Under consideration for publication in Theory and Practice of Logic Programming 1

Disjunctive Logic Programs with Existential
Quantification in Rule Heads

Jia-Huai You!, Heng Zhang?, Yan Zhang?

L University of Alberta, Edmonton T6G 2ES, Canada
2University of Western Sydney, Penrith, NSW 2751, Australia

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Abstract

We consider disjunctive logic programs without function symbols but with existential quantification in rule
heads, under the semantics of general stable models. There are at least two interesting prospects in these
programs. The first is that a program can be made more succinct by using existential variables, and the sec-
ond is on the potential in representing defeasible ontological knowledge by these logic programs. This paper
studies some of the properties of these programs. First, we show a simple yet intuitive definition of stable
models for these programs that does not resort to second-order logic. Second, the stable models of these
programs can be characterized by an extension of progression for disjunctive programs, which provides a
native characterization of justification for stable models. We then study the decidability issue. While the
stable model existence problem for safe disjunctive programs is decidable, with existential quantification
allowed in rule heads the problem becomes undecidable. We identify an interesting decidable fragment by
exploring a new notion of stratification over existential quantification.

KEYWORDS: Disjunctive Logic Programs, General Stable Models, Existential Quantification

1 Introduction

Answer set programming (ASP) has been generalized from normal logic programming (Gelfond
and Lifschitz 1988) to arbitrary first-order sentences (Ferraris et al. 2011). Some classes of pro-
grams in this context have been studied and properties revealed (e.g., (Lee and Meng 2011; Lee
and Palla 2012; Lee et al. 2008; Cabalar et al. 2009; Bartholomew and Lee 2010)). In this paper,
we consider (first-order) disjunctive logic programs without function symbols but with existential
quantification (EQ) in rule heads, which we call E-disjunctive programs (or just E-programs).

E-disjunctive programs are interesting in at least two aspects. First, they provide a flexible
knowledge representation language, which may enable succinct encoding of knowledge. As an
illustration, consider the k-colorability problem: given a graph and k colors, determine whether
each vertex can be assigned a color in such a way that any two vertices that are connected by an
arc must not have the same color. The problem can be encoded by the following program:

Y set(X,Y) + vertex(X)
noColoring < edge(X,Y), set(X,C), set(Y,C)
noColoring < set(X,Y), not color(Y)

where free variables are universally quantified before the existential ones, e.g., the first rule sets
each vertex X to some Y. It is not difficult to see that given a graph and % colors, the program

2 J. You. H. Zhang, Y. Zhang

has a stable model containing no noColoring iff the graph is k-colorable (cf. (Eiter et al. 1997)).
This encoding may be compared with a typical normal logic program encoding. While the first
rule above realizes “a vertex is colored with exactly one color” by a free ride of minimization, in
(Niemeld 1999) the same is encoded using two normal rules along with a new predicate symbol.

Another interest in E-disjunctive programs is their potential in representing and reasoning with
defeasible ontological knowledge. For example, consider an example modified from (Bonatti
et al. 2011): “Staff members are either users or non-users; users who are not known to present a
security threat are given access with some access level.”

user(X) V nonuser(X) < staf f(X)
FYaccessLevel(X,Y) < user(X), not secThreat(X)
secThreat(X) < blackListed(X)

« accessLevel(X,Y), not secLevel(Y)

The constraint at the end forces variable Y to be bound to one of provided security levels by facts
on the predicate secLevel/1 (e.g., admin, privileged, standard, basic, etc). Given appropriate
facts, one can query, e.g., whether there is a black listed user with some access rights

Q : 3XTFYaccessLevel(X,Y) A blackListed(X)
for which we can add a constraint
rg: ¢ accessLevel(X,Y),blackListed(X)

to the program II so that () follows from IT under stable models iff ITU{rq } has no stable model.

Current literature has seen increasing interest in representing ontological knowledge by Data-
log programs augmented by existential quantification in rule heads. For example, that every pro-
fessor teaches at least one course can be represented by a rule, Y isInstructorOf(X,Y) «+
prof(X), which corresponds to an axiom in description logic (DL): prof C JisInstructorOf.
However, the works in this direction either assume that ontological knowledge is not defeasible
(Alviano et al. 2012), or only treat stratified negation (Cali et al. 2009) or well-founded negation
(Gottlob et al. 2012) for non-disjunctive Datalog programs.

Despite the potential interest, E-disjunctive programs have not been closely studied. Little
is known about their properties. For example, we would be interested in a simple yet intuitive
definition of stable models for these programs. Such a definition arguably helps make the stable
model semantics more accessible thus facilitating development of applications. Another issue is
decidability. Non-trivial E-disjunctive programs fall outside of any known decidable classes of
safe logic programs (Cabalar et al. 2009; Bartholomew and Lee 2010).

