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Abstract. We consider the problem of how a default rule can be deduaed fr
a default theory. For this purpose, we propose an axiom syateich precisely
captures the deductive reasoning about default rules. \0¥e tat our axiomatic
system is sound and complete under the semantics of thedbbare-and-there.
We also study other important properties such as substit@nd monotonicity
of our system and prove the essential decision problem @1itypl Finally, we
discuss applications of our default rule calculus to vasiproblems.

1 Introduction

Default logic is one of the predominant approaches for namstanic reasoning. Many
research topics related to default logic have been coraditiestudied including exten-
sions, variations and alternatives [1-3] of Reiter’s ar@idefinition [4], computational
issues [5, 6] and so on.

However, one problem in default logic has been neglected-éwipus research.
That is, how can we deduce a default rule from a default tHetmyother words, in
which sense can we say that a default rule is a consequenagividradefault theory?
This problem of rule deduction is of special interests frasthitheoretical and practical
viewpoints. For instance, we may consider whether we caa haleductive system to
formalize reasoning about default rules, and also impléragamonmonotonic knowl-
edge system for more complex decision making where a decciald be a default
rule. Quite obviously, to achieve such goals, the first funelatal task is that we should
develop a logic or calculus for default rule reasoning.

In this paper, we propose a logical calculus, catbedault rule calculugrule cal-
culus for short), to address the problem of rule deductioa fivgt extend the logic of
here-and-there to define a model-theoretical semanticeufercalculus, and discuss
its relationships to the extension semantics. Then we definexiom system, which
extends both classical propositional calculus and thermgdiate logic G3 (Godel's
3-valued logic) [7], and prove its soundness and complstenide further investigate
some important properties of our system such as substitatiml monotonicity, and
prove the essential decision problem complexity. Finally,discuss how our work can
be applied to various problems such as the extension of gityeamong default rules
and revision of nonmonotonic knowledge bases.

The reasons why we use the logic of here-and-there are asviolFirstly, it is well
studied in philosophical logic and it also has a simple axitiacounterpart, namely G3



[7]. Secondly, it is proven to be a very useful foundation néwer set programming
[2,8-10]. As pointed out in [3], answer set programming ipactal case of default
logic by restricting the propositional formulas to atom&us, the extended version
of the logic of here-and-there should, analogously, sesr@ &oundation of default
logic. Thirdly, the logic of here-and-there naturally aats [2, 11] the notion of strong
equivalence [11], which is argued to be the notion of "realieglence” among answer
set programs. As a consequence, it will also capture realagnce among default
rules.

In this paper, we will use general default logic [3] as a b&mishe development of
default rule calculus. Reasons for this are of three aspisty, general default logic
is a generalization of Reiter’s default logic [4], Gelfortché’s disjunctive default logic
[1] and Turner’s nested default logic [2], which provides thost generalized default
reasoning in the default logics paradigm; secondly, theasyaf general default logic
is defined as arbitrary compositions of propositional folasuand rule connectives;
finally, its extension semantics is defined in a very simplg as that for answer set
programming [9].

The rest of the paper is organized as follows. In Section Zynedly review the syn-
tax and semantics of general default logic, and then defme¢mantics of rule calcu-
lus. In Section 3, we present an axiom system for rule cafcaihd prove its soundness
and completeness result. We then study relevant importapepties of our axiom sys-
tem for default rule calculus in Section 4. In Section 5, wsedss possible applications
of rule calculus. Finally, in Section 6 we conclude the papi#h some remarks.

2 Rulecalculus: syntax and semantics

To begin with, we recall some basic notions of classical psitfpnal logic. The classi-
cal propositional languageis defined recursively by a sdttom of atoms (or primitive
propositions, variables) and a set of classical connextive— and—. Other connec-
tives, such as’, A, V, <, are defined as usual. Literals are atoms and their negations
The satisfaction relatiop- is defined as usual. A set of formulasdris said to be ghe-
ory iff itis closed under classical entailment. Moreover, iinsonsistent iff it contains
both a formulaF' and—F', otherwise, it is consistent. Ldt be a set of formulas, by
Th(I") we denote the theory containing all formulas entailed’byFor convenience,
we also use a set of formuldsto denote a theory' if T'= Th(I").

