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Abstract. We consider the problem of whether a given preferred ansetgirs-
gram can be reduced to a propositional formula. Researchistapic is of both
theoretical and practical interests: on one hand, it wilidshew insights to under-
stand the expressive power of preferred answer set prog@mthe other hand,
it may also lead to efficient implementations for computingferred answer sets
of logic programs. In this paper, we focus on Brewka and Eitgreferred an-
swer set programs. We propose a translation from prefemeder set programs
to propositional logic and show that there is one-to-oneespondence between
the preferred answer sets of the program to the models ofethgting propo-
sitional theory. We then link this result to Brewka and Eg#eveakly preferred
answer set semantics.

Key words: answer set semantics, prioritized logic programs, anseecompu-
tations.

1 Introduction

In recent years, Answer Set Programming (ASP) has becomefdhe most effective
approaches for declarative problem solving in knowledgeasentation and reasoning.
One important research in this area is to translate varioss/ar set programs, such
as normal logic programs and disjunctive logic programi propositional logic, so
that the answer sets of these logic programs are precisplyreal by the models of
corresponding propositional theories, e.g. [5, 7]. Redean this topic is of both theo-
retical and practical interests because it has not onlyigeavnew insights for a better
understanding of the expressive power of answer set pragrag) but also been led to
some efficient computations for answer set programming [7].

On the other hand, preferred answer set programming is aipiognmethod for
dealing with conflict resolution in nonmonotonic reasoni@yer the years, a number
of various preferred answer set program (also called pizexd logic program) frame-
works have been developed, which extended traditional anset semantics by inte-
grating proper priorities into the underlying logic progrs, e.g. [3, 4, 6, 8].

However, it remains as an unaddressed question whetherilarsiranslation can
be achieved between preferred answer set programs andgitiopal logic. This paper
provides a positive answer to this question. We focus on Baeand Eiter’s preferred



answer set programs and propose a translation betweennecknswer set programs
and propositional logic. In particular, we prove that gieepreferred logic program,
the models of a propositional theory, which consists of thgletion, loop formulas,
and preference formula of the program, precisely are theesasrthe preferred answer
sets of the underlying program.

The rest of the paper is organized as follows. Section 2 éees/the basic no-
tions and concepts of Brewka and Eiter’'s preferred and wepkéferred answer set
programs. Section 3 presents our translation from the pefeanswer set program
to propositional logic and proves a one-to-one correspooel®detween the preferred
answer sets of the program and the models of the translatgmbgitional theory. Sec-
tion 4 then links this result to weakly preferred answer segpams. Finally, section 5
concludes the paper with some discussions.

2 Brewka and Eiter’'s Preferred Answer Set Semantics: An
Overview

Consider a propositional languagewhich consists of a set of propositional atoms.
A fully prioritized logic programon the languag€ is a pair(II, <), wherell is a
(finite) normal logic program ang is a stricttotal orderon 1. Since< is a total order

on the setl], the rules inIT corresponds to a unique ordinal number, and thus to an
enumerationr, - -+ ,r, -, 7|7 Of the elements of/. Therefore we use the notion
{ro}< torepresentil, <).

A ground ruler is defeatecby a set of atoms' if there exist some atom € §
such that: appears in the negative body«fi.e., “not a” is a part ofr's body. We use
Head(r), Pos(r) andNeg(r) to denote the head atom, the set of atoms occurring in the
positive body, and the set of atoms occurring in the negatey of ruler, respectively.
Given a set of atom§ and a ruler, if Head(r) ¢ S andPos(r) C S then we refer to
r as azombierule with respect t&5' or simply “zombie rule” when it is clear from the
context. Intuitively, a zombie ruleis a rule which is assured to lb@n-generatingvith
respect toS asHead(r) ¢ S.

Definition 1. [2] Let II. = (II,<) be a fully prioritized grounded (normal) logic
program andX a set of ground atoms. Let 1., = (X I1, <’) be the fully grounded
prioritized logic program such that’ IT is the set of rules obtained froi by

1. deleting every rules having an atgnin its positive body wherg ¢ X, and
2. removing from each remaining rules their positive body,

and<’ is inherited from< by the mapf : XIT — I1,i.e.,r} <’ 7 iff f(r}) < f(r}),
wheref(r") = r is the first rule inII with respect to< such that’ results fromr by
step 2.