In this paper, we study the properties of E-disjunctive programs. We report three results. First,
there is indeed an interesting definition of stable models for these programs, which is simple
and intuitive, and can be given literally in one sentence. Second, we show that stable models
of these programs can be characterized by progression, previously formulated for disjunctive
programs (Zhou and Zhang 2011). This provides a rather direct characterization of level mapping
Jjustification for stable models (Fages 1994), which is useful in several aspects. For example,
as shown in (Zhou and Zhang 2011), a level mapping enables a translation from disjunctive
programs to Satisfiability Modulo Theories (SMT) (Nieuwenhuis et al. 2006), thus providing a
basis for an alternative implementation. Another utility of progression is that it offers a direct
proof that a safe disjunctive program possesses the so-called small predicate property (Lee et al.
2008), which can be extended to check whether an E-disjunctive program has the same property.

Theory and Practice of Logic Programming 3

Next, we tackle the issue of decidability. Unlike safe disjunctive programs, with EQ added to
rule heads the stable model existence problem becomes undecidable. One way to prove this is
by extending an existing proof that shows query answering for conjunctive queries with non-
guarded Datalog? programs (the class of Datalog programs that consist of positive rules with EQ
in rule heads) is in general undecidable (Cali et al. 2008). Here we present a different proof based
on an E-disjunctive program encoding of the Domino problem (Berger 1966) so that the latter is
reduced to the stable model existence problem. This proof has an extra merit in that it allows us
to derive an additional result - deciding the existence of a finite stable model for E-disjunctive
programs where universal variables are safe is also undecidable. Finally, we identify a decidable
fragment by exploring a new notion of stratification over existential quantification (but not over
default negation), which can be seen as the first step in generalizing the notion of semi-safety
for disjunctive programs (Cabalar et al. 2009; Bartholomew and Lee 2010). The paper concludes
with a discussion on related work and some remarks, as well as pointers to future work. Missing
proofs of the key results can be found in Appendix.

2 Preliminaries

We consider a first-order language £ without function symbols but with the negation-as-failure
operator, not, along with a countably infinite set of constants C, a countable set of predicate
constants (predicates in short) PP, and a countable set of individual variables), which are denoted
by upper case letters.

Denote by 7, the signature of £. An atom on 7 is of the form p(t4, ..., t,), abbreviated as
p(t), where p € P is an n-ary predicate and t an n-tuple on C U V. We write p(X) if X if a
tuple of n distinct variables. Let o = p(t1, ..., t,,), we define pred(«) = p and arg(a,i) = t;
(1 < i < n). Atoms and negated atoms are called literals. A negated atom can be either in
the form not « or in the form —« (under the language of general stable models not a will be
identified with —a). A ground atom p(t4, ...,t,) on a set D is an atom where t; € D for all i.
Let M be a structure of 7. Dom(M) denotes the domain of M, ¢™ denotes the element in
Dom(M) that is mapped in M from constant ¢ € C, and p™ the n-ary relation on Dom(M),
which is assigned in M for the n-ary predicate p € P. Notationally, we also write p(t) € M to
mean t € p™. In this way, M also denotes the set of ground atoms p(t) such that t € p™, for
all p € P. We define M~ = {—a | « is a ground atom on Dom(M) and o &€ M}.

Given a structure M and a ground atom a on Dom(M), M satisfies «, denoted as M |= «,
iff @« € M, and M satisfies not o, denoted as M = not a, iff @ ¢ M. The definition extends to
conjunctions and disjunctions of ground atoms as usual. For an existentially quantified formula
JY'F, where F is a first-order formula in which Y is the only free variable, M = Y F iff
M = F[Y/e] for some e € Dom(M), where F[Y/e] is the formula obtained from F' by
substituting occurrences of Y in F' with e.

Let M be a structure, X a set of ground atoms on Dom(M), and F a conjunction of ground
atoms on Dom(M). In this paper, we will use the notation X UM~ = F to mean that the literal
set X U M~ logically entails F. Note that we use the same relational symbol = to express two
different concepts, satisfaction and logic entailment. Above, while X U M~ = F expresses an
entailment relation, that M satisfies F' amounts to the entailment relation M U M~ = F.

Let M be a structure and H a set of ground atoms on Dom(M). By H C M, we mean for all
p(t) € H, M = p(t), and by M’ = M U H, we mean a structure M’ with the same signature,
domain and constant mapping as M, but for any predicate p, t € pM' iff p(t) € M U H. That

4 J. You. H. Zhang, Y. Zhang

a structure is denoted as a set also allows us to compare two structures M; and M, of the same
signature, which are identical everywhere except for the mappings of predicates. In particular,
M; C Ms means for all p(t) if M; | p(t) then My = p(t); and My C My is defined as
My C My and Mo € M;. We will use X (resp. Y) to denote a vector of variables.

An assignment of a structure M is a mapping of individual variables to elements in Dom (M),
and if ¢ is an assignment of M, 9|x denotes the sub-assignment of o restricted to the variables
in X. Let F be a formula, M a structure of the signature of F', and ¢} an assignment of M.
Fv denotes the formula obtained from F by replacing all occurrences of free variables in F'
mentioned in ¢, with their mapped elements.

3 Justified Stable Models
E-disjunctive programs are finite sets of rules of the form
Y ay;...; 0 < B, ..., Br, N0t 71, ..., NOt ¥y,)

where «;, 3; and ~y; are atoms, and variables in Y may appear only in a; (1 <1 < m).

Given an E-disjunctive program II, we denote by 7(II) the signature of IT which includes all
predicates and constants occurring in 11.

