
A Logic Based Approach for Dynamic Access Control

Vino Fernando Crescini and Yan Zhang

School of Computing and Information Technology
University of Western Sydney

Penrith South DC, NSW 1797, Australia
E-mail:{jcrescin,yan}@cit.uws.edu.au

Abstract. ThePolicyUpdater1system is a fully-implemented access control sys-
tem that provides policy evaluations as well as dynamic policy updates. These
functions are achieved by the use of a logic-based languageL to represent the
underlying access control policies, constraints and update propositions. The sys-
tem performs authorisation query evaluations and conditional policy updates by
translating the languageL to a normal logic program in a form suitable for eval-
uation using theStable Modelsemantics.

1 Introduction

Recent advances in the information security field have produced a number of different
approaches to access control, some of which are logic-based, e.g. [5, 7]. Bertino, et.
al. [1] proposed an approach based on ordered logic with ordered domains. Jajodia, et.
al. [6] on the other hand, proposed a general access control framework that features
handling of multiple policies. However, these approaches lack the necessary details to
address the issues involved in implementing a system based on these approaches.

ThePolicy Description LanguageorPDL, developed by Lobo, et. al. [8], is designed
for representing event and action oriented generic policies.PDL was later extended by
Chomicki, et. al. [3] to include a constraint mechanism calledpolicy monitors. Bertino,
et. al. [2], again tookPDL a step further by extendingpolicy monitorsto support pre-
ferred constraints. While these languages possess enough expressive power to be used
for most access control applications, systems based on these languages will not have
the ability to perform dynamic policy updates.

To overcome these limitations, we propose the PolicyUpdater access control system.
This system, with its own access control language,L, allows policies to be represented
as logical facts and rules with variable resolution and default propositions, and provides
a mechanism to conditionally and dynamically perform a sequence of policy updates,
as well as query evaluation.

The rest of this paper is organised as follows. In Section 2, the paper introduces
languageL with its formal syntax, semantics and some examples. Section 3 addresses
the issues associated with domain consistency and query evaluation. Finally, Section 4
ends the paper with some concluding remarks.

1 Web page athttp://www.cit.uws.edu.au/˜jcrescin/projects/PolicyUpdater/index.html

2 LanguageL: Syntax and Semantics

LanguageL is a first-order logic language that is used to represent a policy base for an
authorisation system. Two key features of the language are: (1) providing a means to
conditionally and dynamically update the existing policy base and (2) having a mecha-
nism by which queries may be evaluated from the updated policy base.

2.1 Syntax

Logic programs of languageL are composed of language statements, each terminated
by a semicolon ”;” character. Comments may appear anywhere in the logic program
and, like C, languageL comments are delimited by the ”/*” and ”*/”

Components of LanguageL

Identifiers. The most basic unit of languageL is the identifier. Identifiers are used
to represent different components of the language, and is defined as an upper or lower
case alphabet character, followed by 0 to 127 characters of alphabet, digit or underscore
characters. There are 3 types of identifiers, each defined by the following syntax:

[a-zA-Z]([a-zA-Z0-9]) {0,127 }

– Entity Identifiersrepresent constant entities that make up a logical atom. They are
divided further into 3 types, with each type again divided into thesingular entity
andgroup entitycategories:Subjects(e.g. alice, lecturers);Access Rights(e.g. read,
write, own); andObjects(e.g. file, database, directory). This type of identifier must
start with a lowercase character.

– Policy Update Identifiersare used for the sole purpose of naming a policy update.
These identifier names are then used as labels to refer to policy update definitions
and directives. As labels, identifiers of this class occupy a different namespace from
entity identifiers. For this reason, policy update identifiers share the same syntax
with entity identifiers.

– Variable Identifiersare used as entity identifier place-holders. To distinguish them
from entity and policy update identifiers, variable identifiers are prefixed with an
upper-case character.

