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Abstract. We consider the problem of how a default rule can be deduced from
a default theory. For this purpose, we propose an axiom system which precisely
captures the deductive reasoning about default rules. We show that our axiomatic
system is sound and complete under the semantics of the logicof here-and-there.
We also study other important properties such as substitution and monotonicity
of our system and prove the essential decision problem complexity. Finally, we
discuss applications of our default rule calculus to various problems.

1 Introduction

Default logic is one of the predominant approaches for nonmonotonic reasoning. Many
research topics related to default logic have been considerably studied including exten-
sions, variations and alternatives [1–3] of Reiter’s original definition [4], computational
issues [5, 6] and so on.

However, one problem in default logic has been neglected in previous research.
That is, how can we deduce a default rule from a default theory? In other words, in
which sense can we say that a default rule is a consequence of agiven default theory?
This problem of rule deduction is of special interests from both theoretical and practical
viewpoints. For instance, we may consider whether we can have a deductive system to
formalize reasoning about default rules, and also implement a nonmonotonic knowl-
edge system for more complex decision making where a decision could be a default
rule. Quite obviously, to achieve such goals, the first fundamental task is that we should
develop a logic or calculus for default rule reasoning.

In this paper, we propose a logical calculus, calleddefault rule calculus(rule cal-
culus for short), to address the problem of rule deduction. We first extend the logic of
here-and-there to define a model-theoretical semantics forrule calculus, and discuss
its relationships to the extension semantics. Then we definean axiom system, which
extends both classical propositional calculus and the intermediate logic G3 (Gödel’s
3-valued logic) [7], and prove its soundness and completeness. We further investigate
some important properties of our system such as substitution and monotonicity, and
prove the essential decision problem complexity. Finally,we discuss how our work can
be applied to various problems such as the extension of generality among default rules
and revision of nonmonotonic knowledge bases.

The reasons why we use the logic of here-and-there are as follows. Firstly, it is well
studied in philosophical logic and it also has a simple axiomatic counterpart, namely G3
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[7]. Secondly, it is proven to be a very useful foundation of answer set programming
[2, 8–10]. As pointed out in [3], answer set programming is a special case of default
logic by restricting the propositional formulas to atoms. Thus, the extended version
of the logic of here-and-there should, analogously, serve as a foundation of default
logic. Thirdly, the logic of here-and-there naturally captures [2, 11] the notion of strong
equivalence [11], which is argued to be the notion of ”real equivalence” among answer
set programs. As a consequence, it will also capture real equivalence among default
rules.

In this paper, we will use general default logic [3] as a basisfor the development of
default rule calculus. Reasons for this are of three aspects: firstly, general default logic
is a generalization of Reiter’s default logic [4], Gelfond et al.’s disjunctive default logic
[1] and Turner’s nested default logic [2], which provides the most generalized default
reasoning in the default logics paradigm; secondly, the syntax of general default logic
is defined as arbitrary compositions of propositional formulas and rule connectives;
finally, its extension semantics is defined in a very simple way as that for answer set
programming [9].

The rest of the paper is organized as follows. In Section 2, webriefly review the syn-
tax and semantics of general default logic, and then define the semantics of rule calcu-
lus. In Section 3, we present an axiom system for rule calculus and prove its soundness
and completeness result. We then study relevant important properties of our axiom sys-
tem for default rule calculus in Section 4. In Section 5, we discuss possible applications
of rule calculus. Finally, in Section 6 we conclude the paperwith some remarks.

2 Rule calculus: syntax and semantics

To begin with, we recall some basic notions of classical propositional logic. The classi-
cal propositional languageL is defined recursively by a setAtom of atoms (or primitive
propositions, variables) and a set of classical connectives⊥, → and¬. Other connec-
tives, such as⊤, ∧, ∨, ↔, are defined as usual. Literals are atoms and their negations.
The satisfaction relation|= is defined as usual. A set of formulas inL is said to be athe-
ory iff it is closed under classical entailment. Moreover, it isinconsistent iff it contains
both a formulaF and¬F , otherwise, it is consistent. LetΓ be a set of formulas, by
Th(Γ ) we denote the theory containing all formulas entailed byΓ . For convenience,
we also use a set of formulasΓ to denote a theoryT if T = Th(Γ ).

The languageR of general default logic [3] is defined uponL by adding a set of
rule connectives⇒, & and | recursively:

R ::= F | R ⇒ R | R & R | R | R,

whereF ∈ L. −R andR1 ⇔ R2 are considered as shorthand ofR ⇒ ⊥ and(R1 ⇒
R2) & (R2 ⇒ R1) respectively. The order of priority for these connectives are

{¬} > {∧,∨} > {→,↔} > {−} > { & , | } > {⇒,⇔}.