Let r be a rule of the form (1). In the sequel, if not said otherwise we will use X to denote the
free variables (also called V-variables) in and Y to denote the existential variables (3-variables).
We may write r as Y Head(r) < Pos(r), Neg(r), where Head(r) = {aq, ..., @, } is called
the head of the rule, Pos(r) = {51, ..., Bk } the positive body and Neg(r) = {not 1, ...,not v, }
the negative body of the rule, respectively. Note that a rule of this form is shorthand of the rule
with the full quantification, VXIY Head(r) < Pos(r), Neg(r). We also define Body(r) =
Pos(r) U Neg(r). We may write a rule with empty head as a constraint. In addition, we assume
rules in a program are standardized apart so they share no variables.

Let IT be an E-disjunctive program and M a structure of 7(IT). We say that M is a model of
IT if M satisfies every rule in II.

We now define the notion of deductive closure.

Definition 1

Let IT be an E-disjunctive program and M a structure of 7(II). A deductive closure of I1 and M
is a minimal set X of ground atoms on Dom (M) satisfying the condition: for any rule r € II
and any assignment 7 of M, if X U M~ = Body(r)n, then for some assignment ¢ of M and
a € Head(r), (an|x)? € X.

Note that M~ is fixed in determining if X is minimal. Let us denote by Q(II, M) the set of
all deductive closures of IT and M. Note that this set is non-empty as the set of all ground atoms
on Dom/(M) satisfies the condition and it contains minimal subsets that satisfy the condition.

Definition 2
Let II be an E-disjunctive program and M a structure of 7(II). M is a justified stable model of
IT if M is a deductive closure of IT and M.

Example 1
Consider the following program II:

pla);p(b) < p(a) < p(b) p(d) < not p(b)

Theory and Practice of Logic Programming 5

My = {p(a),p(d)} is the only Herbrand stable model of II, which is also a justified stable model
of II. Note that M> = {p(a), p(b)} is not a justified stable model of II, since it is not a minimal
set satisfying the deductive closure property, as the proper subset {p(a)} satisfies the condition.

Example 2
Let II be the following program:

h(a) «+
Y p(X,Y);q(X,Y) « not h(X)
Y p(X, X);q(Y,Y) « h(X)

Let M be a structure of 7(IT) where Dom(M) = {1,2}, a™ = 1, and M = {h(1),¢(2,2)}.
One can verify that M is a justified stable model of II.

For clarity, above we defined justified stable model using two definitions. In fact, we can
combine the two to arrive at an equivalent but simpler definition, literally in one sentence.

Definition 3

Let IT be an E-disjunctive program and M a structure of 7(II). M is a justified stable model of
ITif M is a minimal set X satisfying the condition: for any € II and any assignment 7 of M,
if X UM~ = Body(r)n, then for some assignment ¢ of M and o € Head(r), (an|x)¥ € X.

Before ending this section, let us show a compact encoding of a generalized problem of strate-
gic companies (Cadoli et al. 1997; Leone et al. 2006). It is well-known that computing strategic
companies is ¥4’ -complete.

Example 3
In the strategic companies problem, there is a collection C' = {cq, ..., ¢ } (m > 1) of companies,
each producing some goods from the set G of all goods. Each company ¢; € C' is possibly
controlled by a set of owner companies O; C C. A set C’ C C'is a strategic set if it is minimal
among all the sets satisfying the following conditions: (1) The companies in C’ produce all goods
in G, and (2) The companies in C’ are closed under the controlling relation, i.e. if O; C C” for
some 1 < i < mthenc; € C’.In (Cadoli et al. 1997; Leone et al. 2006), it is assumed that each
product is produced by at most two companies and each company is jointly controlled by at most
three other companies. We generalize the original problem by changing the first assumption to
“Each product is produced by one or more companies”.!

To encode the generalized problem, we can modify the encoding given in (Leone et al. 2006)
slightly, resulting in the following program:

3Z strat_from(Z,X) < prod_by(X,Y)

+ strat_from(Y, X), not prod_by(X,Y)

strat(Y) < strat_from(Y, X)

strat(W) « contr_by(W, XY, Z), strat(X), strat(Y"), strat(Z)

Above, prod_by(X,Y) means “Company Y produces good X”; strat_from(Y, X) says “Com-
pany Y is strategic because of good X”. A problem instance also contains facts specified by
predicates prod_by/2 and contr_by/4. Given a problem instance, a company c is strategic if
strat(c) is in some stable model of the program encoding the instance. It is interesting to see
that with existential quantification a ¥.£'-hard problem is encoded without disjunction.

1 Here we omit the case where a product is produced by no company, as it is easy to check.

6 J. You. H. Zhang, Y. Zhang

4 General Stable Models

We show that for E-disjunctive programs justified stable models are precisely general stable
models (Ferraris et al. 2011) (also see (Lin and Zhou 2011)).

Let p and u be two lists of distinct predicate constants (p1,...,p,) and (ug,...,u,) with
matching arities. By u < p, we mean Vx(u;(x) — p;(x)) (1 < i < n), and u < p is defined
by (u < p) A —(p < u). If p (resp. u) is a singleton, we may just write p (resp. u).