Atoms. An atom is composed of a relation with 2 to 3 entity or variable identifiers that
represent a logical relationship between the entities. There are 3 types of atoms:

– Holds.An atom of this type states that the subject identifiersub holds the access
right identifieracc for the object identifierobj.

holds(<sub>, <acc>, <obj>)

– Membership.This type of atom states that the singular identifierelt is a member or
element of the group identifiergrp. It is important to note that identifierselt and
grp must be of the same base type (e.g. subject and subject group).

memb(<elt>, <grp>)

– Subset.The subset atom states that the group identifiersgrp1 andgrp2 are of the
same types and that groupgrp1 is a subset of the groupgrp2.

subst(<grp1>, <grp2>)

Facts. A fact makes a claim that the relationship represented by an atom or its negation
holds in the current context. Facts are negated by the use of the negation operator ”!”.
The following shows the formal syntax of a fact:

[!]<holds atom>|<memb atom>|<subst atom>

Expressions.An expression is either a fact, or a logical conjunction of facts, separated
by the double-ampersand characters ”&&”.

<fact1> [&& <fact2> [&& ...]]

Atoms that contain no variables, i.e. composed entirely of entity identifiers, are
calledground atoms. Similarly, facts and expressions composed of ground atoms are
calledground factsandground expressions, respectively.

Definition Statements

Entity Identifier Definition. All entity identifiers (subjects, access rights, objects and
groups) must first be declared before any other statements to define the entity domain
of the policy base. The following entity declaration syntax illustrates how to define one
or more entity identifiers of a particular type.

ident sub|acc|obj[-grp] <ent id>[, ...];

Initial Fact Definition. The initial facts of the policy base, those that hold before any
policy updates are performed, are defined by using the following definition syntax:

initially <ground exp>;

Constraint Definition.Constraints are logical rules that hold regardless of any changes
that may occur when the policy base is updated. The constraint rules are true in the
initial state and remain true even after a policy update is performed.

The constraint syntax below shows that for any state of the policy base, expression
ex1 holds if expressionex2 is true and there is no evidence thatex3 is true. Thewith
absence clause allows constraints to behave like default propositions, where the ab-
sence of proof that an expression holds satisfies the clause condition of the proposition.

It is important to note that the expressionsex1, ex2 andex3 may be non-ground
expressions, which allows identifiers occurring in these expressions to be variables.

always <ex1> [implied by <ex2> [with absence <ex3>]];

Policy Update Definition.Before a policy update can be applied, it must first be defined
by using the following syntax:

<up id>([<var id>[, ...]]) causes <ex1> if <ex2>;

up id is the policy update identifier to be used in referencing this policy update. The
optionalvar id list are the variable identifiers occurring in the expressionsex1 andex2
and will eventually be replaced by entity identifiers when the update is referenced. The
postcondition expressionex1 is an expression that will hold in the state after this update
is applied. The expressionex2 is a precondition expression that must hold in the current
state before this update is applied.

Note that a policy update definition will have no effect on the policy base until it is
applied by one of the directives described in the following section.

Directive Statements

Policy Update Directives.The policy update sequence list contains a list of references
to defined policy updates in the domain. The policy updates in the sequence list are
applied to the current state of the policy base one at a time to produce a policy base
state upon which queries can be evaluated. The following four directives are the policy
sequence manipulation features of languageL.

Adding an update into the sequence.Defined policy updates are added into the se-
quence list through the use of the following directive:

seq add <up id>([<ent id>[, ...]]);

whereup id is the identifier of a defined policy update and theent id list is a comma-
separated list of entity identifiers that will replace the variable identifiers that occur in
the definition of the policy update.

Listing the updates in the sequence.The following directive may be used to list the
current contents of the policy update sequence list.

seq list;

This directive is answered with an ordinal list of policy updates in the form:

<n> <up id>([<ent id>[, ...]])

wheren is the ordinal index of the policy update within the sequence list starting at 0.
up id is the policy update identifier and theent id list is the list of entity identifiers
used to replace the variable identifier place-holders.

