A Logic Based Approach for Dynamic Access Control

Vino Fernando Crescini and Yan Zhang

School of Computing and Information Technology
University of Western Sydney
Penrith South DC, NSW 1797, Australia
E-mail: {jcrescin,yan@cit.uws.edu.au

Abstract. ThePolicyUpdatetsystem is a fully-implemented access control sys-
tem that provides policy evaluations as well as dynamic policy updates. These
functions are achieved by the use of a logic-based languaiperepresent the
underlying access control policies, constraints and update propositions. The sys-
tem performs authorisation query evaluations and conditional policy updates by
translating the languagé to a normal logic program in a form suitable for eval-
uation using thé&table Modesemantics.

1 Introduction

Recent advances in the information security field have produced a number of different
approaches to access control, some of which are logic-based, e.g. [5, 7]. Bertino, et.
al. [1] proposed an approach based on ordered logic with ordered domains. Jajodia, et.
al. [6] on the other hand, proposed a general access control framework that features
handling of multiple policies. However, these approaches lack the necessary details to
address the issues involved in implementing a system based on these approaches.

ThePolicy Description Languager PDL, developed by Lobo, et. al. [8], is designed
for representing event and action oriented generic poli€iBd. was later extended by
Chomicki, et. al. [3] to include a constraint mechanism caflelicy monitors Bertino,
et. al. [2], again toolPDL a step further by extendingplicy monitorsto support pre-
ferred constraints. While these languages possess enough expressive power to be used
for most access control applications, systems based on these languages will not have
the ability to perform dynamic policy updates.

To overcome these limitations, we propose the PolicyUpdater access control system.
This system, with its own access control languagegllows policies to be represented
as logical facts and rules with variable resolution and default propositions, and provides
a mechanism to conditionally and dynamically perform a sequence of policy updates,
as well as query evaluation.

The rest of this paper is organised as follows. In Section 2, the paper introduces
languagel with its formal syntax, semantics and some examples. Section 3 addresses
the issues associated with domain consistency and query evaluation. Finally, Section 4
ends the paper with some concluding remarks.

! Web page attittp://www.cit.uws.edu.au/ jcrescin/projects/PolicyUpdater/index.html

2 Language£: Syntax and Semantics

Languagel is a first-order logic language that is used to represent a policy base for an

authorisation system. Two key features of the language are: (1) providing a means to
conditionally and dynamically update the existing policy base and (2) having a mecha-

nism by which queries may be evaluated from the updated policy base.

2.1 Syntax

Logic programs of languagé are composed of language statements, each terminated
by a semicolon ”;” character. Comments may appear anywhere in the logic program
and, like C, languag€ comments are delimited by the "/*” and ™*/”

Components of LanguageC

Identifiers. The most basic unit of languageg is the identifier. Identifiers are used

to represent different components of the language, and is defined as an upper or lower
case alphabet character, followed by 0 to 127 characters of alphabet, digit or underscore
characters. There are 3 types of identifiers, each defined by the following syntax:

[a-zA-Z]([a-zA-Z0-9 1 {0,127 }

— Entity Identifiersrepresent constant entities that make up a logical atom. They are
divided further into 3 types, with each type again divided intoghmgular entity
andgroup entitycategoriesSubjectge.g. alice, lecturersficcess Rightée.g. read,
write, own); andObjects(e.qg. file, database, directory). This type of identifier must
start with a lowercase character.

— Policy Update Identifiersire used for the sole purpose of naming a policy update.
These identifier names are then used as labels to refer to policy update definitions
and directives. As labels, identifiers of this class occupy a different namespace from
entity identifiers. For this reason, policy update identifiers share the same syntax
with entity identifiers.

— Variable Identifiersare used as entity identifier place-holders. To distinguish them
from entity and policy update identifiers, variable identifiers are prefixed with an
upper-case character.

Atoms. An atom is composed of a relation with 2 to 3 entity or variable identifiers that
represent a logical relationship between the entities. There are 3 types of atoms:

— Holds. An atom of this type states that the subject identifieb holds the access
right identifieracc for the object identifiepb;.

holds(<sub>, <acc>, <obj>)

— MembershipThis type of atom states that the singular identifigris a member or
element of the group identifigrp. It is important to note that identifierst and
grp must be of the same base type (e.g. subject and subject group).

memb(<elt>, <grp>)

— SubsetThe subset atom states that the group identifiefd andgrp2 are of the
same types and that groypp1 is a subset of the group-p2.

subst(<grpl>, <grp2>)

Facts. A fact makes a claim that the relationship represented by an atom or its negation
holds in the current context. Facts are negated by the use of the negation opérator ”
The following shows the formal syntax of a fact:

[I<holds _atom>|<memb _atom>|<subst _atom>

Expressions.An expression is either a fact, or a logical conjunction of facts, separated
by the double-ampersand characte¥g:”.

