
Under consideration for publication in Theory and Practice of Logic Programming 1Handling Defeasibilities in Action DomainsYAN ZHANGSchool of Computing and Information TechnologyUniversity of Western SydneyLocked Bag 1797, Penrith South DCNSW 1797, AustraliaE-mail: yan@cit.uws.edu.auAbstractRepresenting defeasibility is an important issue in common sense reasoning. In reasoningabout action and change, this issue becomes more di�cult because domain and action re-lated defeasible information may con
ict with general inertia rules. Furthermore, di�erenttypes of defeasible information may also interfere with each other during the reasoning. Inthis paper, we develop a prioritized logic programming approach to handle defeasibilitiesin reasoning about action. In particular, we propose three action languages AT 0, AT 1and AT 2 which handle three types of defeasibilities in action domains named defeasibleconstraints, defeasible observations and actions with defeasible and abnormal e�ects re-spectively. Each language with a higher superscript can be viewed as an extension of thelanguage with a lower superscript. These action languages inherit the simple syntax of Alanguage but their semantics is developed in terms of transition systems where transitionfunctions are de�ned based on prioritized logic programs. By illustrating various examples,we show that our approach eventually provides a powerful mechanism to handle variousdefeasibilities in temporal prediction and postdiction. We also investigate semantic proper-ties of these three action languages and characterize classes of action domains that presentmore desirable solutions in reasoning about action within the underlying action languages.1 IntroductionRepresenting defeasibility is an important issue in common sense reasoning. In rea-soning about action, this issue becomes more di�cult because domain and actionrelated defeasible information may con
ict with general inertia rules { that arenecessary to specify things that persist with respect to actions and usually defeasi-ble as well. Furthermore, di�erent types of defeasible information may also interferewith each other during the reasoning. Therefore, most previous action theories usu-ally ignored such defeasible information in problem domains. However, recent workon causality reveals that in many situations defeasibility plays an important role intemporal prediction and postdiction and ignoring this issue may cause di�cultiesin deriving correct solutions in reasoning about action.Let us consider the Switch-Power domain that was �rst addressed in (Zhang,1999), where two domain constraints were taken into account:if the switch is on, then the light is usually on; (1)

2 Y. Zhangif there is no power, then the light is not on. (2)Intuitively, the �rst constraint is defeasible from our common sense. For instance ,even if the switch is on, the light might not be on if there is no power, or there is aproblem in the circuit, and so on. But if this constraint is not expressed as a defea-sible rule, we may have a di�culty in our reasoning. Suppose we simply representthe above two constraints as logical implications Switch � On and :Power � :Onrespectively. If the initial state is fOn;Power ; Switchg and the robot is asked toperform an action Cut-Power with e�ect :Power (e.g. a �re alarm leads the robotto perform this action). Clearly, Cut-Power will cause a direct e�ect :Power , andthen from constraint Switch � On and :Power � :On, an indirect e�ect :Switchis derived. Obviously, this e�ect is not quite reasonable from our intuition as cuttingo� the power should be irrelevant to the switch's position.People may argue that the above problem is due to the duality of logical impli-cation (i.e. A � B � :B � :A). Now suppose we adopt McCain and Turn's causaltheory (McCain & Turner, 1995) where constraints (1) and (2) are represented asinference rules Switch) On and :Power) :On respectively1 . Then under thesame initial state as above, it turns out that action Cut-Power becomes unexe-cutable because the e�ect :Power together with rule :Power) :On contradictsfact On which is derivable from fact Switch and rule Switch) On. This is not adesirable solution either.The above example just illustrates one type of defeasibility - defeasible con-straints, which causes di�culties in reasoning about action. In fact, there are othertypes of defeasible information, such as defeasible observations and actions withdefeasible and abnormal e�ects, that also signi�cantly in
uence temporal predic-tion and postdiction. Although the problem of defeasibilities has been investigatedby some researchers recently, e.g. (Baral & Lobo, 1997; Ge�ner, 1997; Jab lonowskiet al., 1996; Zhang, 1999), none of the previous proposals is completely satisfactoryin terms of representing and handling di�erent types of defeasibilities in temporalreasoning (we will discuss this issue in section 7).In this paper, we address three basic types of defeasible information related totemporal prediction and postdiction where incomplete information is allowable:defeasible constraints, defeasible observations and actions with defeasible and ab-normal e�ects. Our goal is to handle these three types of defeasibilities in reasoningabout action under a uni�ed framework of logic programming.The issue of representing action in logic programming languages is not new. It wasexplored by some researchers previously, e.g. (Eshghi & Kowalski, 1989). However,probably Gelfond and Lifschitz's work (Gelfond & Lifschitz, 1993) was the �rsttime to make a major progress in this direction. By introducing a simple actionlanguage A, Gelfond and Lifschitz's action formulation was able to deal with bothtemporal prediction and postdiction, while properties of actions were characterizedby translating action language A into the language of extended logic programs1 Informally, A) B represents a semantics like \if A then B", from which we cannot derive:B) :A. See (McCain & Turner, 1995) for detail.

Handling Defeasibilities in Action Domains 3(Gelfond & Lifschitz, 1991). In other words, in Gelfond and Lifschitz's formulation,extended logic program was used as an implementation of the high level actionlanguage A.It has been recognized that logic programming can not only be used as theimplementation of a high level action language, but also can be used as a basis forproviding a formal semantics of the high level language, e.g. (Baral & Lobo, 1997).In this paper, we further demonstrate that prioritized logic programming has agreat
exibility to serve as a semantic basis to develop high level action languagesthat handle various information con
icts in reasoning about action. The paperis organized as follows. Section 2 brie
y reviews the concept of prioritized logicprograms. Section 3 proposes a simple action language AT 0 which can representactions in domains with defeasible constraints. The syntax of AT 0 is similar to thatof A style action languages. A transition system is proposed to provide a formalsemantics of AT 0, where a corresponding prioritized logic program is employed as abasis for de�ning such a transition system. Section 4 then extends action languageAT 0 to AT 1 so that it can represent defeasible observations and shows how ithandles the problem of temporal postdiction under the occurrence of defeasibleobservations. Section 5 further generalizes AT 1 to action languageAT 2 to representactions with defeasible and abnormal e�ects. Section 6 then investigates variousproperties of action languages AT 0, AT 1 and AT 2 and characterize speci�c classesof action domains that may present desirable solutions in reasoning about action.Section 7 discusses related work, and �nally section 8 concludes the paper withsome remarks.2 Prioritized Logic Programs (PLPs): An OverviewWe �rst introduce the extended logic program and its answer set semantics de-veloped by Gelfond and Lifschitz (Gelfond & Lifschitz, 1991). A language L ofextended logic programs is determined by its object constants, function constantsand predicate constants. Terms are built as in the corresponding �rst order lan-guage; atoms have the form P(t1; � � � ; tn), where ti (1 � i � n) is a term and P is apredicate constant of arity n; a literal is either an atom P(t1; � � � ; tn) or a negativeatom :P(t1; � � � ; tn). A rule is an expression of the form:L0 L1; � � � ;Lm ; notLm+1; � � � ; notLn ; (3)where each Li (0 � i � n) is a literal. L0 is called the head of the rule, whilefL1; � � � ;Lm , notLm+1; � � �, notLng is called the body of the rule. Obviously, thebody of a rule could be empty. We also allow the head of a rule to be empty. In thiscase, the rule with an empty head is called constraint. A term, atom, literal, or ruleis ground if no variable occurs in it. An extended logic program � is a collection ofrules. � is ground if each rule in � is ground.To evaluate an extended logic program, Gelfond and Lifschitz proposed an an-swer set semantics for extended logic programs. Let � be a ground extended logicprogram not containing not and Lit the set of all ground literals in the languageof �. An answer set of � is the smallest subset S of Lit such that (i) for any rule

4 Y. ZhangL0 L1; � � � ;Lm from �, if L1; � � � ;Lm 2 S , then L0 2 S ; and (ii) if S containsa pair of complementary literals, then S = Lit . Now let � be a ground arbitraryextended logic program. For any subset S of Lit , let �S be the logic program ob-tained from � by deleting (i) each rule that has a formula not L in its body withL 2 S , and (ii) all formulas of the form not L in the bodies of the remaining rules2.We de�ne that S is an answer set of � i� S is an answer set of �S .For a non-ground extended logic program �, we usually view a rule in � con-taining variables to be the set of all ground instances of this rule formed from theset of ground literals in the language. The collection of all these ground rules formsthe ground instantiation �0 of �. Then a set of ground literals is an answer set of� if and only if it is an answer set of �0. It is easy to see that an extended logicprogram may have one, more than one, or no answer set at all.A prioritized logic program (PLP) P is a triple (�;N ; <), where � is an extendedlogic program, N is a naming function mapping each rule in � to a name, and < isa strict partial ordering on names. The partial ordering < in P plays an essentialrole in the evaluation of P. We also use P(<) to denote the set of <-relations ofP. Intuitively < represents a preference of applying rules during the evaluation ofthe program. In particular, if N (r) < N (r 0) holds in P, rule r would be preferredto apply over rule r 0 during the evaluation of P (i.e. rule r is more preferred thanrule r 0). Consider the following classical example represented in our formalism:P1 = (�;N ;<):N1 : Fly(x) Bird(x), not :Fly(x),N2 : :Fly(x) Penguin(x), not Fly(x),N3 : Bird(Tweety) ,N4 : Penguin(Tweety) ,N2 < N1.Obviously, rules N1 and N2 con
ict with each other as their heads are complemen-tary literals, and applying N1 will defeat N2 and vice versa. However, as N2 < N1,we would expect that rule N2 is preferred to apply �rst and then defeat rule N1 sothat the desired solution :Fly(Tweety) can be derived.De�nition 1Let � be a ground extended logic program and r a ground rule of the form (3) (rdoes not necessarily belong to �). Rule r is defeated by � i� � has an answer setand for any answer set S of �, there exists some Li 2 S , where m + 1 � i � n.Now our idea of evaluating a PLP is as follows. Let P = (�;N ; <). If there aretwo rules r and r 0 in � and N (r) < N (r 0), r 0 will be ignored in the evaluation ofP, only if keeping r in � and deleting r 0 from � will result in a defeat of r 0. Byeliminating all such potential rules from �, P is eventually reduced to an extendedlogic program in which the partial ordering < has been removed. Our evaluationfor P is then based on this reduced extended logic program.Similarly to the case of extended logic programs, the evaluation of a PLP willbe based on its ground form. We say that a PLP P 0 = (�0;N 0; <0) is the ground2 We also call �S the Gelfond-Lifschitz transformation of � in terms of S .

Handling Defeasibilities in Action Domains 5instantiation of P = (�;N ; <) if (1) �0 is the ground instantiation of �; and (2)N 0(r 01) <0 N 0(r 02) 2 P 0(<0) if and only if there exist rules r1 and r2 in � such that r 01and r 02 are ground instances of r1 and r2 respectively and N (r1) < N (r2) 2 P(<).Under this de�nition, however, we require a restriction on a PLP since not everyPLP's ground instantiation presents a consistent information with respect to theoriginal PLP. Consider a PLP as follows:N1 : P(f (x)) notP(x),N2 : P(f (f (x))) notP(f (x)),N2 < N1.If the only constant in the language is 0, then the set of ground instances of N1 andN2 includes rules like:N 01 : P(f (0)) notP(0),N 02 : P(f (f (0))) notP(f (0)),N 03 : P(f (f (f (0)))) notP(f (f (0))),� � �,It is easy to see that N 02 can be viewed as an instance for both N1 and N2. Therefore,the ordering <0 among rules N 01;N 02;N 03; � � � is no longer a strict partial orderingbecause of N 02 <0 N 02. Obviously, we need to exclude this kind of programs in ourcontext. On the other hand, we also want to avoid a situation like � � � <0 N 03 <0N 02 <0 N 01 in the ground prioritized logic program because this <0 indicates thatthere is no most preferred rule in the program.Given a PLP P = (�;N ; <). We say that P is well formed if there is no rule r 0that is an instance of two di�erent rules r1 and r2 in � and N (r1) < N (r2) 2 P(<).Then it is not di�cult to observe that the following fact holds.Fact: If a PLP P = (�;N ;<) is well formed, then in its ground instantiation P 0 =(�0;N 0;<0), <0 is a partial ordering and every non-empty subset of �0 has a least elementwith respect to <0.Due to the above fact, in the rest of this paper, we will only consider well formedPLP programs in our discussions, and consequently, the evaluation for an arbitraryPLP P = (�;N ; <) will be based on its ground instantiation P 0 = (�0;N 0; <0).Therefore, in our context a ground prioritized (or extended) logic program maycontain in�nite number of rules. In this case, we will assume that this ground pro-gram is the ground instantiation of some program that only contains �nite numberof rules. In the rest of the paper, whenever there is no confusion, we will onlyconsider ground prioritized (extended) logic programs without explicit declaration.De�nition 2(Zhang & Foo, 1997a) Let P = (�;N ; <) be a prioritized logic program. P< isa reduct of P with respect to < if and only if there exists a sequence of sets �i(i = 0; 1; � � �) such that:1. �0 = �;2. �i = �i�1 � fr1; r2; � � � j (a) there exists r 2 �i�1 such thatfor every j (j = 1; 2; � � �), N (r) < N (rj) 2 P(<) andr1; r2; � � � are defeated by �i�1 � fr1; r2; � � �g, and (b) there

6 Y. Zhangare no rules r 0; r 00; � � � 2 �i�1 such that N (rj) < N (r 0),N (rj) < N (r 00); � � � for some j (j = 1; 2; � � �) and r 0; r 00; � � �are defeated by �i�1 � fr 0; r 00; � � �gg;3. P< = T1i=0 �i .In De�nition 2, P< is an extended logic program obtained from � by eliminatingsome rules from �. In particular, if N (r) < N (r1), N (r) < N (r2), � � �, and �i�1�fr1; r2; � � �g defeats fr1; r2; � � �g, then rules r1; r2; � � � will be eliminated from �i�1 ifno less preferred rule can be eliminated (i.e. conditions (a) and (b)). This procedureis continued until a �xed point is reached. It should be noted that condition (b) inthe above de�nition is necessary because without it some unintuitive results may bederived. For instance, consider P1 again, if we add additional preference N3 < N2in P1, then using a modi�ed version of De�nition 2 without condition (b),fFly(Tweety) Bird(Tweety);not:Fly(Tweety),Bird(Tweety) ,Penguin(Tweety) gis a reduct of P1, from which we will conclude that Tweety can
y.Theorem 1Every PLP has a reduct.De�nition 3(Zhang & Foo, 1997a) Let P = (�;N ; <) be a PLP and Lit the set of all groundliterals in the language of P. For any subset S of Lit , S is an answer set of P i� Sis an answer set for some reduct P< of P.Example 1Using De�nitions 2 and 3, it is easy to conclude that P1 has a unique reduct asfollows:P<1 = f:Fly(Tweety) Penguin(Tweety), not Fly(Tweety),Bird(Tweety) ,Penguin(Tweety) g,from which we obtain the following answer set of P1:S = fBird(Tweety), Penguin(Tweety), :Fly(Tweety)g.Now we consider another program P2:N1 : A ,N2 : B not C ,N3 : D ,N4 : C not B ,N1 < N2;N3 < N4.According to De�nition 2, it is easy to see that P2 has two reducts:fA , D , C not Bg, andfA , B not C , D g.From De�nition 3, it follows that P2 has two answer sets: fA;C ;Dg and fA;B ;Dg.

