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Abstract. In this paper, we propose a logic framework for meta level reasoning
as well as default reasoning in a general sense, based on an arbitrary underlying
logic. In this framework, meta level reasoning is the task ofhow to deduce new
meta level rules by giving a set of rules, whilst default reasoning is the problem of
what are the possible candidate beliefs by giving them. We define the semantics
for both meta level reasoning and default reasoning and investigate their relation-
ships. We show that this framework captures various nonmonotonic paradigms,
including answer set programming, default logic, contextual default reasoning,
by applying the underlying logic to different classes. Finally, we show that this
framework can be reduced into answer set programming.

1 Introduction

Consider that an agentA is reasoning about a systemS, where information can be
captured by a logic consisting of a languageL and an entailment relation|=L among
formulas inL. In principle, if the agentA has perfect reasoning power, then its informa-
tion aboutS should be a set of formulas inL closed under|=L, say a candidate belief.
Suppose thatΓ is a set of formulas, representing the information thatA considers to
be true aboutS. Thus,Cn(Γ ), the closure ofΓ under|=L, should be included in every
possible candidate beliefs.

However,Cn(Γ ) is not the only information thatA can have aboutS. More can
be obtained by meta level rules, which represent statementsabout possible candidate
beliefs in a meta level language. For instance, a statement may claim that ”if a candidate
belief does not containF1, then it must containF2”. In fact, the well-known closed
world assumption is a special case of this statement whenF2 is¬F1, providing that the
languageL has the connective¬ to represent negative information in the system.

Meta level rules cannot be represented in the languageL itself since the objects they
deal with are not formulas inL but statements about candidate beliefs. More precisely,
meta level rules are composed by primitive statements and meta level connectives. The
former are sentences stating whether a formula is containedin a possible candidate be-
lief, while the latter are words connecting those primitivestatements in a meta language.
Consider the example mentioned above. There are two primitive statements, namely,
”the candidate belief containsF1” and ”the candidate belief containsF2”. Furthermore,
they are connected by two meta level connectives, namely ”not” and ”if then”.
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Hence, the problem of how to represent meta level rules can bedivided into two
parts, how to represent primitive statements and how to represent meta level connec-
tives. In this paper, we simply write a formulaF in L to represent the primitive state-
ment ”the candidate belief containsF ”. On the other hand, we adopt a set of proposi-
tional meta level connectives, including rule and (& ), rule or (≀), rule negation (∼) and
rule implication (⇒). For example, the meta level statement in the above examplecan
be represented as∼F1 ⇒ F2.

There are two fundamental reasoning tasks in relation to reasoning about meta level
rules. The first one is called meta level reasoning. That is, which meta level rules can
be deduced by giving a set of rules. Another reasoning task isdefault reasoning, which
is the problem of what are the possible candidate beliefs by giving a set of rules.

In this paper, we propose a logic framework for both meta level reasoning and de-
fault reasoning in a general sense, based on an arbitrary underlying logic, which consists
of a languageL and an entailment relation|=L under some restrictions. In this sense,
there are numerous instances of the underlying logic, such as set inclusion, proposi-
tional logic, epistemic logic and so on.

The reasons why we consider arbitrary underlying logics arethreefold. Firstly, due
to diversity of applications, the logic for representing the systemS may vary from the
simplest one to more complicated ones. Secondly, considering the two reasoning tasks
in a general sense may help us to reveal the nature of them. Finally, a general framework
not only unifies a number of existing approaches but also initiates promising ones.

The rest of this paper is organized as follows. Next, we propose the syntax and ba-
sic semantics of the logic framework. In Section 3, we define both meta level reasoning
and default reasoning of the framework semantically, and investigate their relationships.
Then, we show that this framework is powerful enough to capture various existing ap-
proaches and possible new ones in Section 4. In Section 5, we show that it can be
reduced into its simplest case, namely answer set programming. Finally, we draw our
conclusions.

2 Syntax and Basic Semantics

To begin with, we need to specify what a logic is. We adopt Gentzen’s idea [1] of stan-
dard logic system, which consists of two components. Firstly, it has a syntax, namely, a
formal language to define what are the objects dealt with in this logic system. We denote
it by a languageL. Basically, it can be represented as a set. Elements inL are called
formulas. Secondly, the logic system should have reasoning ability,that is, to answer
the question whether a formula can be derived by other formulas. This is formalized
by anentailment relation|=L between a set of formulas and a formula inL. In other
words,|=L is a relation|=L⊆ 2L × L, that satisfies the following two restrictions:

Reflexivity if F ∈ Γ , thenΓ |=L F ;
Transitivity (cut) if for all F ′ ∈ Γ ′, Γ |=L F ′, thenΓ ′ |=L F implies thatΓ |=L F ,

whereΓ, Γ ′ ⊆ L, F, F ′ ∈ L.
According to reflexivity and transitivity, a logic system also satisfies the following

properties.
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Proposition 1. Let L be a language and|=L the corresponding entailment relation
satisfying reflexivity and transitivity. Then, it also satisfies the following properties:

Monotonicity if Γ ⊆ Γ ′, then for allF ∈ L such thatΓ |=L F , Γ ′ |=L F ;
Equivalency if for all F ′ ∈ Γ ′, Γ |=L F ′ and for all F ∈ Γ , Γ ′ |=L F , then for all

G ∈ L, Γ |=L G iff Γ ′ |=L G;
Extendability if for all F ′ ∈ Γ ′, Γ |=L F ′, then for allF ∈ L, Γ ∪ Γ ′ |=L F iff

Γ |=L F .

Of course, classical propositional logic is a typical example of such a logic. There
are numerous other examples, such as first order logic, modallogic, probabilistic logic,
intuitionistic logic and so on. In particular, set inclusion can also be considered as a
logic. LetAtom be a set of atoms. The formulas in the languageL of set inclusion are
defined as elements inAtom, and the entailment relation between a setΓ of formulas
(i.e. a subset ofAtom) and a formulaF (i.e. an element inAtom) is defined as set
inclusion (i.e.Γ |=L F iff F ∈ Γ ). It is obvious that this entailment relation (i.e. set
inclusion) satisfies reflexivity and transitivity.

However, Reiter’s default logic is not a logic according to this definition if the en-
tailment relation is defined as credulous reasoning or skeptical reasoning. One reason is
that both credulous reasoning and skeptical reasoning do not satisfy transitivity. Another
reason is that the consequence of both credulous reasoning and skeptical reasoning is
not a default rule but a propositional formula1.

A closureis a setC of formulas inL closed under the entailment relation|=L. That
is, C is a closure iff for allF ∈ L such thatC |=L F , F ∈ C. By reflexivity, it is easy
to see that ifC 6|=L F 2, thenF 6∈ C. Hence,C |=L F iff F ∈ C. It is easy to see that
if C1 andC2 are two closures, then so isC1 ∩ C2.

Proposition 2. Let L be a language and|=L the corresponding entailment relation
satisfying reflexivity and transitivity. LetΓ be a set of formulas inL. There exists a
unique closureC such that for allF ∈ L, Γ |=L F iff C |=L F .

We write Cn(Γ ) to denote this closure ofΓ . For convenience, we simply useΓ
to denoteCn(Γ ) if it is clear from the context. Clearly, ifΓ1 ⊆ Γ2, thenCn(Γ1) ⊆
Cn(Γ2).

Based on the underlying logicL, we define a meta level languageML(L), follow-
ing a similar construction of general default logic [3]. Onemajor difference is that, in-
stead of classical propositional logic, we use an arbitraryunderlying logic as discussed
above.

The meta level languageML(L) is defined uponL by introducing a set ofmeta
level rule connectives(rule connectivesfor short), includingrule and( & ), rule or (≀),
rule implication(⇒), and a special 0-ary connectivefalsity⊥ as follows:

R := F | ⊥ | R & R | R ≀ R | R⇒ R,

1 Hence, our definition of logic is not the same as Brewka and Eiter’s [2]. According to their
definition, both default logic and answer set programming are logics.

2 We writeΓ 6|=L F if it is not the case thatΓ |=L F , the same for other similar notations used
later.
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whereF ∈ L. We also introduce other rule connectivestruth⊤, rule negation∼, and
rule equivalence⇔.⊤,∼R andR1 ⇔ R2 are considered as shorthand of⊥ ⇒ ⊥, R⇒
⊥ and(R1 ⇒ R2) & (R2 ⇒ R1) respectively. Formulas inML(L) are calledmeta
level rules(rulesfor short). In particular, formulas inL are also rules. For convenience,
we call themfacts. A rule baseis a set of rules. Thesubrulerelationship between two
rules are defined recursively.

– R1 is a subrule ofR1.
– BothR1 andR2 are subrules ofR1 & R2, R1 ≀R2 andR1 ⇒ R2.

In particular, ifF is a fact and also a subrule ofR, we say thatF is asubfactof R.
In the basic semantics, we define thesatisfaction relation|=B between closures in

the underlying languageL and meta level rules recursively as follows:

– If R is a fact, thenC |=B R iff C |=L R;
– C 6|=B ⊥;
– C |=B R & S iff C |=B R andC |=B S;
– C |=B R ≀ S iff C |=B R or C |=B S;
– C |=B R⇒ S iff C 6|=B R or C |=B S.