The languag& of general default logic [3] is defined upahby adding a set of
rule connectivess, & and | recursively:

R:=F|R=R|R&R| R|R,

whereF € L. —RandR; < R, are considered as shorthand®f= | and(R; =
Rs) & (R2 = R;) respectively. The order of priority for these connectives a

> Vi = el > {1 > {& [ > {= )

Formulas inR are calledrules whilst formulas inC are calledfacts A rule baseis
a set of rules. The satisfaction relatienbetween a theor§’ and a ruleR is defined
recursively as follows:



— If Risafact, the = Riff ReT.
- TER&SIff TE RandT E S;

- TER|SffTERoOTES,

- TER=SIffTERorTES.

Hence, ifT is consistent, thef = —Riff T [~ R. If T is inconsistent, then for every
rule R, T = R. We say thaf" is amodelof R iff T = R.

The extension semantics of general default logic define@jns[ not defined as
the same as Reiter’s original definition [4]. However, it &fided in a reduction-style
similarly to that of answer set programming [9]. Trezluctof a rule R relative to a
theory T', denoted byR”, is the rule obtained fronk by replacing every maximal
subrulé of R which is not satisfied by with L. The reduct of a rule base relative
to a theory is defined as the set of reducts of its rules relativthis theory. A theory
T is said to be amextensiorof a rule baseA iff it is the minimal (in the sense of set
inclusion) theory satisfying\”'.

As shown in [3], Reiter’s default logic [4] in propositionedse is a special case of
general default logic by restricting the rules to the folilog/form

F& -G & ... & -G, = H,

wheren > 0, F, G;, (1 < i < n) andH are facts. Yet, under the context of Reiter’s
default logic, this form is represented as

F:M(=Gh), ..., M(=G,)
- .

Similarly, both Gelfond et al.’s disjunctive default lodi] and Turner’s nested default
logic [2] are also special cases of general default logic.

Here, we adopt Turner’s (Section 7 in [2]) extended notiotHefting’s logic of
here-and-there, introduced by Pearce [10] into answerregfr@amming, as the basic
semantics for general default logic. MiT-interpretationis a pair(71, 7>), whereT}
andT; are theories such thdt; C T5. The satisfaction relatios=? between an HT-
interpretation7y, 7>) and a ruleR is defined recursively:

— forafactF, (T1,Ty) E Fiff F € Ty;

- <T1,T2> ): R & Ry iff <T1,T2> ': Ry and<T1,T2> ): Rs;
Tl,T2> ': Ry |R2 iff <T1,T2> ': R, or <T1,T2> ': Rs;
Tl,T2> ': Ri = Ry iff

1. <T1,T2> l;ﬁ R, or <T1,T2> ': R, and

2. TS ): R = Rs.

-
-

We say thatTy,T3) is anHT-modelof a rule R iff (T1,7>) &= R. We say that a rule
baseA impliesa ruleR, denoted byA = R, iff all HT-models of A are also HT-models
of R. Itis easy to see that the HT-interpretatign, L) is a model of all rules. We say

! The subrule relation is defined recursively: ) is a subrule ofR;, and b)R; and R, are
subrules ofR; & R», R1 | R2 andR1 = Ra.
2 For convenience, we overload the notatjerin this paper.



that a ruleR is arule contradictioniff (L, 1) is the only HT-model ofR. We say that
aruleR is arule tautologyiff every HT-interpretation is an HT-model d.

Intuitively, a theoryT" is a possible set of information of an agent about the world,
and a ruleR is a description or constraint about the information of treeld: T |= R
means that the sé&t of information obeys (or does not violate) the constr@nf’ is an
extension ofR means thaf’ is one of the possible sets of information can be derived
by giving the only constraink. Given a rule base\ and a ruleR, A = R means that
the set of constraintd is more powerful than the constraifit In other words,R can
be eliminated by givingA.