Handling Defeasibilities in Action Domains 73 AT 0: Representing Actions in Domains with Defeasible ConstraintsIn this section, we develop an action language AT 0 which is able to handle domainswith defeasible constraints. The syntax of language AT 0 is inspired by A familylanguages, and a transition system will be developed to provide the semantics ofAT 0 where a corresponding prioritized logic program is employed to de�ne thetransition function. 3.1 Syntax of AT 0The language AT 0 has two disjoint sets of names called actions and
uents. Wewill use A, A1, A2, � � � to denote action names , and F , F1, F2, � � � to denote
uentnames. We de�ne a
uent expression to be a
uent name possibly preceded by anegation sign :.A value proposition is an expression of the form:L after A1; � � � ;Al ; (4)where L is a
uent expression and A1; � � � ;Al are action names. A value propositionis also called an initial proposition if no action name occurs in it:initially L� (5)A causal proposition is an expression of the form:L is caused if L1; � � � ;Lm with absence Lm+1; � � � ;Ln ; (6)where L, L1; � � � ;Ln are
uent expressions. This is so-called defeasible constraintwhose intuitive meaning is that L is caused to be true if L1; � � � ;Lm are true andLm+1; � � � ;Ln are not present. As a special case, (6) is reduced to a non-defeasiblecausal rule if no absent
uent expression is mentioned:L is caused if L1; � � � ;Lm (7)An action e�ect proposition is an expression of the form:A causes L if L1; � � � ;Lk ; (8)where A is an action name and L1; � � � ;Lk are
uent expressions. (8) means that ifpreconditions L1; � � � ;Lk of A are true, then action A causes L to be true. Note thedi�erence between (7) and (8) while no action is involved in the former.Now we de�ne a domain description D of AT 0 to be a �nite set of initial propo-sitions, causal propositions and action e�ect propositions. It should be noted thathere we do not include value propositions of the form (4) into a domain descrip-tion since at the moment we restrict our formulation only to deal with predictionreasoning while a value proposition (4) is only used as a query statement in thelanguage3. The following example shows how language AT 0 is used to describe anaction domain.3 This restriction will be released in language AT 1.

8 Y. ZhangExample 2Let us consider the Switch-Power domain mentioned in section 1 again. The domainincludes two constraints: (a) if the switch is on, then the light is usually on; (b)if there is no power, then the light is not on. We treat the �rst constraint as adefeasible causal rule. We also suppose that initially the light is on, there is powerand the switch is on. An action Cut-Power is then performed. It has been shownthat the previous approaches have di�culties to deal with this example due to alack of expressibility of defeasible constraints (Zhang, 1999). This action scenariocan be described by specifying a domain description D(Switch-Power) of AT 0 asfollows. Firstly, D(Switch-Power) contains the following three initial propositions:initially On,initially Power ,initially Switch.D(Switch-Power) also includes the following two causal propositions to capture thedomain constraints presented above:On is caused if Switch with absence :On,:On is caused if :Power .Finally, D(Switch-Power) has one action e�ect proposition:Cut -Power causes :Power .3.2 Semantics of AT 0Similarly to the idea presented in (Gelfond & Lifschitz, 1993), we will de�ne atransition system to provide a formal semantics for AT 0. However, instead of de-veloping an independent transition system for the language, our transition functionis de�ned based on the PLP. This is because the PLP has a powerful mechanismof solving con
icts between defeasible information, which, from our observation, isdi�cult to handle in the traditional transition system approach.3.2.1 Translating AT 0 into PLPWe �rst propose a translation from a domain description D of AT 0 into a PLP, andour transition function will be de�ned based on this translated PLP. To implementthis translation, we consider a language LPAT 0 of PLPs including the followingvocabulary:- Situation sort: one situation constant S0, and situation variables s; s1; s2; � � �.- Action sort: action constants A;A1;A2; � � �, and action variables a; a1; a2; � � �.- Propositional
uent sort:
uent constants F ;F1;F2; � � �, and
uent variablesf ; f1; f2; � � �.- Function symbol: a binary function symbol Result which takes arguments ofaction and situation respectively, and returns a situation.- Predicate symbols: �ve binary predicate symbols Holds, Caused+, Caused�,E�ect+ and E�ect�, all of which take arguments of
uent and situation re-spectively.

Handling Defeasibilities in Action Domains 9In LPAT 0 situation term Result(a; s) indicates the resulting situation after per-forming action a in s. Atom Holds(f ; s) (or literal :Holds(f ; s)) indicates thefact that
uent f is true (or false, resp.) in situation s. Atom Caused+(f ; s) (orCaused�(f ; s) resp.) indicates that
uent f is caused to be true (or false, resp.) insituation s. Causal rules in LPAT 0 have the following forms4:Caused+(F ; s) [:]Holds(F1; s); � � � ; [:]Holds(Fm; s);not [:]Holds(Fm+1; s); � � � ; not [:]Holds(Fn ; s); (9)Caused�(F ; s) [:]Holds(F1; s); � � � ; [:]Holds(Fm; s);not [:]Holds(Fm+1; s); � � � ; not [:]Holds(Fn ; s); (10)Holds(f ; s) Caused+(f ; s); (11):Holds(f ; s) Caused�(f ; s)� (12)Basically, rule (9) together with rule (11) (or (10) together with (12) resp.) saysthat if literals [:]Holds(F1; s), � � �, [:]Holds(Fm; s) are true, and there is no explicitstatement saying that [:]Holds(Fm+1; s), � � �, [:]Holds(Fn ; s) are true, then
uent Fis caused to be true (or false resp.) in situation s. As it will be seen, in our followingtranslation, rules (9) and (10) are actually related to the domain description D andhence are domain speci�c, while rules (11) and (12) act as generic rule schemas thatare irrelevant to D and hence are domain independent. For simplicity, we denote�cind = f(11); (12)g�Atoms E�ect+(f ; s) and E�ect�(f ; s) are used to represent direct e�ects of ac-tions. Generally, action e�ect rules have the following forms:E�ect+(F ;Result(A; s)) [:]Holds(F1; s); � � � ; [:]Holds(Fk ; s); (13)E�ect�(F ;Result(A; s)) [:]Holds(F1; s); � � � ; [:]Holds(Fk ; s); (14)Holds(f ; s) E�ect+(f ; s); (15):Holds(f ; s) E�ect�(f ; s)� (16)Intuitively, rule (13) together with rule (15) (or (14) together with (16) resp.)says that if action A's preconditions [:]Holds(F1; s); � � �, [:]Holds(Fk ; s) are true,then
uent F becomes true (or false resp.) after performing action A. Again, rules(13) and (14) are domain speci�c, while rules (15) and (16) represent domain inde-pendent schemas. Similarly, we denote�e�ind = f(15); (16)g�De�nition 44 Notation [:] means that the negation sign : may or may not occur.

10 Y. ZhangA PLP is called a translation of domain description D ofAT 0, denoted by PAT 0 (D) =(�;N ; <), if it is obtained as follows:1. � consists of the following rules:Initial fact rules: For each initial proposition (5) in D, there is a rule of theform [:]Holds(F ; S0) 5.Causal rules: For each causal proposition (6) in D, there is a causal rule ofthe form (9) or (10). Two domain independent causal rules (11) and (12) arealso included in this set.Action e�ect rules: For each action e�ect proposition (8), there is an actione�ect rule of the form (13) or (14). Two domain independent action e�ectrules (15) and (16) are also included in this set.Inertia rules6:Holds(f ;Result(a; s)) Holds(f ; s); not :Holds(f ;Result(a; s));(17):Holds(f ;Result(a; s)) :Holds(f ; s); not Holds(f ;Result(a; s))�(18)2. Naming function N assigns a unique name to each rule in �.3. For each causal rule Nc and each inertia rule Ni , <-relation Nc < Ni holds.In PAT 0(D) speci�ed above, � represents initial facts, domain constraints (causalrules) and action e�ects corresponding to D, and inertia rules are used to capturethings that do not change with respect to actions. Since we allow to representdefeasible causal rules while inertia rules are also defeasible, possible con
icts mayoccur between these two types of rules. To solve such con
icts, we specify that acausal rule is more preferred than an inertia rule. The intuition behind this is clear:generally causal rules are used to derive indirect e�ects of actions, and wheneverthere is no explicit condition to block a defeasible causal rule, this rule should betriggered to derive necessary indirect e�ects. This point is illustrated in Example 3next.It is also obvious that to translate a speci�c domain description D into PAT 0(D),we only need to translate domain speci�c information such as initial propositions,causal and action e�ect propositions into logic program rules, while other domainindependent schema rules such as �cind , �e�ind and rules (17) and (18) are automati-cally embedded in every translated PLP. Formally, in a given PAT 0 (D), we denotea set of domain speci�c rules as �0spec , and specify the set of domain independentrules as�0ind = �cind [�e�ind [�iind ; (19)where �iind = f(17); (18)g.Example 35 Here Holds(F ; S0) or :Holds(F ;S0) is corresponding to whether L occurring in initially L isF or :F respectively. This assumption is also adopted in the rest of this paper.6 Note that these two inertia rules actually represent a set of inertia rules by substituting
uentand action variables f and a with every
uent and action constants occurring in the domainrespectively.

Handling Defeasibilities in Action Domains 11Example 2 continued. According to De�nition 4, the domain description D(Switch-Power)presented in Example 2 can be translated into a PLP, denoted by PAT 0(Switch-Power)= (�0spec [�0ind ;N ; <), where �0spec consists of the following rules:Initial fact rules:N1 : Holds(On; S0) ,N2 : Holds(Power ; S0) ,N3 : Holds(Switch; S0) ,Causal rules:N4 : Caused+(On; s) Holds(Switch; s), not :Holds(On; s),N5 : Caused�(On; s) :Holds(Power ; s),Action e�ect rule:N6 : E�ect�(Power ;Result(Cut-Power ; s)) .Naming rules in �0ind :Assigning a unique name to each rule in �0ind . That is, we assign names N7, N8,N9;N10;N11 and N12 to rules (11), (12), (15) (16), (17) and (18) respectively.<-relations:Nc < Ni , while Nc and Ni are names of any causal rule and inertia rule in �respectively. That is, we have fN4;N5;N7;N8g < fN11;N12g7.3.2.2 Transition function, models and entailmentTo de�ne the transition function, we �rst introduce the concept of state. A state isa collection of
uent expressions. A state is consistent if it does not contain a
uentF and its negative correspondent :F . We use symbols Ŝ0, Ŝ1, Ŝ2, � � � to denotestates. Then transition function R maps a state to a power set of states by someaction.De�nition 5Given a domain description D and its translation PAT 0(D), let A be the set ofall answer sets of PAT 0(D). The transition function R(A; Ŝ) of D with respect toaction A and state Ŝ is de�ned as follows:1. If A is empty or includes an inconsistent answer set of PAT 0(D), then R(A; Ŝ)is unde�ned;2. Ŝ0 = f[:]F j [:]Holds(F ; S0) 2 Ansg, where Ans 2 A ;3. R(A; Ŝ) = ff[:]F j [:]Holds(F ;Result(A; S 0)) 2 Ans, and for any F 0[:]F 0 2 Ŝ i� [:]Holds(F 0; S 0) 2 Ansg j Ans 2 A g.It should be noted that we de�ne a state to be a collection of
uent expressions,that is very di�erent from the state de�ned in standard A-style action languageswhere states correspond to possible physical worlds and every
uent is either true orfalse in a state (Gelfond & Lifschitz, 1993). In our context, a state may not presenta complete information for
uents. If a
uent is not present in a state, then this7 This is an abbreviation of a set of <-relations of the form Ni < Nj , where i = 4; 5;7;8 andj = 11;12.

12 Y. Zhang
uent's truth value is viewed as unknown. De�ning states in this way will bring usa
exibility to develop a formal semantics for our action theories where incompleteinformation related to defeasibility is admitted.In De�nition 5, Ŝ0 is called the initial state of D, and R(A; Ŝ) represents theset of all possible states resulting from the execution of A on state Ŝ . From thefeature of PAT 0(D), it is quite obvious that the initial state Ŝ0 is always unique.On the other hand,R(A; Ŝ) may include more than one state. To see how transitionfunction R works, we consider a domain D consisting of the following propositions:initially F1,F2 is caused if :F1 with absence :F2,:F2 is caused if :F1 with absence F2,A1 causes :F1,A2 causes :F2 if :F1;F2.Since two causal propositions con
ict with each other and action A1 is executablein the initial situation, it is not di�cult to see that D's PLP translation PAT 0 (D)has two di�erent answer sets such that Holds(F2;Result(A1; S0)) is in one and:Holds(F2;Result(A1; S0)) is in the other. Then from De�nition 5, state transitionsof D speci�ed by transition function R can be described by the following diagram,where fF1g is the initial state:

Handling Defeasibilities in Action Domains 13
Fig. 1. State transitions.