Removing an update from the sequence.The syntax below shows the directive to
remove a policy update reference from the list.n is the ordinal index of the policy
update to be removed. Note that removing a policy update reference from the sequence
list may change the ordinal index of other update references.

seq del <n>;

Computing an update sequence.The policy updates in the sequence list is not ap-
plied until thecompute directive is issued. The directive causes the policy update refer-
ences in the sequence list to be applied one at a time in the same order that they appear in
the list. The directive also causes the system to generate the policy base models against
which query requests can be evaluated.

compute;

Query Directive.A ground query expression may be issued against the current state of
the policy base. This current state is derived after all the updates in the update sequence
have been applied, one at a time, upon the initial state. Query expressions are answered
with atrue, false or anunknown, depending on whether the queried expression holds,
its negation holds, or neither, respectively. Syntax is as follows:

query <ground exp>;

Example 1 The following languageL program code listing shows a simple rule-based
document access control system scenario.

In this example, the subjectalice is initially a member of the subject groupgrp2,
which is a subset of groupgrp1. The groupgrp1 also initially holds aread access
right for the objectfile. The constraint states that if the groupgrp1 hasread access
for file, and no other information is present to conclude thatgrp3 do not havewrite
access forfile, then the groupgrp1 is grantedwrite access forfile. For simplicity,
we only consider one policy updatedelete read and a few queries that are evaluated
after the policy update is performed.

ident sub alice;
ident sub-grp grp1, grp2, grp3;
ident acc read, write;
ident obj file;

initially memb(alice, grp2) && subst(grp2, grp1);
initially holds(grp1, read, file);

always holds(grp1, write, file)
implied by holds(grp1, read, file)
with absence !holds(grp3, write, file);

delete read(SG0, OS0) causes !holds(SG0, read, OS0);

seq add delete read(grp1, file);

compute;

query holds(grp1, write, file);
query holds(alice, read, file);

2.2 Semantics

After giving a detailed syntactic definition of languageL, we now define its formal
semantics.

Domain Description of LanguageL

Definition 1 The domain descriptionDL of languageL is defined as a finite set of
ground initial state facts, constraint rules and policy update definitions.

In addition to the domain descriptionDL, languageL also includes an additional
set: the sequence listψ. The sequence listψ is an ordered set that contains a sequence
of references to policy update definitions. Each policy update reference consists of the
policy update identifier and a series of zero or more identifier entities to replace the
variable place-holders in the policy update definitions.

LanguageL∗ In languageL, the policy base is subject to change, which is triggered
by the application of policy updates. Such changes bring forth the concept of policy
base states. Conceptually, a state may be thought of as a set of facts and constraints of
the policy base at a particular instant. The state transition notationPB −→u PB′ shows
that a new statePB′ is generated from the current statePB after the policy updateu is
applied.

This concept of a state means that for every policy update applied to the policy base,
a new instance of the policy base or a new set of facts and constraints are generated. To
precisely define the underlying semantics of domain descriptionDL in languageL, we
introduce languageL∗, which is an extended logic program representation of language
L, with state as an explicit sort.

LanguageL∗ contains only one special state constantS0 to represent the initial
state of a given domain description. All other states are represented as a resulting state
obtained by applying theRes function.

TheRes(u, σ) function takes a policy update referenceu, whereu ∈ ψ, and the
current stateσ as input arguments and returns the resulting state after updateu has been
applied to stateσ. Given an initial stateS0 and a sequence listψ, each stateσi (0 ≤ i ≤
|ψ|) may be represented asσ0 = S0, σ1 =Res(u0, σ0), . . ., σ|ψ| =Res(u|ψ|−1, σ|ψ|−1).
Substituting each state with a recursive call to theRes function, the final stateS|ψ| is
defined asS|ψ| = Res(u|ψ|−1,Res(. . .,Res(u0, S0))).

Entities. The entity setE is a union of six disjoint entity sets: single subjectEss, group
subjectEsg, single access rightEas, group access rightEag, single objectEos and group
objectEog. We also define three additional entity sets:Es, Ea andEo, which are unions of
their respective singular and group entity sets. Each entity in setE corresponds directly
to theentity identifiersof languageL.

Atoms.The main difference between languageL and languageL∗ lies in the definition
of an atom. Atoms in languageL∗ represent a logical relationship of 2 to 3 entities in
a particular state. That is, languageL∗ atoms have an extra parameter to specify the

state in which they hold. In this paper, atoms of languageL∗ are written with the hat
character (ˆholds, ˆmemb and ˆsubst) to differentiate from the atoms of languageL. The
atom setAσ is the set of all atoms in stateσ.