Example 1.Consider the notorious bird-fly example. The statementd%imormally
fly” can be represented as a default rbiled& — - fly = fly. Given aninstance of bird,
represented as a fdgt-d, by the extension semantics, the only extension of the mge b
{bird & — —fly = fly,bird} is {bird, fly}. However,fly is not a rule consequence
of the rule basébird & — —fly = fly, bird} since({bird}, {bird, - fly})is an HT-
model of {bird & — —fly = fly,bird} but not an HT model of bird, fly}. This
shows a difference between the extension semantics andtserdantics.

Similarly, bird & — —fly = fly [~ bird = fly. However, one can check that all
HT-models ofbird = fly are also HT-models dfird & — —fly = fly. Therefore,
bird = fly E bird& ——fly = fly. This means that, intuitively, the statement "birds
normal fly” is strictly weaker than the statement "birds fly”.

Example 2.Let p;1, p2 andps be three atoms. Consider the rule bége& — —ps =
p2,p2 & — —p3 = p3}, which has an HT-modelp; }, {p1, —p2}). However, this HT-
interpretation is not an HT-model pf & — —p3 = ps. This shows tha{p; & — —ps =
p2,p2 & — —p3 = p3} Ep1 & — —p3 = pa.

The extension semantics and HT-semantics of general dédgid are closely re-
lated.

Proposition 1. LetTy and T, be two consistent theories such thiat C 7> and R a
rule.

— Ty & Riff (T1,T1) |= R.
— If <T1, T2> ': R, thenT2 ': R.
— (T, Ts) = —Riff T = —R.

Proposition 2. Let A be arule base andl’ a fact. IfA = F, thenF is in all extensions
of A.

However, the converse of Proposition 2 does not hold in gerfeor instance{p; }
is the unique extension ofps = p;. Thus,p; is in all extensions of-p; = p;.
However,—ps = p1 [~ p1 since{{pa}, {p=}) is an HT-model of-py = p; but not an
HT-model ofp;.

Proposition 3. LetT; andT5, be two theories such thdy C 75 and A a rule base.
(Ty,T,) is an HT-model ofA iff T = ATz,



Proposition 4. LetT be a theory andA a rule baseT is an extension ofA iff (T, T")
is an HT-model ofA, and for all theoriesl; C T, (T1,T) is not an HT-model ofA.

The notion of strong equivalence, introduced by [11] intevaer set programming,
plays an important role from both a theoretical and a prattiewpoints. A similar
notion is introduced into default logic in [2]. We say thatotwules R; and R, are
strongly equivalentdenoted byR, = R, iff for all other rulesR3, R, & R3 has the
same set of extensions & & Rj3. Strong equivalence can also be defined in another
way. That is, two rules?; and R, are strongly equivalent iff for all other ruld?s, R3
has the same set of extensionsfag R/ Rz2), whereR3(R1/Rs) is the rule obtained
from R3 by replacing every occurrence & in R3 with R, simultaneously. It is clear
that the notion of strong equivalence can be extended fozdbes of rule bases.

In fact, strong equivalence in general default logic can dgetered in the logic of
here-and-there.

Proposition 5. Let R, and R be two rulesR; and R, are strongly equivalent iff they
have the same set of HT-models in the logic of here-and-théat is,R; = R; iff
': R1 < Rs.

Since general default logic is both an extension of genematIprogramming and
nested default logic, Proposition 5 is a generalizationathiProposition 2 in [9] and
Theorem 3 in [2]. As a consequence of Proposition 5, checkingther a rule is im-
plied by a rule base can be reduced to checking whether tveobages are strongly
equivalent.

Corallary 1. Let A be a rule base and? a rule. A E R iff AU {R} is strongly
equivalent taA.

Corollary 1 indicates the intuition behind rule deductithrat is, a ruleR is a con-
sequence of a rule bagkmeans thaR provides no more information by giving. In
other words,R can be eliminated by giving\.

3 Rulecalculus: axiom system

In this section, we propose an axiom system for default raleutus and prove the
soundness and completeness results.