F1A2 A1 :F1F2 A1
:F1:F2 A1;A2A2A1

14 Y. ZhangLet A denote an action string A1 � � �Al (as a special case, an empty action stringis denoted as �). A structure 	 is a partial function from strings of actions to stateswhose domain is pre�x closed. We refer 	(�) = Ŝ0, i.e. the initial state of D. Thefollowing de�nition describes possible trajectories of the dynamic system (domaindescription) de�ned in AT 0 under structure 	.De�nition 6Given a structure 	.1. An initial proposition of the form (5) is satis�ed in 	 if L 2 	(�);2. A causal proposition of the form (6) or an action e�ect proposition of theform (8) is satis�ed in 	 if the following conditions hold:- for any action string A and action constant A, if 	(A) and R(A;	(A))are de�ned, then 	(A �A) 2 R(A;	(A));- otherwise 	(A �A) is unde�ned.A
uent expression L is true in a state 	(A) if L 2 	(A).De�nition 7Given a domain description D, a structure 	 is a model of D if all initial, causaland action e�ect propositions in D are satis�ed in 	, and for any action string Aand
uent F , F and :F are not both true in 	(A). We say a value proposition ofthe form (4): L after A1; � � � ;Al is satis�ed in 	 if L 2 	(A), where A = A1 � � �Al .We say D entails value proposition (4), denoted as D j=AT 0 L after A1; � � � ;Al , if(4) is satis�ed in all models of D.Example 4Example 3 continued. From D(Switch-Power 0)'s PLP translationPAT 0(Switch-Power) as shown in Example 3, it can be veri�ed that PAT 0 (Switch-Power)has a unique answer set that includes the following ground literals8:Holds(On;S0),Holds(Power ;S0),Holds(Switch;S0),:Holds(Power ;Result(Cut -Power ;S0)),:Holds(On;Result(Cut -Power ;S0)) andHolds(Switch;Result(Cut -Power ;S0)).Since Ŝ0 = fOn;Power ; Switchg, we have R(Cut-Power ; Ŝ0) = fŜ1g, whereŜ1 = f:On;:Power ; Switchg. Now it is easy to see that structure 	 is a modelof D(Switch-Power), where 	(�) = Ŝ0 and 	(Cut-Power) = Ŝ1. Furthermore,according to De�nition 7, we haveD(Switch-Power) j=AT 0 :Power after Cut -Power ,D(Switch-Power) j=AT 0 :On after Cut -Power ,D(Switch-Power) j=AT 0 Switch after Cut -Power .8 Obviously the answer set also includes many other ground literals that we are not interested inlisting here.

Handling Defeasibilities in Action Domains 15Now we slightly modify the domain of Switch-Power as stated in Example 2. Sup-pose initially the light is not on and the switch is o�, and another action Turn-Onis also available. Then the modi�ed domain description D(Switch-Power 0) includesthe following initial propositions:initially :On,initially :Switch,and the action e�ect propositionTurn-On causes Switch,together with the e�ect proposition of action Cut-Power and two causal proposi-tions as given in Example 2. Ignoring the detail, we can derive the following results:D(Switch-Power 0) j=AT 0 On after Turn-On,D(Switch-Power 0) j=AT 0 :On after Turn-On;Cut -Power ,D(Switch-Power 0) j=AT 0 Switch after Turn-On;Cut -Power .4 AT 1: Combining Defeasible Observations into Action DomainsWe have shown that language AT 0 handles temporal prediction where defeasibleconstraints are admitted. It, however, cannot deal with temporal postdiction, e.g.within the framework of AT 0 we cannot reason from the current state to the pastunder some observations. It has been realized that observations on any intermidatestates (including the �nal state) play an important role in temporal postdiction(Jab lonowski et al., 1996). Here, an observation is viewed as an agent's beliefs aboutthe domain that is either obtained from the outside world or from the agent's ownassumption. In the case that an agent makes an observation under some assumption,such observation becomes defeasible because once the assumption is proved not tobe true, the agent's observation should be defeated.In this section, we extend AT 0 to AT 1 such that the extended language canhandle temporal prediction and postdiction where both defeasible constraints andobservations are admitted. 4.1 Syntax of AT 1The syntax of AT 1 is the same as AT 0's except that AT 1 also has an observationproposition of the form:L is observed if L1; � � � ;Lm with absence Lm+1; � � � ;Ln after A1; � � � ;Al ; (20)where L;L1; � � � ;Ln are
uent expressions, and A1; � � � ;Al are actions. Intuitively,(20) says after actions A1; � � � ;Al are performed sequentially, L is observed to betrue if L1; � � � ;Lm are true while Lm+1; � � � ;Ln are absent. Obviously, (20) representsa kind of defeasible information. In the case that no action occurs in (20), (20) canbe written as the following form:initially L is observed if L1; � � � ;Lm with absence Lm+1; � � � ;Ln � (21)Under the language AT 1, we de�ne a domain description D to be a �nite set of

16 Y. Zhangobservation propositions, causal propositions and action e�ect propositions. AT 1will still have the value proposition (4) and its special case the initial proposition(5), but are only used as query statements in AT 1.Example 5Let us consider a modi�ed shooting action scenario which we name Shooting-1.Suppose the turkey is observed alive in the initial situation, and as there is noexplicit information about whether the gun is loaded in the initial situation, theagent would assume that the gun is initially not loaded by default. After actionsShoot and Wait are successively performed, it is observed that the turkey is dead(not alive). This scenario can be naturally described by languageAT 1. In particular,we specify a domain description D(Shooting-1) which has the following observationpropositions:initially Alive is observed,initially :Loaded is observed with absence Loaded ,:Alive is observed after Shoot ;Wait ,and an action e�ect proposition:Shoot causes :Alive if Loaded .4.2 Semantics of AT 1We will use a similar way as described in section 3.2 to develop a formal semanticsof AT 1 based on a transition system that is de�ned on the basis of the translationfrom a AT 1 domain description into a PLP.4.2.1 Translating AT 1 into PLPAs we have mentioned earlier, the major improvement from AT 0 to AT 1 is thatwe allow defeasible observations to be presented in a domain description so thattemporal postdiction becomes possible. It is quite straightforward to translate anobservation proposition of the form (20) into the following logic rule:[:]Holds(F ; S) [:]Holds(F1; S); � � � ; [:]Holds(Fm; S);not [:]Holds(Fm+1; S); � � � ; not [:]Holds(Fn ; S); (22)where S = Result(Al ;Result(� � � ;Result(A1; S0) � � �)).To do postdiction reasoning, for each action e�ect proposition in D, we need tohave some action explanation rules which will be used to derive action precondi-tions based on proper observations. First, if there is an action e�ect rule (13), thefollowing rule explains that the fact Holds(F ;Result(A; s)) is caused by performingaction A:E�ect+(F ;Result(A; s)) Holds(F ;Result(A; s)); not Holds(F ; s);not Caused+(F ;Result(A; s)); (23)Clearly, the function of rule (23) is to identify action A's actual execution. The

Handling Defeasibilities in Action Domains 17intuition is that if
uent F is true (or false, resp.) in situation Result(A; s), andthere is no explicit information saying that F is true in the previous situation s orF is caused to be true by some causal rule, then it derives that F 's truth value inResult(A; s) is a direct e�ect of action A.Furthermore, if a
uent F is a direct e�ect of some action A, i.e.E�ect+(F ;Result(A; s))holds, then each precondition of A must also hold in the previous situation. Thatis, we should have rules like:[:]Holds(Fi; s) E�ect+(F ;Result(A; s)); (24)where i = 1; � � � ; k and A causes F if [:]F1; � � � ; [:]Fk is an action e�ect propositionin domainD. However, it should be noted that sometimes one action may cause thesame e�ect under di�erent preconditions. In this case, deriving all possible actionpreconditions may cause contradictions. For instance, consider the following domaindescription D(Door):initially : HasKey,DoorOpened is observed after OpenDoor,OpenDoor causes DoorOpened if HasCard,OpenDoor causes DoorOpened if HasKey.In this domain, action OpenDoor has two independent preconditions HasCard andHasKey. If we translate this domain according to our proposal above, we will havethe following logic rules:Holds(DoorOpened ;Result(OpenDoor ;S0)) ,E�ect+(DoorOpened ;Result(OpenDoor ;s)) Holds(DoorOpened ;Result(OpenDoor ;s)),not Holds(DoorOpened ;s),not Caused+(DoorOpened ;Result(OpenDoor ;s)),Holds(HasCard ;s) E�ect+(DoorOpened ;Result(OpenDoor ;s)), andHolds(HasKey;s) E�ect+(DoorOpened ;Result(OpenDoor ;s)).From the above logic rules, we will deduce both Holds(HasCard ; S0) andHolds(HasKey ; S0). But from D(Door), we know that :HasKey initially holds. Toavoid this kind of contradiction, instead of using rule (24), we should have a weakerrule to derive action preconditions: whenever there is no con
ict, we only deducea minimal number of preconditions to explain an action. Under this principle, wewill change rule (24) to the following form:[:]Holds(Fi; s) E�ect+(F ;Result(A; s));not [:]Holds(Fi ; s);not [:]Holds(F 01; s); � � � ; not [:]Holds(F 0l ; s); (25)where i = 1; � � � ; k , and
uents [:]F 01; � � � [:]F 0l occur as preconditions in all otheraction e�ect propositions of A that have the same e�ect9.9 [:]Holds(Fi ; s) denotes the complementary literal of [:]Holds(Fi ; s).

18 Y. ZhangThe following rules represent the dual case of rules (23) and (25) correspondingto action e�ect rule (14):E�ect�(F ;Result(A; s)) Holds(F ;Result(A; s)); not Holds(F ; s);not Caused+(F ;Result(A; s)); (26)[:]Holds(Fi; s) E�ect�(F ;Result(A; s));not [:]Holds(Fi ; s);not [:]Holds(F 01; s); � � � ; not [:]Holds(F 0l ; s)� (27)Now the following de�nition describes the formal translation from a domain de-scription D of AT 1 into a PLP .De�nition 8A PLP is called a translation of domain description D ofAT 1, denoted by PAT 1 (D) =(�;N ; <), if it is obtained as follows:1. � consists of the following rules:Observation rules: for each observation proposition of (20), there is a rule ofthe form (22),Causal rules: the same as in De�nition 4,Action e�ect rules: the same as in De�nition 4,Action explanation rules: for each action e�ect rule (13), there are rules (23)and (25), and for each action e�ect rule (14), there are rules (26) and (27),Inertia rules: (17), (18) and:Holds(f ; s) Holds(f ;Result(a; s)); not :Holds(f ; s);not Caused+(f ;Result(a; s));not E�ect+(f ;Result(a; s)); (28):Holds(f ; s) :Holds(f ;Result(a; s)); not Holds(f ; s);not Caused�(f ;Result(a; s));not E�ect�(f ;Result(a; s))� (29)2. Naming function N assigns a unique name to each rule in �;3. For each observation rule No , causal rule Nc, action explanation rule Nex andinertia rule Ni , the following <-relations hold:Nex < Nc < Ni < No� (30)Compared with De�nition 4, the PLP translation speci�ed in De�nition 8 presentsseveral new features. First, PAT 1(D) allows to represent defeasible observationsnot only at the initial situation but also at any other situations. Second, PAT 1 (D)includes action explanation rules (23), (25), (26), and (27). Finally, the extra inertiarules (28) and (29) allow us to reason about
uents' truth values from the currentsituation to the past. That is, if a
uent f is true (or false, resp.) currently, andthere is no explicit information saying that f is not true (or not false, resp.) in the

Handling Defeasibilities in Action Domains 19previous situation, or f is caused to be true by some causal rule, or f is true (orfalse, resp.) as a direct e�ect of some action, then it derives that f is true (or false,resp.) in the previous situation.Since both observation and action explanation rules may be defeasible, morepossible con
icts may occur in PAT 1(D). For instance, con
icts may not only occurbetween causal rules and inertia rules, but also between action explanation rulesand inertia rules, observation rules and causal rules, etc.. To solve these possiblecon
icts, the underlying <-relation is speci�ed as (30). (30) presents that actionexplanation rules are most preferred because the execution of an action usuallyoverride defeasible causal and inertia rules, while observation rules are less preferredthan inertia rules due to the intuition that a
uent's truth value normally persistsif there is no explicit action or causal rule to change it.Note that in PAT 1(D), action explanation rules (23), (25), (26) and (27) aredomain speci�c because they are speci�ed based on action e�ect rules (13) and (14).On the other hand, the new inertia rules (28) and (29) are domain independent.Therefore, we can denote domain independent rules in PAT 1(D) as follows:�1ind = �cind [�e�ind [�i 0ind ; (31)where �i 0ind = �iind [f(28); (29)g. We also denote the set of domain speci�c rulesof PAT 1 (D) as �1spec .Example 6Example 5 continued. According to De�nition 8, it is not di�cult to obtain thetranslation of domain description D(Shooting-1), PAT 1(Shooting-1) = (�1spec [�1ind ;N ; <), where �1spec consists of the following rules:Observation rules:N1 : Holds(Alive; S0) ,N2 : :Holds(Loaded ; S0) not Holds(Loaded ; S0),N3 : :Holds(Alive;Result(Wait ;Result(Shoot ; S0))) ,Action e�ect rules:N4 : E�ect�(Alive;Result(Shoot ; s)) Holds(Loaded ; s),Action explanation rules:N5 : E�ect�(Alive;Result(Shoot ; s)) :Holds(Alive;Result(Shoot ; s));not :Holds(Alive; s);not Caused�(Alive;Result(Shoot ; s));N6 : Holds(Loaded ; s) E�ect�(Alive;Result(Shoot ; s)); not:Holds(Loaded ; s).Naming rules in �1ind :Assigning a unique name to each rule in �1ind . Therefore, we have namesN7;N8;N9;N10,N11, N12, N13, and N14 for rules (11), (12), (15), (16), (17), (18), (28) and (29) re-spectively.<-relations:Nex < Ni < No. That is, we have:fN5;N6g < fN11;N12;N13;N14g < fN1;N2;N3g.