Formulas inR are calledrules, whilst formulas inL are calledfacts. A rule baseis
a set of rules. The satisfaction relation|= between a theoryT and a ruleR is defined
recursively as follows:
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– If R is a fact, thenT |= R iff R ∈ T .
– T |= R & S iff T |= R andT |= S;
– T |= R | S iff T |= R or T |= S;
– T |= R ⇒ S iff T 6|= R or T |= S.

Hence, ifT is consistent, thenT |= −R iff T 6|= R. If T is inconsistent, then for every
ruleR, T |= R. We say thatT is amodelof R iff T |= R.

The extension semantics of general default logic defined in [3] is not defined as
the same as Reiter’s original definition [4]. However, it is defined in a reduction-style
similarly to that of answer set programming [9]. Thereductof a ruleR relative to a
theoryT , denoted byRT , is the rule obtained fromR by replacing every maximal
subrule1 of R which is not satisfied byT with ⊥. The reduct of a rule base relative
to a theory is defined as the set of reducts of its rules relative to this theory. A theory
T is said to be anextensionof a rule base∆ iff it is the minimal (in the sense of set
inclusion) theory satisfying∆T .

As shown in [3], Reiter’s default logic [4] in propositionalcase is a special case of
general default logic by restricting the rules to the following form

F & − G1 & . . . & − Gn ⇒ H,

wheren ≥ 0, F , Gi, (1 ≤ i ≤ n) andH are facts. Yet, under the context of Reiter’s
default logic, this form is represented as

F : M(¬G1), . . . , M(¬Gn)

H
.

Similarly, both Gelfond et al.’s disjunctive default logic[1] and Turner’s nested default
logic [2] are also special cases of general default logic.

Here, we adopt Turner’s (Section 7 in [2]) extended notion ofHeyting’s logic of
here-and-there, introduced by Pearce [10] into answer set programming, as the basic
semantics for general default logic. AnHT-interpretationis a pair〈T1, T2〉, whereT1

andT2 are theories such thatT1 ⊆ T2. The satisfaction relation|=2 between an HT-
interpretation〈T1, T2〉 and a ruleR is defined recursively:

– for a factF , 〈T1, T2〉 |= F iff F ∈ T1;
– 〈T1, T2〉 |= R1 & R2 iff 〈T1, T2〉 |= R1 and〈T1, T2〉 |= R2;
– 〈T1, T2〉 |= R1 | R2 iff 〈T1, T2〉 |= R1 or 〈T1, T2〉 |= R2;
– 〈T1, T2〉 |= R1 ⇒ R2 iff

1. 〈T1, T2〉 6|= R1 or 〈T1, T2〉 |= R2, and
2. T2 |= R1 ⇒ R2.

We say that〈T1, T2〉 is anHT-modelof a ruleR iff 〈T1, T2〉 |= R. We say that a rule
base∆ impliesa ruleR, denoted by∆ |= R, iff all HT-models of∆ are also HT-models
of R. It is easy to see that the HT-interpretation〈⊥,⊥〉 is a model of all rules. We say

1 The subrule relation is defined recursively: a)R1 is a subrule ofR1, and b)R1 andR2 are
subrules ofR1 & R2, R1 | R2 andR1 ⇒ R2.

2 For convenience, we overload the notation|= in this paper.
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that a ruleR is a rule contradictioniff 〈⊥,⊥〉 is the only HT-model ofR. We say that
a ruleR is arule tautologyiff every HT-interpretation is an HT-model ofR.

Intuitively, a theoryT is a possible set of information of an agent about the world,
and a ruleR is a description or constraint about the information of the world. T |= R
means that the setT of information obeys (or does not violate) the constraintR; T is an
extension ofR means thatT is one of the possible sets of information can be derived
by giving the only constraintR. Given a rule base∆ and a ruleR, ∆ |= R means that
the set of constraints∆ is more powerful than the constraintR. In other words,R can
be eliminated by giving∆.

Example 1.Consider the notorious bird-fly example. The statement ”birds normally
fly” can be represented as a default rulebird&−¬fly ⇒ fly. Given an instance of bird,
represented as a factbird, by the extension semantics, the only extension of the rule base
{bird & − ¬fly ⇒ fly, bird} is {bird, f ly}. However,fly is not a rule consequence
of the rule base{bird & −¬fly ⇒ fly, bird} since〈{bird}, {bird,¬fly}〉 is an HT-
model of{bird & − ¬fly ⇒ fly, bird} but not an HT model of{bird, f ly}. This
shows a difference between the extension semantics and the HT-semantics.