Thus,C |=B ⊤. C |=B ∼R iff C |=B R ⇒ ⊥ iff C 6|=B R or C |=B ⊥ iff C 6|=B R.
C |=B R ⇔ S iff C |=B (R ⇒ S) & (S ⇒ R) iff C |=B R ⇒ S andC |=B S ⇒ R

iff (a) C |=B R andC |=B S or (b) C 6|=B R andC 6|=B S. We say thatC satisfies
R, alsoC is amodelof R iff C |=B R. We say that two rules areweakly equivalentif
they have the same set of models. We say thatC satisfies a rule base∆ iff C satisfies
all rules in∆.

Example 1.Consider the rule∼F1 ⇒ F2. If a closure contains neitherF1 norF2, then
it is not a model of this rule. On the other hand, a closure containingF1 satisfies this
rule, so does a closure containingF2.

Note that the underlying logic may have internal relationships among formulas. For
instance, consider a ruleF1 & ∼F2. If in an underlying logicL, {F1} |=L F2, then
there is no model of the ruleF1 & ∼F2. However, if in another underlying logicL′,
{F1} 6|=L′ F2, then a closure containingF1 but notF2 is a model of the ruleF1 &∼F2.

The basic semantics can be translated into classical propositional logic. LetAt(L)
be a set of atoms in propositional logic andAt a one-to-one mapping fromL to At(L).
Given a meta level ruleR, by TrCL(R) we denote the propositional formula obtained
from R by simultaneously replacing every subfactF in R with At(F ) and every rule
connective with corresponding classical propositional connectives. Given a closureC,
by At(C), we denote the propositional assignment3 overAt(L) such thatF ∈ C iff
At(F ) ∈ At(C).

Theorem 1. Let R be a rule andC a closure.C |=B R iff At(C) is a model of
TrCL(R) in classical propositional logic.

Corollary 1. LetR1 andR2 be two rules. IfTrCL(R1) is equivalent toTrCL(R2) in
classical propositional logic, then for all closuresC, C |=B R1 iff C |=B R2.

3 We identify a propositional assignment as the set of atoms assigned to be true in it.
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3 Meta Level Reasoning and Default Reasoning

A natural question is so-called meta level reasoning, namely, how to derive new meta
level rules by giving a set of rules. We use a bi-level semantics for this reasoning task.
The semantics is originated from the logic of here-and-there, which was developed by
Heyting and adopted by Pearce [4] for answer set programming.

A bi-level interpretationinML(L) is a pair〈C1, C2〉, whereC1 andC2 are both
closures inL. The satisfaction relation|=BI between bi-level interpretations and meta
level rules is defined recursively as follows:

– if R is a fact, then〈C1, C2〉 |=BI R iff C1 |=B R andC2 |=B R;
– 〈C1, C2〉 6|=BI ⊥;
– 〈C1, C2〉 |=BI R1 & R2 iff 〈C1, C2〉 |=BI R1 and〈C1, C2〉 |=BI R2;
– 〈C1, C2〉 |=BI R1 ≀R2 iff 〈C1, C2〉 |=BI R1 or 〈C1, C2〉 |=BI R2;
– 〈C1, C2〉 |=BI R1 ⇒ R2 iff

1. 〈C1, C2〉 6|=BI R1 or 〈C1, C2〉 |=BI R2 and
2. C2 |=B R1 ⇒ R2.

We say that〈C1, C2〉 is abi-level modelof R iff 〈C1, C2〉 |=BI R. We say that a rule
base∆ impliesa ruleR, denoted by∆ |=BI R, iff all bi-level models of∆ are bi-level
models ofR as well.

The reason why we call this semantics bi-level is that the twocomponents of the
pair represent two levels of information respectively. Thesecond lies on the underlying
level, which represents a possible guess of the agent about the system, while the first
one lies on the meta level, which represents the actual set ofinformation that the agent
can have by fixing the underlying level information.

Example 2 (Example 1 continued).Consider the rule∼F1 ⇒ F2. Suppose thatC0 is
the closureTH(∅), while C1 is a closure containingF1. Then,〈C1, C1〉 is a bi-level
model of∼F1 ⇒ F2, so is〈C0, C1〉. However,〈C1, C0〉 and〈C0, C0〉 are not. Thus,
{∼F1 ⇒ F2} 6|=BI F1 ≀ F2 since〈C0, C1〉 is a bi-level model of∼F1 ⇒ F2 but not a
bi-level model ofF1 ≀ F2. However, one can check that{F1 ≀ F2} |=BI ∼F1 ⇒ F2 no
matter what the underlying logic is.