20 Y. Zhang4.2.2 Transition function, models and entailmentTransition function R, structures and models 	 are de�ned in the same way asin AT 0 (see section 3.2.2). We denote the entailment relation under 	 in AT 1as j=AT 1 . The only thing we should emphasize is that since we allow a domaindescription to include defeasible initial observation propositions, it is possible thatone initial observation proposition con
icts with the other. Therefore, di�erentinitial states Ŝ0 may be deduced from di�erent answer sets of the correspondingtranslated PLP PAT 1(D) of D.Example 7Example 5 continued. In the shooting action scenario as described in Example 5,the question we are interested in is when the turkey died and whether the gunwas actually loaded initially. This is a question about postdiction that we needto reason from the current situation to the past. After translating the domaindescription D(Shooting-1) into PAT 1(Shooting-1) as illustrated in Example 6, weobtain the following results:D(Shooting-1) j=AT 1 :Alive after Shoot ,D(Shooting-1) j=AT 1 initially Loaded ,where the �rst solution says that the turkey was dead after the execution of actionShoot , and the second indicates that initially the gun was actually loaded, whichdefeats the original observation.5 AT 2: Representing Actions with Defeasible and Abnormal E�ectsIt is common that in temporal reasoning under some circumstances, an actionmight be abnormally executed and the original expected action e�ect is defeated.Sometimes, an abnormal e�ect associated with this action may be also produced.Consider the classic shooting scenario, e.g. (Sandewall, 1994), in which it is usuallyassumed that if the gun is loaded, then the shoot action causes a direct e�ect thatthe turkey is not alive. However, it is probably more natural to treat shoot as adefeasible action. For instance, if the bullet is dumb, the turkey would be still aliveafter executing action shoot, or it could be an abnormal e�ect of shoot if aftershooting the turkey is still alive but the pigeon is dead. In this section, we try tofurther generalize our action language AT 1 to AT 2 in order to capture actions withdefeasible and/or abnormal e�ects as described above.5.1 Syntax of AT 2AT 2 includes the same forms of observation propositions, causal propositions, andvalue propositions of AT 1, but has di�erent forms of action e�ect propositions.First, an action e�ect proposition of AT 2 is of the following form:A normally causes L if L1; � � � ;Lk ; (32)

Handling Defeasibilities in Action Domains 21where A is an action and L;L1; � � � ;Lk are
uent expressions. Intuitively, this actione�ect proposition is defeasible since we consider that if an action is abnormallyexecuted, its normal e�ect then cannot be produced.Therefore, the following action abnormal e�ect proposition represents the abnor-mal e�ect of an action:A abnormally causes L if L1; � � � ;Lk � (33)Finally, an abnormal condition proposition represents the condition under whichan action can be considered to be abnormal:A is abnormal if before L1; � � � ;Lh after Lh+1; � � � ;Lp� (34)Usually, the abnormality of an action can be identi�ed from observations on thechanges of some particular
uents' truth values before and after the action execu-tion. Hence, (34) says that if L1; � � � ;Lh are true before action A is executed, andLh+1; � � � ;Lp are true after action A is executed, then A is identi�ed to be abnormal.A domain description D of AT 2 is a �nite set of observation propositions, causalpropositions, action e�ect propositions, abnormal action e�ect propositions, andabnormal condition propositions. The following example shows how we can useAT 2 to represent domains where actions may have abnormal or/and defeasiblee�ects.Example 8Let us consider a di�erent shooting scenario named Shooting-2 in which actionShoot has a defeasible e�ect and it is abnormally executed if initially the gun isloaded and after performing the action, the turkey is observed still alive. Initially thegun is loaded and turkey is alive. This scenario is easy to formalize by using AT 2.We specify a domain description D(Shooting-2) that has the following observationpropositions:initially Loaded is observed,initially Alive is observed,a defeasible action e�ect proposition:Shoot normallly causes :Alive if Loaded ,and an abnormal condition proposition:Shoot is abnormal if before Loaded after Alive.5.2 Semantics of AT 2Similarly to previous languages AT 0 and AT 1, we will propose a transition systemto provide a formal semantics of AT 2. Again, this transition system is de�ned basedon a translation from a domain description of AT 2 into a PLP.

22 Y. Zhang5.2.1 Translating AT 2 into PLPTo translate an action domain of AT 2, we need to extend the language LPAT 0 ofPLPs introduced in section 3.2 to a new language LPAT 2 of PLPs by adding followingsymbols:- Ab: a binary predicate symbol taking arguments action and situation respec-tively.- AbE�ect+ and AbE�ect�: binary predicate symbols taking arguments
uentand situation respectively.Intuitively, atom Ab(a; s) expresses that action a is abnormally executed at sit-uation s, while atoms AbE�ect+(f ; s) and AbE�ect�(f ; s) are used to representabnormal e�ects of actions (see the following for detail).Considering the defeasibility of action executions, we need to modify our originalaction e�ect rules (13) and (14) presented in section 3.2 to the following formsrespectively:E�ect+(F ;Result(A; s)) [:]Holds(F1; s); � � � ; [:]Holds(Fk ; s);notAb(A; s); (35)E�ect�(F ;Result(A; s)) [:]Holds(F1; s); � � � ; [:]Holds(Fk ; s);notAb(A; s); (36)Rule (35) (or (36) resp.) says that if A's preconditions [:]Holds(F1; s); � � � ; [:Holds(Fk ; s)hold, and there is no explicit information stating that A is abnormally executed atsituation s, then
uent F will be true (or false, resp.) in situation Result(A; s) as adirect e�ect of A. Additionally we also need a generic schema for any action a::Ab(a; s) not Ab(a; s); (37)which simply expresses that if there is no explicit information saying that action Ais abnormally executed at situation s, then it is assume that A is not abnormallyexecuted at situation s. To simplify our following presentation, we denote�e� 0ind = �e�ind [f(37)g10�Consequently, action explanation rules (23) and (26) in AT 1 are also modi�edas follows respectively:E�ect+(F ;Result(A; s)) Holds(F ;Result(A; s)); not Holds(F ; s);not Caused+(F ;Result(A; s));not Ab(A; s); (38)E�ect�(F ;Result(A; s)) :Holds(F ;Result(A; s)); not :Holds(F ; s);not Caused�(F ;Result(A; s));not Ab(A; s)� (39)

Handling Defeasibilities in Action Domains 23(38) states that if
uent F is true in situation Result(A; s), and there is no evidenceto show that (a) F is true in the previous situation s; (b) F is caused to be truein situation Result(A; s); and (c) action A is abnormal at situation s, then it isderived that F must be a direct e�ect of action A in situation Result(A; s). (39)has a similar interpretation.As we mentioned earlier, some actions with defeasible e�ects may also produceabnormal e�ects. Hence, we also specify action abnormal e�ect rules of the followingforms:AbE�ect+(F ;Result(A; s)) [:]Holds(F1; s); � � � ; [:]Holds(Fl; s);Ab(A; s); (40)AbE�ect�(F ;Result(A; s)) [:]Holds(F1; s); � � � ; [:]Holds(Fl ; s);Ab(A; s); (41)Holds(f ; s) AbE�ect+(f ; s); (42):Holds(f ; s) AbE�ect�(f ; s); (43)Ab(A; s) [:]Holds(F1; s); � � � ; [:]Holds(Fh; s);[:]Holds(Fh+1;Result(A; s)); � � � ; [:]Holds(Fp;Result(A; s));(44)Basicly, rule (40) (or (41) resp.) says that if conditions [:]Holds(F1; s); � � �,[:]Holds(Fl ; s) hold and A is abnormally executed, then
uent F will be true (orfalse resp.) as an abnormal e�ect of A in situation Result(A; s). Rule (44), on theother hand, is a direct translation of abnormal condition proposition (34). Clearly,rules (42) and (43) are domain independent while rules (40), (41) and (44) aredomain speci�c. Again for simplicity, we denote�abind = f(42); (43)g�Now we are able to describe our translation from a domain description of AT 2into a PLP as follows.De�nition 9A PLP is called a translation of domain description D ofAT 2, denoted by PAT 2 (D) =(�;N ; <), if it obtained as follows:1. � consists of following rules:Observation rules: the same as in De�nition 8.Causal rules: the same as in De�nition 8.Action e�ect rules: for each action e�ect proposition (32), there is a rule ofthe form (35) or (36). Three domain independent action e�ect rules (15), (16)and (37) are also included in this set.Action explanation rules: for each action e�ect rule of the form (35), thereare rules (38) and (25), and for each action e�ect rule of the form (36), thereare rules (39) and (27),

24 Y. ZhangAction abnormal e�ect rules: for each action abnormal e�ect proposition (33),there are rules (40) - (43), and for each abnormal condition proposition (34),there is a rule (44).Inertia rules: (17), (18) and:Holds(f ; s) Holds(f ;Result(a; s)); not :Holds(f ; s);not Caused+(f ;Result(a; s));not E�ect+(f ;Result(a; s));not AbE�ect+(f ;Result(a; s)); (45):Holds(f ; s) :Holds(f ;Result(a; s)); not Holds(f ; s);not Caused�(f ;Result(a; s));not E�ect�(f ;Result(a; s));not AbE�ect�(f ;Result(a; s)); (46)2. Naming function N assigns a unique name to each rule in �;3. For each observation rule No, causal rule Nc, action e�ect rule Ne� , actionexplanation rule Nex , and inertia rule Ni , there are <-relations (30):Nex < Nc < Ni < Noand Ne� < Nc < Ni < No� (47)Note that inertia rules (45) and (46) are a natural extension of inertia rules (28)and (29) in PAT 1(D) respectively. The <-relations in AT 2 are speci�ed in a similarway as in PAT 1(D) except one more schema (47) is added. This is because inPAT 2(D) action e�ect rules (35) and (36) are defeasible, possible con
icts betweenthese rules and other defeasible rules (e.g. causal rules, inertia rules and observationrules) may occur indirectly through the action abnormal e�ect rule (44). Therefore,<-relations (30) (see section 4.2) and (47) are needed as we always assume that anaction's successful execution should have the highest priority.We denote domain independent rules in PAT 2(D) as follows:�2ind = �cind [�e� 0ind [�abind [�i 00ind ; (48)where �i 00ind = �iind [f(45); (46)g, and denote the set of domain speci�c rules by�2spec. 5.2.2 Transition function, models and entailmentTransition function R, structures and models 	 of AT 2 are de�ned exactly thesame as in section 3.2.2. The entailment relation under 	 in AT 2 is denoted asj=AT 2 . Again, it is observed that the initial state of a domain description D ofAT 2 may not be unique due to a possible con
ict occurring between two defeasibleinitial observation propositions in D.

Handling Defeasibilities in Action Domains 25Example 9Example 8 continued. Given the domain description D(Shooting-2) as presented inExample 8, the translated PLP PAT 2 (Shooting-2) is easy to be obtained accordingto De�nition 9. Let PAT 2(Shooting-2) = (�2spec [�2ind;N ; <), where �2spec consistsof the following rules:Observation rules:N1 : Holds(Loaded ; S0) ,N2 : Holds(Alive; S0) ,Action e�ect rule:N3 : E�ect�(Alive;Result(Shoot ; s)) Holds(Loaded ; s); not Ab(Shoot ; s);Action explanation rule:N4 : E�ect�(Alive;Result(Shoot ; s)) :Holds(Alive;Result(Shoot ; s));not :Holds(Alive; s);not Caused�(Alive;Result(Shoot ; s));not Ab(Shoot ; s);Action abnormal e�ect rule:N5 : Ab(Shoot ; s) Holds(Loaded ; s);Holds(Alive;Result(Shoot ; s));Naming rules in �2ind : Assigning a unique name to each rule in �2ind .<-relations: (30) and (47).Since the action e�ect rule N3 is defeasible, it is not di�cult to see that a con
icton the truth value of Holds(Alive;Result(Shoot ; S0)) occurs between rule N3 andan inertia ruleN 0 : Holds(Alive;Result(Shoot;s)) Holds(Alive;s),not :Holds(Alive;Result(Shoot ;s))which is an instance of the generic inertia rule (17) included in �2ind11. However,this con
ict is solved by N3 < N 0. Therefore, we have the �nal resultD(Shooting-2) j=AT 2 :Alive after Shoot ,from which it is concluded that action Shoot is not abnormally executed.6 Characterizations of Action DomainsAmong all action domains speci�ed by languages AT 0, AT 1 and AT 2, there aresome classes of action domains that may have more desirable properties than otherclasses of domains. In this section, we investigate these desirable properties andcharacterize di�erent action domains within languages AT 0, AT 1 and AT 2 respec-tively.11 Note that the con
ict is introduced through rule N5 .

26 Y. ZhangIn particular, we will explore the following questions that are important for eval-uating an action formulation: (a) How can we decide whether an action domaindescription is consistent (has a model)? (b) Given an action domain description,how is a
uent's truth value a�ected by executing some acion(s)? (c) Under whatconditions does the reasoning within an action domain become monotonic? and (d)Is it possible to characterize a set of
uents that are temporally de�nite with respectto the underlying action domain description? For instance, if
uent F 's truth valueis known currently, will its truth value be also known after some action or actionsequence is executed? Furthermore, we will also discuss how to improve our actionformulation to handle domain dependent preferences so that they can be suited formore general cases in reasoning about action.6.1 Consistency of action domainsIn this subsection, we consider the problem of how we can decide if a domaindescription is consistent (has a model). In our semantics development, the transitionfunctionR is de�ned based on a translation from the underlying domain descriptionD to a PLP. Hence, it is not di�cult obtain a general PLP characterization forconsistent domain descriptions.Proposition 1Let D be a domain description of AT i and PAT i (D) (i = 0; 1; 2) the correspondingPLP translation of D speci�ed previously. D is consistent if and only if PAT i (D)has a consistent answer set.Proposition 1, however, can not always be used as a feasible way to decide theconsistency of a domain description because in general deciding whether a PLPhas an answer set is NP-complete (Zhang, 2001)12. So it is important to studysyntactic characterizations on di�erent cases. Our investigation on this issue startsfrom language AT 0.6.1.1 Characterizing consistent action domains of AT 0Given a domain description D of AT 0, we �rst introduce the following notions:F+Initial = fF j initiallyF 2 Dg,F�Initial = fF j initially:F 2 Dg,F+E�ect = fF j A causes F if L1; � � � ;Lm 2 Dg,F�E�ect = fF j A causes:F if L1; � � � ;Lm 2 Dg,F+Caused = fF j F is caused if � � � 2 Dg,F�Caused = fF j :F is caused if � � � 2 Dg.For convenience, we use F�Initial to denote the set containing those complementaryelements of F�Initial. That is,12 Note that deciding whether an extended logic program has an answer set is also NP-complete(Marek & Truszczy�nski, 1993).