Similarly, bird & − ¬fly ⇒ fly 6|= bird ⇒ fly. However, one can check that all
HT-models ofbird ⇒ fly are also HT-models ofbird & − ¬fly ⇒ fly. Therefore,
bird ⇒ fly |= bird& −¬fly ⇒ fly. This means that, intuitively, the statement ”birds
normal fly” is strictly weaker than the statement ”birds fly”.

Example 2.Let p1, p2 andp3 be three atoms. Consider the rule base{p1 & − ¬p2 ⇒
p2, p2 & − ¬p3 ⇒ p3}, which has an HT-model〈{p1}, {p1,¬p2}〉. However, this HT-
interpretation is not an HT-model ofp1& −¬p3 ⇒ p3. This shows that{p1&−¬p2 ⇒
p2, p2 & − ¬p3 ⇒ p3} 6|= p1 & − ¬p3 ⇒ p3.

The extension semantics and HT-semantics of general default logic are closely re-
lated.

Proposition 1. Let T1 andT2 be two consistent theories such thatT1 ⊆ T2 andR a
rule.

– T1 |= R iff 〈T1, T1〉 |= R.
– If 〈T1, T2〉 |= R, thenT2 |= R.
– 〈T1, T2〉 |= −R iff T2 |= −R.

Proposition 2. Let∆ be a rule base andF a fact. If∆ |= F , thenF is in all extensions
of ∆.

However, the converse of Proposition 2 does not hold in general. For instance,{p1}
is the unique extension of−p2 ⇒ p1. Thus,p1 is in all extensions of−p2 ⇒ p1.
However,−p2 ⇒ p1 6|= p1 since〈{p2}, {p2}〉 is an HT-model of−p2 ⇒ p1 but not an
HT-model ofp1.

Proposition 3. Let T1 andT2 be two theories such thatT1 ⊆ T2 and∆ a rule base.
〈T1, T2〉 is an HT-model of∆ iff T1 |= ∆T2 .
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Proposition 4. LetT be a theory and∆ a rule base.T is an extension of∆ iff 〈T, T 〉
is an HT-model of∆, and for all theoriesT1 ⊂ T , 〈T1, T 〉 is not an HT-model of∆.

The notion of strong equivalence, introduced by [11] into answer set programming,
plays an important role from both a theoretical and a practical viewpoints. A similar
notion is introduced into default logic in [2]. We say that two rulesR1 andR2 are
strongly equivalent, denoted byR1 ≡ R2, iff for all other rulesR3, R1 & R3 has the
same set of extensions asR2 & R3. Strong equivalence can also be defined in another
way. That is, two rulesR1 andR2 are strongly equivalent iff for all other rulesR3, R3

has the same set of extensions asR3(R1/R2), whereR3(R1/R2) is the rule obtained
from R3 by replacing every occurrence ofR1 in R3 with R2 simultaneously. It is clear
that the notion of strong equivalence can be extended for thecases of rule bases.

In fact, strong equivalence in general default logic can be captured in the logic of
here-and-there.

Proposition 5. LetR1 andR2 be two rules.R1 andR2 are strongly equivalent iff they
have the same set of HT-models in the logic of here-and-there. That is,R1 ≡ R2 iff
|= R1 ⇔ R2.

Since general default logic is both an extension of general logic programming and
nested default logic, Proposition 5 is a generalization of both Proposition 2 in [9] and
Theorem 3 in [2]. As a consequence of Proposition 5, checkingwhether a rule is im-
plied by a rule base can be reduced to checking whether two rule bases are strongly
equivalent.

Corollary 1. Let ∆ be a rule base andR a rule. ∆ |= R iff ∆ ∪ {R} is strongly
equivalent to∆.

Corollary 1 indicates the intuition behind rule deduction,that is, a ruleR is a con-
sequence of a rule base∆ means thatR provides no more information by giving∆. In
other words,R can be eliminated by giving∆.

3 Rule calculus: axiom system

In this section, we propose an axiom system for default rule calculus and prove the
soundness and completeness results.

Axioms The axioms of rule calculus are:
A1 all tautologies in classical propositional logic.
A2 (F1 → F2) ⇒ (F1 ⇒ F2), whereF1 andF2 are two facts.
A3 R1 ⇒ (R2 ⇒ R1).
A4 (R1 ⇒ (R2 ⇒ R3)) ⇒ ((R1 ⇒ R2) ⇒ (R1 ⇒ R3)).
A5 R1 ⇒ (R2 ⇒ (R1 & R2)).
A6 R1 & R2 ⇒ R1; R1 & R2 ⇒ R2.
A7 R1 ⇒ R1 | R2; R2 ⇒ R1 | R2.
A8 (R1 ⇒ R3) ⇒ ((R2 ⇒ R3) ⇒ (R1 | R2 ⇒ R3)).
A9 (R1 ⇒ R2) ⇒ ((R1 ⇒ −R2) ⇒ −R1).
A10 R1 | (R1 ⇒ R2) | − R2.
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Rules The only3 inference rule of rule calculus is
Rule Modus Ponens from R1 andR1 ⇒ R2 to inferR2.