Axioms The axioms of rule calculus are:
A1 all tautologies in classical propositional logic.
A2 (Fy — F3) = (Fy = F3), whereF; andF; are two facts.
A3 Ry = (R2 = Rl)
A4 (Rl = (R2 = Rg)) = ((Rl = Rg) = (Rl = R3))
A5 R, = (R2 = (Rl & Rg))
A6 Rl&RQ :>R1;R1&R2 = Rs.
A7 R1:>R1|R2;R2:>R1|R2.
A8 (Rl = Rg) = ((R2 = Rg) = (Rl | Ry = Rg))
A9 (Rl = RQ) = ((Rl = —RQ) = —Rl).
Al10 R, | (Rl = RQ) | — Rs.
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Rules The only? inference rule of rule calculus is
Rule Modus Ponens from R; andR;, = R to infer Rs.

Axiom 1 simply means that all classical tautologies are alée tautologies; Axiom 2
is for bridging the gap between facts and rules; Axiom 3-§etber with Rule Modus
Ponens, are generalization of the axiom system of intugtanlogic [12]; Axiom A10
is the extended version of an additional axiom in the intetiaie logic G3. That is,
Axiom 3-10 and Rule Modus Ponens are generalization of themasystem of G3
[10].

Arule R is said to be @onsequencef a rule base), denoted byA + R, iff there
is a sequence of rulds,, ..., R, suchthat?, = R and for eachi, (1 < i < n), either
a) R; is an instance of axiom, or b}, is in A, or c) R; is obtained by an inference
rule from some proceeding rules in this sequence. Such @requs called aroof (or
deduction of R from A. rules in A are calledoremisesA rule R is said to be aule
theoremdenoted by- R, iff there exists a proof o from the empty rule base. We use
A/ R to denote it is not the case that- R.

As an example, we prove the following rule theorem.

Proposition 6. + (Fy — Fy) = (Fy = ——Fy), whereF; and F;, are two facts.
Proof. We construct a proof as follows:

(-Fy — 1) = (-F, = 1) by A2,
(FQ = —ﬁFg) = (Fl = (FQ = —ﬁFg)) by A3,
Fy, = (F, = ——Fy) by 1, 2 and RMP,
(Fl = (FQ = —_‘FQ)) = ((Fl = FQ) = (Fl = —_‘FQ)) by A4,
(Fl = Fg) = (Fl = —ﬁFg) by 3,4 and RMP,
((Fl = Fg) = ((Fl = —ﬁFg)) = ((Fl — FQ) = ((Fl = Fg) = (F1 =
—-F,)))) by A3,
(Fy - Fy) = (Fy = F,) = (F1 = ——F,)) by 5, 6 and RMP,
((Fl — Fg) = ((Fl = FQ) = (Fl = —ﬁFg))) = (((Fl — Fg) = (F1 =
Fg)) = ((Fl — FQ) = (F1 = —ﬁFQ))) by A4,
9. ((Fl — FQ) = (F1 = FQ)) = ((Fl — FQ) = (F1 = —ﬁFQ)) by 7, 8 and RMP,
10. (F; — F») = (F1 = F») by A2,
11. (Fy; — F») = (Fy = ——F3) by 9, 10 and RMP.

ourwNE

© ~

This completes the proof.

A simple property following from the definition of proof of leicalculus is so-called
compactness as follows.

Proposition 7 (Compactness). Let A be a rule base and a rule such thatd + R.
There exists a finite subs&t of A such thatd’ - R.

Proposition 8 (Deduction theorem). Let A be a rule base and; and R, two rules.
AU{Rl} FRyiff AF Ry = Rs.

3 In fact, the Modus Ponens rule in classical logic is, of ceurdso an inference rule in rule
calculus. However, since axiom Al takes all classical fagies into account, we can omit
the classical Modus Ponens rule here.



Deduction theorem is a very useful tool for proving the capusmce relationships
in rule calculus. Consider the following example.

Example 3.[Example 1 continued] We prove thatd = fly - bird& ——fly = fly.
By deduction theorem, we only need to provérd = fly,bird & — —fly} b fly.
This is quite simple from A6 and RMP.