<factl> [&& <fact2> [&& ...]]

Atoms that contain no variables, i.e. composed entirely of entity identifiers, are
calledground atomsSimilarly, facts and expressions composed of ground atoms are
calledground factsandground expressionsespectively.

Definition Statements

Entity Identifier Definition. All entity identifiers (subjects, access rights, objects and
groups) must first be declared before any other statements to define the entity domain
of the policy base. The following entity declaration syntax illustrates how to define one
or more entity identifiers of a particular type.

ident subjacc|obj[-grp] <ent Jgd>[, L

Initial Fact Definition. The initial facts of the policy base, those that hold before any
policy updates are performed, are defined by using the following definition syntax:

initially <ground _exp>;

Constraint Definition.Constraints are logical rules that hold regardless of any changes
that may occur when the policy base is updated. The constraint rules are true in the
initial state and remain true even after a policy update is performed.

The constraint syntax below shows that for any state of the policy base, expression
ex1 holds if expressiorz?2 is true and there is no evidence that is true. Thewith
absence clause allows constraints to behave like default propositions, where the ab-
sence of proof that an expression holds satisfies the clause condition of the proposition.

It is important to note that the expressionsl, ex2 andex3 may be non-ground
expressions, which allows identifiers occurring in these expressions to be variables.

always <ex1> [implied by <ex2> [with absence <ex3>]];

Policy Update DefinitionBefore a policy update can be applied, it must first be defined
by using the following syntax:

<up_id>([<var _id>[, ...]]) causes <exl> if <ex2>;

up_id is the policy update identifier to be used in referencing this policy update. The
optionalvar_id list are the variable identifiers occurring in the expressiarisandexz2
and will eventually be replaced by entity identifiers when the update is referenced. The
postcondition expressian:1 is an expression that will hold in the state after this update
is applied. The expressien:2 is a precondition expression that must hold in the current
state before this update is applied.

Note that a policy update definition will have no effect on the policy base until it is
applied by one of the directives described in the following section.

Directive Statements

Policy Update Directives.The policy update sequence list contains a list of references
to defined policy updates in the domain. The policy updates in the sequence list are
applied to the current state of the policy base one at a time to produce a policy base
state upon which queries can be evaluated. The following four directives are the policy
sequence manipulation features of langudge

Adding an update into the sequenBefined policy updates are added into the se-
quence list through the use of the following directive:

seq add <up _id>([<ent _id>[, ...]]);

whereup_id is the identifier of a defined policy update and the _id list is a comma-
separated list of entity identifiers that will replace the variable identifiers that occur in
the definition of the policy update.

Listing the updates in the sequencée following directive may be used to list the
current contents of the policy update sequence list.

seq list;
This directive is answered with an ordinal list of policy updates in the form:
<n> <up_d>([<ent _id>[, ...]])

wheren is the ordinal index of the policy update within the sequence list starting at 0.
up_id is the policy update identifier and thet_id list is the list of entity identifiers
used to replace the variable identifier place-holders.

Removing an update from the sequenidge syntax below shows the directive to
remove a policy update reference from the listis the ordinal index of the policy
update to be removed. Note that removing a policy update reference from the sequence
list may change the ordinal index of other update references.

seq del <n>;

Computing an update sequendde policy updates in the sequence list is not ap-
plied until thecompute directive is issued. The directive causes the policy update refer-
ences in the sequence list to be applied one at a time in the same order that they appear in
the list. The directive also causes the system to generate the policy base models against
which query requests can be evaluated.

compute;

Query Directive. A ground query expression may be issued against the current state of
the policy base. This current state is derived after all the updates in the update sequence
have been applied, one at a time, upon the initial state. Query expressions are answered
with atrue, false or anunknown, depending on whether the queried expression holds,

its negation holds, or neither, respectively. Syntax is as follows:

query <ground _exp>;

Example 1 The following language program code listing shows a simple rule-based
document access control system scenario.