Axiom 1 simply means that all classical tautologies are alsorule tautologies; Axiom 2
is for bridging the gap between facts and rules; Axiom 3-9, together with Rule Modus
Ponens, are generalization of the axiom system of intuitionistic logic [12]; Axiom A10
is the extended version of an additional axiom in the intermediate logic G3. That is,
Axiom 3-10 and Rule Modus Ponens are generalization of the axiom system of G3
[10].

A rule R is said to be aconsequenceof a rule base∆, denoted by∆ ⊢ R, iff there
is a sequence of rulesR1, . . . , Rn such thatRn = R and for eachi, (1 ≤ i ≤ n), either
a) Ri is an instance of axiom, or b)Ri is in ∆, or c) Ri is obtained by an inference
rule from some proceeding rules in this sequence. Such a sequence is called aproof (or
deduction) of R from ∆. rules in∆ are calledpremises. A rule R is said to be arule
theorem, denoted by⊢ R, iff there exists a proof ofR from the empty rule base. We use
∆ 6⊢ R to denote it is not the case that∆ ⊢ R.

As an example, we prove the following rule theorem.

Proposition 6. ⊢ (F1 → F2) ⇒ (F1 ⇒ −¬F2), whereF1 andF2 are two facts.

Proof. We construct a proof as follows:

1. (¬F2 → ⊥) ⇒ (¬F2 ⇒ ⊥) by A2,
2. (F2 ⇒ −¬F2) ⇒ (F1 ⇒ (F2 ⇒ −¬F2)) by A3,
3. F1 ⇒ (F2 ⇒ −¬F2) by 1, 2 and RMP,
4. (F1 ⇒ (F2 ⇒ −¬F2)) ⇒ ((F1 ⇒ F2) ⇒ (F1 ⇒ −¬F2)) by A4,
5. (F1 ⇒ F2) ⇒ (F1 ⇒ −¬F2) by 3, 4 and RMP,
6. ((F1 ⇒ F2) ⇒ ((F1 ⇒ −¬F2)) ⇒ ((F1 → F2) ⇒ ((F1 ⇒ F2) ⇒ (F1 ⇒

−¬F2)))) by A3,
7. (F1 → F2) ⇒ ((F1 ⇒ F2) ⇒ (F1 ⇒ −¬F2)) by 5, 6 and RMP,
8. ((F1 → F2) ⇒ ((F1 ⇒ F2) ⇒ (F1 ⇒ −¬F2))) ⇒ (((F1 → F2) ⇒ (F1 ⇒

F2)) ⇒ ((F1 → F2) ⇒ (F1 ⇒ −¬F2))) by A4,
9. ((F1 → F2) ⇒ (F1 ⇒ F2)) ⇒ ((F1 → F2) ⇒ (F1 ⇒ −¬F2)) by 7, 8 and RMP,

10. (F1 → F2) ⇒ (F1 ⇒ F2) by A2,
11. (F1 → F2) ⇒ (F1 ⇒ −¬F2) by 9, 10 and RMP.

This completes the proof.

A simple property following from the definition of proof of rule calculus is so-called
compactness as follows.

Proposition 7 (Compactness). Let ∆ be a rule base andR a rule such that∆ ⊢ R.
There exists a finite subset∆′ of ∆ such that∆′ ⊢ R.

Proposition 8 (Deduction theorem). Let ∆ be a rule base andR1 andR2 two rules.
∆ ∪ {R1} ⊢ R2 iff ∆ ⊢ R1 ⇒ R2.

3 In fact, the Modus Ponens rule in classical logic is, of course, also an inference rule in rule
calculus. However, since axiom A1 takes all classical tautologies into account, we can omit
the classical Modus Ponens rule here.
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Deduction theorem is a very useful tool for proving the consequence relationships
in rule calculus. Consider the following example.

Example 3.[Example 1 continued] We prove thatbird ⇒ fly ⊢ bird&−¬fly ⇒ fly.
By deduction theorem, we only need to prove{bird ⇒ fly, bird & − ¬fly} ⊢ fly.
This is quite simple from A6 and RMP.

Proposition 9. ⊢ (R1 ⇒ R2) ⇒ (−R2 ⇒ −R1).

Proof. We construct a proof of−R1 from {R1 ⇒ R2,−R2}.