Proposition 9. + (R; = Rs) = (—Rs = —Ry).
Proof. We construct a proof of R; from {R; = Ra, —R2}.

—Ry = (Rl = —Rg) by A3,

—Rs by premises,

R1 = —Rs by 1, 2 and RMP,

(Rl = Rg) = ((Rl = —Rg) = —Rl) by A9,
Ry = Ry by premises,

(R1 = —R3) = —R; by 4, 5and RMP,

—R; by 3, 6 and RMP.

ok wNE

N

Thus,{R; = R2, —R2} F —R;. By deductiontheorer{,R; = Rz} + —R2 = —R;.
Again, by deduction theorert, (R; = Rs) = (—Rs = —Ry).

Proposition 10. Let F', G and @ be three facts.

FF = —-F.

F(F&G)< (FAG).

F(-F| —G) & (-FV-QG).
F(FAQ—G)=(F& —G=-Q).
F(F—-G) = (-G= —F).

arODdE

Theorem 1 (Soundness and completeness). Let R be a rule.R is a rule tautology iff
Ris arule theorem. That i$= Riff - R.

Proof. "soundness:” We first show that all instances of axioms alestewtologies. As
an example, we only present the proofs of A2 and A10 here{TgtT;) be an HT-
interpretation other thafiL, 1 ).

A2 Assume tha{Ty,T») is not an HT-model of i, — F») = (F; = F5). Then,
there are two cases. Case(Ti, T») = F1 — F> and(Ty,T5) = F1 = F>. That
iS,T1 ': F, — Fy and a)<T1,T2> ': Fy and<T1,T2> l;é Fsor b)TQ l;é Fiy = Fs.
ThUS,T1 ): Fy — Iy and a)T1 ): Fy andT1 l# Fsor b) TS ): Fy andTg l# Fs.
Whichever the case is, it leads to a contradiction. Casg, 3£ (Fy — F) =
(Fl = FQ) Then,T2 ': Fi — Fy andTQ l;é Fy = Fs. That iS,TQ ': Fy — Fy
andT, = F; andT; £ Fy, a contradiction.

A10 Assume thatTy,T5) is not an HT-model ofR; | (R; = Rs) | — Ro. Then,
<T1,T2> |7é Ry and <T1,T2> l# R1 = Rs. ThereforeTg |7é R = Rs. Thus,
T> ¥ Rs. However,(Ty,T2) & —Rs. Thus, By Proposition 175 [~ —R», a
contradiction.



We then show that all inferences rules preserve rule tagigso Suppose that botk,
andR; = R» are rule tautologies. Given an HT-interpretatidn, 7»), we have that
<T1,T2> ': Ry and<T1,T2> ': Ry = R,. ThUS,<T1, T2> ': R. This shows thaR2 is
also a rule tautology. Hence, soundness holds.

"completeness:” As recently shown in [8], each formula ie thgic of here-and-
there is equivalent to a set of formulas of the following form

PIN . AP APl Ao oA D = Pl Vo VDR Y TPy VLV g,

wherep;, (1 < i < 1) are atoms. A similar result for rule calculus can be provetthén
same way. That is, each rule is equivalent to a set of ruldseofidllowing form:

Fl&...&Fn&—Fn+1&...&—Fm:>Fm+1|...|Fk|—Fk+1|...|—ﬂ, (1)

whereF;, (1 < i <) are facts.
Thus, we only need to prove that for each rRlef form (1), if = R, then- R. For
convenience, we assume that

R=F& .. &F,& -G & ... & —Gm:>P1|... |P]€| —Q1| | _Ql-

Let FF = A\;<,<, Fi andQ = A, .,-, Qi Then, one of the following statements must
hold. o o

1. There exists, (1 <14 < k) such thatF" — P; is a classical tautology.
2. F — =(Q is a classical tautology.
3. There existg, (1 < j < m) such thal F' A Q) — G, is a classical tautology.