In this example, the subjeafice is initially a member of the subject groupp2,
which is a subset of grouprpl. The groupgrpl also initially holds aread access
right for the objectfile. The constraint states that if the grogppl hasread access
for file, and no other information is present to conclude that3 do not havewrite
access forfile, then the grougrpl is grantedwrite access fotfile. For simplicity,
we only consider one policy updatklete_read and a few queries that are evaluated
after the policy update is performed.

ident sub alice;

ident sub-grp grpl, grp2, grp3;
ident acc read, write;

ident obj file;

initially memb(alice, grp2) && subst(grp2, grpl);
initially holds(grpl, read, file);

always holds(grpl, write, file)

implied by holds(grpl, read, file)

with absence 'holds(grp3, write, file);
delete _read(SGO, OS0) causes !holds(SGO, read, OSO0);
seq add delete _read(grpl, file);

compute;

query holds(grpl, write, file);
query holds(alice, read, file);

2.2 Semantics

After giving a detailed syntactic definition of language we now define its formal
semantics.

Domain Description of Language”l

Definition 1 The domain descriptio® of language”L is defined as a finite set of
ground initial state facts, constraint rules and policy update definitions.

In addition to the domain descriptidR., languagel also includes an additional
set: the sequence ligt The sequence list is an ordered set that contains a sequence
of references to policy update definitions. Each policy update reference consists of the
policy update identifier and a series of zero or more identifier entities to replace the
variable place-holders in the policy update definitions.

Language £* In languagecl, the policy base is subject to change, which is triggered

by the application of policy updates. Such changes bring forth the concept of policy
base states. Conceptually, a state may be thought of as a set of facts and constraints of
the policy base at a particular instant. The state transition not&i®nr;> PB’ shows

that a new stat® B’ is generated from the current stdté3 after the policy update is

applied.

This concept of a state means that for every policy update applied to the policy base,
a new instance of the policy base or a new set of facts and constraints are generated. To
precisely define the underlying semantics of domain descrifi@ipin language’, we
introduce languag£*, which is an extended logic program representation of language
L, with state as an explicit sort.

LanguageL* contains only one special state constiptto represent the initial
state of a given domain description. All other states are represented as a resulting state
obtained by applying th&es function.

The Res(u, o) function takes a policy update referencewherew € +, and the
current state as input arguments and returns the resulting state after updiaiebeen
applied to state. Given an initial stateS, and a sequence ligt, each state; (0 <: <
|4|) may be represented ag = S, 01 = Res(ug, 00), - . ., 0}y = Res(ujy|—1, Ojyp|—1)-
Substituting each state with a recursive call to thes function, the final staté) | is
defined asS| | = Res(ujy|—1, Res(. . ., Res(ug, So)))-

Entities. The entity sef is a union of six disjoint entity sets: single subjégt, group
subjecté,,, single access rigl#t, s, group access riglt, ;, single object,, and group
object&,,. We also define three additional entity s&ls:.£, and&,, which are unions of
their respective singular and group entity sets. Each entity iéi setresponds directly
to theentity identifiersof language’.

Atoms. The main difference between languagand languag&* lies in the definition
of an atom. Atoms in languagé* represent a logical relationship of 2 to 3 entities in
a particular state. That is, languagé atoms have an extra parameter to specify the

state in which they hold. In this paper, atoms of languégeare written with the hat
character folds, memb andsubst) to differentiate from the atoms of languageThe
atom set4? is the set of all atoms in state

Facts. In languageC*, a fact states whether an atom or its negation holds in a particular
state. A factf in stateo is formally defined ag? = [-]«, o € A°.

Translating Language £ to Language £L* Given a domain descriptio®, of lan-
guageL, we translateD, into an extended logic program of languagé, as de-
noted byI'rans(D,). The semantics dP is provided by the answer sets of program
Trans(D,). Before we can fully defin&rans(D,.), we must first define the following
functions:

The CopyAtom() function takes two arguments: an atom of languégeat some
state and new state. The function returns an equivalent atom of the same type and with
the same entities, but in the new state specified.

Another function T'ransAtom(), takes an atom of languagel and an arbitrary
stateo. It then returns a languag&* atom of the same type in state with the same
given entities. The other functioffiransFact(), is similar to theT'ransAtom() func-
tion, but instead of translating an atom, it takes a fact from langdaged a state then
returns the equivalent fact in languagé.

