Meta Level Reasoning and Default Reasonirg

Yi Zhou, Yan Zhang

Intelligent Systems Lab
University of Western Sydney
Locked Bag 1797, NSW, Australian

Abstract. In this paper, we propose a logic framework for meta levetoeag
as well as default reasoning in a general sense, based obitmargrunderlying
logic. In this framework, meta level reasoning is the taska@# to deduce new
meta level rules by giving a set of rules, whilst default orasg is the problem of
what are the possible candidate beliefs by giving them. Vilael¢he semantics
for both meta level reasoning and default reasoning andiigate their relation-
ships. We show that this framework captures various nonmooim paradigms,
including answer set programming, default logic, contaktlefault reasoning,
by applying the underlying logic to different classes. Hinave show that this
framework can be reduced into answer set programming.

1 Introduction

Consider that an agent is reasoning about a systeffy where information can be
captured by a logic consisting of a languag@nd an entailment relatiga: - among
formulasinZ. In principle, if the agen#l has perfect reasoning power, then its informa-
tion aboutS should be a set of formulas i closed undef=., say a candidate belief.
Suppose that” is a set of formulas, representing the information thatonsiders to
be true abous§. Thus,Cn(I"), the closure of”" under=., should be included in every
possible candidate beliefs.

However,Cn(I") is not the only information thatl can have abou$. More can
be obtained by meta level rules, which represent statenadyuist possible candidate
beliefs in a meta level language. For instance, a statemaythaim that "if a candidate
belief does not contaird, then it must contaify”. In fact, the well-known closed
world assumption is a special case of this statement wihés —F}, providing that the
languagel has the connective to represent negative information in the system.

Meta level rules cannot be represented in the langyatgelf since the objects they
deal with are not formulas if but statements about candidate beliefs. More precisely,
meta level rules are composed by primitive statements arna lexeel connectives. The
former are sentences stating whether a formula is containgg@ossible candidate be-
lief, while the latter are words connecting those primigt@ements in a meta language.
Consider the example mentioned above. There are two prarstatements, namely,
"the candidate belief contairf§” and "the candidate belief contaid#s”. Furthermore,
they are connected by two meta level connectives, namely &mal "if then”.

* This work is supported by Australian Research Council (ARXycovery Projects grant
DP0666540.



Hence, the problem of how to represent meta level rules cativiided into two
parts, how to represent primitive statements and how tcesgmt meta level connec-
tives. In this paper, we simply write a formuléin £ to represent the primitive state-
ment "the candidate belief contait¥. On the other hand, we adopt a set of proposi-
tional meta level connectives, including rule arid), rule or ¢), rule negation{) and
rule implication &). For example, the meta level statement in the above exaraple
be represented asF; = Fb.

There are two fundamental reasoning tasks in relation &oréag about meta level
rules. The first one is called meta level reasoning. That iéckvmeta level rules can
be deduced by giving a set of rules. Another reasoning tag&fault reasoning, which
is the problem of what are the possible candidate beliefs\bggya set of rules.

In this paper, we propose a logic framework for both metallez@soning and de-
fault reasoning in a general sense, based on an arbitraeylyimdy logic, which consists
of a languageC and an entailment relatios . under some restrictions. In this sense,
there are numerous instances of the underlying logic, sacefinclusion, proposi-
tional logic, epistemic logic and so on.

The reasons why we consider arbitrary underlying logicdfaneefold. Firstly, due
to diversity of applications, the logic for representing 8ystemS may vary from the
simplest one to more complicated ones. Secondly, consigléne two reasoning tasks
in a general sense may help us to reveal the nature of theallyrageneral framework
not only unifies a number of existing approaches but als@te# promising ones.

The rest of this paper is organized as follows. Next, we psefihe syntax and ba-
sic semantics of the logic framework. In Section 3, we defivth Ineta level reasoning
and default reasoning of the framework semantically, anelstigate their relationships.
Then, we show that this framework is powerful enough to aaptarious existing ap-
proaches and possible new ones in Section 4. In Section 5hewe that it can be
reduced into its simplest case, namely answer set progmagarRinally, we draw our
conclusions.