Suppose otherwise, then there exists a propositionalrassigtr, such thatry = F A
Q; there exists a propositional assignmept(1 < i < k) suchthatr; = FA-P;;there
exists a propositional assignmarjt (1 <i<m)such tha’ar;- EFAQA-G;. LetTy
be the theory such that the set of its model§rs, m;, 77, (1 < < k), (1 < j < 1)},
andT; be the theory such that the set of its model§7$, (1 < j < [)}. Itis easy to
check that'Ty, T} is not an HT-model oRR, a contradiction.

Thus, one of the three previous statements holds. Héthican be proved according
to axioms and Proposition 6, Proposition 9 and PropositthhiA$ an example, we prove
the third case. Without loss of generality, suppose {lfan ) — G; is a classical
tautology. Then, by point 4 in Proposition 18,& — G; = —Q is a rule tautology.
Then, by point 2 and point 3 in Proposition l,& ... & F,& —G1 = —Q1| ... |—Q;
is a rule tautology. By A6 and A7R is a rule tautology.

From compactness, deduction theorem and soundness andetenass, we have
the following result.

Corollary 2. Let A be a rule base and a rule. R is implied byA iff R is a conse-
quence ofA. Thatis,A = Riff AF R.



4 Other properties

In this section, we discuss some other important propesfiegle calculus.

From Proposition 10, one may claim that rule connectivescmcesponding clas-
sical connectives play the same roles to some extent. Howtbi®is not the case. For
instancel/ (F'|G) < (FVG), whereF andG are two facts. As another example, from
A2, F (F — G) = (F = G). Howeverl/ (FF = G) = (F — G). Consequently,

t/ —F = —F althought- -F = —F.

In fact, rule calculus is more like the intermediate logic @& clear that the former
is an extension of the latter. Hence, theorems not in G3 areut® theorems in rule
calculus. For example? | — R is not a rule theorem. On the other hand, theorems in
G3 can be extended for rule calculus. For example, the fatigwroperty holds.

Proposition 11. Let Ry, Ry, R3 and R4 be four rules.

1. {Rl :>R2,R2 :>R3} F Ry = Rs.
2. {Rl éRQ,R3:>R4}FR1|R3:>R2|R4.
3. Ry = ——R;.

Proposition 12. LetR be atheoremin G3 composed from a set of atéas {p1, ..., pn}
andA = {R;, (1 < i < n)} aren rules associated with eagh. Then,R(P/A) is a
rule theorem, wher®(P/A) is the rule obtained fron® by replacing every occurrence
of p;, (1 < i < n) with corresponding?; simultaneously.

Proposition 13. Let F; and F» be two factsFy | Fo - Fy V Fo.

However,Fy V Fy I Fy | F». For example{{F, V F5},{F V Fy}) is an HT-model of
F, v F, but not an HT-model of | Fb.

Proposition 14 (Substitution). Let R be a rule theorem andk; and R, two rules.
R(R1/R2), the rule obtained fronR by replacing every occurrence d@t; with Ry
simultaneously, is a rule theorem as well.

Proposition 15. Let Fy, F» and F5 be three facts{Fy = Fy, F» & — —F3 = F3} -
P& — —-F3 = Fj.

HOWEVGI',{FQ = F3, F1&——Fy = FQ} V F1&——-F; = F3 Since<{p1}, {pl/\ﬁp2}>
is an HT-models of p» = p3, p1&——p2 = p2} but notan HT-models gf; & ——p3 =
ps. In addition, as shown in Example £2F & — —Fy = F5, Fy» & — —F3 = F3} 1/
P& — —F3 = Fj.

Interestingly, rule calculus is monotonic although theeasion semantics of default
logic is dealing with nonmonotonicity.

Proposition 16 (Monotonicity). Let R be a rule andA and A’ are two rule bases such
thatA C A" If A+ R, thenA’ - R.

Theorem 2 (Complexity). Checking whether a rulé has at least one HT-model is
NP complete.
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Proof. Hardness is obvious since a fact is satisfiable iff it has adtlene HT-model.
For membership, we first prove a lemma by induction. Given Iileinterpretations
(Ty,Ty) and{T},Ts) and a set of fact§', if forall F € I', T} = F iff T] = F, and so
doT; andTy, then for all rulesk composed froni” and rule connective$?y, T») = R
iff (T7,75) E R.