1. −R2 ⇒ (R1 ⇒ −R2) by A3,
2. −R2 by premises,
3. R1 ⇒ −R2 by 1, 2 and RMP,
4. (R1 ⇒ R2) ⇒ ((R1 ⇒ −R2) ⇒ −R1) by A9,
5. R1 ⇒ R2 by premises,
6. (R1 ⇒ −R2) ⇒ −R1 by 4, 5 and RMP,
7. −R1 by 3, 6 and RMP.

Thus,{R1 ⇒ R2,−R2} ⊢ −R1. By deduction theorem,{R1 ⇒ R2} ⊢ −R2 ⇒ −R1.
Again, by deduction theorem,⊢ (R1 ⇒ R2) ⇒ (−R2 ⇒ −R1).

Proposition 10. LetF , G andQ be three facts.

1. ⊢ F ⇒ −¬F .
2. ⊢ (F & G) ⇔ (F ∧ G).
3. ⊢ (−F | − G) ⇔ (¬F ∨ ¬G).
4. ⊢ (F ∧ Q → G) ⇒ (F & − G ⇒ −Q).
5. ⊢ (F → G) ⇒ (−G ⇒ −F ).

Theorem 1 (Soundness and completeness). Let R be a rule.R is a rule tautology iff
R is a rule theorem. That is,|= R iff ⊢ R.

Proof. ”soundness:” We first show that all instances of axioms are rule tautologies. As
an example, we only present the proofs of A2 and A10 here. Let〈T1, T2〉 be an HT-
interpretation other than〈⊥,⊥〉.

A2 Assume that〈T1, T2〉 is not an HT-model of(F1 → F2) ⇒ (F1 ⇒ F2). Then,
there are two cases. Case 1:〈T1, T2〉 |= F1 → F2 and〈T1, T2〉 6|= F1 ⇒ F2. That
is, T1 |= F1 → F2 and a)〈T1, T2〉 |= F1 and〈T1, T2〉 6|= F2 or b)T2 6|= F1 ⇒ F2.
Thus,T1 |= F1 → F2 and a)T1 |= F1 andT1 6|= F2 or b) T2 |= F1 andT2 6|= F2.
Whichever the case is, it leads to a contradiction. Case 2:T2 6|= (F1 → F2) ⇒
(F1 ⇒ F2). Then,T2 |= F1 → F2 andT2 6|= F1 ⇒ F2. That is,T2 |= F1 → F2

andT2 |= F1 andT2 6|= F2, a contradiction.
A10 Assume that〈T1, T2〉 is not an HT-model ofR1 | (R1 ⇒ R2) | − R2. Then,

〈T1, T2〉 6|= R1 and 〈T1, T2〉 6|= R1 ⇒ R2. ThereforeT2 6|= R1 ⇒ R2. Thus,
T2 6|= R2. However,〈T1, T2〉 6|= −R2. Thus, By Proposition 1,T2 6|= −R2, a
contradiction.
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We then show that all inferences rules preserve rule tautologies. Suppose that bothR1

andR1 ⇒ R2 are rule tautologies. Given an HT-interpretation〈T1, T2〉, we have that
〈T1, T2〉 |= R1 and〈T1, T2〉 |= R1 ⇒ R2. Thus,〈T1, T2〉 |= R2. This shows thatR2 is
also a rule tautology. Hence, soundness holds.

”completeness:” As recently shown in [8], each formula in the logic of here-and-
there is equivalent to a set of formulas of the following form:

p1 ∧ . . . ∧ pn ∧ ¬pn+1 ∧ . . . ∧ ¬pm → pm+1 ∨ . . . ∨ pk ∨ ¬pk+1 ∨ . . . ∨ ¬pl,

wherepi, (1 ≤ i ≤ l) are atoms. A similar result for rule calculus can be proved inthe
same way. That is, each rule is equivalent to a set of rules of the following form:

F1 & . . . &Fn & −Fn+1 & . . . & −Fm ⇒ Fm+1 | . . . |Fk | −Fk+1 | . . . | −Fl, (1)

whereFi, (1 ≤ i ≤ l) are facts.
Thus, we only need to prove that for each ruleR of form (1), if |= R, then⊢ R. For

convenience, we assume that

R = F1 & . . . & Fn & − G1 & . . . & − Gm ⇒ P1 | . . . | Pk | − Q1 | . . . | − Ql.

Let F =
∧

1≤i≤n Fi andQ =
∧

1≤i≤l Qi Then, one of the following statements must
hold.

1. There existsi, (1 ≤ i ≤ k) such thatF → Pi is a classical tautology.
2. F → ¬Q is a classical tautology.
3. There existsj, (1 ≤ j ≤ m) such that(F ∧ Q) → Gj is a classical tautology.