2 Syntax and Basic Semantics

To begin with, we need to specify what a logic is. We adopt @&emis idea [1] of stan-
dard logic system, which consists of two components. Firsthas a syntax, namely, a
formal language to define what are the objects dealt withigldigic system. We denote
it by a languageC. Basically, it can be represented as a set. Elemenfsare called
formulas Secondly, the logic system should have reasoning ahitigt, is, to answer
the question whether a formula can be derived by other famurhis is formalized
by anentailment relatior}=, between a set of formulas and a formuladnin other
words, =, is a relation=,C 2% x L, that satisfies the following two restrictions:

Reflexivity if F' € I', thenI" =, F;
Transitivity (cut) ifforall F' € IV, I" = F',thenl” =, F implies thatl” =, F,

wherel' I" C L, F,F’ € L.
According to reflexivity and transitivity, a logic systensalsatisfies the following
properties.



Proposition 1. Let £ be a language and=, the corresponding entailment relation
satisfying reflexivity and transitivity. Then, it also sdites the following properties:

Monotonicity if I' C I'', then forallF € L such thatl” =, F, I’ =, F;

Equivalency ifforall F" € I, I" =, F' andforall F € I', " =, F, then for all
GEK,F'ZLGiffF/ )ZgG;

Extendability if forall F/ € I'', I" = F',thenforallF € £, " UI" |, F iff
Ik, F.

Of course, classical propositional logic is a typical exéamgf such a logic. There
are numerous other examples, such as first order logic, nmgla) probabilistic logic,
intuitionistic logic and so on. In particular, set inclusican also be considered as a
logic. Let Atom be a set of atoms. The formulas in the langudgs set inclusion are
defined as elements idtom, and the entailment relation between a Batf formulas
(i.e. a subset ofditom) and a formulaF’ (i.e. an element imMtom) is defined as set
inclusion (i.e.I" =, F iff F € I'). Itis obvious that this entailment relation (i.e. set
inclusion) satisfies reflexivity and transitivity.

However, Reiter's default logic is not a logic accordinghestdefinition if the en-
tailment relation is defined as credulous reasoning or gl@peasoning. One reason is
that both credulous reasoning and skeptical reasoningtkatisfy transitivity. Another
reason is that the consequence of both credulous reasamihgkaptical reasoning is
not a default rule but a propositional formtila

A closureis a setC of formulas inL closed under the entailment relatipy.. That
is, C'is a closure iff for allF € £ suchthaC =, F, F € C. By reflexivity, it is easy
to see that ilC' (£, F?, thenF ¢ C. Hence( =, Fiff F € C. Itis easy to see that
if C1 andCsy are two closures, then sod& N Cs.

Proposition 2. Let £ be a language and=, the corresponding entailment relation
satisfying reflexivity and transitivity. Ldt be a set of formulas . There exists a
unique closure” such thatforallF € £, I' =, Fiff C . F.

We write Cn(I") to denote this closure af. For convenience, we simply ude
to denoteCn(I') if it is clear from the context. Clearly, if’; C I, thenCn(I}) C

Based on the underlying logi€, we define a meta level languagé L (L), follow-
ing a similar construction of general default logic [3]. Onejor difference is that, in-
stead of classical propositional logic, we use an arbitvagerlying logic as discussed
above.

The meta level languag&t£(L) is defined uporC by introducing a set ofneta
level rule connectivegule connective$or short), includingule and( & ), rule or (?),
rule implication(=), and a special 0-ary connectifadsity L as follows:

R:=F| L |R&R|RIR| R=R,

! Hence, our definition of logic is not the same as Brewka andrEif2]. According to their
definition, both default logic and answer set programmirglagics.

2 \We writeI" j£ . F if itis not the case thal” =, F, the same for other similar notations used
later.



whereF' € L. We also introduce other rule connectivagh T, rule negation~, and
rule equivalence=. T, ~R andR; < R, are considered as shorthandlofs |, R =

1L and(R; = R3) & (R2 = R;) respectively. Formulas imM L(L) are calledmeta
level rules(rulesfor short). In particular, formulas ig are also rules. For convenience,
we call thenfacts A rule baseis a set of rules. Theubrulerelationship between two
rules are defined recursively.

— Ry is asubrule of?;.
— BothR; andR; are subrules oRR; & R», R1! Ry andR; = R».