For any first-order sentence F', SMp[F'] denotes the second-order sentence, F' A ~Ju((u <
p) A F*(u)), where F*(u) is defined recursively:

p;i(t)* = u;(t) for any tuple t of terms;

F* = F for any atomic formula F’ that does not contain members of p;
(F Op G)* = F* Op G*, where Op is either A or V;

(F - G)*=(F*—= G")AN(F = Q);

(Qz F)* = Qx F*, where Q) is either V or 3.

For any sentence F, a p-stable model of F is a structure of 7(F) that satisfies SMp[F]. In this
paper, we assume that p in SMp,[F] is the set of all predicates in the signature of F.? We then
just call these models stable models.

Given an E-disjunctive program II and a rule r € II of the form (1), we denote by 7 (r) the
following formula

VXYL A .. AB A=y Ao A=y a1 V...V auy 2)

where X is the list of free variables in and for any formula ®, =& is shorthand for ® — L. By
7(IT), we mean the conjunction of (r) for all r € II.
An example illustrating the definition of general stable models can be found in Appendix.

Theorem 1
Let IT be an E-disjunctive program and M a structure of 7(II). M is a justified stable model of
IT iff M is a stable model of 7 (II).

Proof

We give a proof for the = part, the proof for the < part is similar. Suppose M is a justified
stable model of II, and we show that M satisfies 7(IT) A =3u((u < p) A w(IT)*(u)). Clearly,
M = 7(I1). Towards a contradiction, assume M K —Ju((u < p) A 7(I)*(u)), i.e., M =
Ju((u < p) A 7(II)*(u)), where

m(I)*(w) = A, VXIY(B) — H) A7(r)

where VX3IY (B! — H}) is shorthand of (2). Assume, WLOG, that a rule is in such a form
that VX3Y (B} — HY) is of the form (3) below.

VXAYS A (Y = LA (y = L) —=afV...Vay, 3)

Then, there is a structure M* of 7 (7 (IT)* (u)) such that M* }= 7(IT)* (u), where p~ = pM for
all p; € p and the mappings for predicates in u satisfy u < p. Let " denote the interpretation of
predicates in u. That is, M* = MUN . Further, let M’ be a structure of 7(IT), which is the same
as M except for the mappings of predicates in p, which is defined as M’ = {p;(t) | u;(t) € N'}.

2 Here, we assume all predicates p appearing in a program are intensional, e.g., by adding a rule p(X) + p(X) to it.

Theory and Practice of Logic Programming 7

As u < p, we have M’ C M. Now, for any assignment 7 of M and any rule r € II, suppose
M UM~ |= Body(r)n. It follows from the def. of M* and that of u < p that M* = B}n. As
M* is amodel of (3), for some assignment ¢ and o* € {a7, ..., a, }, we have (a*n|x) € M*;
then, «, the counterpart of o*, is in Head(r), and it follows from the definition of M’ that we
have (an|x)¥ € M’. Thus, M’ is a deductive closure of IT and M. From M’ C M, we know
that M is not a minimal set satisfying the deductive closure condition and is therefore not a
justified stable model of II. A contradiction. []

5 Progression Characterization

The idea of progression (Zhou and Zhang 2011) is to characterize a stable model of a disjunctive
logic program by a fixpoint construction that nondeterministically chooses a minimal hitting set
at each step. Intuitively, this means that every ground atom true in a stable model of the given pro-
gram is justified by a non-circular derivation by rules in the program, a property known as level
mapping justifications for normal logic programs (Fages 1994). In this section, we generalize
this characterization to E-disjunctive programs.

Definition 4

Let S be asetand & = {51, ...,.5;, ...} a collection of sets such that S; C S, for all i. A subset
H C S is said to be a hitting set of ® if for all 7, H N S; # (. Furthermore, H is said to be a
minimal hitting set of ® if H is a hitting set of ® and there is no H' C H such that H’ is also a
hitting set of ®.

In the following, let II be an E-disjunctive program and M a structure of 7(IT). Also, let
U be the set of all assignments of M, and X and Y denote the V-variables and 3-variables,
respectively, in II.

Definition 5
An evolution sequence of I1 based on M, denoted as o 4 (I1), is a sequence o4, (I1), - - -, oy (II),
-+« of structures of 7(IT), defined inductively as follows

1. 6%,(IT) = &, where £ is the structure of 7(II) in which all interpretations of predicates are
the empty set;

2. o' (W) = o (I1) U H, where there exists ' C M such that it is a minimal hitting set
of the collection ® of the following sets:

U (Head(r)nlx)6lv “
9w
where 7 is a rule in IT and 7 an assignment of M such that (4) N o'y, (IT) = 0, o, ((IT) |=
Pos(r)n, and M = Neg(r)n; and o'y (IT) = o, (1) if H* does not exist.

We denote o35 (IT) = ;2 oy (ID).

As commented in (Zhou and Zhang 2011) (also see (You et al. 2012)), the basic idea in an
evolution sequence is that we start with 09\4 (IT) and progress by nondeterministically selecting
a minimal hitting set at each step, from instantiated heads of rules whose bodies are implied
by M~ and the set of atoms already derived, under an assignment 7. The condition H* C M
ensures that the construction is guarded, and the condition (4) N o, (II) = 0 only allows the
instances of rule-heads that are not already satisfied to be considered.