Initial Fact Rules. Translating initial fact expressions of languafédo languagel*

rules is a trivial procedure: translate each fact that make up the initial fact expression
of languageL with its corresponding equivalent initial state atom of langudgeFor
example, the following code shows a langudbgitially statement:

initially holds(bob, read, file) && memb(alice, users);
in languageC*, the above statement is translated to:

host(bob, read, file, Sp)
memb(alice, users, Sg) <

Constraint Rules Each constraint rule in languagdgeis expressed as a series of logical
rules in languag&*. Given that all variable occurrences have been grounded to entity
identifiers, a constraint in language with m, n, o > 0 may be represented as:

always a¢ && ... && a,,
implied by by && ... && b,
with absence ¢y && ... && ¢,

Each fact in thexlways clause of a languagé€ constraint corresponds to a new
rule, where it is the consequent. Each of these new rules will have expréssithe
implied by clause as the positive premise and the expressionthe with absence
clause as the negative premise.

ag < by, ...,b,, not ¢, ...,not ¢,
Ay < by, <., by, MOt ¢y, ..., N0t C,

For example, given a policy update reference in the sequencg (ist. || = 1)
and the following languagg code fragment:

always holds(bob, read, f1) && holds(bob, write, f1)
implied by memb(bob, grp)
with absence 'holds(bob, own, f1);

The following shows the languag&" translation:

holds(bob, read, f1, So) — memb(bob, grp, So), not = holds(bob, own, f1, So)
holds(bob, write, f1, Sp) — memb(bob, grp, So), not — holds(bob, own, f1, So)
holds(bob, read, f1,S1) — memb(bob, grp, S1), not = holds(bob, own, f1, S1)
holds(bob, write, f1, S1) — memb(bob, grp, S1), not = holds(bob, own, f1, S1)

Policy Update RulesWith all occurrences of variable place-holders grounded to en-
tity identifiers, a languag€ policy update can then be translated to languégeln
languageL*, policy updates are represented as a set of implications, with each fact
in the postcondition expression as the consequent and precondition expression as the
premise. However, the translation process must also take into account that the premise
of the implication holds in the state before the policy update is applied and that the
consequent holds in the state after the application [10]. For example, given an update
sequence list) = {grant_read, grant_write} and the following languag# policy

update definitions:

grant _read()

causes holds(bob, read, file) if memb(bob, readers);
grant _write()

causes holds(bob, write, file) if memb(bob, writers);

The following shows the languag®&" translation:

host(bob, read, file, S1) «— mémb(bob, readers, Sp)
holds(bob, write, file, S3) < memb(bob, writers, S1)

Inheritance RulesAll properties held by a group are inherited by all the members and
subsets of that group. This rule is easy to apply for subject group entities. However,
careful attention must be given to access right and object groups. A subject holding an
access right for an object group implies that the subject also holds that access right for
all objects in the object group. Similarly, a subject holding an access right group for a
particular object implies that the subject holds all access rights contained in the access
right group for that object.

A conflict is encountered when a particular property is to be inherited by an entity
from a group of which it is a member or subset, and the contained entity already holds

the negation of that property. This conflict is resolved by giving negative facts higher
precedence over its positive counterpart: by allowing member or subset entities to in-
herit its parent group’s properties only if the entities do not already hold the negation of
those properties.

The following are the inheritance constraint rules to allow the properties held by a
subject group to propagate to all of its members that do not already hold the negation
of the properties. For all;, s4, a, 0, o Wheres, € £, 54 € E59,a € E4, 0 € E, andSy
<0< Sy

hoids(ss, a, 0, o) hoids(sg, a, 0, o), meAmb(ss, 84, 0), not - host(ss, a, 0, 0)
- holds(ss, a, 0, 0) < = holds(sg, a, 0, o), memb(ss, sg,)

The rules below represent inheritance rules for subject groups to allow subsets to
inherit properties held by their supergroup. Note that there is also a set of corresponding
rules to represent membership and subset inheritance for access right and object groups.
Forallsy, 542, a, 0,0 Wheres,y, sga € Esy,a € £y, 0 € E; andSy < o <)y

host(sgl, a, 0,0) —
holds(sg2, a, 0, o), subst(sq1, 842, 0), not = holds(sq1, a, 0, o)
— holds(sg1, a, 0, 0) < = holds(sq2, a, 0, 0), subst(sq1, 542, 0)

Transitivity Rules.Given three group entitie§, G’ andG”. If G is a subset ofz’ and

G’ is asubset ofy”, thenG must also be a subset@f’. The following rules ensure that

the transitive property holds for subject groups. Note that similar rules exist to ensure
that the transitive property also holds for access right and object groups. Fgg .all

542, S¢3, 0 Wheresgy, sga, sgz € Esg andSy < o <)y

subst(sg1, 543, 0) — subst(sy1, g2, 0), subst(sga, 43, 0)