Note that<’ is also a strict total order orf I1. For a fully prioritized programiI., a
set of atomsS, and ° IT defined as in above, the preferred answer set semantid@s of

is defined through an operat6ts ;_, : 24tms(*1l<) . gAtoms(*I<)1 gych that

! Here Atoms( °IT.,) denotes the set of all atoms occurring9d7 /.



an answer sefl of /7 satisfies the priorities if and only (FAH</ (A) = A. The formal
definition is given below.

Definition 2. [2] For a fully prioritized grounded (normal) logic prografi . = (11, <
) and a setS of atoms, let* 7., = (°II,<') = {r,}< where °IT and <’ is defined
as in Definition 1. The sequengg is defined as follows:

So=10
fora =0, and
Sa if ro11 is defeated byp,, or
Sai1 = Head(rq+1) € S andr,; defeated bys,

So U{Head(ro+1)}, otherwise
for0 < a <|[II|. ThenCsp_, (S) = S

For a fully prioritized grounded logic prografi. = (II, <) and an answer set of
11, Ais apreferred answer seif [/ ifand only if Cafy_, (A) = A.

Obviously, there are some fully prioritized grounded logiograms that may have
no preferred answer set. In [2], this problem was addresgeal froposed relaxation
that gives preferred answer sets whenever they exist anganxmation calledveakly
preferred answer setf the other cases. For a formal definition, the notiomweérsion
is first introduced.

Definition 3. [2] Let <; and <2 be two well-orderings on se&f. We defindnvs(<;
, <2) (inversions oks in <) as

Invs(<1,<2) ={(b,a)|a,b€ S,a <2 b,b<; a}.

The idea behind weakly preferred answer sets is linked taibogithose inversions
from a full prioritization< of a grounded logic prograifi to another full prioritization
<4 of the program. To formally define this, the notion of distameintroduced.

Definition 4. [2] Let <; and <5 be well-orderings of a finite s&t. The distance from
<4 to <3, denotedis (<1, <32), is defined as

ds(<1,<2) = [Invs(<a,<1)].

From the above definition, the notion pfeference violation degredenotedgvd is
defined as follows.

Definition 5. [2] Let IT. = (II, <) be afinite fully prioritized grounded (normal) logic
program. For an answer set of 11, definepvd_ (A) (preferrence violation degree of
AinlIl.) as

pud_ (A) = min{d;(<,<’)| <"is any full prioritization ofII such that
A'is a preferred answer set @t .. = (II, <')}.



Intuitively, pvdrr_ (A) is the minimum distance possible from the full prioritizatiof
I to any fully prioritized rule basél.. = (II, <’) such thatA is a preferred answer
set ofI1... From the above definitions, the semantics of weakly prefigsregrams can
be formally defined as follows.

Definition 6. [2] Let II. = (II,<) be a finite fully prioritized grounded (normal)
logic program. We define

pud(I1<) = min{pvd ;7_y(A) | A is an answer set off }.
ThenA is aweakly preferred answer sef I1. iff pvd_ (A) = pvd(Il<).

Informally A is a weakly preferred answer set of a fully prioritized grded (normal)

logic program// . if there exist a full prioritization<; of /7 such thatd4 is a preferred

answer set of /., and for any other full prioritization<, of IT where there exist a
preferred answer set’ of I1,, we haved; (<, <1) < dp(<, <2).

3 Preference Formulas and the Translation

In this section, we propose a translation from the prefemesiwer set semantics to
propositional logic, such that a one-to-one corresponeemrist for this translation.

Definition 7. For a finite fully prioritized grounded (normal) logic progm I1. =
(11, <), we define thereference formuld F'(11.) of I as follows:

PF(Il.) = A (man /\ bD
rell«,Head(r)=a bePos(r)
V A en A\ )
r'edefr(r),r’'<r c€Pos(r’) deNeg(r’)

wheredefr(r) = {r'|r’ € II,Head(r') € Neg(r),Head(r') # Head(r) or
Neg(r') # Neg(r)}.

Informally, de f17(r) is the set of rules idT that defeat- in a sense that each rutéin
de fr1(r) is different fromr with regards to eitheH ead(r) or Neg(r), andHead(r') €
Neg(r).

Theorem 1. For a finite fully prioritized grounded (normal) logic progm I1. =
(I1,<) and an answer sefl of IT, A = PF(Il.) iff A is a preferred answer set
of IT..