8 J. You. H. Zhang, Y. Zhang

However, there is a critical difference between this definition and that of (Zhou and Zhang
2011) in the set ®! of sets from which a minimal hitting set is selected, in that a predicate with
J-variables in a rule head may have multiple instantiations on the 3-variables.

Example 4
Consider again the program IT in Example 2, where M = {h(1),¢(2,2)}, with Dom(M) =
{1,2} and ™ = 1. M can be constructed by an evolution sequence as follows. We start

with o((IT) = 0, and as ®° = {{A(1)}, {p(2,1),p(2,2),4(2,1),4(2,2)}} of which H® =
{R(1),¢(2,2)} is a minimal hitting set as well as guarded, we get o, (II) = {h(1),q(2,2)}.
Now as 0/2\4 = o}, and so on, M coincides with the fixpoint of the evolution sequence.

Lemma 1

An evolution sequence p of Il based on M always exists, and for any evolution sequence p of 11
based on M, p3(II) € M.

By definition, an evolution sequence p of I based on M begins with P?\/((H) = (). As such a
sequence is increasing, it reaches a fixpoint when no more atoms can be added. The conclusion
P54 (II) € M is because at each stage ¢, we can only add a hitting set H* C M of ®'. The
fixpoint reached by an evolution sequence can be classified to two categories: let us call them
premature fixpoint and normal fixpoint respectively. The former refers to the situation where the
unsatisfiability of a rule is witnessed in the progression of the sequence. For example, consider
II = {c + a,notd; b + a; a «+} and the structure M = {a,b}. We have p%,(II) = 0,
pia(II) = {a}, and ®* = {{c}, {b}}. Since there is no hitting set H? of ®? satisfying H* C M,
we have p3 (II) = pj(II) = {a}, where the unsatisfiability of the first two rules is witnessed.

On the other hand, a normal fixpoint is one without witnessing the violation of any rule. This
is the case when M is a model of II. At each stage ¢, for any rule r € II and any assignment 7 of
M, if Body(r)n is entailed by p'(II) UM~ then at least one instance of Head(r)n|x is either
in p’,(II) or in the selected minimal hitting set !, which is guaranteed to exist. However,
if M is a model but not a stable model of II, any evolution sequence based on M will reach a
structure X" as the fixpoint such that X C M.

Theorem 2

Let IT be an E-disjunctive program and M a structure of 7(IT). M is a stable model of II iff for
all evolution sequences o of I based on M, o5 (IT) = M.

The proof of this theorem can be found in Appendix.

One utility of the progression characterization is that it offers a direct proof that safe disjunctive
programs possess the so-called small predicate property (SPP) (Lee et al. 2008), which intuitively
says that the extensions of predicates in any stable model of a given sentence II consist of tuples
of elements that are mapped from the constants appearing in II. The SPP offers a condition for
decidability, and a bridge in an implementation for computing stable models of these programs.

More formally, given a finite set of constants ¢ and a first-order sentence F', the SPP for
F is defined by the conjunction of Vx p(x) — inc(x), for each predicate p occurring in F,
where ing(z1, ..., Tm) stands for Ay <, V .c. @j = c. Let ¢(F’) be the set of constant symbols
appearing in I, and we denote the SPP for I by SPP(f).

Theory and Practice of Logic Programming 9

Definition 6
A rule of the form (1) is called V-safe if every V-variable appearing in its head appears in at least
one positive literal of its body. An E-disjunctive program is V-safe if every rule in it is V-safe.

A V-safe E-disjunctive program without existential quantification is just a semi-safe disjunctive
program (Cabalar et al. 2009). The following result is well-known. Here we offer a direct proof.

Proposition 1
Let II be a V-safe E-disjunctive logic program, where no EQ occurs. Then for any stable model
A of T(H), A)Z SPPC(H).

Proof

Let A be a stable model of II. By Theorem 2, there is an evolution sequence o 4(IT) such that
0% (IT) = A, and this is the case for all evolution sequences of II based on .A. Suppose A =
SPP). Then Jp(t) € A s.t. for some j, arg(p(t),j) = u and there is no e € ¢(II) s.t.
e = u. By induction on the construction of o (IT), at any stage ¢, because II is V-safe and no
EQ occurs in T1, a selected minimal hitting set H® is always finite and for every ¢(s) € H' and
every position j within the arity of predicate ¢, arg(q(s),j) = e, for some e € ¢(II). Thus the
atom p(t) € A mentioned above does not exist. Therefore, we must have A |= SPP ;). [

By a similar proof, this result can be generalized to V-safe E-disjunctive programs, if each
J-variable is guaranteed to be instantiated to a constant appearing in the given program. For
example, the k-colorability program given in the Introduction is V-safe. By the third rule, if the
predicate set/2 is in a stable model, it can only be in the form set(., e) where e is mapped from
a constant representing a color. It is then easy to see that the program, along with an input graph
and colors, possesses the small predicate property.

6 Decidability

In this paper, we will be focusing on the problem of stable model existence, as ontology query
answering under stable models can be reduced to a problem of model checking: ¢ is true in
every stable model of II iff IT A —q has no stable model, where ¢ is the existential closure of
a conjunctive query (i.e., a conjunction of atoms), so II A ¢ is equivalent to an E-disjunctive
program under the stable model semantics.