In particular, if F' is a fact and also a subrule & we say thaf is asubfactof R.
In the basic semantics, we define gatisfaction relatior=5 between closures in
the underlying languagé and meta level rules recursively as follows:

— If Risafact, therC' =5 Riff C =, R;
- CH¥p 1L
—CI:BR&SiﬁOFBRandCFBS;
—CEgRSIffCEgRorC =5 S;
—C|:BR:>S|ffC[#BR0rC):BS

Thus,C ':B T.C ):B ~Riff C ':B R= Liff C l#B RorC ':B Liff C l#B R.

CEpR&SffCEp(R=S5)&(S=R)iff CEgR=SandC =g S=R

iff (@) C Ep RandC =g Sor(b)C £ RandC [£p S. We say that” satisfies
R, alsoC is amodelof R iff C =5 R. We say that two rules angeakly equivalent

they have the same set of models. We say ¢hahttisfies a rule basa iff C satisfies
all rulesinA.

Example 1.Consider the rule-F; = F5. If a closure contains neithéf; nor F5, then
it is not a model of this rule. On the other hand, a closureaioimg F satisfies this
rule, so does a closure containifg.

Note that the underlying logic may have internal relatiopstamong formulas. For
instance, consider a rulg, & ~F>. If in an underlying logicC, {F1} =, F5, then
there is no model of the rul&; & ~F5. However, if in another underlying logi€¢’,
{F1} £z Fy, then aclosure containinfg, but notF; is a model of the rulé”, & ~F5.

The basic semantics can be translated into classical pitipad logic. Let A¢(L)
be a set of atoms in propositional logic anda one-to-one mapping fromi to A¢(L).
Given a meta level rul®, by T'rc1,(R) we denote the propositional formula obtained
from R by simultaneously replacing every subfd¢in R with A¢(F") and every rule
connective with corresponding classical propositionalrertives. Given a closur@,
by At(C), we denote the propositional assignmiemer At(L£) such thatF € C iff
At(F) € At(C).

Theorem 1. Let R be a rule andC' a closure.C' g R iff A¢(C) is a model of
Trcr(R) in classical propositional logic.

Corollary 1. LetR; and R» be two rules. Ifl'r¢ 1, (R;) is equivalent tdl'r¢ 1, (R2) in
classical propositional logic, then for all closurés C =5 R, iff C =5 Ro.

% We identify a propositional assignment as the set of atosigiaad to be true in it.



3 Meta Level Reasoning and Default Reasoning

A natural question is so-called meta level reasoning, ngrhelw to derive new meta
level rules by giving a set of rules. We use a bi-level senaarftir this reasoning task.
The semantics is originated from the logic of here-andehehich was developed by
Heyting and adopted by Pearce [4] for answer set programming

A bi-level interpretationn ML(L) is a pair(Cy, C2), whereC; andC; are both
closures inL. The satisfaction relatiog-5; between bi-level interpretations and meta
level rules is defined recursively as follows:

— ifRis afact, ther‘(Cl,Cg> ):BI R iff Cl ':B RandCQ ):B R;
- (C1,C2) Wpr L
- (C1,C2) g1 Ry & Ry iff (C1,C2) =pr R and(C1, Cy) =pr Ra;
- (C1,C2) Epr R Ry iff (C1,Cs2) =pr Ry or (Ch,Cs) =1 Ra;
- <Cl,Cg> ):BI Rl = R2 iff
1. <Cl,02> I}'éBI Rl or <Cl,Cg> ):BI Rg and
2. CQ ':B Rl = Rg.

We say thatC1, Cs) is abi-level modebf R iff (C1,Cs) Ep; R. We say that a rule
baseA impliesa rule R, denoted byA =5, R, iff all bi-level models ofA are bi-level
models ofR as well.

The reason why we call this semantics bi-level is that the ¢snmponents of the
pair represent two levels of information respectively. Sheond lies on the underlying
level, which represents a possible guess of the agent abewystem, while the first
one lies on the meta level, which represents the actual setasmation that the agent
can have by fixing the underlying level information.

Example 2 (Example 1 continuedonsider the rule-F; = F,. Suppose thaf, is

the closurel’ H((}), while C; is a closure containingy. Then,(C;,C,) is a bi-level
model of ~F; = F, s0 is(Cyp, C1). However,(C1, Cy) and{Cyp, Cy) are not. Thus,
{~F) = F»} g1 F1 U Fy since(Cy, C1) is a bi-level model ofvF; = F, but not a
bi-level model ofF} ! F». However, one can check thgk ! Fy} =pr ~F1 = F»> no

matter what the underlying logic is.