Suppose thak is composed from the set of fadts= {F1, ..., F,,} and(T}, T2) |=
R. Without loss of generality, suppose thatl= F;, (1 < ¢ < m) andT} [~ F;,(m <
i < n). Therefore, there exists a propositional assignmentn < ¢ < n) such that
Ti F Ni<j<m FjA—F;. LetT] be the theory such that its models ate(m < i < n).
It is easy to see thal, andT; agree the same af. We can constructy in the same
way. We have thal] C Ty. Therefore(T},T5) = R. This shows that if a rul® has
a model, then it has a model which can be represented polwtignit follows that
checking whether a rul& has at least one HT-model is in NP.

It is well known that most of the decision problems in defdadfics lie on the sec-
ond level of polynomial hierarchy [6], even restricted tarsospecial subclasses [5].
Surprisingly, although rule calculus seems more commit#ttan others such as skep-
tical and credulous reasoning, its complexity is lower ttie@m according to Theorem
2. This draws an opposite conclusion. That is, the problenulefcalculus is, indeed,
simpler than other reasoning tasks of default logic. Howetes does not mean that
the former is weaker than the latter since they are dealittydifferent reasoning tasks
of default rules.

5 Applications

Since the notion of rule deduction is an extension of dedudti propositional calculus,
many propositional logic based deductive reasoning teak$e lifted to corresponding
cases in rule calculus. In this section, we briefly discussgtlapplications, which seem
to be hard to deal with in default logic on their own. Howe\sr,using rule calculus,
these problems can be easily solved. Due to a space limit,nlyeonitline the basic
ideas here.

Irrelevancein default logic

As pointed by Lang et al. [13jrrelevanceis an important notion in propositional logic.
According to Lang et al.’s definition, a propositional forlai’ is irrelevantto a sefl” of
atoms iff there exists another formufasuch that is equivalent taz and Atom(G) N
V = 0, whereAtom(G) is the set of atoms appearedih The notion of irrelevance in
rule calculus can be defined in a similar way. That is, a Rilés irrelevantto a sef/ of
atoms iff there exists another ruk, such that= R < R2 andAtom(R2) NV = 0,
whereAtom(R3) is the set of atoms occurred Ry.

Having defined the notion of irrelevance in rule calculuspae define other related
notions such as forgetting in a similar way as shown in [13].

Generality among default rules

The concept of generality is a foundational basis of indedibgic programming [14,
15] - a subfield of machine learning and has been successfpfiied to some real
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domains. Inductive logic programming started from proposal logic [14] but then
has focused on Horn clauses (hamely logic programs) [15].

In propositional logic, the generality relationships beén two formulas can be
defined in a simple way as shown in [14]. That is, a formblais said to bemore
generalthan a formulafrs iff 7y E F» andF, = Fy. We can lift this notion to the
case between two rules. A rulg; is said to bemore generathan a formulaR; iff
R; E Rs andR; [~ R;. Moreover, this notion can be easily extended to the cadés wi
a background rule base. A rule; is said to bemore generathan a ruleR relative
to a rule based iff AU {R,} E Ry andA U {R,} }~ R;. It is obvious that this
definition is a generalization of the definition of genesalit propositional calculus
since all propositional formulas are also rules.

Inoue and Sakama [16] introduced several kinds of gengraliationship between
default theories. Although their definitions are based sjudictive default logic, these
can be easily extended to general default logic. We whii¢(R) to denote the set of
extensions of a rul&®. Let R; and R, be two rules, according to Inoue and Sakama'’s
definitions, R; is said to bemore g-generalthan R, iff for all Ty € Ext(R;), there
existsT, € Ext(R2) such thatly C Ti; R, is said to bemoreb-generalthan R iff
for all T, € Ext(Rs), there existdl} € Ext(R;) such thatly C Ti; R, is said to
be strongly morei-generalthan R, iff for all rules R3 R & R3 is moreg-general than
R & R3; R; is said to bestrongly moreb-generalthan R iff for all rules R3 Ry & R3
is moreb-general thamR,; & R3. However, the cases relative to a background default
theory were not considered in their approach.