Though the stable model existence problem for safe disjunctive programs is decidable, the
problem becomes undecidable when EQ is allowed in rule heads. Below, we present a proof based
on the idea of reducing the Domino problem (Berger 1966) to the stable model existence problem.
This proof is interesting as it can be extended easily to show an additional result - deciding the
existence of a finite stable model for V-safe E-disjunctive programs is also undecidable.?

Let N be the set of all non-negative integers and Z;, the set of non-negative integers that are
less than k for all integers k € N. A domino system is defined to be a triple D = (k, H,V),
where £ € N and H, V are two subsets of Zj, X Zg. A tiling of D for N x N is a function 7 from
N x N into Zj, such that (i,5) € H if 7(m,n) = ¢ and 7(m + 1,n) = j and that (¢, j) € V if
T(m,n) =diand 7(m,n+1) = j. A tiling 7 of D for N x N is said to be period if there are some

3 The proof can also be adopted, with a small modification, to show that, for some decidable classes of Datalog with
existential rules, such as sticky sets (Cali et al. 2012) and the shy fragment (Leone et al. 2012), the addition of default
negation causes the fragment to be undecidable. The details are beyond the scope of this paper.

10 J. You. H. Zhang, Y. Zhang

integers h, v > 0 such that 7(i + h,j) = 7(i,j +v) = 7(i,j) for all ¢, j € N. It is well-known
that there is no algorithm to check whether or not a domino system D has a (period) tiling for
N x N (Berger 1966; Gurevich and Koryakov 1972).

Proposition 2

There is no algorithm to check whether or not a V-safe E-disjunctive program has a (finite) stable
model.*

Proof
Given a domino system D = (k, H, V'), construct a program ITp, as follows:

1. num(c) +

.Y suce(X,Y) « num(X)

.num(Y) < suce(X,Y)

.(—pi(X,Y),pj(X,Y> (0§’L<]<k)

po(X, YY) pe—1(X, YY)+ num(X), num(Y)
pi(XY),pi(Z)Y), suce(X,Z) (0 <i,j<k,(i,5)¢H)
7. pi(X,Y),pj(X,2), succ(Y,Z) (0 <i,j <k, (i,5) V)

S UL W N

This program is clearly V-safe. Let p be the tuple of all predicates appearing in IIp. We claim
that D has a tiling for N x N iff I has a stable model (which is also a minimal model as no
default negation occurs). If this is true, according to (Berger 1966), it is undecidable to check
whether or not a V-safe E-disjunctive program has a stable model. We now prove this claim.

(=) Suppose 7 : N x N — Zj is a tiling of D for N x N. We need to show that IIp
has a minimal/stable model. Let A be a structure with the domain N and interpreting ¢ as 0;
interpreting num as the set N; interpreting succ as the relation {(i,7 + 1) : ¢ € N}; and for
0 < i < n, interpreting p; as the relation {(m,n) : 7(m,n) = i}. It is not difficult to verify that
A is a minimal/stable model of ITp.

(<) Suppose A is a minimal/stable model of ITp. Let (a;);cn be a sequence of elements in
Dom(A) such that ag = ¢ and that (a;,a;11) € suce? for all i € N. The existence of such a
sequence is guaranteed by the rule 2. Let 7 be a function from N x N to Zy, such that 7(m,n) = i
iff (@, a,) € pt forall myn € Nand 0 < i < k. According to the rules 4 and 5, 7 is
well-defined. By the rules 6 and 7, 7 should be a tiling of D for N x N.

For the case of finite stable models, it suffices to show that D has a period tiling for N x N iff
IIp has a finite stable model. This can be obtained by a slight modification of the proof for the
arbitrary case. [

Note that, for each D, II can be rewritten without disjunction by shifting disjunctions to the
body of rules. The soundness follows from the splitting lemma (Ferraris et al. 2009) and the fact
that the program consists of rules which are head-cycle-free.

4 The same claim can be proved by adopting the proof of Theorem 15 of (Cali et al. 2008), in the following way. First,
query answering with a Datalog= program for conjunctive queries can be reduced to a problem of model checking.
Given the non-guarded Datalog? program IT used in the above proof (with a minor translation to make it a V-safe
E-program) and a conjunctive query, let IT’ be the resulting program for model checking, which is a V-safe E-program.
Then, one needs to show a lemma that I’ has a classic model iff II” has a stable model (in this case a minimal model).
This is because in general the left hand side does not imply the right hand side.

Theory and Practice of Logic Programming 11

6.1 A Decidable Fragment

In general, a V-safe E-disjunctive program may not possess the SPP. In this section, we identify a
fragment of E-disjunctive programs, which is decidable based on the small model property, i.e.,
the size of any stable model of a program in this class is bounded.

Definition 7

Let II be an E-disjunctive program and p the tuple of all predicates occurring in II. Then II is
E-stratified if there is a function /, called an E-level mapping of 1, that maps each predicate in p
to a positive integer such that:

1. if r is a rule in II, p is a predicate having positive occurrence in the body of r, and q is a
predicate occurring in the head, then £(p) < 4(q);

2. in the above case, if there is an individual variable occurring in the parameters of ¢ and
bounded by an existential quantifier, then ¢(p) < £(q).

