoxy converges to 0.965. In [60], it is stated that a monotone

time series has no causal effect on the periodic time series. However, the mathematical expression of y(t)

can be simply solvable by x(t) as we wrote it into the discrete form:

x(t+ 1) = x(t) +
1

2000

y(t+ 1) = sin(40π[x(t+ 1)− 1

2000
] +

1

50
)

(B.3)

which means that the monotone variable causes the other one and corresponds to what we see. However,

the inverse relationship also holds:

y(t+ 1) = y(t) cos
( π
50

)
+ cos

( π
50
t
)
sin

( π
50

)
x(t+ 1) =

arcsin(y(t+ 1))− 1
50

40π
+

1

2000

(B.4)

From the above analysis, if the nonlinear periodic term can be explicitly solved, as in the case above, it

can be expressed in terms of the linear term and vice versa. However, it is important to emphasize that

the CCM test becomes nonsensical under these conditions. It does not conform to the requirement of

CCM; precisely, with the library length increase, the monotone shadow manifold reconstructed from the

linear term would not become denser with the nonlinear one. In this scenario, the prediction ability does

not improve as the library length increases, making the CCM result unreliable.
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