In[7], Linand Zhao proposed a translation of finite normagjitoprograms to propo-
sitional formulas without the need of extra variables. Trans$lation is of the form
Comp(IT) AN LF(IT) whereComp(IT) is the completion of the logic prograi and
LF(IT) is the conjunction of all loop formulas associated with The loop formulas
are a way of strengthening the completion/6such that a set of atom&is an answer
set of IT iff A is a model ofComp(IT) A LF(II). Using Lin and Zhao's result, we
are able to translate prioritized normal logic programsrapesitional formulas via the
following theorem. Moreover, the models of the resultinggsitional formula are in
a one-to-one correspondence with the preferred answeoftts logic program.



Theorem 2. For a finite fully prioritized grounded (normal) logic progm I[I. =
(II,<), A= Comp(II) N LF(II) N PF(Il.) iff Ais a preferred answer set é1 ..

4 Linking Weakly Preferred Answer Set Programs

We now try to link the semantics afieakly preferred answer selty extending our
previously defined preference formula. Intuitively, we rebthe weakly preferred cri-
terion by encoding the inversions between two full priaations of the rules of a given
program. To achieve this, we introduce two classes of nemsitof the form(ry, r3)
andX(,, .,y wherer; andr; are rule names of the given program.

Definition 8. For a finite fully prioritized grounded (normal) logic progm I1. =
(I1, <), we define theveak preference formuld” PF(I1.) as follows:

WPF(II.) =
A (rarn A\ 0> \/ A ern N —dn(r)
rell,Head(r)=a bePos(r) r'€defr(r) cePos(r’) deNeg(r’)
)

AN () Ve, r)) A((r1,m2) D (e, ) (2)

ri,ro€Il,r1#r2
A A ((r1,72) A (r2,73) D (r1,73)) 3)

ri,r2,r3€Il,r1#ra#rs3
A /\ (((7‘1,7‘2) ) X(Tl,rz)) A (X(n,rz) ) (7"177"2))) (4)

r1,r2€M« ro<ry

The formulaW PF(I1.) is a conjunction of the four subformulas (1), (2), (3), and
(4). As can be seen, formula (1) is similarR¥'(I1.) except that a rule that defeats a
zombie rule does not necessarily have to be more preferbd@spect to< and that if
aruler’ defeats a zombie rulethen the atontr’, r) (i.e. encodes’ is more preferred
thanr but not necessarily with respect4g should be satisfied (i.e. in the model satis-
fying W PF(I1.)). Basically, the conjunction of the two formulas (2) and €Brodes
a full prioritization of the rules in/7 (not necessarily) where the prioritization rela-
tions are represented by the atoms of the fgrm r2). The last formula (4) encodes
the inversions ok from theotherfull prioritization relations (that are represented by
the atomgr, 72)), which are then represented by the atoms of the faim .., (i.e. it
indicates thatri, ) is an inversion of2 < r1).

Before we present our main theorem of this section, we neduistointroduce a
useful notion. LetZ; and £, be two propositional languages adg C L5, andA an
interpretation of, (i.e. a subset of atoms df; ), an interpretatiorB of £, is called an
extensiorof A on Lo, denoted a®? = ext(A).,, if A C B, andA andB agree on the
truth values of all propositional atoms 6f .2

2 Intuitively, £ is asupersedf L.



Theorem 3. For a finite fully prioritized grounded (normal) logic progm [I. =
(I1, <) and an interpretatiord of languagel = Atom(II), A is a weakly preferred
answer set of I iff there exist an extensiosxt(A)p of A, whereP = Atoms(II) U
{(Tz',’l“j) | Ti, T € H} U {X(”’rj) | ri,ry € e,y < 7“1'}3, such thatea:t(A)p ':
Comp(II) N LF(II) NWPF(Il.) and for all modelsM of Comp(II) A LF(IT) A
WPF(IL.), lext(A)p [x| < [M [x|.

5 Conclusions

In this paper, we have proposed a translations between Brank Eiter's preferred
answer set programs and propositional logic. We have alseepra one-to-one corre-
spondence theorem for the translation. Moreover, we alguighed a link between the
weakly preferred answer sets and propositional logic. Wewethat our work will be
of practical values to serve as an alternative approachuioent preferred answer set
programming implementations [6]. Currently we are consitgto implement a SAT
based preferred answer set solver based on the work dedeiopleis paper. From an
implementation viewpoint, since our defined preference wrdk preference formu-
las remain in a polynomial size of the underlying prograrchtéques of ASSAT [7]
may be used to optimize the computation of preferred anseter Bor future work, we
consider the possibility of applying similar methods tottep the preferred answer set
framework in [3] which allows the specification diynamicorderings such thadtatic
orderings are a trivial restriction of the more general dyitacase.
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