Definition 8
An E-disjunctive program II is safe if it is both V-safe and E-stratified.

For example, the program that encodes the strategic companies problem in Example 3 is safe.

Given any E-disjunctive program II, let IT* denote the program obtained from II by, for each
predicate p € p, substituting p* for all positive occurrences of p in the head or the body of
any rule in II, where p* is a new predicate variable for predicate constant p. For simplicity,
without confusion we also use II to denote its first-order representation (i.e., occurrences of
not are replaced by —, and similarly for conjunction and disjunction). Let SM;‘) [II] stand for
IT A Vp*(p* < p — —1II*). By the definitions of SM and SM*, it is easy to show the following
proposition.

Proposition 3
Let II be an E-disjunctive program with a tuple of predicates p. Then SM; [IT] is equivalent to
SMp, [I1].

We now present two key lemmas whose proofs can be found in Appendix.

Proposition 4

Let IT be a safe E-disjunctive program with a tuple of predicates p, ¢ an E-level mapping of II, and
A a stable model of I1. Then |¢(.A)| € O((k-1)™"), where k and [are the numbers of individual
constants and rules appearing in II respectively, m is the maximum number of variables in any
rule in I, n = max{{(p) | p € p}, and €(A) is the set of elements from Dom(A) having
occurrences in some ground atoms in A.

Proposition 5

Let I be a safe E-disjunctive program and ¢ an E-level mapping of II. Then II has a stable model
iff it has a stable model .A with |[Dom(A)| € O((k -1)™"), where k, 1, m and n are the same as
those in Proposition 4.

By Proposition 5, we immediately have the following theorem.

Theorem 3
It is decidable to check whether or not a safe E-disjunctive program has a stable model.

12 J. You. H. Zhang, Y. Zhang

7 Related Work and Discussion

For Datalog” programs, a number of fragments are known to be decidable, which include the
guarded fragment, which requires V-variables in a rule to appear in a single positive body literal
of the rule, and its variants (Cali et al. 2009; Gottlob et al. 2012; Alviano et al. 2012). Also see
(Fagin et al. 2005) for the fragment of weakly acyclic Datalog?, (Cali et al. 2012) for sticky sets,
and (Leone et al. 2012) for the shy fragment.

In general, it is an interesting question whether conditions similar to those for decidable
Datalog fragments can be extended to accommodate disjunction and/or negation under the sta-
ble model semantics. When disjunction and negation are not considered, safe E-programs are
weakly acyclic. Actually, we can define the notion of weak E-stratification and show a similar
decidability result. This is to say that the condition of being weakly acyclic can be extended
to E-disjunctive programs to guarantee decidability, whenever such an E-disjunctive program is
V-safe. On the other hand, as commented earlier in Section 6, the proof of Proposition 2 can
be modified slightly to show that such an extension is not possible for sticky sets of (Cali et al.
2012), nor for the shy fragment of (Leone et al. 2012), even for stratified negation. The question
whether guarded E-disjunctive programs are decidable remains open.

E-disjunctive programs can be seen as a generalization of disjunctive Datalog of (Alviano
et al. 2012) under the safety condition defined in this paper. It can be shown that, given a safe but
negation-free E-disjunctive program II, a set of facts D and a (boolean) conjunctive query g, q is
true in every model of IT U D iff ¢ is true in every stable model of ITU D.

Some defeasible DLs have been proposed recently. A main difference between ASP and vari-
ous forms of defeasible DLs is that the former aims at a flexible style of declarative knowledge
representation, while the latter are designed with a specific focus and by using a specific tech-
nique, e.g., based on a form of circumscription (Bonatti et al. 2011), or based on a notion of
rational closure for defeasible inheritance networks (Casini and Straccia 2011). An interesting
future topic is how E-disjunctive programs may capture some of these defeasible DLs.

Our results here can be generalized to programs with equality (which may appear in rule
bodies). In particular, we can similarly define E-disjunctive programs with equality and show
a similar decidable fragment based on V-safety and E-stratification. The idea is that, given a
program II, equality under stable models can be eliminated by introducing a fresh predicate
enforcing identity, namely VX e(X, X) (cf. Lemma 8 of (Zhang and Ying 2010)). Then we
substitute e(s, t) for each equality atom s = ¢ appearing in II.

In this paper we have considered arbitrary structures. In order to access all elements in the
domain of an interpretation by name, the standard names assumption (SNA) (Motik and Rosati
2010) has been introduced. In such interpretations, called SNA interpretations, the sets of ground
atoms that are assigned to true are in 1-1 correspondence with subsets of the Herbrand base.
For the results in Sections 4-5, as they are true for arbitrary structures they are true for SNA
interpretations. It is not difficult to check that all the decidability results in Section 6 are still
valid under SNA. For example, the proof of Proposition 2 can also be used to show that the
domino system D has a tiling iff II, has an SNA stable model, and the bound in Proposition 4
holds for all stable models including SNA stable models.