Facts. In languageL∗, a fact states whether an atom or its negation holds in a particular
state. A factf in stateσ is formally defined asfσ = [¬]α, α ∈ Aσ.

Translating Language L to LanguageL∗ Given a domain descriptionDL of lan-
guageL, we translateDL into an extended logic program of languageL∗, as de-
noted byTrans(DL). The semantics ofDL is provided by the answer sets of program
Trans(DL). Before we can fully defineTrans(DL), we must first define the following
functions:

TheCopyAtom() function takes two arguments: an atom of languageL∗ at some
state and new state. The function returns an equivalent atom of the same type and with
the same entities, but in the new state specified.

Another function,TransAtom(), takes an atomα of languageL and an arbitrary
stateσ. It then returns a languageL∗ atom of the same type in stateσ, with the same
given entities. The other function,TransFact(), is similar to theTransAtom() func-
tion, but instead of translating an atom, it takes a fact from languageL and a state then
returns the equivalent fact in languageL∗.

Initial Fact Rules. Translating initial fact expressions of languageL to languageL∗
rules is a trivial procedure: translate each fact that make up the initial fact expression
of languageL with its corresponding equivalent initial state atom of languageL∗. For
example, the following code shows a languageL initially statement:

initially holds(bob, read, file) && memb(alice, users);

in languageL∗, the above statement is translated to:

ˆholds(bob, read, file, S0)←
ˆmemb(alice, users, S0)←

Constraint Rules.Each constraint rule in languageL is expressed as a series of logical
rules in languageL∗. Given that all variable occurrences have been grounded to entity
identifiers, a constraint in languageL, withm, n, o ≥ 0 may be represented as:

always a0 && ... && am
implied by b0 && ... && bn
with absence c0 && ... && co;

Each fact in thealways clause of a languageL constraint corresponds to a new
rule, where it is the consequent. Each of these new rules will have expressionb in the
implied by clause as the positive premise and the expressionc in thewith absence
clause as the negative premise.

â0 ← b̂0, . . . , b̂n, not ĉ0, . . . ,not ĉo
. . .
âm← b̂0, . . . , b̂n, not ĉ0, . . . ,not ĉo

For example, given a policy update reference in the sequence listψ (i.e. |ψ| = 1)
and the following languageL code fragment:

always holds(bob, read, f1) && holds(bob, write, f1)
implied by memb(bob, grp)
with absence !holds(bob, own, f1);

The following shows the languageL∗ translation:

ˆholds(bob, read, f1, S0)← ˆmemb(bob, grp, S0), not ¬ ˆholds(bob, own, f1, S0)
ˆholds(bob, write, f1, S0)← ˆmemb(bob, grp, S0), not ¬ ˆholds(bob, own, f1, S0)
ˆholds(bob, read, f1, S1)← ˆmemb(bob, grp, S1), not ¬ ˆholds(bob, own, f1, S1)
ˆholds(bob, write, f1, S1)← ˆmemb(bob, grp, S1), not ¬ ˆholds(bob, own, f1, S1)

Policy Update Rules.With all occurrences of variable place-holders grounded to en-
tity identifiers, a languageL policy update can then be translated to languageL∗. In
languageL∗, policy updates are represented as a set of implications, with each fact
in the postcondition expression as the consequent and precondition expression as the
premise. However, the translation process must also take into account that the premise
of the implication holds in the state before the policy update is applied and that the
consequent holds in the state after the application [10]. For example, given an update
sequence listψ = {grant read, grant write} and the following languageL policy
update definitions:

grant read()
causes holds(bob, read, file) if memb(bob, readers);

grant write()
causes holds(bob, write, file) if memb(bob, writers);

The following shows the languageL∗ translation:

ˆholds(bob, read, file, S1)← ˆmemb(bob, readers, S0)
ˆholds(bob, write, file, S2)← ˆmemb(bob, writers, S1)

Inheritance Rules.All properties held by a group are inherited by all the members and
subsets of that group. This rule is easy to apply for subject group entities. However,
careful attention must be given to access right and object groups. A subject holding an
access right for an object group implies that the subject also holds that access right for
all objects in the object group. Similarly, a subject holding an access right group for a
particular object implies that the subject holds all access rights contained in the access
right group for that object.