Handling Defeasibilities in Action Domains 27F�Initial = f:F j F 2 F�Initialg.Similar notations may be used for other sets, e.g. F�E�ect , F�Caused , etc..De�nition 10Given a domain description D of AT 0, two
uent expressions L and L0 are mutuallyexclusive in D if:L 2 (F+Initial [F�Initial [F+E�ect [F�E�ect [F+Caused [F�Caused) impliesL0 62 (F+Initial [F�Initial [F+E�ect [F�E�ect [F+Caused [F�Caused).Intuitively, if two
uent expressions are mutually exclusive, it means that thesetwo
uent expressions cannot be both true in any state. Based on the concept ofmutual exclusion, we will provide a su�cient condition to decide the consistencyof a domain description. Before we present the result, we need to introduce furthernotions. For a domain description D, we assign a unique label l to each propositionin D so that we can use l to refer a proposition in D. Let l be a causal or actione�ect proposition in D. That is, l has one of the following forms:L is caused if L1; � � � ;Lm with absence Lm+1; � � � ;Ln , orA causes L if L1; � � � ;Lm .We use pre(l), default(l) and e� (l) to denote the set fL1; � � � ;Lmg, fLm+1; � � � ;Lngand fLg respectively. Clearly, default(l) = ; if l is an action e�ect proposition orthe causal proposition does not include absent
uent expressions. For the case thatl is an initial proposition initially L, pre(l) = default(l) = ; and e� (l) = fLg.De�nition 11Given a domain description D of AT 0. Two propositions l and l 0 in D are comple-mentary if one of the following conditions holds:(i) both l and l 0 are causal propositions, and e� (l) is a complement of e� (l 0);(ii) l is a causal proposition, l 0 is an action e�ect proposition, and e� (l) is acomplement of e� (l 0), i.e.l : F is caused if L1; � � � ;Lm with absence Lm+1; � � � ;Ln ,l 0: A causes :F if L01; � � � ;L0k ;(iii) both l and l 0 are action e�ect propositions of the same action, and e� (l) is acomplement of e� (l 0), i.e.l : A causes F if L1; � � � ;Lh ,l 0: A causes :F if L01; � � � ;L0k .De�nition 12Given a domain description D of AT 0. D is normal if D satis�es all of the followingconditions.(i) F+Initial \ F�Initial = ;;(ii) For any two causal propositions l1 and l2 in D,e� (li) \ pre(li) = ; anddefault(li) \ e� (lj) = ; (i ; j = 1; 2)13;13 Note that this condition includes default(li) \ e� (li) = ; (i = 1;2).

28 Y. Zhang(iii) For any pair (l ; l 0) of complementary propositions in D, there is a pair of
uent expressions (L;L0) in D such that L and L0 are mutually exclusive,where L 2 pre(l) and L0 2 pre(l 0).Let us explain the intuition behind a normal domain description in some details.Condition (i) ensures a consistent initial state deduced from the domain descriptionD. Condition (ii), on the other hand, says that for each causal proposition in D,the complement of its e�ect should not occur in its preconditions, and furthermore,the e�ect of this causal proposition does not occur in the absence component (i.e.the default part) of all other (including itself) causal propositions in D. Finally,Condition (iii) represents a non-trivial restriction for complementary propositionsin D. Since two complementary propositions may cause two complementary
uentsto be true in some state, this condition actually indicates that if there are twocomplementary propositions in the domain description, then the e�ects of thesetwo propositions cannot be both true in any state. The following theorem gives asu�cient condition to guarantee a domain description to be consistent.Theorem 2Every normal domain description of AT 0 is consistent.6.1.2 Characterizing consistent action domains of AT 1 and AT 2Now we try to investigate an analogue of Theorem 2 for AT 1 and AT 2. As AT 2 isviewed as an extension of AT 1, here we only need to consider domain descriptionsof AT 2. To achieve our purpose, we must modify the concept of mutual exclu-sion of
uent expressions in order to cover observation and abnormal action e�ectpropositions in a domain description that are not allowed in AT 0. In particular, wede�neF+A = fF j L is observed if � � � after Ag,F�A = f:F j L is observed if � � � after Ag.As a special case, F+� is formed based on initial observation propositions of D. LetF+Observe = S F+A , andF�Observe = S F�A ,where each action string A occurs in some observation proposition of D. Under thecontext of AT 2, we also rede�ne the following notions:F+E�ect = fF j A normally causes F if � � �g [fF j A abnormally causes F if � � �g,F�E�ect = fF j A normally causes :F if � � �g [fF j A abnormally causes :F if � � �g.Given domain description D, we use label l to (uniquely) refer to an observationproposition, causal proposition, action e�ect proposition, or action abnormal e�ectproposition. Then notions pre(l), default(l) and e� (l) are de�ned in an obviousway. Two
uent expressions L and L0 are mutually exclusive in D if

Handling Defeasibilities in Action Domains 29L 2 (F+Observe [F�Observe [F+E�ect [F�E�ect [F+Caused [F�Caused) impliesL0 62 (F+Observe [F�Observe [F+E�ect [F�E�ect [F+Caused [F�Caused).Finally, we should also modify the de�nition of complementary propositions asfollows.De�nition 13Given a domain description D of AT 1 or AT 2. Two propositions l and l 0 in D arecomplementary if one of the following conditions holds:(i) both l and l 0 are causal propositions and e� (l) is a complement of e� (l 0);(ii) l is a causal proposition and l 0 is an action e�ect or abnormal e�ect propositionand e� (l) is a complement of e� (l 0);(iii) both l and l 0 are action e�ect propositions of the same action where e� (l) isa complement of e� (l 0), i.e.l : A normally causes F if L1; � � � ;Lh ,l 0: A normally causes :F if L01; � � � ;L0k ;(iv) both l and l 0 are action abnormal e�ect propositions of the same action ande� (l) is a complementary of e� (l 0), i.e.l : A abnormally causes F if L1; � � � ;Lh ,l 0: A abnormally causes :F if L01; � � � ;L0k .The following de�nition then extends the concept of normal domain descriptionto AT 1 and AT 2.De�nition 14Given a domain description D of AT 1 or AT 2. D is normal if D satis�es all of thefollowing conditions.(i) For any action string A occurring in observation propositions of D, F+A\F�A =;;(ii) For any two observation or causal propositions l1 and l2 inD, e� (li)\pre(li) =; and default(li) \ e� (lj) = ; (i ; j = 1; 2);(iii) For any pair (l ; l 0) of complementary propositions in D, there is a pair of
uent expressions (L;L0) in D such that L and L0 are mutually exclusive,where L 2 pre(l) and L0 2 pre(l 0).Theorem 3Every normal domain description of AT 1 or AT 2 is consistent.6.2 Cause of change on
uents' truth valuesIn the rest of the paper, our discussion will focus on consistent action domains.First, the following theorem illustrates a basic property of any (consistent) actiondomain of AT 0 showing that a
uent's truth value can only be a�ected by someaction e�ect proposition or causal proposition.Theorem 4

30 Y. ZhangLet D be a consistent domain description and PAT 0(D) the corresponding PLPtranslation of D. Then the following results hold.(i) If D j=AT 0 F after A �A and D 6j=AT 0 F after A, thenPAT 0(D) j= E�ect+(F ;Result(A; S)) or PAT 0(D) j= Caused+(F ;Result(A; S)),where S = Result(Al ; � � � ;Result(A1; S0) � � �) and A = A1 � � �Al14;(ii) If D j=AT 0 :F after A �A and D 6j=AT 0 :F after A, thenPAT 0(D) j= E�ect�(F ;Result(A; S)) or PAT 0(D) j= Caused�(F ;Result(A; S)).While the intuition of Theorem 4 is quite clear, it, however, does not hold foraction domains of AT 1 and AT 2 since observation propositions of the form (20) isallowed in a domain description of AT 1 or AT 2 that may override an inertia rulein the corresponding PLP translation and present a change of a
uent's truth valueeven if there is no action or causal rule to cause such a change. In this case, wemay think that either the
uent's truth value is changed by some external eventthat is not described in the domain description or the domain description is notproperly speci�ed. Weaker results may be obtained for domains of AT 1 and AT 2under some restrictions.Theorem 5Let D be a consistent domain description of AT 1 and PAT 1(D) the correspondingPLP translation of D. Suppose each observation proposition in D has the formL is observed if L1; � � � ;Lm with absence L;Lm+1; � � � ;Ln after A,where A is not an empty string of actions. Then the following results hold.(i) If D j=AT 1 :F after A, and D j=AT 1 F after A �A, thenPAT 1(D) j= E�ect+(F ;Result(A; S)) or PAT 1(D) j= Caused+(F ;Result(A; S));(ii) If D j=AT 1 F after A and D j=AT 1 :F after A �A, thenPAT 1(D) j= E�ect�(F ;Result(A; S)) or PAT 1(D) j= Caused�(F ;Result(A; S)).Theorem 6Let D be a consistent domain description of AT 2 and PAT 2(D) the correspondingPLP translation of D. Suppose each observation proposition in D has the formL is observed if L1; � � � ;Lm with absence L;Lm+1; � � � ;Ln after A,where A is not an empty string of actions. Then the following results hold.(i) If D j=AT 2 :F after A, and D j=AT 2 F after A �A, then one of the followingresults holds:PAT 2(D) j= E�ect+(F ;Result(A; S));PAT 2(D) j= AbE�ect+(F ;Result(A; S)); orPAT 2(D) j= Caused+(F ;Result(A; S));14 Without further explanation, this notion is also used in our other statements presented in thissection.

Handling Defeasibilities in Action Domains 31(ii) If D j=AT 2 F after A, and D j=AT 2 :F after A � A, then one of followingresults holds:PAT 2(D) j= E�ect�(F ;Result(A; S));PAT 2(D) j= AbE�ect�(F ;Result(A; S)); orPAT 2(D) j= Caused�(F ;Result(A; S)).6.3 Restricted monotonicityMonotonicity is a desirable property for reasoning about action in the sense thatwhenever new domain speci�c information is added to a domain description, noprevious conclusion will be retracted. However, it is well known that most currentaction formulations are nonmonotonic in general. In this subsection, we investigatesome restricted monotonicity for action domains. Formally, let D be a domaindescription of AT 0, AT 1, or AT 2. A domain description D0 is called an augmentof D if D � D0 and the only extra propositions in D0 are observation propositions(or initial propositions in the case that D and D0 are domain descriptions of AT 0).De�nition 15A domain description D of AT i (i = 0; 1; 2) is monotonic with respect to observa-tions (we also simply call O-monotonic) if for each augment D0 of D, D j=AT i Lafter A implies D0 j=AT i L after A (i = 0; 1; 2).It is clear that in general O-monotonicity does not hold for any domain descrip-tion D due to a possibility that in the PLP translation of D0, some new added ob-servations may defeat previous conclusions derived through defeasible causal rules,inertial rules, action e�ect rules or action explanation rules. As an alternative, wecan investigate proper restricted conditions under which O-monotonicity holds.Theorem 7Let D be a domain description AT 0. D is O-monotonic if(i) each causal proposition in D is of the formL is caused if L1; � � � ;Lm , and(ii) F+Initial \ (F�E�ect [F�Caused) = ;,F�Initial \ (F+E�ect [F+Caused) = ;, and(F+E�ect [F+Caused) \ (F�E�ect [F�Caused) = ;.Intuitively, Theorem 7 says that to guarantee a domain description D of AT 0to be O-monotonic, (i) all causal propositions in D should be non-defeasible, and(ii) all
uents involved in initial propositions, action e�ect propositions and causalpropositions should be irrelevant in such a way:
uents involved in positive (ornegative, resp.) initial propositions should be disjoint with
uents involved in neg-ative (or positive, resp.) action e�ect and causal propositions, and
uents involvedin positive action e�ect and causal propositions should be disjoint with
uents in-volved in negative action e�ect and causal propositions. Let PAT 0 (D) be the PLPtranslation of D. Condition (i) is necessary since this follows that adding any newinitial fact rules in PAT 0 (D) will not defeat any fact Holds(F ; S) or :Holds(F ; S)

32 Y. Zhangthat is drived through some causal rules at the initial situation S0. Condition (ii),on the other hand, guarantees that initiating any action e�ect rules or causal rulesby adding new initial fact rules into PAT 0 (D) will not a�ect any previous factsdrived through old initial fact rules, action e�ect rules, or causal rules.An analogous result of Theorem 7, however, does not hold for domain descriptionsof AT 1 and AT 2. In fact, since both AT 1 and AT 2 allow domain descriptions tohave observations not only at the initial state but also at any other intermediatestates, the property of O-monotonicity is hard to be achieved. For instance, considerthe PLP translation PAT 1(D) of a domain description D of AT 1, if PAT 1(D) j=Holds(F ; S) and Holds(F ; S) is derived through instances of action explanationrules (23) and (25) in PAT 1(D):E�ect+(F 0;Result(A; S)) Holds(F 0;Result(A; S)); not Holds(F 0; S);not Caused+(F 0;Result(A; S)); (49)Holds(F ; S) E�ect+(F 0;Result(A; S)); not:Holds(F ; S); (50)then adding a new observation rule Holds(F 0; S) into PAT 1(D), rule Holds(F 0; S) will always override rule (49) and the fact Holds(F ; S) cannot be derived from thenew PLP obtained by adding rule Holds(F 0; S) into PAT 1(D). A similar exam-ple can be given for a domain description of AT 2 as well. Therefore, in general,domain descriptions of AT 1 and AT 2 are not O-monotonic under the condition ofTheorem 7. 6.4 Temporal de�nitenessBesides O-monotonicity, there is also a class of action domains that satis�es a so-called temporal de�niteness property in temporal reasoning. Consider a domaindescription D. We say that D is temporally de�nite if for any value proposition ofthe form (4), D j=AT i L after A implies D j=AT i L after A0 or D j=AT i L after A0(i = 0; 1; 2), where A is a substring of A0, i.e. A0 = A�A1 � � �Ak . Intuitively, temporalde�niteness expresses a kind of de�nite information on
uents' truth values withrespect to actions. For instance, if the switch is on initially, then we would expectthat no matter what actions are executed afterward, the switch should be either onor o�. It would be undesirable if after executing some actions, the status of switchbecomes unknown.As only deterministic actions are considered in our context, the temporal de�-niteness seems a reasonable requirement for our temporal reasoning. It is easy toverify that domain descriptions D(Switch-Power) and D(Switch-Power 0) describedin section 3 are temporally de�nite. However, as defeasible information is allowedin domain descriptions, this property does not always hold.Example 10Consider a scenario where there are constraints: (1) birds normally can
y; (2) awounded bird normally cannot
y. Suppose we initially know that a speci�c birdTweety is not wounded. Then after being shot, Tweety is wounded. What we are

Handling Defeasibilities in Action Domains 33interested in is whether Tweety can
y after she is shot. We name this scenarioShooting-3 which can be described by our action language AT 0. Let D(Shooting-3)be a domain description of AT 0 including the following propositions:initially :Wounded ,Fly is caused if with absence :Fly,:Fly is caused if Wounded with absence Fly,Shoot causes Wounded .Now we translate D(Shooting-3) into the corresponding PLP PAT 0 (Shooting-3) = (�0spec [�0ind ;N ; <), where �0spec consists of the following rules15:Initial fact rule:N1 : :Holds(Wounded ; S0) ,Causal rules:N2 : Caused+(Fly ; s) not :Holds(Fly ; s),N3 : Caused�(Fly ; s) Holds(Wounded ; s), not Holds(Fly ; s),Action e�ect rule:N4 : E�ect+(Wounded ;Result(Shoot ; s)) .Then it is easy to see PAT 0(Shoot-3) j= Holds(Fly ; S0) (e.g. Tweety can
yinitially). Furthermore, it is also not di�cult to conclude that there exist two answersets for PAT 0(Shoot-3) such that Holds(Fly ;Result(Shoot ; S0)) is in one answer setand :Holds(Fly ;Result(Shoot ; S0)) is in another. So we haveD(Shooting-3) j=AT 0 initially Fly,D(Shooting-3) 6j=AT 0 Fly after Shoot ,D(Shooting-3) 6j=AT 0 :Fly after Shoot .So D(Shooting-3) is not temporally de�nite. But intuitively, we would prefer thatTweety cannot
y after being shot because causal rule N3 seems to be more speci�cthan N2. Solving this problem involves the issue of representing domain-dependentpreference which will be discussed in section 6.5.Lemma 1A domain description D of AT i (i = 0; 1; 2) is temporally de�nite if its PLPtranslation PAT i (D) has a unique answer set.The converse of Lemma 1, however, does not hold. That is, for a temporallyde�nite domain description, its PLP translation may have more than one answerset. For instance, in domain description D(Shooting-3) described above, if we ini-tially know that Tweety is already wounded, then the modi�ed domain descriptionbecomes temporally de�nite but its PLP translation will still have more than oneanswer sets, i.e. one answer set includes Holds(Fly ; S0) while the other includes:Holds(Fly ; S0).Lemma 1 actually presents a su�cient condition to ensure a domain descriptionto be temporally de�nite. Observing Example 10, we can see that PAT 0(Shooting-3)has more than one answer set because two causal rules N2 and N3 con
ict with eachother on
uent Fly 's truth value in situation Result(Shoot ; S0), while Fly 's truth15 For simplicity, here we omit the explicit description of naming function N and <-relations.