Inertial Rules. Intuitively, all facts in the current state that are not affected by a policy
update should be carried over to the next state after the update. In langtiathés

rule must be explicitly stated as a constraint. Formally, the inertial rules are expressed
as follows. For ally, u, there is am’ wherea € A°, u € ¢ andd’ = CopyAtom(a,

Res(u, 0)):

&' — &, not - &'
- & — = &, not &

Definition 2 Given a domain descriptio® of language’, its languageL* transla-

tion Trans(D,.) is an extended logic program of languageconsisting of: (1) initial
fact rules, (2) constraint rules, (3) policy update rules, (4) inheritance rules, (5) transi-
tivity rules, and (6) inertial rules, as described above.

By using the above definition, we can now state a theorem that defines the maximum
number of rules generated in a translatioruns(D) given a domain descriptidB .
With this theorem, we show that the size of the translated dotffaians(D,)| is only
polynomially larger than the size of the given domgin:|.

Theorem 1 (Translation Siz&€) Given a domain descriptioP.; the setsS;, S. and
S, containing the initially, constraint and policy update statemeni® ji respectively;
the set of all entities in D, including its subsets, &, £, Ess, Eas, Eosy Esgr Eags
E,4; the setA containing all the atoms i ; the maximum number of facld; in any
statement irS;; the maximum number of facld.. in thealways clause of any statement
in S.; the maximum number of factd,, in the postcondition of any statementdyp;
and finally the sequence ligt

|Trans(Dr)| =
M; |Si| + M |Se| [t + My [9] + |9 (|Esgl* + [Eagl® + [Eog®) + 2 \AI 9] +
2] (|Ess] |5sg| |Eal [Eo] + |Es] |5as| |Eagl |Eo] + |Es] |5 | [Eos] |Eog]) +
2|5h| (|€sgl? 1€al 1ol + Esl [Eagl? 1€l + |Es] |Eal [Eogl®)

3 Domain Consistency Checking and Evaluation

A domain description of languagé must be consistent in order generate a consistent
answer set for the evaluation of queries. This section considers two issues: the problem
of identifying whether a given domain description is consistent, and how query evalu-
ation is performed given a consistent language domain description. Before these issues
can be considered, a few notational constructs must first be introduced. Given a domain
descriptionD, composed of the following languagestatements:

initially ayp && ... && a, && 'by && ... && ! by;
always ¢y && ... && ¢, && ldy && ... && ! d,

implied by ey && ... && ¢, && !fy && ... && ! f,

with absence ¢y && ... && g && 'hy && ... && ! hy;
update()

causes iy && ... && i, && 'jo && ... && ! 7,

if ky && ... && ky, && 'l && ... && ! I ;

We define the 6 sets of ground facts:

={a,|0< z<m}, F
={b,|0<z<n}, F

{CZ|O<Z<O} upd {ZZ|O<Z<U}
{d3|0§2§p}"7:up {]Z‘OSZS’U}

mf con

znt con

Additionally, we use the complementary set notatibrio denote a set containing
the negation of facts in seF, i.e. F = {-p | p € F}. Furthermore, we define the
following functions. Lety be an initial, constraint or policy update definition statement
of languagec’:

{ao, - -+ am, 7o, ..., mby}, if v is aninitially statement
Eff(v) =1 {co, -..,co, 7do, ...,~d,}, if v is a constraint statement
{i0, - +iu, 7Jos - -, Ju }, If v iS @ policy update statement

0, if v is an initially statement
Def(v) =< {90y ---+9s, ~ho, -..,~h:}, if v is a constraint statement
(0, if v is a policy update statement

(0, if v is an initially statement
Pre(y) = ¢ {eo,eq, 7 fo, ..., fr}, if v is @ constraint statement
{ko, - -, kw, —lo, -..,—lz }, if vis a policy update statement

Definition 3 Given a domain descriptioP of language., two ground factg and o’
are mutually exclusiven Dy if:

pe{Fimi UFm UFL, UFeon UF, UF, ,}implies

wnt wnt

plg{]_“f‘ UF- Ufc—;nufc_onUFZdeu_pd}

int wnt U

Simply stated, a pair of mutually exclusive facts cannot both be true in any given
state. The following two definitions refer to languagstatements.

Definition 4 Given a domain descriptio® of languageZ, two statements and+’
are complementaryn D if one of the following conditions holds:

1. v and+’ are both constraint statements abtf f(y) = Ef f (/).
2. v is a constraint statemeny/ is an update statement addf f () = Ef f(v/).