A conflict is encountered when a particular property is to be inherited by an entity
from a group of which it is a member or subset, and the contained entity already holds

the negation of that property. This conflict is resolved by giving negative facts higher
precedence over its positive counterpart: by allowing member or subset entities to in-
herit its parent group’s properties only if the entities do not already hold the negation of
those properties.

The following are the inheritance constraint rules to allow the properties held by a
subject group to propagate to all of its members that do not already hold the negation
of the properties. For allss, sg, a, o, σ wheress ∈ Ess, sg ∈ Esg, a ∈ Ea, o ∈ Eo andS0

≤ σ ≤ S|ψ|:

ˆholds(ss, a, o, σ)← ˆholds(sg, a, o, σ), ˆmemb(ss, sg, σ), not ¬ ˆholds(ss, a, o, σ)
¬ ˆholds(ss, a, o, σ)←¬ ˆholds(sg, a, o, σ), ˆmemb(ss, sg, σ)

The rules below represent inheritance rules for subject groups to allow subsets to
inherit properties held by their supergroup. Note that there is also a set of corresponding
rules to represent membership and subset inheritance for access right and object groups.
For allsg1, sg2, a, o, σ wheresg1, sg2 ∈ Esg, a ∈ Ea, o ∈ Eo andS0 ≤ σ ≤ S|ψ|:

ˆholds(sg1, a, o, σ)←
ˆholds(sg2, a, o, σ), ˆsubst(sg1, sg2, σ), not ¬ ˆholds(sg1, a, o, σ)
¬ ˆholds(sg1, a, o, σ)←¬ ˆholds(sg2, a, o, σ), ˆsubst(sg1, sg2, σ)

Transitivity Rules.Given three group entitiesG,G′ andG′′. If G is a subset ofG′ and
G′ is a subset ofG′′, thenGmust also be a subset ofG′′. The following rules ensure that
the transitive property holds for subject groups. Note that similar rules exist to ensure
that the transitive property also holds for access right and object groups. For allsg1,
sg2, sg3, σ wheresg1, sg2, sg3 ∈ Esg andS0 ≤ σ ≤ S|ψ|:

ˆsubst(sg1, sg3, σ)← ˆsubst(sg1, sg2, σ), ˆsubst(sg2, sg3, σ)

Inertial Rules. Intuitively, all facts in the current state that are not affected by a policy
update should be carried over to the next state after the update. In languageL∗, this
rule must be explicitly stated as a constraint. Formally, the inertial rules are expressed
as follows. For allα̂, u, there is an̂α′ whereα̂ ∈ Aσ, u ∈ ψ andα̂′ = CopyAtom(α̂,
Res(u, σ)):

α̂′ ← α̂, not ¬ α̂′
¬ α̂′ ←¬ α̂, not α̂′

Definition 2 Given a domain descriptionDL of languageL, its languageL∗ transla-
tion Trans(DL) is an extended logic program of languageL consisting of: (1) initial
fact rules, (2) constraint rules, (3) policy update rules, (4) inheritance rules, (5) transi-
tivity rules, and (6) inertial rules, as described above.

By using the above definition, we can now state a theorem that defines the maximum
number of rules generated in a translationTrans(DL) given a domain descriptionDL.
With this theorem, we show that the size of the translated domain|Trans(DL)| is only
polynomially larger than the size of the given domain|DL|.