34 Y. Zhangvalue is initially true, i.e. PAT 0(Shooting-3) j= Holds(Fly ; S0). This observationmotivates our examination on the structure of an action domain.Consider an extended logic program �. Using a procedure proposed by Gelfondand Lifschitz (see Appendix A), we can actually transform � into a general logicprogram16, denoted by Trans(�). It has been showed that a su�cient condition toensure that Trans(�) has a unique stable model (or answer set under the contextof extended logic program) is that Trans(�) is locally strati�ed. That means, theredoes not exist any potential con
ict among any rules in Trans(�) (see Appendix Afor a technical description on local strati�cation). Therefore, we have the followingresult.Theorem 8A domain description D of AT i (i = 0; 1; 2) is temporally de�nite if its PLPtranslation PAT i (D) has a unique reduct �i and Trans(�i) is locally strati�ed.Theorem 8 implies that to guarantee a domain description D to be temporallyde�nite, no con
ict should occur among the same type of defeasible rules afterreducing PAT i (D) to its reduct �i . In Example 10, since two causal rules N2 andN3 contain a potential con
ict with each other, it causes D(Shooting-3) to be nottemporally de�nite. However, con
icts between di�erent types of defeasible ruleswill not a�ect the temporal de�niteness for a domain description because sucha con
ict can be resolved during the process of generating a reduct of the PLPtranslation of the domain description.6.5 Inde�niteness and domain-dependent preferencesAs we mentioned before, temporal de�niteness is a desirable property in temporalreasoning. However, it is also the fact that sometimes a domain description whichis not temporally de�nite may still present right results from our intuition. Forinstance, in the domain of Switch-Power presented in section 3, if we add one morecausal proposition into D(Switch-Power)::On is caused if with absence Power .which says that if there is no explicit information stating that there is power, thenit is assumed that the light is not on, the circumstance will then change. Supposethat initially we know that the light is not on, the switch is o�, and there is no anyinformation about if there is power. Then after turning on the switch, we wouldlike to know whether the light is on. It is not di�cult to show that the modi�eddomain description, say D(Switch-Power 00), is not temporally de�nite. Speci�cally,we haveD(Switch-Power 00) j=AT 0 initially :On,D(Switch-Power 00) 6j=AT 0 On after Turn-On,D(Switch-Power 00) 6j=AT 0 :On after Turn-On.16 A general logic program is a set of rules of the form A B1; � � � ;Bm ;notBm+1 ; � � � ;notBn ,where A;B1; � � � ;Bn are atoms. Also see Appendix A.

Handling Defeasibilities in Action Domains 35Although action Turn-On is deterministic (see its e�ect proposition in Example4 in section 3.2.2), the above inde�nite result seems reasonable from our intuitionbecause without having de�nite information about power, it is impossible to decidewhether the light is on after performing action Turn-On due to a con
ict betweentwo causal propositions in D(Switch-Power 00).This example reveals that although temporal de�niteness sometimes indeed de-scribes a desired property, it should not become a particular restriction on actiondomains. So far, in our domain descriptions, preferences are used as built-in mecha-nisms of their PLP translations to handle con
icts among di�erent types of propo-sitions. It is observed that domain-dependent preferences also play important rolesin temporal reasoning. For instance, in some domains, it is the case that withinthe same type of defeasible propositions, one proposition is more preferred than theother. Consider Example 10 presented in section 6.4 once again. We have mentionedthat two causal propositionsFly is caused if with absence :Fly,:Fly is caused if Wounded with absence Fly,contain a con
ict under the circumstance by knowing that Tweety is wounded. Thiscon
ict leads D(Shooting-3) to be temporally inde�nite. But from our intuition, thesecond causal proposition seems to represent more speci�c information than the �rstcausal proposition. Therefore, during the temporal reasoning, once con
ict occursbetween these two causal rules, we would prefer the second causal proposition todefeat the �rst one (e.g. the wounded bird Tweety normally cannot
y if we do notknow she can
y).This problem may be handled by including domain-dependent preferences oncausal and observation propositions into the corresponding PLP translations ofdomain descriptions. For instance, in Example 10, we may add preference N3 < N2into PAT 0(Shooting-3), and then PAT 0(Shooting-3) becomes temporally de�niteand the fact :Fly after Shoot is entailed from the modi�ed domain description.In general, to represent domain-dependent preferences in a domain description,we need to extend the language so that preference between two propositions can beexplicitly expressed. One way of doing this is to introduce labels in the language andeach proposition in the domain description is assigned a unique label. A preferenceproposition can be proposed as follows:l1 is more preferred than l2; (51)where l1 and l2 are labels for causal or observation propositions in the domaindescription. Then we de�ne the PLP translation of the extended domain descriptionas (�;N ; < [<C [<O) (i = 0; 1; 2), where �,N and< are the same as before, and<C and<O are the preference orderings on causal and observation rules respectivelythat correspond to the speci�ed preference propositions of the form (51) in thedomain description.

36 Y. Zhang7 Related WorkIn this section, we discuss some related work. In the research of reasoning aboutaction, it is di�cult to evaluate various action theories from a systematic standardthough some studies on this topic have been developed, e.g. (Sandewall, 1994).To compare with competing approaches, people usually have to demonstrate theirmethods with a small number of typical examples. It is still not clear yet whatshould be the uni�ed standard for an action theory to satisfy. We feel that it wouldbe rather weak to compare our approach with other action theories just througha small number of examples. As defeasibility handling is the central issue in ouraction formulation proposed in this paper, we will focus on this point as a majorcriterion to compare our approach with other methods.An early e�ort on handling defeasible causal rules in reasoning about action wasdue to the author's previous work (Zhang, 1999), in which the author identi�edthe restriction of McCain and Turner's causal theory of actions (McCain & Turner,1995) and claimed that in general a causal rule should be treated as a defeasible rulein order to solve the rami�cation problem properly. In (Zhang, 1999), constraints(1) and (2) simply correspond to defaults Switch : On=On and :Power : =:On re-spectively. By combining Reiter's default theory (Reiter, 1980) and Winslett's PMA(Winslett, 1988) the author developed a causality-based minimal change principlefor reasoning about action and change which subsumes McCain and Turner's causaltheory.Although the work presented in (Zhang, 1999) provided a natural way to rep-resent causality in reasoning about action, there were several restrictions in thisaction theory. First, due to technical restrictions, only normal defaults or defaultswithout justi�cations are the suitable forms to represent causal rules in problem do-mains. Second, this action theory did not handle the other two major defeasibilities- defeasible observations and actions with defeasible and abnormal e�ects.Probably Jab lonowski, Lukaszewicz and Madali�nska-Bugaj's work (Jab lonowskiet al., 1996) was one of the early e�orts on handling the problem of defeasibleobservations and actions with abnormal e�ects. Following Dijkstra's semantics onprogramming languages (W. Lukaszewcz & Madali�nsks-Bugaj, 1995), they proposedan action theory in which both defeasible observations and actions with abnormale�ects were expressible. Their work actually presented a few new features. For in-stance, by employing Dijkstra's semantics in action theory, their method reducedthe computational cost in action reasoning; it also dealt with both temporal predic-tion and postdiction reasoning while incomplete information is allowable in problemdomains.However, the major limitation of this approach is that it did not solve the rami-�cation problem properly. To deal with domain constraints in action scenarios, theaction theory has to be extended by adding statements likeA; release(F1); � � � ; release(Fn),which means that
uents F1; � � � ;Fn involved in domain constraints may not obeythe inertia rule with respect to the performance of action A (W. Lukaszewcz &Madali�nsks-Bugaj, 1995). For example, if we combine a constraint like \the fact

Handling Defeasibilities in Action Domains 37that the turkey is not alive implies that the turkey is not walking" into the previousshooting scenario, in order to derive an indirect e�ect :Walk of action Shoot, astatement like Shoot ; release(Walk) has to be added into the action theory. But tospecify such statements, we have to know how each action exactly a�ects
uentsinvolved in the domain constraint. Obviously for a complex problem domain thisusually is not practicable without taking causality into account. Not surprisingly,due to such restriction, this approach is also hard to be extended to handle defeasibleconstraints in reasoning about action.Baral and Lobo recently also proposed an action formulation to address the issueof defeasible constraints and actions with defeasible e�ects (Baral & Lobo, 1997).Following a similar spirit of Gelfond and Lifschitz's action language A (Gelfond& Lifschitz, 1993), Baral and Lobo proposed an action language named ADC todescribe action domains in which both defeasible constraints and actions with de-feasible e�ects are admitted. In their language ADC a defeasible constraint like (1)is represented asSwitch normally su�ces for Onand the defeasible Shoot action illustrated in Example 5 is represented asShoot normally causes :Alive if Loaded .As showed in (Baral & Lobo, 1997), ADC has a simple syntax. Based on an ex-tended logic program translation, a transition system is de�ned to provide a formalsemantics of ADC.It is worth to mention that our idea of de�ning semantics for AT 0, AT 1 andAT 2 is similar to Baral and Lobo's proposal for ADC. Both of these two approachesdirectly use logic programs to de�ne a transition system for the action language,instead of developing a separate semantics like A language. Also, both approachesde�ne states in a di�erent way from the standard A language, that is, instead ofde�ning a state to be a truth value assignment on
uents, these two approachesde�ne a state to be a collection of
uent expressions so that incomplete informationabout
uents becomes allowable.Nevertheless, some restrictions exist in action language ADC: it can only reasonabout forward, i.e. temporal prediction, and observations on intermediate situationsand �nal situation are not expressible. Therefore, their approach cannot deal withtemporal postdiction. On the other hand, although actions with defeasible e�ectsare allowed in the domain description, it seems that the issue of solving con
ictsbetween defeasible action e�ect propositions and defeasible constraints was notaddressed in detail.Finally, we brie
y mention Ge�ner's recent work on causal theory of action(Ge�ner, 1997) which is closely related to models of causal reasoning based onBayesian networks and structural equation models (Goldszmidt & Pearl, 1992).To provide a well-founded solution to the rami�cation problem, Ge�ner claimedthat causal rules of the domain should be defeasible in general. Although with avery di�erent language and methodology, Ge�ner's system actually addressed thesame problem discussed in (Zhang, 1999) and (Baral & Lobo, 1997). However, from

38 Y. Zhangthe viewpoint of defeasibility handling, this system is restricted because defeasibleobservations and actions with defeasible and abnormal e�ects were not considered.8 ConclusionsWe have developed a uni�ed action formulation to handle three types of defeasibil-ities in reasoning about action. Our formulation consists of three action languagesnamed AT 0, AT 1 and AT 2 respectively. We have showed that our action formu-lation is applicable to both temporal prediction and postdiction with incompleteinformation while defeasible constraints, defeasible observations and actions withdefeasible and abnormal e�ects are admitted. As discussed in the previous section,although the issue of defeasibility in reasoning about action has been addressedby some researchers recently, our work presented here is the �rst e�ort to handlevarious defeasible information in temporal reasoning by using a prioritized logicprogramming approach. It enhances the viewpoint that the logic programming lan-guages can be employed as e�cient low level formal languages for reasoning aboutaction.Besides the author's work (Zhang & Foo, 1997a), di�erent prioritized logic pro-gramming formalisms have been proposed recently, e.g. (Brewka, 1996; Brewka &Eiter, 1999; Grosof, 1997). The reason why we choose our PLPs to develop ouraction formulation is as follows. First we think that the answer set semantics forPLPs provides an intuitive and natural interpretation for con
ict resolution in logicprograms, and hence it is easy to use not only in reasoning about action, but alsoin other aspects of modeling system dynamics (Zhang & Foo, 1997b; Zhang & Foo,1998). Second, a propositional prioritized logic programming system (PLPS) hasbeen implemented recently by the author and his students (Y et al., 2001). Webelieve that our PLPS can �nally provide a practical programming language proto-type for representing actions with the capability of the defeasibility handling withinthe framework we proposed in this paper.The computational issue of prioritized logic programs has been addressed in theauthor's another work (Zhang, 2001). Brie
y, the author has proved that for apropositional prioritized logic program, deciding whether it has an answer set isNP-complete, and deciding whether a given ground literal is entailed from thisprioritized logic program is �P2 -complete.It is also easy to observe that since a rule containing variables in a PLP is viewedas a set of ground instances of this rule by replacing variables with all possibleconstants occurring in the PLP, under the case that a PLP does not have functionsymbols, the number of defeated rules eliminated from this PLP as described inDe�nition 2 is always �nite. Hence, we can always compute a �nite reduct of suchPLP17.In the case that there are function symbols occurring in a PLP, the situation isdi�erent. Basically, the set of ground instances of a rule, that includes variables and17 Note that Theorem 1 shows that every PLP has a reduct, but such a reduct may contain in�niterules.