The bi-level semantics and the basic semantics are closely related. By induction on
the structure ofR, we have the following result.

Proposition 3. Let 〈C1, C2〉 be a bi-level interpretation andR a rule.

– 〈C1, C2〉 |=BI ∼R iff C2 |=B ∼R.
– 〈C1, C1〉 |=BI R iff C1 |=B R.
– If 〈C1, C2〉 |=BI R, thenC2 |=B R.

The result of Proposition 3 is not new; it holds for the logic of here-and-there as well
[5]. In fact, the bi-level semantics shares the nature of thelogic here-and-there. There
are two major differences. Firstly, the bi-level semanticsis generalized into an arbitrary
case, whilst the logic of here-and-there is only concerned with set inclusion (i.e. atom
sets). Secondly, in the bi-level semantics, we do not require the restriction that the first
component of the pair has to be a subset of the second one.
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Proposition 4. Let∆ be a rule base andR1 andR2 two rules.∆ ∪ {R1} |=BI R2 iff
∆ |=BI R1 ⇒ R2.

Proposition 5. Let ∆ be a rule base andR1 and R2 two rules. If∆ |=BI R2, then
∆ ∪ {R1} |=BI R2.

Proposition 6. Let ∆ be a rule base,R a rule andC a closure. IfC |=B ∆ and
∆ |=BI R, thenC |=B R.

Proposition 7. Let〈C1, C2〉 be a bi-level interpretation andR a rule.〈C1, C2〉 |=BI R

iff 〈C1 ∩ C2, C2〉 |=BI R.

According to Proposition 7, the bi-level semantics, when the underlying logic is set
inclusion, is indeed identical to the logic of here-and-there. The reasons why we make
this minor change (i.e. to remove the restriction) are twofold. On the one hand, the
restriction seems unnecessary and not natural from a mathematical point of view. On
the other hand, the intuitions behind the bi-level semantics without the restriction are
clearer than that with it.

Perhaps, another reasoning task is more interesting, namely default reasoning, which
is the problem of what are the possible candidate beliefs by giving a set of meta level
rules. We introduce two semantics for default reasoning. One is a reduction style ex-
tension semantics, following the idea from Ferraris’ work [6] on answer set semantics
for so-called propositional theories, and extended to general default logic by Zhou et al.
[3]. The other is equilibrium semantics, originated from Pearce’s equilibrium logic [4].

Thereductof a ruleR relative to a closureC, denoted byRC , is the rule obtained
from R by simultaneously replacing every maximal subrule not satisfied byC with ⊥.
A closureC is said to be acandidate belief4 of a ruleR if it is the minimal closure (in
the sense of set inclusion) satisfyingRC . That is,C |=B RC and there does not exist
another closureC1 ⊂ C such thatC1 |=B RC . We say that two rules areequivalentif
they have the same set of candidate beliefs. Clearly, this definition can be generalized
to rule bases, similar for definitions presented later.

Example 3 (Example 2 continued).Consider the example∼F1 ⇒ F2 again. Assume
thatF1 andF2 are not related in the underlying logic5. LetC1 be the closureCn({F1})
andC2 be the closureCn({F2}). Then,(∼F1 ⇒ F2)

C1 is⊥ ⇒ F2. Of course,C1 is
a model of⊥ ⇒ F2. However,Cn(∅) is also a model of⊥ ⇒ F2. Thus,C1 is not a
candidate belief of∼F1 ⇒ F2. On the other hand,C2 is the minimal closure satisfying
(∼F1 ⇒ F2)

C2 , which is∼⊥ ⇒ F2. Thus,C2 is a candidate belief of∼F1 ⇒ F2.

We introduce a notion ofstrong equivalencebetween two rules. The notion of strong
equivalence, introduced by Lifschitz [7] for answer set programming, and extended to
default logic by Turner [8], plays a very important role in default reasoning. Two rules

4 This is different from the notion of belief or knowledge in epistemic reasoning.
5 There are four possible relationships betweenF1 andF2: (a) there is no closures containing

bothF1 andF2; (b) {F1} |=L F2; (c) {F2} |=L F1, or (d) none of the above. In the first three
cases,F1 andF2 are related.
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R1 andR2 are said to bestrongly equivalentiff for all other rulesR3, R1 & R3 has the
same set of candidate beliefs asR2 & R3.