Theorem 1 (Translation Size2) Given a domain descriptionDL; the setsSi, Sc and
Su containing the initially, constraint and policy update statements inDL, respectively;
the set of all entitiesE in DL, including its subsetsEs, Ea, Es, Ess, Eas, Eos, Esg, Eag,
Eog; the setA containing all the atoms inDL; the maximum number of factsMi in any
statement inSi; the maximum number of factsMc in thealways clause of any statement
in Sc; the maximum number of factsMu in the postcondition of any statement inSu;
and finally the sequence listψ.

|Trans(DL)| =
Mi |Si| + Mc |Sc| |ψ| + Mu |ψ| + |ψ| (|Esg|3 + |Eag|3 + |Eog|3) + 2 |A| |ψ| +
2|ψ| (|Ess| |Esg| |Ea| |Eo| + |Es| |Eas| |Eag| |Eo| + |Es| |Ea| |Eos| |Eog|) +
2|ψ| (|Esg|2 |Ea| |Eo| + |Es| |Eag|2 |Eo| + |Es| |Ea| |Eog|2)

3 Domain Consistency Checking and Evaluation

A domain description of languageL must be consistent in order generate a consistent
answer set for the evaluation of queries. This section considers two issues: the problem
of identifying whether a given domain description is consistent, and how query evalu-
ation is performed given a consistent language domain description. Before these issues
can be considered, a few notational constructs must first be introduced. Given a domain
descriptionDL composed of the following languageL statements:

initially a0 && ... && am && ! b0 && ... && ! bn;
always c0 && ... && co && ! d0 && ... && ! dp

implied by e0 && ... && eq && ! f0 && ... && ! fr
with absence g0 && ... && gs && ! h0 && ... && ! ht;

update()
causes i0 && ... && iu && ! j0 && ... && ! jv
if k0 && ... && kw && ! l0 && ... && ! lx;

We define the 6 sets of ground facts:

F+
int = {az | 0 ≤ z ≤m}, F+

con = {cz | 0 ≤ z ≤ o}, F+
upd = {iz | 0 ≤ z ≤ u},

F−
int = {bz | 0 ≤ z ≤ n}, F−

con = {dz | 0 ≤ z ≤ p}, F−
upd = {jz | 0 ≤ z ≤ v}

Additionally, we use the complementary set notationF to denote a set containing
the negation of facts in setF , i.e. F = {¬ρ | ρ ∈ F}. Furthermore, we define the
following functions. Letγ be an initial, constraint or policy update definition statement
of languageL:

Eff(γ) =


{a0, . . . ,am, ¬b0, . . . ,¬bn}, if γ is an initially statement

{c0, . . . ,co, ¬d0, . . . ,¬dp}, if γ is a constraint statement

{i0, . . . , iu, ¬j0, . . . ,¬jv}, if γ is a policy update statement

Def(γ) =


∅, if γ is an initially statement

{g0, . . . ,gs, ¬h0, . . . ,¬ht}, if γ is a constraint statement

∅, if γ is a policy update statement

Pre(γ) =


∅, if γ is an initially statement

{e0, . . . ,eq, ¬f0, . . . ,¬fr}, if γ is a constraint statement

{k0, . . . ,kw, ¬l0, . . . ,¬lx}, if γ is a policy update statement

Definition 3 Given a domain descriptionDL of languageL, two ground factsρ andρ′

aremutually exclusivein DL if:

ρ ∈ {F+
int ∪ F

−
int ∪ F+

con ∪ F−
con ∪ F+

upd ∪ F
−
upd} implies

ρ′ 6∈ {F+
int ∪ F

−
int ∪ F+

con ∪ F−
con ∪ F+

upd ∪ F
−
upd}

Simply stated, a pair of mutually exclusive facts cannot both be true in any given
state. The following two definitions refer to languageL statements.

Definition 4 Given a domain descriptionDL of languageL, two statementsγ andγ′

arecomplementaryin DL if one of the following conditions holds:

1. γ andγ′ are both constraint statements andEff(γ) = Eff(γ′).
2. γ is a constraint statement,γ′ is an update statement andEff(γ) = Eff(γ′).

Definition 5 Given a domain descriptionDL,DL is said to benormalif it satisfies all
of the following conditions:

1. F+
int ∩ F

−
int = ∅

2. For all constraint statementsγ in DL, Eff(γ) ∩ Pre(γ) = ∅.
3. For any two constraint statementsγ andγ′ in DL,Def(γ) ∩ Eff(γ′) = ∅.
4. For any twocomplementarystatementsγ andγ′ inDL, there exists a pair of ground

expressionε ∈ Pre(γ) andε′ ∈ Pre(γ′) such thatε andε′ aremutually exclusive.