For finite Herbrand structures an efficient system for computing stable models for E-disjunctive
programs already exists, the claspD system, where 3-variables can be encoded by the feature of
condition on variable instantiations. Also see (Zhang et al. 2011) for a translation for arbitrary
but finite structures.

Theory and Practice of Logic Programming 13

References

ALVIANO, M., FABER, W., LEONE, N., AND MANNA, M. 2012. Disjunctive datalog with existential
quantifiers: Semantics, decidability, and complexity issues. Theory and Practice of Logic Program-
ming 12, 4-5,701-718.

BARTHOLOMEW, M. AND LEE, J. 2010. A decidable class of groundable formulas in the general theory
of stable models. In Proc. KR-2010.

BERGER, R. 1966. The undecidability of the domino problem. Memoirs of the American Mathematical
Society 66, 1, 1-72.

BONATTI, P. A., FAELLA, M., AND SAURO, L. 2011. Defeasible inclusions in low-complexity DLs. J.
Artif. Intell. Res. 42, 719-764.

CABALAR, P., PEARCE, D., AND VALVERDE, A. 2009. A revised concept of safety for general answer set
programs. In Proc. LPNMR. 58-70.

CADOLI, M., EITER, T., AND GOTTLOB, G. 1997. Default logic as a query language. IEEE Trans. Knowl.
Data Eng. 9, 3, 448-463.

CALl, A., GOTTLOB, G., AND KIFER, M. 2008. Taming the infinite chase: Query answering under ex-
pressive relational constraints. In KR. 70-80.

CALI, A., GOTTLOB, G., AND LUKASIEWICZ, T. 2009. A general datalog-based framework for tractable
query answering over ontologies. In Proc. PODS. 77-86.

CALl, A., GOTTLOB, G., AND PIERIS, A. 2012. Towards more expressive ontology languages: The query
answering problem. Artif. Intell. 193, 87-128.

CASINI, G. AND STRACCIA, U. 2011. Defeasible inheritance-based description logics. In Proc. IJCAI-11.
813-818.

EITER, T., GOTTLOB, G., AND MANNILA, H. 1997. Disjunctive datalog. ACM Trans. Database
Syst. 22, 3, 364-418.

FAGES, F. 1994. Consistency of clark’s completion and existence of stable models. Journal of Methods of
Logic in Computer Science 1, 51-60.

FAGIN, R., KOLAITIS, P. G., MILLER, R. J., AND POPA, L. 2005. Data exchange: semantics and query
answering. Theor. Comput. Sci. 336, 1, 89—124.

FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2011. Stable models and circumscription. Artificial Intelli-
gence 175, 1,236-263.

FERRARIS, P., LEE, J., LIFSCHITZ, V., AND PALLA, R. 2009. Symmetric splitting in the general theory
of stable models. In IJCAI-09. 797-803.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Proc.
ICLP’88. 1070-1080.

GOTTLOB, G., HERNICH, A., KUPKE, C., AND LUKASIEWICZ, T. 2012. Equality-friendly well-founded
semantics and applications to description logics. In Proc. AAAI-12.

GUREVICH, Y. AND KORYAKOV, 1. 1972. Remarks on Berger’s paper on the domino problem. Siberian
Mathematical Journal 13, 319-321.

LEE, J., LIFSCHITZ, V., AND PALLA, R. 2008. Safe formulas in the general theory of stable models
(preliminary report). In Proc. ICLP. 672-676.

LEE, J. AND MENG, Y. 2011. First-order stable model semantics and first-order loop formulas. J. Artif.
Intell. Res. (JAIR) 42, 125-180.

LEE, J. AND PALLA, R. 2012. Reformulating the situation calculus and the event calculus in the general
theory of stable models and in answer set programming. J. Artif. Intell. Res. (JAIR) 43, 571-620.

LEONE, N., MANNA, M., TERRACINA, G., AND VELTRI, P. 2012. Efficiently computable datalog; pro-
grams. In KR.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006.
The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 3, 499-562.

LIN, F. AND ZHOU, Y. 2011. From answer set logic programming to circumscription via logic of GK.
Artificial Intelligence 175, 1,264-277.

14 J. You. H. Zhang, Y. Zhang

MOTIK, B. AND ROSATI, R. 2010. Reconciling description logics and rules. Journal of the ACM 57, S,
1-62.

NIEMELA, 1. 1999. Logic programs with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence 25, 3-4, 241-273.
NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT modulo theories:
From an abstract davis—putnam-logemann—loveland procedure to DPLL(T). J. ACM 53, 6, 937-977.
You, J.-H., SHEN, Y.-D., AND WANG, K. 2012. Well-supported semantics for logic programs with
generalized rules. In Correct Reasoning: Essays on Logic-Based Al in Honor of Vladimir Lifschitz,.
LNCS 7265, 576-591.

ZHANG, H. AND YING, M. 2010. Decidable fragments of first-order language under stable model seman-
tics and circumscription. In Proc. AAAI-10.

ZHANG, H., ZHANG, Y., YING, M., AND ZHOU, Y. 2011. Translating first-order theories into logic
programs. In Proc. IJCAI-11. 1126-1131.

ZHOU, Y. AND ZHANG, Y. 2011. Progression semantics for disjunctive logic programs. In Proc. AAAI-11.
286-291.