We also define the equilibrium semantics for default reasoning. A bi-level inter-
pretation〈C1, C2〉 is said to be anequilibrium modelof a ruleR iff (a) 〈C1, C2〉 is a
bi-level model ofR; (b) C1 = C2; (c) there does not existC′

1
⊂ C1 such that〈C′

1
, C2〉

is also a bi-level model ofR.
Equilibrium semantics is essentially a fixed point semantics. In this sense, it shares

the same basic idea of the extension semantics. Both of them can be viewed as three
steps. First, guess a possible set of information. Second, derive a minimal set of infor-
mation by fixing the guess. Finally, if these two sets coincide with each other, then it is
a possible candidate belief.

Example 4 (Example 3 continued).Again, consider the example∼F1 ⇒ F2. Let C0,
C1 andC2 be three closuresCn(∅), Cn({F1}) andCn({F2}) respectively. We have
that 〈C1, C1〉 is a bi-level model of∼F1 ⇒ F2, so is〈C0, C1〉. Thus,〈C1, C1〉 is not
an equilibrium model of∼F1 ⇒ F2. On the other hand,〈C2, C2〉 is a bi-level model of
∼F1 ⇒ F2, and there is no other closureC′ such thatC′ ⊂ C2 and〈C′, C2〉 is also a
bi-level model of∼F1 ⇒ F2. Thus,〈C2, C2〉 is an equilibrium model of∼F1 ⇒ F2.

Certainly, the four semantics, basic semantics, bi-level semantics, extension seman-
tics and equilibrium semantics are closely related.

Proposition 8. Let ∆ be a rule base andC a closure. IfC is a candidate belief of∆,
thenC |=B ∆.

However, the converse of Proposition 8 does not hold in general. For instance,
Cn({F1}) is a model of∼F1 ⇒ F2 but not a candidate belief of it.

Proposition 9. Let∆ be a rule base andC1 andC2 two closures.〈C1, C2〉 |=BI ∆ iff
C1 |=B ∆C2 .

Theorem 2. Let ∆ be a rule base andC a closure.C is a candidate belief of∆ iff
〈C, C〉 is an equilibrium model of∆.

Proposition 10. Let R1 and R2 be two rules.R1 and R2 are strongly equivalent iff
|=BI R1 ⇔ R2.

Corollary 2. Let ∆ be a rule base andR a rule. ∆ |=BI R iff ∆ ∪ {R} is strongly
equivalent to∆.

To sum up, we have defined three levels of semantics, the basicsemantics lies on the
underlying level and the bi-level semantics lies on the metalevel, whilst on the middle
level are two equivalent semantics, namely the extension semantics and the equilib-
rium semantics. Although basic semantics, equilibrium semantics and reduction-style
semantics are used for answer set programming, the idea thatthey can be used in a
much more general sense has not been proposed yet. In addition, the idea of using bi-
level semantics for meta level reasoning is a novel approach. The equivalence relations
of those three levels are captured by weak equivalence, strong equivalence and equiva-
lence respectively.
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Proposition 11. Let R1 and R2 be two rules. IfR1 and R2 are strongly equivalent,
thenR1 andR2 are equivalent and weakly equivalent as well.

Example 5 (Example 4 continued).Consider four rules∼F1 ⇒ F2, F2,∼∼F1 ≀F2 and
F1 ≀F2 and assume thatF1 andF2 are not related in the underlying logic (See Footnote
5). We have that∼F2 ⇒ F1 is strongly equivalent to∼∼F1 ≀ F2. ∼F1 ⇒ F2 is
equivalent toF2, but neither strongly equivalent nor weakly equivalent toF2. ∼F1 ⇒
F2 is weakly equivalent toF1 ≀ F2, but neither strongly equivalent nor equivalent to
F1 ≀ F2.

The results proposed in this section are not surprising since they hold for answer set
programming as well. However, their proofs in general do notfollow directly from the
simplest cases since the underlying logic is not simply a set. There are many features
which can be exploited in set inclusion. For instance, in setinclusion, a set of atoms is a
closure. However, it might be not the case for an arbitrary logic. In addition, the atoms
in set are not related, but they may have very complex relationships in an arbitrary logic.

4 The Underlying Logic

In this section, we show that the logic framework presented above is powerful enough
to capture various existing approaches by applying the underlying logic to different
classes. Due to a space limit, we only briefly outline the basic ideas and results in
this paper and leave backgrounds, detailed comparisons anddiscussions to a future full
version.