Definition 5 Given a domain descriptio, D/ is said to benormalif it satisfies all
of the following conditions:
1L FiiNFiy =0
2. For all constraint statementgin Dz, Ef f() N Pre(y) = 0.
3. For any two constraint statemenrgsand’ in D, Def(y) N Eff(y') = 0.
4. For any twocomplementargtatements and+’ in D, there exists a pair of ground
expressiort € Pre(y) ande’ € Pre(v’) such thakt ande’ are mutually exclusive

With the above definitions, we can now provide a sufficient condition to ensure the
consistency of a domain description.

Theorem 2 (Domain Consistenc$) A normaldomain description of languagé is
alsoconsistent

Basically, only consistent domain descriptions can be evaluated in terms of user
queries. For this reason, Theorem 2 may be used to check whether a domain description
is consistent.

Definition 6 Given aconsistentdomain descriptiorD,, ground query expressiof
and a finite sequence ligt, we say query holds inD, after all policy updates the in
sequence list) have been applied, denoted B3 = {¢, ¢}, if and only if for every
factp € ¢, TransFact(p, S)y)) is in every answer set @frans(Dy).

Definition 6 shows that given a finite list of policy updat¢sa query expression
¢ may be evaluated from a consistent languagdomainD,.. This is achieved by
generating a set of answer sets from the normal logic program translations(D,).
¢ is then said to hold ifD after the policy updates it have been applied if and only
if every answer set generated contains every fact in the query exprégssion

2 The proof of these theorems are presented in the full version of this paper [4].

Example 2 Given the languag€ program listing in Example 1 and the sequence list
¥ = {delete_read(grpl, file)}. The following shows the results of each query

¢ = holds(grpl, write, file) : TRUE
@1 = holds(alice, read, file) : FALSE
|

4 Conclusion

In this paper, we have presented the PolicyUpdater system, a logic-based authorisation
system that features query evaluation and dynamic policy updates. This is made pos-
sible by the use of a first-order logic languagg for defining, updating and querying
of access control policies. As we have shown, languaggeexpressive enough to rep-
resent constraints and default rules. The full PolicyUpdater system implementation is
presented in [4].

One possible future extension to this work is to integrate temporal logic in language
L to allow temporal constraints to be expressed in access control policies. This ex-
tension will be useful in e-commerce applications where authorisations are granted or
denied based on time dependent policies.

References

1. Bertino, E., Buccafurri, F., Ferrari, E., Rullo, P., A Logic-based Approach for Enforcing Ac-
cess ControlJournal of Computer Securityol. 8, No. 2-3, pp. 109-140, IOS Press, 2000.

2. Bertino, E., Mileo A., Provetti, A., Policy Monitoring with User-Preferences in PDLPio-
ceedings of IJCAI-03 Workshop for Nonmonotonic Reasoning, Action and Glpm@y-44,
2003.

3. Chomicki, J., Lobo, J., Nagvi S., A Logic Programming Approach to Conflict Resolution in
Policy Management. IProceedings of KR2000, 7th International Conference on Principles
of Knowledge Representation and Reasonpmm 121-132, Kaufmann, 2000.

4. Crescini, V. F., Zhang, Y.PolicyUpdater - A System for Dynamic Access Cont28l04
(manuscript).

5. Halpern, J. Y., Weissman, V., Using First-Order Logic to Reason About Polici®sotreed-
ings of the 16th IEEE Computer Security Foundations Worksppi87-201, 2003.

6. Jajodia, S., Samarati, P., Sapino, M. L., Subrahmanian, V. S., Flexible Support for Multiple
Access Control PoliciedACM Transactions on Database Systelw. 29, No. 2, pp. 214-260,
2001.

7. Li, N., Grosof, B. N., Feigenbaum, J., Delegation Logic: A Logic-based Approach to Dis-
tributed AuthorizationACM Transactions on Information and System Secuvity. 6, No. 1,
pp. 128-171, 2003.

8. Lobo, J., Bhatia, R., Naqvi, S., A Policy Description Languagé@ryceedings of AAAI 16th
National Conference on Artificial Intelligence and 11th Conference on Innovative Applica-
tions of Artificial Intelligencepp. 291-298, AAAI Press, 1999.

9. Simons, P., Efficient Implementation of the Stable Model Semantics for Normal Logic Pro-
grams.Research Reports, Helsinki University of Techno)ddy. 35, 1995.

10. Zhang, VY., Logic Program Based Upda#®&M Transactions on Computational Logk004
(to appear).