The bi-level semantics and the basic semantics are closkaled. By induction on
the structure of?, we have the following result.

Proposition 3. Let(C1, C5) be a bi-level interpretation an& a rule.

— (C1,Ca) g1 ~RIff Gy o5 ~R.
- <Cl,Cl> ):BI R iff Cl ):B R.
— If <Cl,Cg> ':BI R, thean ):B R.

The result of Proposition 3 is not new; it holds for the logitiere-and-there as well
[5]. In fact, the bi-level semantics shares the nature ofdlgee here-and-there. There
are two major differences. Firstly, the bi-level semaniiogeneralized into an arbitrary
case, whilst the logic of here-and-there is only concerni¢ll set inclusion (i.e. atom
sets). Secondly, in the bi-level semantics, we do not reghi restriction that the first
component of the pair has to be a subset of the second one.



Proposition 4. Let A be a rule base an®; and R, two rules.AU{R1} Epr R iff
A ':BI Rl = RQ.

Proposition 5. Let A be a rule base an®; and Ry two rules. If A Ep; R, then
AU {Rl} ':BI Rs.

Proposition 6. Let A be a rule baseR a rule andC' a closure. IfC' =5 A and
A ':BI R, thenC ):B R.

Proposition 7. Let(C1, Co) be abi-level interpretation an® arule.(C, Cs) =pr R
iff <Cl n CQ,CQ> ):BI R.

According to Proposition 7, the bi-level semantics, whenuhderlying logic is set
inclusion, is indeed identical to the logic of here-andrth@ he reasons why we make
this minor change (i.e. to remove the restriction) are twbf®n the one hand, the
restriction seems unnecessary and not natural from a matfeainpoint of view. On
the other hand, the intuitions behind the bi-level semantithout the restriction are
clearer than that with it.

Perhaps, another reasoning task is more interesting, gatalult reasoning, which
is the problem of what are the possible candidate beliefs\iggya set of meta level
rules. We introduce two semantics for default reasoninge ®ra reduction style ex-
tension semantics, following the idea from Ferraris’ wak$n answer set semantics
for so-called propositional theories, and extended to gaefault logic by Zhou et al.
[3]. The other is equilibrium semantics, originated fromaRe’s equilibrium logic [4].

Thereductof a rule R relative to a closur€’, denoted byR®, is the rule obtained
from R by simultaneously replacing every maximal subrule nos§atl byC with L.

A closureC is said to be a@andidate beli¢fof a ruleR if it is the minimal closure (in
the sense of set inclusion) satisfyiiy’. That is,C' =5 R and there does not exist
another closur€; C C suchthat’; =g RC. We say that two rules aequivalenif
they have the same set of candidate beliefs. Clearly, tHisitien can be generalized
to rule bases, similar for definitions presented later.

Example 3 (Example 2 continued)onsider the example F; = F, again. Assume
that F; andF}, are not related in the underlying logit.et C; be the closur€n ({F;})
andC;, be the closur€n({F,}). Then,(~F, = ,) is L = F,. Of course(; is
a model of L = F,. However,Cn(0) is also a model of. = F5. Thus,C is not a
candidate belief of-F; = F5. On the other hand}; is the minimal closure satisfying
(~F; = F,)%, whichis~1 = F;. Thus,Cs is a candidate belief of F; = I%.

We introduce a notion aftrong equivalencketween two rules. The notion of strong
equivalence, introduced by Lifschitz [7] for answer setgreonming, and extended to
default logic by Turner [8], plays a very important role ifa@at reasoning. Two rules

4 This is different from the notion of belief or knowledge inigemic reasoning.

5 There are four possible relationships betwdgrand F»: (a) there is no closures containing
both Iy andFa; (b) {F1} = Fa; (€) {F2} = Fu, or (d) none of the above. In the first three
casesJy andF; are related.



R, andR; are said to betrongly equivaleniff for all other rulesRs, R; & R3 has the
same set of candidate beliefsAs & Rs.

We also define the equilibrium semantics for default reaspnh bi-level inter-
pretation{C1, C5) is said to be arquilibrium modebf a rule R iff (a) (C1,C3) is a
bi-level model ofR; (b) C; = Cs; (c) there does not exist; C C; such thatCy, Cs)
is also a bi-level model oR.