Suppose otherwise, then there exists a propositional assignmentπ0 such thatπ0 |= F ∧
Q; there exists a propositional assignmentπi, (1 ≤ i ≤ k) such thatπi |= F∧¬Pi; there
exists a propositional assignmentπ′

j , (1 ≤ i ≤ m) such thatπ′
j |= F ∧Q∧¬Gj . LetT1

be the theory such that the set of its models is{π0, πi, π
′
j , (1 ≤ i ≤ k), (1 ≤ j ≤ l)},

andT2 be the theory such that the set of its models is{π′
j, (1 ≤ j ≤ l)}. It is easy to

check that〈T1, T2〉 is not an HT-model ofR, a contradiction.
Thus, one of the three previous statements holds. Hence,R can be proved according

to axioms and Proposition 6, Proposition 9 and Proposition 10. As an example, we prove
the third case. Without loss of generality, suppose that(F ∧ Q) → G1 is a classical
tautology. Then, by point 4 in Proposition 10,F & − G1 ⇒ −Q is a rule tautology.
Then, by point 2 and point 3 in Proposition 10,F1& . . . &Fn&−G1 ⇒ −Q1 | . . . |−Ql

is a rule tautology. By A6 and A7,R is a rule tautology.

From compactness, deduction theorem and soundness and completeness, we have
the following result.

Corollary 2. Let ∆ be a rule base andR a rule. R is implied by∆ iff R is a conse-
quence of∆. That is,∆ |= R iff ∆ ⊢ R.
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4 Other properties

In this section, we discuss some other important propertiesof rule calculus.
From Proposition 10, one may claim that rule connectives andcorresponding clas-

sical connectives play the same roles to some extent. However, this is not the case. For
instance,6⊢ (F |G) ⇔ (F ∨G), whereF andG are two facts. As another example, from
A2, ⊢ (F → G) ⇒ (F ⇒ G). However,6⊢ (F ⇒ G) ⇒ (F → G). Consequently,
6⊢ −F ⇒ ¬F although⊢ ¬F ⇒ −F .

In fact, rule calculus is more like the intermediate logic G3. It is clear that the former
is an extension of the latter. Hence, theorems not in G3 are not rule theorems in rule
calculus. For example,R | − R is not a rule theorem. On the other hand, theorems in
G3 can be extended for rule calculus. For example, the following property holds.

Proposition 11. LetR1, R2, R3 andR4 be four rules.

1. {R1 ⇒ R2, R2 ⇒ R3} ⊢ R1 ⇒ R3.
2. {R1 ⇒ R2, R3 ⇒ R4} ⊢ R1 | R3 ⇒ R2 | R4.
3. R1 ⇒ −− R1.

Proposition 12. LetR be a theorem in G3 composed from a set of atomsP = {p1, . . . , pn}
and∆ = {Ri, (1 ≤ i ≤ n)} are n rules associated with eachpi. Then,R(P/∆) is a
rule theorem, whereR(P/∆) is the rule obtained fromR by replacing every occurrence
of pi, (1 ≤ i ≤ n) with correspondingRi simultaneously.

Proposition 13. LetF1 andF2 be two facts.F1 | F2 ⊢ F1 ∨ F2.

However,F1 ∨ F2 6⊢ F1 | F2. For example,〈{F1 ∨ F2}, {F1 ∨ F2}〉 is an HT-model of
F1 ∨ F2 but not an HT-model ofF1 | F2.

Proposition 14 (Substitution). Let R be a rule theorem andR1 and R2 two rules.
R(R1/R2), the rule obtained fromR by replacing every occurrence ofR1 with R2

simultaneously, is a rule theorem as well.

Proposition 15. LetF1, F2 andF3 be three facts.{F1 ⇒ F2, F2 & − ¬F3 ⇒ F3} ⊢
F1 & − ¬F3 ⇒ F3.

However,{F2 ⇒ F3, F1&−¬F2 ⇒ F2} 6⊢ F1&−¬F3 ⇒ F3 since〈{p1}, {p1∧¬p2}〉
is an HT-models of{p2 ⇒ p3, p1&−¬p2 ⇒ p2} but not an HT-models ofp1&−¬p3 ⇒
p3. In addition, as shown in Example 2,{F1 & − ¬F2 ⇒ F2, F2 & − ¬F3 ⇒ F3} 6⊢
F1 & − ¬F3 ⇒ F3.

Interestingly, rule calculus is monotonic although the extension semantics of default
logic is dealing with nonmonotonicity.