With the above definitions, we can now provide a sufficient condition to ensure the
consistency of a domain description.

Theorem 2 (Domain Consistency2) A normaldomain description of languageL is
alsoconsistent.

Basically, only consistent domain descriptions can be evaluated in terms of user
queries. For this reason, Theorem 2 may be used to check whether a domain description
is consistent.

Definition 6 Given aconsistentdomain descriptionDL, ground query expressionφ
and a finite sequence listψ, we say queryφ holds inDL after all policy updates the in
sequence listψ have been applied, denoted asDL |= {φ, ψ}, if and only if for every
factρ ∈ φ, TransFact(ρ, S|ψ|) is in every answer set ofTrans(DL).

Definition 6 shows that given a finite list of policy updatesψ, a query expression
φ may be evaluated from a consistent languageL domainDL. This is achieved by
generating a set of answer sets from the normal logic program translationTrans(DL).
φ is then said to hold inDL after the policy updates inψ have been applied if and only
if every answer set generated contains every fact in the query expressionφ.

2 The proof of these theorems are presented in the full version of this paper [4].

Example 2 Given the languageL program listing in Example 1 and the sequence list
ψ = {delete read(grp1, file)}. The following shows the results of each queryφ:

φ0 = holds(grp1, write, file) : TRUE
φ1 = holds(alice, read, file) : FALSE

4 Conclusion

In this paper, we have presented the PolicyUpdater system, a logic-based authorisation
system that features query evaluation and dynamic policy updates. This is made pos-
sible by the use of a first-order logic language,L, for defining, updating and querying
of access control policies. As we have shown, languageL is expressive enough to rep-
resent constraints and default rules. The full PolicyUpdater system implementation is
presented in [4].

One possible future extension to this work is to integrate temporal logic in language
L to allow temporal constraints to be expressed in access control policies. This ex-
tension will be useful in e-commerce applications where authorisations are granted or
denied based on time dependent policies.

References

1. Bertino, E., Buccafurri, F., Ferrari, E., Rullo, P., A Logic-based Approach for Enforcing Ac-
cess Control.Journal of Computer Security, Vol. 8, No. 2-3, pp. 109-140, IOS Press, 2000.

2. Bertino, E., Mileo A., Provetti, A., Policy Monitoring with User-Preferences in PDL. InPro-
ceedings of IJCAI-03 Workshop for Nonmonotonic Reasoning, Action and Change, pp. 37-44,
2003.

3. Chomicki, J., Lobo, J., Naqvi S., A Logic Programming Approach to Conflict Resolution in
Policy Management. InProceedings of KR2000, 7th International Conference on Principles
of Knowledge Representation and Reasoning, pp. 121-132, Kaufmann, 2000.

4. Crescini, V. F., Zhang, Y.,PolicyUpdater - A System for Dynamic Access Control. 2004
(manuscript).

5. Halpern, J. Y., Weissman, V., Using First-Order Logic to Reason About Policies. InProceed-
ings of the 16th IEEE Computer Security Foundations Workshop, pp.187-201, 2003.

6. Jajodia, S., Samarati, P., Sapino, M. L., Subrahmanian, V. S., Flexible Support for Multiple
Access Control Policies.ACM Transactions on Database Systems, Vol. 29, No. 2, pp. 214-260,
2001.

7. Li, N., Grosof, B. N., Feigenbaum, J., Delegation Logic: A Logic-based Approach to Dis-
tributed Authorization.ACM Transactions on Information and System Security, Vol. 6, No. 1,
pp. 128-171, 2003.

8. Lobo, J., Bhatia, R., Naqvi, S., A Policy Description Language. InProceedings of AAAI 16th
National Conference on Artificial Intelligence and 11th Conference on Innovative Applica-
tions of Artificial Intelligence, pp. 291-298, AAAI Press, 1999.

9. Simons, P., Efficient Implementation of the Stable Model Semantics for Normal Logic Pro-
grams.Research Reports, Helsinki University of Technology, No. 35, 1995.

10. Zhang, Y., Logic Program Based Updates.ACM Transactions on Computational Logic, 2004
(to appear).