Handling Defeasibilities in Action Domains 39function symbols, may be in�nite and therefore it might be possible that there arein�nite number of defeated rules which should be eliminated from the original PLP.Under this situation, a reduct containing in�nite rules may be produced according toDe�nition 2. From a practical viewpoint, we are only able to deal with �nite reducts.To overcome this problem, we can set a proper restriction on the variable substi-tution. For instance, in the modi�ed Switch-Power domain discussed in Example 4(see section 3.2.2), if all we are interested is to know what are the e�ect after actionsCut-Power and Turn-On are executed, then in the computation of the answer set ofPAT 0(Switch-Power 0), we only need to consider situations S0, Result(Turn-On; S0),Result(Cut-Power ; S0), and Result(Turn-On;Result(Cut-Power ; S0)). This impliesthat the ground form of PLP PAT 0(Switch-Power 0) only has �nite rules and henceit always has a �nite reduct.Finally, we should mention that currently our action formulation cannot repre-sent nondeterministic actions and disjunctive domain information. That is, we onlyconsider deterministic problem domains in this paper. This is due to the limit ofprioritized logic programs inherited from extended logic programs. But we wouldargue that our prioritized logic programs are extendedable to represent disjunctiveinformation by using a similar method described in (Gelfond & Lifschitz, 1991)for extended logic programs, and our action formulation can then be extended torepresent nondeterministic actions.AcknowledgementThe author thanks anonymous referees for many valuable comments on the earlyversion of this paper.

40 Y. ZhangAppendix A: General Logic Programs and Strati�cationA general logic program is a �nite set of rules of the formA B1; � � � ;Bm ; not Bm+1; � � � ; not Bn ; (52)where A;B1; � � � ;Bm ; � � � ;Bn are atoms.Gelfond and Lifschitz developed a transformation to reduce an extended logicprogram to a general logic program (Gelfond & Lifschitz, 1991). Consider an ex-tended logic program �. For any predicate P occurring in �, let P 0 be a newpredicate of the same arity. The atom P 0(x) is called the positive form of the neg-ative literal :P(x). Every positive literal is, by de�nition, its own positive form.The positive form of a literal L will be denoted by L+. �+ stands for the generalprogram obtained from � by replacing each rule L0 L1; � � � ;Lm , not Lm+1; � � �,not Ln in � by ruleL+0 L+1 ; � � � ;L+m ; notL+m+1; � � � ; notL+n �Proposition 2(Gelfond & Lifschitz, 1991) A consistent set S � Lit is an answer set of � i� S+ isan answer set of �+.De�nition 16(Local strati�cation (Apt & Bol, 1994))Let � be a general logic program.� A local strati�cation for � is a function from the Herbrand base of �, B�,to the countable ordinals.� Given a local strati�cation , we extend it to ground negative literals18 bysetting (not A) = (A) + 1.� A rule with form (52) of � is called locally strati�ed with respect to a localstrati�cation if for every ground instance of (52),A0 B 01; � � � ;B 0m ; not B 0m+1; � � � ; not B 0n ; (A0) � (B 0i), where 1 � i � m, and (A0) � (notB 0j), where m + 1 � i � n.� � is called locally strati�ed with respect to a local strati�cation if all itsrules are. � is called locally strati�ed if it is locally strati�ed with respect tosome local strati�cation.Proposition 3(Gelfond & Lifschitz, 1988) If a general logic program � is locally strati�ed, then bytreating � as an extended logic program where each rule does not contain classicalnegation, it has a unique answer set.18 Note that here we mean weak negation not.

Handling Defeasibilities in Action Domains 41Appendix B: ProofsTheorem 1 Every PLP has a reduct.To proof Theorem 1, we need to introduce the concept of <-partition for a PLP.De�nition 17Let P = (�;N <) be an arbitrary PLP. A <-partition of � in P is a �nite collectionf�1; � � � ;�kg, where � = �1 [� � � [�k and �i and �j are disjoint for any i 6= j ,such that1. N (r) < N (r 0) 2 P(<) implies that there exist some i and j (1 � i < j) suchthat r 0 2 �j and r 2 �i ;2. for each rule r 0 2 �j (j > 1), there exists some rule r 2 �i (1 � i < j) suchthatN (r) < N (r 0) 2 P(<).Example 11Consider a PLP P3 = (�;N ; <):P3: N1 : A not B , not C ,N2 : B not :C ,N3 : C not A, not :C ,N4 : :C not C ,N1 < N2;N2 < N4;N3 < N4.It is easy to verify that a <-partition of � in P3 is f�1;�2;�3g, where�1: N1 : A not B , not C ,N3 : C not A, not :C ,�2: N2 : B not :C ,�3: N4 : :C not C .In fact, this program has a unique answer set fB ;Cg.Lemma 2Every prioritized logic program has a <-partition.ProofFor a given PLP P = (�;N ; <), we construct a series of subsets of � as follows:�1 = fr j there does not exist a rule r 0 2 � such that N (r 0) < N (r)g;�i = fr j for all rules such that N (r 0) < N (r), r 0 2 Si�1j=1 �jg.We prove that f�1;�2; � � �g is a <-partition of P. First, it is easy to see that�i and �j are disjoint. Now we show that this partition satis�es Conditions 1and 2 described in De�nition 17. Let N (r) < N (r 0) 2 P(<). If there does notexist any rule r 00 2 � such that N (r 00) < N (r), then r 2 �1. Otherwise, thereexists some i (1 < i) such that r 2 �i and for all rules satisfying N (r 00) < N (r)

42 Y. Zhangr 00 2 �1 [� � � [�i�1. Let r 0 2 �j . Since N (r) < N (r 0), it follows that 1 < j . Fromthe construction of �j , we also conclude r 2 �1 [� � � [�j�1. Since r 0 2 �i , itfollows i � j � 1. That is, i < j . Condition 2 directly follows from the constructionof the partition described above.Now we show that f�1;�2; � � �g must be a �nite set. Firstly, if � is �nite, it isclear f�1;�2; � � �gmust be a �nite set. If � contains in�nite rules, then according toour assumption presented in Section 2, P must be the ground instantiation of someprogram, say P� = (��;N �; <�) where �� is �nite. Then we can use the same way tode�ne a <-partition for P�. Since �� is �nite, the partition of P� must be also �nite:f��1;��2; � � � ;��kg. As P� is well formed, it implies that for each i (i = 1; 2; � � �), �i isthe ground instantiation of ��i . So f�1;�2; � � �g = f�1;�2; � � � ;�kg which is �nite.Proof(Proof of Theorem 1) Let P = (�;N ; <). From Lemma 2, we can assume � has apartition � = �1 [� � � [�k . We will show that P has a �xpoint in the process ofreduction according to De�nition 2. As �1; � � � ;�k are disjoint and for any N (r) <N (r 0), it implies r 2 �i and r 0 2 �j where i < j , we can use notation�1 < �2 < � � � < �kto illustrate this property. It is easy to see that for each rule in �i (1 < i < k),there must exist some j and h that j < i < h such that N (r 0) < N (r) < N (r 00) andr 0 2 �j , r 00 2 �h . Now we construct a sequence of reductions that starts from thoseleast preferred rules in �k , then from rules in �k�1 [�k , and so on as illustratedbelow:�(0) = � = �1 [� � � [�k ;�(1) = �(0) � fr1; r2; � � � j r1; r2; � � � 2 �k and r1; r2; � � � satisfy the conditionsas stated in De�nition 2g;�(2) = �(1) � fr1; r2; � � � j r1; r2; � � � 2 �k�1 [�k and r1; r2; � � � satisfythe conditions as stated in De�nition 2g;�(3) = �(2) � fr1; r2; � � � j r1; r2; � � � 2 �k�2 [�k�1 [�k and r1; r2; � � � satisfythe conditions as stated in De�nition 2g;� � ��(k�1) = �(k�2) � fr1; r2; � � � j r1; r2; � � � 2 �2 [� � � [�k and r1; r2; � � � satisfythe conditions as stated in De�nition 2g.It is observed that in the above reduction process, after obtaining �(k�1), nomore rules can be eliminated from �(k�1) by applying the conditions of De�nition2 because after the ith reduction, all orderings inherited from �k�i+1 < � � � < �kwill no longer play any roles in the further (i+1)th, � � �, and (k�1)th reductions. Inparticular, in the ith reduction of obtaining �(i), all rules eliminated from �(i�1)(note that there may be in�nite number of rules to be eliminated in the ith reduc-tion) are due to some rules in �1 [� � � [�k�i which are more preferred than thoseeliminated rules in �k�i+1 [� � � [�k . As k is a �nite number, from De�nition 2�(k�1) is also a reduct of P.Proposition 1 Let D be a domain description of AT i and PAT i (D) (i = 0; 1; 2)

Handling Defeasibilities in Action Domains 43the corresponding PLP translation of D speci�ed previously. D is consistent if andonly if PAT i (D) has a consistent answer set.ProofHere we only prove the result for AT 0, proofs for other cases are similar.Suppose D has a model 	. Then according to De�nition 7, for any action string Asuch that 	(A) is de�ned and any
uent F , F and :F cannot be both true in 	(A).From the de�nition of 	(A), i.e. De�nition 6, it follows that 	(A0�A) 2 R(A;	(A0)),where A = A0 � A. Here we assume that A is not empty (otherwise, 	(�) = Ŝ0that we will consider next). Also since 	's domain is pre�x closed, 	(A0) is alsode�ned. Then from De�ntiion 5 of transition function R, it follows that R(A;	(A0)contains a consistent set of
uent expressions. As this set is directly deduced fromsome answer set Ans of PAT 0 (D), it concludes that the subset of Ans consistingof all literals of the form Holds(F ; S) or :Holds(F ; S) is consistent (note S 6= S0).Now we consider the case of empty action string. In this case 	(�) = Ŝ0. As 	 is amodel, Ŝ0 must be a consistent set. Again, as Ŝ0 is deduced from some answer setAns of PAT 0(D), it concludes that the subset of Ans consisting all literals of theform Holds(F ; S0) or :Holds(F ; S0) is consistent. Therefore, the subset of Ans ofthe following form is consistent:f[:]Holds(F ;S0); � � �g [� � � f[:]Holds(F ;S); � � �g.Recall that Ans also contains a subset that consists of atoms of the formsE�ect+(F ; S),E�ect�(F ; S), Caused+(F ; S) and Caused�(F ; S). Clearly, this subset of Ans isalso consistent. So Ans is consistent.Now suppose Ans is a consistent answer set of PAT 0(D). Then from De�nitions5, 6, and 7, we can construct a model 	 for D in an obvious way.Theorem 2 Every normal domain description of AT 0 is consistent.ProofLet D be a normal domain description of AT 0. That is, D satis�es Conditions(i), (ii) and (iii) in De�nition 12. According to Proposition 1, we only need toshow that the PLP translation PAT 0(D) of D has a consistent answer set. LetPAT 0(D) = (�;N ; <). First, from Condition (ii) and the construction of PAT 0(D),it is observed that � does not contain rules of the following forms:r1: L1 � � � ;notL�; � � �,r2: L2 � � � ;L1; � � �,� � �,rk : Lk � � � ;Lk�1; � � �,rk+1: L� � � � ;Lk ; � � �.This actually ensures that � has an answer set Ans. To show this, we assume that� does not have an answer set. Then there must exist some literal L� satisfying thecondition: for any set S of ground literals (S can be empty) (a) if L� 62 S , then L� isin the answer set of program �S (�S is obtained from � by doing Gelfond-Lifschitztransformation on � in terms of S); and (b) if L� 2 S , then L� is not in the answer

44 Y. Zhangset of program �S . It is worth to mention that since �S does not contain rulesincluding negation as failure sign, �S always has an answer set. From case (a), itis implied that � must contain a rule of the form:r 0k+1: L� � � �.On the other hand, from case (b), it is easy to observe that all rules of the formr 0k+1 cannot be triggered in �S due to L� 2 S . That is, some rule of the formr1: L1 � � � ;notL�; � � �must be contained in � (we do not exclude the case that L1 = L�). This followsthat rule r 0k+1 actually has a form:r 0k+1: L� � � � ;L0; � � �such that the deletion of r1 from � will cause literal L0 not to be triggered andhence L� can not be derived from �S . Without loss of generality, we can assumethat � contains a sequence of rules r1; � � � ; rk+1 as described above.Now we consider Condition (i). From Condition (i), we know that � does notcontain a pair of rules of the forms:Holds(F ;S0) ,:Holds(F ;S0) .This follows that a subset of Ans in which each liteal is associated with initialsituation S0:f[:]Holds(F1;S0); � � � ; [:]Holds(Fk;S0)gis consistent. Now we consider a pair of complementary propositions (l ; l 0) in D. Tosimplify our presentation, for a rule of the form:r : L0 L1; � � � ;Lm ;notLm+1; � � � ;notLnwe denote pos(r) = fL1; � � � ;Lmg and neg(r) = fLm+1; � � � ;Lng. Then r can besimply represented as L0 pos(r); neg(r). Under this notation, a pair of comple-mentary propositions l and l 0 in D may have one of the following possible transla-tions in �:(a)r : Caused+(F ; s) pos(r);neg(r),r 0: Caused�(F ; s) pos(r 0);neg(r 0),(b)r : Caused+(F ; s) pos(r);neg(r),r 0: E�ect�(F ;Result(A;s)) pos(r 0);neg(r 0),(c)r : E�ect+(F ;Result(A;s)) pos(r);neg(r),r 0: E�ect�(F ;Result(A;s)) pos(r 0);neg(r 0).From Condition (iii), we know that in each case of (a), (b) and (c), pos(r) andpos(r 0) cannot be both true in answer set Ans. Hence, for any situation term S , noneof these three pairs of atoms Caused+(F ; S) and Caused�(F ; S), Caused+(F ; S)and E�ect�(F ; S), or E�ect+(F ; S) and E�ect�(F ; S) cannot both true in Ans.This concludes that Ans does not contain any complementary literals Holds(F ; S)