Proposition 16 (Monotonicity). LetR be a rule and∆ and∆′ are two rule bases such
that∆ ⊆ ∆′. If ∆ ⊢ R, then∆′ ⊢ R.

Theorem 2 (Complexity). Checking whether a ruleR has at least one HT-model is
NP complete.
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Proof. Hardness is obvious since a fact is satisfiable iff it has at least one HT-model.
For membership, we first prove a lemma by induction. Given twoHT-interpretations
〈T1, T2〉 and〈T ′

1, T
′
2〉 and a set of factsΓ , if for all F ∈ Γ , T1 |= F iff T ′

1 |= F , and so
doT2 andT ′

2, then for all rulesR composed fromΓ and rule connectives,〈T1, T2〉 |= R
iff 〈T ′

1, T
′
2〉 |= R.

Suppose thatR is composed from the set of factsΓ = {F1, . . . , Fn} and〈T1, T2〉 |=
R. Without loss of generality, suppose thatT1 |= Fi, (1 ≤ i ≤ m) andT1 6|= Fi, (m <
i ≤ n). Therefore, there exists a propositional assignmentπi, (m < i ≤ n) such that
πi |=

∧
1≤j≤m Fj ∧¬Fi. LetT ′

1 be the theory such that its models areπi, (m < i ≤ n).
It is easy to see thatT1 andT ′

1 agree the same onΓ . We can constructT ′
2 in the same

way. We have thatT ′
1 ⊆ T ′

2. Therefore〈T ′
1, T

′
2〉 |= R. This shows that if a ruleR has

a model, then it has a model which can be represented polynomially. It follows that
checking whether a ruleR has at least one HT-model is in NP.

It is well known that most of the decision problems in defaultlogics lie on the sec-
ond level of polynomial hierarchy [6], even restricted to some special subclasses [5].
Surprisingly, although rule calculus seems more complicated than others such as skep-
tical and credulous reasoning, its complexity is lower thanthem according to Theorem
2. This draws an opposite conclusion. That is, the problem ofrule calculus is, indeed,
simpler than other reasoning tasks of default logic. However, this does not mean that
the former is weaker than the latter since they are dealing with different reasoning tasks
of default rules.

5 Applications

Since the notion of rule deduction is an extension of deduction in propositional calculus,
many propositional logic based deductive reasoning tasks can be lifted to corresponding
cases in rule calculus. In this section, we briefly discuss three applications, which seem
to be hard to deal with in default logic on their own. However,by using rule calculus,
these problems can be easily solved. Due to a space limit, we only outline the basic
ideas here.

Irrelevance in default logic

As pointed by Lang et al. [13],irrelevanceis an important notion in propositional logic.
According to Lang et al.’s definition, a propositional formulaF is irrelevantto a setV of
atoms iff there exists another formulaG such thatF is equivalent toG andAtom(G)∩
V = ∅, whereAtom(G) is the set of atoms appeared inG. The notion of irrelevance in
rule calculus can be defined in a similar way. That is, a ruleR1 is irrelevantto a setV of
atoms iff there exists another ruleR2 such that|= R1 ⇔ R2 andAtom(R2) ∩ V = ∅,
whereAtom(R2) is the set of atoms occurred inR2.

Having defined the notion of irrelevance in rule calculus, wecan define other related
notions such as forgetting in a similar way as shown in [13].

Generality among default rules

The concept of generality is a foundational basis of inductive logic programming [14,
15] - a subfield of machine learning and has been successfullyapplied to some real
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domains. Inductive logic programming started from propositional logic [14] but then
has focused on Horn clauses (namely logic programs) [15].

In propositional logic, the generality relationships between two formulas can be
defined in a simple way as shown in [14]. That is, a formulaF1 is said to bemore
generalthan a formulaF2 iff F1 |= F2 andF2 6|= F1. We can lift this notion to the
case between two rules. A ruleR1 is said to bemore generalthan a formulaR2 iff
R1 |= R2 andR2 6|= R1. Moreover, this notion can be easily extended to the cases with
a background rule base. A ruleR1 is said to bemore generalthan a ruleR2 relative
to a rule base∆ iff ∆ ∪ {R1} |= R2 and∆ ∪ {R2} 6|= R1. It is obvious that this
definition is a generalization of the definition of generality in propositional calculus
since all propositional formulas are also rules.