Equilibrium semantics is essentially a fixed point semantic this sense, it shares
the same basic idea of the extension semantics. Both of tla@nbe viewed as three
steps. First, guess a possible set of information. Secantleda minimal set of infor-
mation by fixing the guess. Finally, if these two sets coiaaidth each other, then it is
a possible candidate belief.

Example 4 (Example 3 continuedgain, consider the exampleF; = F». Let C,
C: andC;, be three closure§n(0), Cn({F1}) andCn({F>}) respectively. We have
that (Cy, C4) is a bi-level model ofvFy = Fy, so is(Cy, C1). Thus,(Cy,C1) is not
an equilibrium model of-F; = F». On the other hand (s, Cs) is a bi-level model of
~F) = F5, and there is no other closuf& such thatC’ ¢ C> and(C’,C5) is also a
bi-level model of~F; = F5. Thus,(Cs, C5) is an equilibrium model of F; = Fb.

Certainly, the four semantics, basic semantics, bi-lexlantics, extension seman-
tics and equilibrium semantics are closely related.

Proposition 8. Let A be a rule base and’ a closure. IfC' is a candidate belief ofy,
thenC Ep A.

However, the converse of Proposition 8 does not hold in généor instance,
Cn({F1}) is amodel of~F; = F>, but not a candidate belief of it.

Proposition 9. Let A be a rule base and’; andC5 two closures{C1, Cs) Epr A iff
Ch ':B ALz,

Theorem 2. Let A be a rule base and’ a closure.C' is a candidate belief ofA iff
(C, CY is an equilibrium model ofA.

Proposition 10. Let R; and R, be two rules.R; and R, are strongly equivalent iff
':BI Rl =4 Rg.

Corollary 2. Let A be a rule base an® a rule. A =p; R iff AU {R} is strongly
equivalent taA.

To sum up, we have defined three levels of semantics, the $&rsiantics lies on the
underlying level and the bi-level semantics lies on the rftel, whilst on the middle
level are two equivalent semantics, namely the extensioraséics and the equilib-
rium semantics. Although basic semantics, equilibriumam®ins and reduction-style
semantics are used for answer set programming, the idedhtéhatcan be used in a
much more general sense has not been proposed yet. In adtligidea of using bi-
level semantics for meta level reasoning is a novel approitot equivalence relations
of those three levels are captured by weak equivalenceygtquivalence and equiva-
lence respectively.



Proposition 11. Let R, and R, be two rules. IfR; and R, are strongly equivalent,
thenR; and R, are equivalent and weakly equivalent as well.

Example 5 (Example 4 continue@onsider four rules-F} = Fy, Fy, ~~F ! F; and

Fy F> and assume thdt; andF; are not related in the underlying logic (See Footnote
5). We have thatvF, = F) is strongly equivalent tov~Fy ! Fr. ~F| = Fy is
equivalent toFy, but neither strongly equivalent nor weakly equivalenfio ~F; =

Fy is weakly equivalent ta; @ F», but neither strongly equivalent nor equivalent to
Fi U Fs.

The results proposed in this section are not surprisingedimey hold for answer set
programming as well. However, their proofs in general dofalidw directly from the
simplest cases since the underlying logic is not simply a®&tre are many features
which can be exploited in set inclusion. For instance, inrsgtision, a set of atoms is a
closure. However, it might be not the case for an arbitragycoln addition, the atoms
in set are notrelated, but they may have very complex reigligs in an arbitrary logic.

4 The Underlying Logic

In this section, we show that the logic framework presenteaa is powerful enough
to capture various existing approaches by applying the nyidg logic to different
classes. Due to a space limit, we only briefly outline the b#tas and results in
this paper and leave backgrounds, detailed comparisondiscussions to a future full
version.

4.1 Setinclusion (with classical negation)

As we have shown in Section 2, set inclusion can be considesedlogic. Similarly,
set inclusion with classical negation can be treated asie ésgvell. LetAtom be a set
of atoms and.it the set of literals, i.e., atoms or their classical negatidine formulas
in the languages™ of set inclusion with classical negation are defined as ef¢sna
Lit. Let I" be a set of formulas (i.e. a set of literals) afica formula (i.e. a literal).
I' =5~ Fiff (@) F € I' or (b) there exists an atomsuch that, ~a € I'. Clearly, this
entailment relation satisfies reflexivity and transitivity

Answer set programming (with classical negation) corresisdo default reason-
ing in meta level language when the underlying logic is seluision (with classical
negation). On the other hand, it also explains why the anseksemantics for logic
programs with classical negation work very well.