Handling Defeasibilities in Action Domains 45and :Holds(F ; S) for any F and S . So Ans is a consistent answer set of �. Further-more, every answer set of � is also consistent (Lifschitz & Turner, 1994). Finally,from the property that a PLP (�;N ; <) has an answer set i� � has an answerset and every answer set of (�;N ; <) is also an answer set of � (Zhang, 2001), itconcludes that PAT 0(D) has a consistent answer set (and its every answer set isalso consistent).Theorem 3 Every normal domain description of AT 1 or AT 2 is consistent.ProofThe proof is similar to the proof of Theorem 2 but with additional considerationson action explanation rules and action abnormal e�ect rules in PAT i (D). We omitit here.Theorem 4Given a domain description D ofAT 0 and its PLP translation PAT 0(D),the following results hold.(i) If PAT 0(D) j= Holds(F ;Result(A; S)) and PAT 0(D) 6j= Holds(F ; S), thenPAT 0(D) j= E�ect+(F ;Result(A; S)) or PAT 0(D) j= Caused+(F ;Result(A; S));(ii) If PAT 0(D) j= :Holds(F ;Result(A; S)) and PAT 0 (D) 6j= :Holds(F ; S), thenPAT 0(D) j= E�ect�(F ;Result(A; S)) or PAT 0(D) j= Caused�(F ;Result(A; S)).ProofIt is su�cient to only prove (i). Since PAT 0 (D) j= Holds(F ;Result(A; S)) andPAT 0(D) 6j= Holds(F ; S), it follows that for each answer set Ans of PAT 0(D),Holds(F ;Result(A; S)) 2 Ans, and there exists some answer set Ans 0 such thatHolds(F ; S) 62 Ans 0. Therefore, the fact that Holds(F ;Result(S ;A)) is true is notdue to inertia rules (17) and (18) in PAT 0(D), but due to action e�ect rules (13)and (14), or causal rules (9) and (10). That is, PAT 0 j= E�ect+(F ;Result(A; s)) orPAT 0 j= Caused+(F ;Result(A; S)).Theorem 5 Let D be a domain description of AT 1 and PAT 1(D) be its PLPtranslation. Suppose each observation proposition in D has the formL is observed if L1; � � � ;Lm with absence L;Lm+1; � � � ;Ln after A,where A is not an empty string of actions. Then the following results hold.(i) If PAT 1(D) j= :Holds(F ; S) and PAT 1(D) j= Holds(F ;Result(A; S)), thenPAT 1(D) j= E�ect+(F ;Result(A; S)) or PAT 1(D) j= Caused+(F ;Result(A; S));(ii) If PAT 1(D) j= Holds(F ; S) and PAT 1(D) j= :Holds(F ;Result(A; S)), thenPAT 1(D) j= E�ect�(F ;Result(A; S)) or PAT 1(D) j= Caused�(F ;Result(A; S)).ProofIt is su�cient to only prove (i). As PAT 1(D) j= :Holds(F ; S) and PAT 1(D) j=Holds(F ;Result(A; S)), it is clear that the fact that Holds(F ;Result(A; S)) is truein each answer set of PAT 1 (D) is not due to inertia rules (17), (18), (28) and (29),but due to(1) some observation rules in PAT 1(D), or

46 Y. Zhang(2) action e�ect rules (13) and (14), or(3) causal rules (9) and (10).Consider case (1). We suppose there exists some observation rule in PAT 1 (D) ofthe formHolds(F ;Result(A; S)) [:]Holds(F1; S); � � � ; [:]Holds(Fm; S);not [:]Holds(Fm+1; S); � � � ; not [:]Holds(Fn ; S);But from the condition, we know that the above observation rule must be of theform:Holds(F ;Result(A; S)) � � � ; not:Holds(F ;Result(A; S)); � � ��This results in a con
ict with inertia rule (18):Holds(f ;Result(a; s)) Holds(f ; s); not :Holds(f ;Result(a; s))in PAT 1 (D). As we specify inertia rules have higher priorities than observation rulesin PAT 1 (D), it turns out that :Holds(F ;Result(A; S)) is derived. So case (1) is im-possible. Hence, only cases (2) or (3) is possible to derive Holds(F ;Result(A; s)).That is, PAT 1(D) j= E�ect+(F ;Result(A; S)), or PAT 1 (D) j= Caused+(F ;Result(A; S)).Theoem 6 Let D be a domain description of AT 2 and PAT 2(D) be its PLPtranslation. Suppose each observation proposition in D has the formL is observed if L1; � � � ;Lm with absence L;Lm+1; � � � ;Ln after A,where A is not an empty string of actions. Then the following results hold.(i) If PAT 2(D) j= :Holds(F ; S) and PAT 2(D) j= Holds(F ;Result(A; S)), thenone of following results holds:PAT 2(D) j= E�ect+(F ;Result(A; S));PAT 2(D) j= AbE�ect+(F ;Result(A; S)); orPAT 2(D) j= Caused+(F ;Result(A; S));(ii) If PAT 2(D) j= Holds(F ; S) and PAT 2 (D) j= :Holds(F ;Result(A; S)), thenone of following results holds:PAT 2(D) j= E�ect�(F ;Result(A; S));PAT 2(D) j= AbE�ect�(F ;Result(A; S)); orPAT 2(D) j= Caused�(F ;Result(A; S)).ProofThe proof of Theorem 6 is similar to that of Theorem 5 as described above.Theorem 7 Let D be a domain description AT 0. D is O-monotonic if(i) each causal proposition in D is of the formL is caused if L1; � � � ;Lm , and(ii) F+Initial \ (F�E�ect [F�Caused) = ;, F�Initial \ (F+E�ect [F+Caused) = ;, and(F+E�ect [F+Caused)\ (F�E�ect [F�Caused) = ;.

Handling Defeasibilities in Action Domains 47ProofLet D0 be an augment of D, PAT 0 (D) and PAT 0(D0) be the PLP translations of Dand D0 respectively. To prove the result, it is su�cient to prove that PAT 0(D) j=Holds(F ; S) implies PAT 0(D0) j= Holds(F ; S). From the construction of PAT 0(D),it is clear that PAT 0(D) j= Holds(F ; S) implies(1) PAT 0(D) j= E�ect+(F ; S),(2) PAT 0(D) j= Caused+(F ; S), or(3) PAT 0(D) j= Holds(F ; S 0) due to inertia rules in PAT 0(D), where S = Result(A; S 0).Adding more observation propositions intoD to formD0, the new programPAT 0(D0)then may have the following e�ects:(a) initiating some action e�ect rules in PAT 0(D);(b) initiating some casual rules in PAT 0(D);(c) defeating some casual rules in PAT 0 (D);(d) not initiating any action e�ect and causal rules in PAT 0(D).Firstly, since each causal proposition in D has the formL is caused if L1; � � � ;Lm ,this follows that each corresponding causal rule in PAT 0(D) is non-defeasible, i.e.no negation as failure sign not is included in the body. Hence, the e�ect (c) willnot be presented. On the other hand, since both causal rules and action e�ect rulesare non-defeasible in PAT 0(D), it is clear that initiating more action e�ect rulesor causal rules in AT 0 will not a�ect the truth values of literals E�ect+(F ; S)and Caused+(F ; S) if PAT 0 (D) j= E�ect+(F ; S) and PAT 0 (D) j= Caused+(F ; S)respectively.Now suppose PAT 0 (D) j= Holds(F ; S) is due to some inertia rule in PAT 0 (D):N : Holds(F ;S) Holds(F ;S 0);not:Holds(F ;S),where S = Result(A; S 0), and PAT 0(D) j= Holds(F ; S 0). We prove PAT 0(D0) j=Holds(F ; S).Case 1. Suppose S = S0 and PAT 0(D0) j= Holds(F ; S0). Since no inertia rule isneeded to drive Holds(F ; S0), the only possibility to have PAT 0 (D0) j= Holds(F ; S0)is either Holds(F ; S0) is in PAT 0 (D0), or Caused+(F ; s) � � � is in PAT 0(D0)(note that such causal rule is non-defeasible). Obviously, in PAT 0 (D0), the truthvalue of Holds(F ; S0) will not be a�ected. Hence the result holds.Case 2. Now consider the case that S is not the initial situation. Suppose PAT 0(D) j=Holds(F ; S). It implies that there exists some action constant A such that PAT 0(D) j=Holds(F ; S 0) due to the inertia rule in PAT 0 (D), where S = Result(A; S 0).Now suppose PAT 0 (D0) 6j= Holds(F ; S). So the inertia rule:N 0 : Holds(F ;S) Holds(F ;S 0);not:Holds(F ;S),where S = Result(A; S 0), is defeated in PAT 0(D0). Hence it must be the case thatF 2 (F�E�ect [F�Caused). On the other hand, from the fact that that PAT 0(D) j=Holds(F ; S 0), it follows that F 2 F+Initial or F 2 (F+E�ect [F+Caused). But thiscontradicts conditions of Theorem 7. So it must have PAT 0(D0) j= Holds(F ; S).

48 Y. ZhangLemma 1 A domain description D of language AT i (i = 0; 1; 2) is temporallyde�nite if its PLP translation PAT i (D) has a unique answer set.ProofLet PAT i (D) be the PLP translation of D. From the de�nition of temporal de�-niteness, it is su�cient to prove that PAT i (D) j= Holds(F ; S) implies PAT i (D) j=Holds(F ;Result(A; S)) or PAT i (D) j= :Holds(F ;Result(A; S)) for any action con-stant A. Suppose PAT i (D) j= Holds(F ; S) and PAT i (D) has a unique answer setAnsi . So Holds(F ; S) 2 Ansi . Then, it is clear that if one of the following casesholds, the result is true:(1) E�ect+(F ;Result(A; S)) or E�ect�(F ;Result(A; S)) is in Ansi ;(2) AbE�ect+(F ;Result(A; S)) or AbE�ect�(F ;Result(A; S)) is in Ansi , here i =2;(3) Caused+(F ;Result(A; S)) or Caused�(F ;Result(A; S)) is in Ansi ;(4) :Holds(F ;Result(A; S)) is in Ansi .Now suppose none of the above cases is held. Then from the instance of inertia rulein PAT i (D):Holds(F ;Result(A;S)) Holds(F ;S);not:Holds(F ;Result(A;S)),it follows that Holds(F ;Result(A; S)) is in Ansi . So the result is still true.Theorem 8 A domain description D of AT i (i = 0; 1; 2) is temporally de�niteif its PLP translation PAT i (D) has a unique reduct �i and Trans(�i) is locallystrati�ed.ProofThe proof is directly from Lemma 1 and Proposition 3 in Appendix A.ReferencesApt, K.R., & Bol, R.N. (1994). Logic programming and negation: A survey. Journal oflogic programming, 19,20, 9{71.Baral, C., & Lobo, J. (1997). Defeasible speci�cations in action theories. Pages 1441{1446 of: Procceedings of the 15th international joint conference on arti�cial intelligence(ijcai'97). Morgan Kaufmann Publishers Inc.Brewka, G. (1996). Well-founded semantics for extended logic programs with dynamicpreferences. Journal of arti�cial intelligence research, 4, 19{36.Brewka, G., & Eiter, T. (1999). Preferred answer sets for extended logic programs. Arti-�cial intelligence, 109, 297{356.Eshghi, K., & Kowalski, R. (1989). Abduction compared with negation as failure. Pages234{255 of: Proceedings of the sixth international conference on logic programming.MIT Press.Ge�ner, H. (1997). Causality, constraints and the indirect e�ects of actions. Pages 555{560 of: Procceedings of the 15th international joint conference on arti�cial intelligence(ijcai'97). Morgan Kaufmann Publishers Inc.Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming.Pages 1070{1080 of: Proceedings of the �fth joint international conference and sympo-sium. MIT Press.

Handling Defeasibilities in Action Domains 49Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctivedatabases. New generation computing, 9, 365{386.Gelfond, M., & Lifschitz, V. (1993). Representing action and change by logic programs.Journal of logic programming, 17, 301{322.Goldszmidt, M., & Pearl, J. (1992). Rank-based systems. Pages 661{672 of: Proceedingsof kr'92. Morgan Kaufmann Publishers Inc.Grosof, B.N. (1997). Prioritized con
ict handling for logic programs. Pages 197{212 of:Proceedings of the 1997 international logic programming symposium (ilps'97.Jab lonowski, J., Lukaszewcz, W., & Madali�nsks-Bugaj, E. (1996). Reasoning about actionand change: Defeasible observations and actions with abnormal e�ects. Pages 136{147of: Proceedings of ki-96.Lifschitz, V., & Turner, H. (1994). Splitting a logic program. Pages 23{37 of: Proceedingsof eleventh international conference on logic programming. MIT Press.Marek, V.W., & Truszczy�nski, M. (1993). Nonmonotonic logic: Context-dependent rea-soning. Springer-Verlag.McCain, N., & Turner, H. (1995). A causal theory of rami�cations and quali�cations. Pages1978{1984 of: Proceedings of the 14th international conference on arti�cial intelligence(ijcai-95). Morgan Kaufmann Publishers, Inc.Reiter, R. (1980). A logic for default reasoning. Arti�cial intelligence, 13, 81{132.Sandewall, E. (1994). Features and
uents: The representation of knowledge about dy-namical systems. Oxford Science Publications.W. Lukaszewcz, W., & Madali�nsks-Bugaj, E. (1995). Reasoning about action and changeusing dijkstra's semantics for programming language: Preliminary report. Pages 1950{1955 of: Procceedings of the 14th international joint conference on arti�cial intelligence(ijcai'95). Morgan Kaufmann Publishers Inc.Winslett, M. (1988). Reasoning about action using a possible models approach. Pages 89{93 of: Proceedings of the seventh national conference on arti�cial intelligence (aaai'88).Morgan Kaufmann Publishers, Inc.Y, Zhang, Wu, C-M., & Bai, Y. (2001). Implementing prioritized logic programming.Arti�cial intelligence communications, 14, 183{196.Zhang, Y. (1999). Specifying causality in action theories: A default logic approach. The-oretical computer science, 228, 489{513.Zhang, Y. (2001). The complexity of logic program upadte. Pages 630{643 of: Proceedingsof the 14th australian joint conference on arti�cial intelligence (ai2001). Springer, LNAI2256.Zhang, Y., & Foo, N.Y. (1997a). Answer sets for prioritized logic programs. Pages 69{83of: Proceedings of the 1997 international logic programming symposium (ilps'97). MITPress.Zhang, Y., & Foo, N.Y. (1997b). Towards generalized rule-based updates. Pages 82{88 of: Procceedings of the 15th international joint conference on arti�cial intelligence(ijcai'97). Morgan Kaufmann Publishers Inc.Zhang, Y., & Foo, N.Y. (1998). Updating logic programs. Pages 403{407 of: Proceedingsof the 13th europen conference on arti�cial intelligence (ecai'98). John Wiley & Sons,Inc.