Inoue and Sakama [16] introduced several kinds of generality relationship between
default theories. Although their definitions are based on disjunctive default logic, these
can be easily extended to general default logic. We writeExt(R) to denote the set of
extensions of a ruleR. Let R1 andR2 be two rules, according to Inoue and Sakama’s
definitions,R1 is said to bemore♯-generalthanR2 iff for all T1 ∈ Ext(R1), there
existsT2 ∈ Ext(R2) such thatT2 ⊆ T1; R1 is said to bemore♭-generalthanR2 iff
for all T2 ∈ Ext(R2), there existsT1 ∈ Ext(R1) such thatT2 ⊆ T1; R1 is said to
bestrongly more♯-generalthanR2 iff for all rules R3 R1 & R3 is more♯-general than
R2 & R3; R1 is said to bestrongly more♭-generalthanR2 iff for all rules R3 R1 & R3

is more♭-general thanR2 & R3. However, the cases relative to a background default
theory were not considered in their approach.

Our definition of generality does not coincide with any of these notions. For in-
stance, letp1 andp2 be two atoms. We have that⊤ is both♯-general and♭-general than
−p1 but the former is not more general than the latter in our definition. Meanwhile,
p1 ∧ p2 is more general thanp1 in our definition but the former is neither strongly more
♯-general nor strongly♭-general than the latter. One major difference between these two
approaches is that Inoue and Sakama’s notions are defined based on the sets of exten-
sions of default theories. However, two rules sharing the same set of extensions may
play completely different roles in rule calculus.

Revising default rule bases

Belief revision has been an important topic in solving information conflict in reasoning
about agents. In most existing approaches and systems, an agent’s knowledge base is
usually represented by a set of classical propositional formulas, then various revision
methods have been developed by researchers to solve the inconsistency by revising a
knowledge base by a new piece of information.

Under the framework of rule calculus, this work can be generalized to nonmonotonic
knowledge base revision. That is, in our setting, each agent’s knowledge is represented
as a rule base, and the problem is how to revise this rule base by giving a new default
rule.

We may specify a formulation of rule base revision by generalizing approaches for
propositional belief revision, for instance, the WIDTIO approach [17]. Given a rule
base∆ and a ruleR, we say that∆′ is a maximal subset of∆ consistent withR iff
a) ∆′ ⊆ ∆, b) ∆′ ∪ {R} is not a rule contradiction, and c) there does not exist∆′′
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satisfying the above two conditions and∆′ ⊂ ∆′′ ⊆ ∆. The rule base revision operator
◦ is defined as∆◦R =

⋂
∆′∪{R}. This revision operator also satisfies the well-known

AGM postulates.

6 Conclusion

In this paper, we extend the logic of here-and-there as a general semantics for default
rules. Meanwhile, we propose a corresponding axiom system for rule calculus and prove
the soundness and completeness theorem (see Theorem 1). We also discuss other prop-
erties in rule calculus, including complexity issues (see Theorem 2).

The notion of strong equivalence in default logic can be directly captured in rule cal-
culus (See Corollary 1). Corollary 1 also indicates the intuition behind rule deduction,
that is, a ruleR is a consequence of a rule base∆ means thatR provides no more in-
formation by giving∆. In other words,R can be eliminated by giving∆. On the other
hand, given the fact that answer set programming is a specialcase of default logic,
our approach also shows that the logic of here-and-there andits axiomatic counterpart
G3 can capture the consequence relationships among answer set programs. In fact, re-
stricted to answer set programs (i.e., facts are atoms instead of arbitrary propositional
formulas), rule calculus coincides with the notion of SE-consequence [18, 19].

Rule calculus is an extension of propositional calculus andalso an extension of the
intermediate logic G3 [7] in the sense that the connectives in G3 are represented as rule
connectives. It can also be considered as an extended logic of formalizing normality
[20] since the sentence ”A normally impliesB” can be represented asA& −¬B ⇒ B
as suggested by Reiter [4].

Rule calculus is different from conditional logic [21] although both of them intro-
duce new connectives into propositional calculus. There are two syntactic differences.
First, conditional logic only introduces a conditional connective>. Second, whereas
conditional logic allows arbitrary compositions of atoms and connectives including>,
in most cases, it uses> as a lower level connective, whilst in rule calculus, classical
connectives are at the lower level. Certainly, the axiom systems and semantics of these
two logics are basically dissimilar. For instance, the conditional connective> is intu-
itively stronger than→ in conditional logic, whilst the rule implication⇒ is, to some
extent, weaker than→ in rule calculus.

Another related work is so-called proof theory of default logic [22, 23], which aims
to define a proof-theoretical system for determining whether a propositional formula is
in all (or some) extensions of a default theory. It differs from rule calculus in several
aspects. Firstly, proof theory of default logic is operating on the level of extension se-
mantics, whilst rule calculus is focused on the here-and-there semantics. Secondly, The
consequence concerned in rule calculus is, in general, default rules instead of proposi-
tional formulas. Finally, even restricted to the cases of facts, as we mentioned earlier
(See Proposition 2), these two systems do not coincide with each other.
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