Theorem 3. Let P be a disjunctive logic program (with classical negation) fhd
X a set of atoms (literals)X is an answer set of iff X is a candidate belief of
P in ML(S) (ML(S™)), whereP is the set of meta level rules obtained fratrby
replacingeachrule | ... |pn < ¢1,...,qm, notry,..., not r; by a metalevel rule
& ... &qga&~r & ... &~rp=prlo s,

Clearly, Theorem 3 also holds for normal logic programmit@][ More generally,
it holds for Ferraris’ answer set semantics for propos#ldheories [6] as well.



Theorem 4. Let I" be a set of propositional formulas and a set of atomsX is an
answer set of " iff X is a candidate belief of in ML(S), wherel” is the set of meta
level rules obtained fronf’ by replacing every classical propositional connectivethwi
corresponding rule connectives.

4.2 Propositional logic

Certainly, classical propositional logitC is a typical example of the underlying logic.
The following theorem shows that Zhou et al.’s general defagic is a special case of
the logic framework by applying the underlying logic to peosjtional logic.

Theorem 5. Let A be a rule base in general default logic [3]. A thedFyis an exten-
sion of A iff T'is a candidate belief ofA in ML(CL).

As shown in [3], Reiter’s default logic in the propositioralse [11] and Gelfond et
al.’s disjunctive default logic [12] are special cases dfigral default logic. Therefore
these two approaches are also special cases of defaulbieged M L(CL).

4.3 First order logic: closed case

Let FOL be a first order language. B¥OLs, we denote the subclass 6fOL by
restricting the formulas to sentences, i.e., first ordanidas without free variables.

Theorem 6. A set of sentences is an extension of a closed default tdé&niy) iff it
is a candidate belief off U D in ML(FOLs)®.

4.4 Multi-context logic

It is well argued that the notion of context plays a very intpot role in Al [13-16].
A context of an agent about the environment represents its(tmgal) subjective view
of the environment. There is an increasing interest on ftimng a multi-context lan-
guage, which defines not only the information of a number oftexts themselves but
also the information of interrelationships among them.

Givenaset’y, ..., L, of nlanguages and their corresponding entailment relations
satisfying both reflexivity and transitivity, we define a tindontext languagg; x . . . x
L,. The formulasinC; x ... x £,, are labeled formulas, which have the fofin F),
wherek is a label to denote which context it comes from dndbs a formula inl;. A
formula(k, F) is entailed by a sef’ of formulas in£; x ... x L, iff F is entailed in
the logicL;, by the set of formulas id” labeled byk. Formally,

I'Ecix.xc, (k,F)Iff {G | (k,G) e} =, F.
Clearly,=, «...xz,, satisfies reflexivity and transitivity as well.

® D is the set of rules iIML(FOLs) by rewriting each rulgy, M F», ..., MF,/Fn41in D
to Fi & ~—Fy & ... & ~—-F, = Fn+1.
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A setI" of formulas in£, x ... x £, can be equivalently written as antuple
(In,...,In), wherel, = {G | (k,G) € I'}. Under this reformulation, we show that
Brewka et al.'s contextual default reasoning, which candresiered as a "syntactical”
counterpart of Roelofsen and Serafini’s information chaipraach [15], is a special
case of the framework when the underlying logic is a multiteat propositional logic.

Theorem 7. Let L4, ..., L, ben propositional languages (built over different sets of
atoms).(I1,...,I,,) is a contextual extension of a normal multi-context systejh6]
iff (I, ..., I},) is a candidate belief of in ML(L; x ... x L,)".

Furthermore, Brewka et al.’'s approach is a homogeneousi@eall the contexts
are propositional languages), whilst our approach allogterogenous contexts. Our
approach is also an generalization of Giunchiglia’s hegfenmus multi-context logic
[14], which does not consider nonmonotonic rules.