4.1 Set inclusion (with classical negation)

As we have shown in Section 2, set inclusion can be consideredas a logic. Similarly,
set inclusion with classical negation can be treated as a logic as well. LetAtom be a set
of atoms andLit the set of literals, i.e., atoms or their classical negations. The formulas
in the languageS¬ of set inclusion with classical negation are defined as elements in
Lit. Let Γ be a set of formulas (i.e. a set of literals) andF a formula (i.e. a literal).
Γ |=S¬ F iff (a) F ∈ Γ or (b) there exists an atoma such thata,¬a ∈ Γ . Clearly, this
entailment relation satisfies reflexivity and transitivity.

Answer set programming (with classical negation) corresponds to default reason-
ing in meta level language when the underlying logic is set inclusion (with classical
negation). On the other hand, it also explains why the answerset semantics for logic
programs with classical negation work very well.

Theorem 3. Let P be a disjunctive logic program (with classical negation) [9] and
X a set of atoms (literals).X is an answer set ofP iff X is a candidate belief of
P̂ inML(S) (ML(S¬)), whereP̂ is the set of meta level rules obtained fromP by
replacing each rulep1 | . . . | pn ← q1, . . . , qm, not r1, . . . , not rl by a meta level rule
q1 & . . . & qm &∼r1 & . . . &∼rl ⇒ p1 ≀ . . . ≀ pn.

Clearly, Theorem 3 also holds for normal logic programming [10]. More generally,
it holds for Ferraris’ answer set semantics for propositional theories [6] as well.
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Theorem 4. Let Γ be a set of propositional formulas andX a set of atoms.X is an
answer set ofΓ iff X is a candidate belief of̂Γ inML(S), whereΓ̂ is the set of meta
level rules obtained fromΓ by replacing every classical propositional connectives with
corresponding rule connectives.

4.2 Propositional logic

Certainly, classical propositional logicCL is a typical example of the underlying logic.
The following theorem shows that Zhou et al.’s general default logic is a special case of
the logic framework by applying the underlying logic to propositional logic.

Theorem 5. Let∆ be a rule base in general default logic [3]. A theoryT is an exten-
sion of∆ iff T is a candidate belief of∆ inML(CL).

As shown in [3], Reiter’s default logic in the propositionalcase [11] and Gelfond et
al.’s disjunctive default logic [12] are special cases of general default logic. Therefore
these two approaches are also special cases of default reasoning ofML(CL).

4.3 First order logic: closed case

Let FOL be a first order language. ByFOLS , we denote the subclass ofFOL by
restricting the formulas to sentences, i.e., first order formulas without free variables.

Theorem 6. A set of sentences is an extension of a closed default theory〈D, W 〉 iff it
is a candidate belief ofW ∪ D̂ inML(FOLS)6.

4.4 Multi-context logic

It is well argued that the notion of context plays a very important role in AI [13–16].
A context of an agent about the environment represents its own (local) subjective view
of the environment. There is an increasing interest on formalizing a multi-context lan-
guage, which defines not only the information of a number of contexts themselves but
also the information of interrelationships among them.

Given a setL1, . . . ,Ln of n languages and their corresponding entailment relations
satisfying both reflexivity and transitivity, we define a multi-context languageL1×. . .×
Ln. The formulas inL1 × . . .× Ln are labeled formulas, which have the form〈k, F 〉,
wherek is a label to denote which context it comes from andF is a formula inLk. A
formula〈k, F 〉 is entailed by a setΓ of formulas inL1 × . . . × Ln iff F is entailed in
the logicLk by the set of formulas inΓ labeled byk. Formally,

Γ |=L1×...×Ln
〈k, F 〉 iff {G | 〈k, G〉 ∈ Γ} |=Lk

F.

Clearly,|=L1×...×Ln
satisfies reflexivity and transitivity as well.

6 D̂ is the set of rules inML(FOLS) by rewriting each ruleF1, MF2, . . . , MFn/Fn+1 in D
to F1 & ∼¬F2 & . . . & ∼¬Fn ⇒ Fn+1.



10

A set Γ of formulas inL1 × . . . × Ln can be equivalently written as ann-tuple
(Γ1, . . . , Γn), whereΓk = {G | 〈k, G〉 ∈ Γ}. Under this reformulation, we show that
Brewka et al.’s contextual default reasoning, which can be considered as a ”syntactical”
counterpart of Roelofsen and Serafini’s information chain approach [15], is a special
case of the framework when the underlying logic is a multi-context propositional logic.

Theorem 7. LetL1, . . . ,Ln ben propositional languages (built over different sets of
atoms).(Γ1, . . . , Γn) is a contextual extension of a normal multi-context systemC [16]
iff (Γ1, . . . , Γn) is a candidate belief of̂C inML(L1 × . . .× Ln)7.