Our definition of generality does not coincide with any ofg¢benotions. For in-
stance, lep; andp, be two atoms. We have thatis bothf-general and-general than
—p1 but the former is not more general than the latter in our défimi Meanwhile,
p1 A p2 is more general thapy in our definition but the former is neither strongly more
f-general nor strongly-general than the latter. One major difference betweerettves
approaches is that Inoue and Sakama'’s notions are defined baghe sets of exten-
sions of default theories. However, two rules sharing theesaet of extensions may
play completely different roles in rule calculus.

Revising default rule bases

Belief revision has been an important topic in solving imfietion conflict in reasoning
about agents. In most existing approaches and systems eatissknowledge base is
usually represented by a set of classical propositionahfitais, then various revision
methods have been developed by researchers to solve thesisiemcy by revising a
knowledge base by a new piece of information.

Under the framework of rule calculus, this work can be gelimydto nonmonotonic
knowledge base revision. That is, in our setting, each &kmndwledge is represented
as a rule base, and the problem is how to revise this rule bag&ing a new default
rule.

We may specify a formulation of rule base revision by gen&raj approaches for
propositional belief revision, for instance, the WIDTIOpapach [17]. Given a rule
baseA and a ruleR, we say thatd’ is a maximal subset ofi consistent withR iff
a) A’ C A, b) A’ U {R} is not a rule contradiction, and c) there does not exi$t
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satisfying the above two conditions and ¢ A” C A. The rule base revision operator
oisdefinedas\o R = () A’U{R}. This revision operator also satisfies the well-known
AGM postulates.

6 Conclusion

In this paper, we extend the logic of here-and-there as argksemantics for default
rules. Meanwhile, we propose a corresponding axiom systerlie calculus and prove
the soundness and completeness theorem (see Theorem 13dMé&sauss other prop-
erties in rule calculus, including complexity issues (skedrem 2).

The notion of strong equivalence in default logic can bedliyecaptured in rule cal-
culus (See Corollary 1). Corollary 1 also indicates theitign behind rule deduction,
that is, a ruleR is a consequence of a rule bademeans thai? provides no more in-
formation by givingA. In other words R can be eliminated by giving\. On the other
hand, given the fact that answer set programming is a speas of default logic,
our approach also shows that the logic of here-and-therésagiomatic counterpart
G3 can capture the consequence relationships among arstyepgrams. In fact, re-
stricted to answer set programs (i.e., facts are atomsaidsiarbitrary propositional
formulas), rule calculus coincides with the notion of SExequence [18, 19].

Rule calculus is an extension of propositional calculusaled an extension of the
intermediate logic G3 [7] in the sense that the connectivéz3 are represented as rule
connectives. It can also be considered as an extended lbficroalizing normality
[20] since the sentenced’'normally impliesB” can be represented as& — -B = B
as suggested by Reiter [4].

Rule calculus is different from conditional logic [21] adtiigh both of them intro-
duce new connectives into propositional calculus. Theeewso syntactic differences.
First, conditional logic only introduces a conditional c@ctive>. Second, whereas
conditional logic allows arbitrary compositions of atonmslaonnectives including,
in most cases, it uses as a lower level connective, whilst in rule calculus, cleaki
connectives are at the lower level. Certainly, the axiontesys and semantics of these
two logics are basically dissimilar. For instance, the éboal connective> is intu-
itively stronger than— in conditional logic, whilst the rule implicatios> is, to some
extent, weaker thas- in rule calculus.

Another related work is so-called proof theory of defaugjito[22, 23], which aims
to define a proof-theoretical system for determining whiethgropositional formula is
in all (or some) extensions of a default theory. It differsrir rule calculus in several
aspects. Firstly, proof theory of default logic is opergtom the level of extension se-
mantics, whilst rule calculus is focused on the here-amdetkemantics. Secondly, The
consequence concerned in rule calculus is, in generalydefdes instead of proposi-
tional formulas. Finally, even restricted to the cases offaas we mentioned earlier
(See Proposition 2), these two systems do not coincide \aith ether.
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