A related work is due to Brewka and Eiter [2]. They also intéadntegrate het-
erogenous contexts by nonmonotonic rules. However, im #pgiroach, the underlying
logic is defined as a tuplgk’ B, BS, ACC'), whereK B is the set of all possible knowl-
edge based3S is the set of all possible belief sets, adnd’'C is a function fromK B
to 259, for describing the "semantics” of this logic. A logic in csgnse can be decried
as a special kind of this tuple as followk’B are the sets of formulas if; BS are
the sets of closuresiCC is the closure operator. When restricting Brewka and Eiter
sense of logic to ours, their approach of equilibria coiesitvith default reasoning of
the meta level language by applying the underlying logic tdtirtontext logic.

5 Reducing into Answer Set Programming

In this section, we show that the logic framework proposedtismpaper can be reduced
into its simplest case, namely answer set programming, éytikying the internal re-
lationships among formulas in the underlying logic. Here,a@nsider the general case
of answer set programming in the propositional case [6].

Let R be a rule. We writd"act(R) to denote the set of subfacts Bf Suppose that
Fact(R) = {Fy,..., F,}. We introducen new atomsP = {pi,...,p,} associated
with each fact inFact(R). By P(R) we denote the answer set program obtained from
R by simultaneously replacing each occurrencd’gf(l1 < i < n) in R with p,;. By
I(R) we denote the programs of all rules of the following form:

pil&pig& &pik = Dj,

where{iq, ia,..., ik, 7} € {1,...,n}suchthaf{ F;,, Fi, ..., Fiy} =2 F;.ByTr(R)
we denote the prografP(R), I(R)}.

Let I" and I’ be two sets of formulas i such thatl” C I'’. We say thatl” is
maximalto I" iff for all formulas F € I'"\I', I" [~ F.

7 Here,C is the set of rules IO L(L1 X ... X Ly) obtained fromC' by rewriting each fac¥
in W; to (i, F), and each rulécy, G1), . .., (¢m, Gm) : {¢m+1, H1), .., {Cmtn, Hn)/F in
D;to(c1,G1) & ... & {cm,Gm) & ~{cms1,7H1) & ... & ~{Cmin,Hn) = (i : F),
whereF’, G;, H; are propositional formulas in corresponding contexts.
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Proposition 12. Let R be a rule and”' a closure. IfC is a candidate belief oR, then
there exists a subsét of Flact(R) such thatC' = Cn(I).

Theorem 8. Let R be arule andFact(R) = {F1,...,F,}. LetP = {p1,...,p,} be
n new atoms associated with each factinct(R).

1. f{piy,...,pi;} is an answer set &fr(R), thenCn{F;,,..., F;,} is a candidate
belief of R and{F;, ..., F;;} is maximal toF act(R).

2. If C is a candidate belief oR and{F;, ..., F;,} is the set of formulas obtained
in Proposition 12 such that' = Cn({F;y, ..., Fi.}), then{p;y,...,pi;} is an
answer set of'r(R).

Theorem 9. Let R be a rule.=p; R iff all HT-models of/ (R) are also HT-models of
P(R).

Intuitively, the ruleR is constructed fron¥'act(R) by rule connectivesP(R) rep-
resents the structure @ (i.e. the way of constructing?), while I(R) identifies all
the internal relationships amottuct(R). Theorem 8 and 9 show that, both meta level
reasoning and default reasoning in any meta level languag®e captured in answer
set programming by separating the structure of rules anéhtberelationships among
underlying facts.

The translation introducesnew atoms, where is the number of facts i act(R).
Clearly, n is polynomial, in fact linear, in the length @t. Interestingly, the original
atoms inR no longer occur i'r(R). However, in some cases,could be exponential
in the number of the original atoms since atoms can compgsenential number of
formulas in some underlying logics (e.g. propositionaiddg

One of the most important problems is whether this trarwsidti polynomial or not.
Unfortunately, althoughtP(R) is linear in the size oR, I(R) may contain exponential
number of rules. The reason is that there may be exponentiabar of such internal
relationships among'act(R). Observing that not all rules ifi(R) are necessary, we
can pick up those "minimal” ones, namely, the set of premist®e minimal set satisfy-
ing the consequence Fact(R). However, even only taken these internal relationships
into account, the number is still exponential. For exampie;lassical propositional
logic, let Atom = {a1,...,a,} bem atoms. LetF;;, (1 < i < m),(1 < j < m)
be the formulaz; — a;. Then, we haven? formulas. However, we have exponential
number of such internal relationships. For instance, forsat of atomsu;, ..., a;;
different from two atoms:;, a;, {a; — i1, a1 — Gio, ..., Gig_1 — Qip, Gip — A5}
is a minimal set satisfying; — «a;.