Furthermore, Brewka et al.’s approach is a homogeneous one (i.e. all the contexts
are propositional languages), whilst our approach allows heterogenous contexts. Our
approach is also an generalization of Giunchiglia’s heterogenous multi-context logic
[14], which does not consider nonmonotonic rules.

A related work is due to Brewka and Eiter [2]. They also intendto integrate het-
erogenous contexts by nonmonotonic rules. However, in their approach, the underlying
logic is defined as a tuple(KB, BS, ACC), whereKB is the set of all possible knowl-
edge bases,BS is the set of all possible belief sets, andACC is a function fromKB

to 2BS , for describing the ”semantics” of this logic. A logic in oursense can be decried
as a special kind of this tuple as follows:KB are the sets of formulas inL; BS are
the sets of closures;ACC is the closure operator. When restricting Brewka and Eiter’s
sense of logic to ours, their approach of equilibria coincides with default reasoning of
the meta level language by applying the underlying logic to multi-context logic.

5 Reducing into Answer Set Programming

In this section, we show that the logic framework proposed inthis paper can be reduced
into its simplest case, namely answer set programming, by identifying the internal re-
lationships among formulas in the underlying logic. Here, we consider the general case
of answer set programming in the propositional case [6].

Let R be a rule. We writeFact(R) to denote the set of subfacts ofR. Suppose that
Fact(R) = {F1, . . . , Fn}. We introducen new atomsP = {p1, . . . , pn} associated
with each fact inFact(R). By P (R) we denote the answer set program obtained from
R by simultaneously replacing each occurrence ofFi, (1 ≤ i ≤ n) in R with pi. By
I(R) we denote the programs of all rules of the following form:

pi1 & pi2 & . . . & pik ⇒ pj ,

where{i1, i2, . . . , ik, j} ⊆ {1, . . . , n} such that{Fi1, Fi2, . . . , Fik} |=L Fj . By Tr(R)
we denote the program{P (R), I(R)}.

Let Γ andΓ ′ be two sets of formulas inL such thatΓ ⊆ Γ ′. We say thatΓ is
maximalto Γ ′ iff for all formulasF ∈ Γ ′\Γ , Γ 6|=L F .

7 Here,Ĉ is the set of rules inML(L1 × . . . × Ln) obtained fromC by rewriting each factF
in Wi to 〈i, Fi〉, and each rule〈c1, G1〉, . . . , 〈cm, Gm〉 : 〈cm+1, H1〉, . . . , 〈cm+n, Hn〉/F in
Di to 〈c1, G1〉 & . . . & 〈cm, Gm〉 & ∼〈cm+1,¬H1〉 & . . . & ∼〈cm+n,¬Hn〉 ⇒ 〈i : F 〉,
whereF , Gi, Hj are propositional formulas in corresponding contexts.
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Proposition 12. LetR be a rule andC a closure. IfC is a candidate belief ofR, then
there exists a subsetΓ of Fact(R) such thatC = Cn(Γ ).

Theorem 8. LetR be a rule andFact(R) = {F1, . . . , Fn}. LetP = {p1, . . . , pn} be
n new atoms associated with each fact inFact(R).

1. If {pi1, . . . , pik} is an answer set ofTr(R), thenCn{Fi1, . . . , Fik} is a candidate
belief ofR and{Fi1, . . . , Fik} is maximal toFact(R).

2. If C is a candidate belief ofR and{Fi1, . . . , Fik} is the set of formulas obtained
in Proposition 12 such thatC = Cn({Fi1, . . . , Fik}), then{pi1, . . . , pik} is an
answer set ofTr(R).

Theorem 9. LetR be a rule.|=BI R iff all HT-models ofI(R) are also HT-models of
P (R).

Intuitively, the ruleR is constructed fromFact(R) by rule connectives.P (R) rep-
resents the structure ofR (i.e. the way of constructingR), while I(R) identifies all
the internal relationships amongFact(R). Theorem 8 and 9 show that, both meta level
reasoning and default reasoning in any meta level language can be captured in answer
set programming by separating the structure of rules and theinterrelationships among
underlying facts.

The translation introducesn new atoms, wheren is the number of facts inFact(R).
Clearly,n is polynomial, in fact linear, in the length ofR. Interestingly, the original
atoms inR no longer occur inTr(R). However, in some cases,n could be exponential
in the number of the original atoms since atoms can compose exponential number of
formulas in some underlying logics (e.g. propositional logic).

One of the most important problems is whether this translation is polynomial or not.
Unfortunately, althoughP (R) is linear in the size ofR, I(R) may contain exponential
number of rules. The reason is that there may be exponential number of such internal
relationships amongFact(R). Observing that not all rules inI(R) are necessary, we
can pick up those ”minimal” ones, namely, the set of premisesis the minimal set satisfy-
ing the consequence inFact(R). However, even only taken these internal relationships
into account, the number is still exponential. For example,in classical propositional
logic, let Atom = {a1, . . . , am} bem atoms. LetFij , (1 ≤ i ≤ m), (1 ≤ j ≤ m)
be the formulaai → aj . Then, we havem2 formulas. However, we have exponential
number of such internal relationships. For instance, for any set of atomsai1, . . . , aik

different from two atomsai, aj , {ai → ai1, ai1 → ai2, . . . , aik−1 → aik, aik → aj}
is a minimal set satisfyingai → aj.

Despite this negative result, the translation is not only oftheoretical interests but also
of practical uses. It enables us to easily analyze the meta level language in small-scale
case studies. Also, it is a useful tool to investigate properties in meta level language. For
instance, the following propositions follow from Theorem 8and 9 straightforwardly.

Corollary 3. If L is a decidable language, then both meta level reasoning and default
reasoning ofML(L) are decidable.

Corollary 4. Contextual ASP [16] has the same computational complexity as normal
logic programming.
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6 Conclusion

In this paper, we proposed a logic framework for meta level reasoning as well as de-
fault reasoning about meta level rules. In this framework, meta level reasoning is the
reasoning task of how to deduce new meta level rules by givinga set of rules, while
default reasoning is the problem of what are the possible candidate beliefs by giving
them. Default reasoning has attracted a lot of attentions inthe past three decades [3,
6, 8–12, 16, 17]. On the other hand, meta level reasoning, although also important, was
relatively less studied. A closely related topic is normative reasoning [18], which can be
considered as a fragment of meta level reasoning of default logic. Another topic is so-
called SE-consequence [19, 20] in answer set programming, which actually coincides
with meta level reasoning task of answer set programming.

Some technical results, although not trivial, might not be surprising since they hold
for corresponding cases of answer set programming and default logic as well [3, 5].
However, surprisingly, all these can be summarized in a general framework with simple
semantics. Hence, we argue that, this framework, indeed, captures the nature of both
meta level reasoning and default reasoning in a general sense.

It is worth mentioning that default reasoning is nonmonotonic (in the sense of
skeptical reasoning or credulous reasoning), whilst meta level reasoning is actually
monotonic (See Proposition 5). Furthermore, meta level reasoning also satisfies reflex-
ivity and transitivity. This means that meta level reasoning itself can also be treated as a
logic in our sense. However, default reasoning is not. In other words, in this framework,
”default” is not a logic but a meta level reasoning task.

We demonstrated this framework’s expressiveness to capture several existing ap-
proaches of default reasoning by applying the underlying logic to different classes.
More precisely, answer set programming, default logic in propositional case, default
logic in closed first order case and contextual default logiccoincide with default rea-
soning of meta level language of set inclusion, propositional logic, first order logic and
multi-context logic respectively (See Theorem 3-7).

Also, the framework will initiate some new promising formalisms. One of them is
to consider description logic, for instanceSHIQ, as the underlying logic. This pro-
vides a natural combination of description logic and rule-based formalism, which is a
crucial step to fulfil the blueprint of Semantic Web Initiative [21, 22]. However, rule
connectives considered in this paper are basically propositional. In other words, meta
level rules with free variables cannot be represented in this approach. One possible way
to overcome this barrier is to use the technique of grounding[9, 10]. That is, to define
a first order meta level language powerful enough to represent rules with variables, and
then to transfer them to propositional meta level rules by grounding for all instances.
However, this topic is beyond the scope of this paper. We leave it to our future inves-
tigations. Certainly, there are many other interesting andimportant candidates of the
underlying logic, such as epistemic logic, logic of multi-agents, temporal logics, logics
of uncertainty, and so on. Many of them are worth pursuing. Weleave them to our future
work as well.

We showed that both meta level reasoning and default reasoning in a general sense
can be reduced to its simplest case (Theorem 8 and 9), namely answer set programming,
by identifying the internal relationships (represented byI(R) in the translation) among
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formulas in the underlying logic. This provides a powerful tool to study the general
framework without going through the details of the underlying logic.

To sum up, the main contributions of this framework are as follows. Firstly, it unifies
a bunch of existing approaches for default reasoning, and itcan be easily seen that this
approach can also initiate other promising paradigms of default reasoning. In addition,
it suggests a new reasoning task, namely meta level reasoning, for deriving new meta
level rules given a rule base. Finally, it can be interestingly reduced to the simplest case,
namely answer set programming.
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