Despite this negative result, the translation is not onljnebretical interests but also
of practical uses. It enables us to easily analyze the me¢hlEnguage in small-scale
case studies. Also, itis a useful tool to investigate prigein meta level language. For
instance, the following propositions follow from Theorera®d 9 straightforwardly.

Corollary 3. If £ is a decidable language, then both meta level reasoning afelidt
reasoning ofM L(L) are decidable.

Corollary 4. Contextual ASP [16] has the same computational complesitycamal
logic programming.



12

6 Conclusion

In this paper, we proposed a logic framework for meta levatoming as well as de-
fault reasoning about meta level rules. In this frameworktarievel reasoning is the
reasoning task of how to deduce new meta level rules by giaisgt of rules, while
default reasoning is the problem of what are the possibldidate beliefs by giving
them. Default reasoning has attracted a lot of attentiorthenpast three decades [3,
6,8-12,16,17]. On the other hand, meta level reasonirftpadth also important, was
relatively less studied. A closely related topic is horwateasoning [18], which can be
considered as a fragment of meta level reasoning of defagilt.| Another topic is so-
called SE-consequence [19, 20] in answer set programmihighvactually coincides
with meta level reasoning task of answer set programming.

Some technical results, although not trivial, might not bgossing since they hold
for corresponding cases of answer set programming and ltiédgic as well [3, 5].
However, surprisingly, all these can be summarized in amgéframework with simple
semantics. Hence, we argue that, this framework, indeqduies the nature of both
meta level reasoning and default reasoning in a genera¢sens

It is worth mentioning that default reasoning is honmonadin the sense of
skeptical reasoning or credulous reasoning), whilst metallreasoning is actually
monotonic (See Proposition 5). Furthermore, meta levelaeiag also satisfies reflex-
ivity and transitivity. This means that meta level reasgriteelf can also be treated as a
logic in our sense. However, default reasoning is not. leotvords, in this framework,
"default” is not a logic but a meta level reasoning task.

We demonstrated this framework’s expressiveness to aagtueral existing ap-
proaches of default reasoning by applying the underlyirgicldo different classes.
More precisely, answer set programming, default logic ioppisitional case, default
logic in closed first order case and contextual default leginicide with default rea-
soning of meta level language of set inclusion, proposititogic, first order logic and
multi-context logic respectively (See Theorem 3-7).

Also, the framework will initiate some new promising fornsahs. One of them is
to consider description logic, for instan&84Z Q, as the underlying logic. This pro-
vides a natural combination of description logic and rudesdd formalism, which is a
crucial step to fulfil the blueprint of Semantic Web Initiati[21, 22]. However, rule
connectives considered in this paper are basically prtpoal. In other words, meta
level rules with free variables cannot be represented sapproach. One possible way
to overcome this barrier is to use the technique of grounfng0]. That is, to define
a first order meta level language powerful enough to repteséss with variables, and
then to transfer them to propositional meta level rules lugding for all instances.
However, this topic is beyond the scope of this paper. Wedléato our future inves-
tigations. Certainly, there are many other interesting iamgbrtant candidates of the
underlying logic, such as epistemic logic, logic of multjeats, temporal logics, logics
of uncertainty, and so on. Many of them are worth pursuinglé&fee them to our future
work as well.

We showed that both meta level reasoning and default reagdmia general sense
can be reduced to its simplest case (Theorem 8 and 9), nam®lyeaset programming,
by identifying the internal relationships (represented bi2) in the translation) among
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formulas in the underlying logic. This provides a powerfubltto study the general
framework without going through the details of the undetyiogic.

To sum up, the main contributions of this framework are ag¥ed. Firstly, it unifies

a bunch of existing approaches for default reasoning, acahitoe easily seen that this
approach can also initiate other promising paradigms afulefeasoning. In addition,
it suggests a new reasoning task, namely meta level reagdninderiving new meta
level rules given a rule base. Finally, it can be interedyingduced to the simplest case,
namely answer set programming.
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