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Abstract. In this paper, we present a logic R for rule bases by introduc-
ing a set of rule connectives. We define both the models and extensions
of a rule base. The semantics of extensions intuitively captures all pos-
sible beliefs which can be derived from a rule base. We show that this
logic is a generalization of Reiter’s default logic [1] and Gelfond et al.’s
disjunctive default logic [2] in propositional case. We also show that this
logic is a generalization of Ferraris’s general logic programming [3]. Fi-
nally, we demonstrate that this logic is flexible enough to capture several
important situations in common sense reasoning.

1 Introduction

In this paper, we consider a language with connectives from both classical logic
and logic programming, and provide a fixed-point semantics for the language so
that our logic is both a generalization of Reiter’s default logic [1] and Ferraris’s
general logic programs with stable model semantics [3].

The interplay between Reiter’s default logic and logic programming with
negation-as-failure has been going on since the beginning of nonmonotonic rea-
soning. Reiter’s default logic was considered to be a formalization of default
reasoning including the negation-as-failure mechanism used in Prolog. This is
confirmed when Gelfond and Lifschitz [4] showed that their stable model se-
mantics of normal logic programs [5] can be embedded in Reiter’s default logic.
In a normal logic program, the head of a rule must be an atom. If one allows
disjunctions of atoms in the head of rule, then one obtains what has been called
disjunctive logic programs, and Gelfond et al. [2] showed that the answer set
semantics of these disjunctive logic programs can be embedded in their disjunc-
tive default logic. Notice that Reiter’s default logic also allows disjunction in the
formulas occurring in default rules, but this disjunction is different from the dis-
junction used in disjunctive logic programming. One could say that the former
is classical disjunction as in classical logic while the latter is default disjunction.
The difference is that default disjunction means minimality while classical dis-
junction does not. For instance, the logic program {a|b←} has two answer sets
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{a} and {b}, but the default theory ({}, {: a∨b/a∨b}) has one extension {a∨b}
which has three models3 {a}, {b}, and {a, b}.

Another difference between disjunction in disjunctive logic programs and dis-
junction in formulas in classical logic is that the former is allowed only in the
head of a rule. It cannot occur in the body of a rule nor can it be nested. This
limitation in the use of disjunction in disjunctive logic programming has been
addressed by Lifschitz et al. [6], Pearce [7] and recently by Ferraris [3]. He defined
logic programs that look just like propositional formulas but are interpreted ac-
cording to a generalized stable model semantics. In other words, in these formulas
called general logic programs, negations are like negation-as-failure, implications
are like rules, and disjunctions are like those in disjunctive logic programs. While
Ferarris’s general logic programs go well-beyond disjunctive logic programs by
allowing disjunctions, negation-as-failure, and rules to occur anywhere, they do
not allow any classical disjunctions and implications. Thus the natural ques-
tion is whether a meaningful logic can be defined that allow both connectives
from logic programming and classical logic. This paper answers this question
positively. Before we proceed to define our logic formally, the following example
illustrates the need for classical disjunction in default reasoning.

Example 1. Suppose that we have the following information about the students
in a high school:

(*) A student good at math is normally good at physics. Conversely, a student
good at physics is normally good at math.

In logic programming, this can be represented as follows:

1. GoodAtPhysics(x)← GoodAtMath(x), not ¬GoodAtPhysics(x)4;
2. GoodAtMath(x)← GoodAtPhysics(x), not ¬GoodAtMath(x).

Now suppose we are told that Mike is either good at math or good at physics.
If we represent this disjunctive information as:

3. GoodAtMath(Mike) |GoodAtPhisics(Mike)

then we would conclude that Mike is both good at math and good at physics
as the logic program {1, 2, 3} has a unique answer set. One could argue whether
this is a reasonable conclusion. If we do not wish the defaults to be applied here,
then we could replace (3) by the following fact:

3’. GoodAtMath(Mike) ∨GoodAtPhisics(Mike).

As we shall see, in our logic, the theory representing {1, 2, 3′} will have a unique
extension {GoodAtMath(Mike) ∨GoodAtPhisics(Mike)}.

3 We identify a model with the set of atoms that are true in the model.
4 We use a first order notation here to denote the set of all grounded propositional

rules.
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2 General Default Logic

In this section, we define our logic R that allow both classical connectives and
logic programming connectives. Then, we show that Reiter’s default logic, Gel-
fond et al.’s disjunctive default and Ferraris’s general logic programs are special
cases of the extension semantics of general default logic.

2.1 Syntax and basic semantics

Let Atom be a set of atoms, also called propositional variables. By L we mean
the classical propositional language defined recursively by Atom and classical
connectives ⊥, ¬, → as follows:

F ::= ⊥ | p | ¬F | F → F,

where p ∈ Atom. ⊤, F ∧G, F ∨G and F ↔ G are considered as shorthands of
⊥ → ⊥, ¬(F → ¬G), ¬F → G and (F → G) ∧ (G → F ) respectively, where
F and G are formulas in L. Formulas in L are called facts. The satisfaction
relation between a set of facts and a fact is defined as usual. A theory T is a set
of facts which is closed under the classical entailment. Let Γ be a set of facts,
Th(Γ ) denotes the logic closure of Γ under classical entailment. We write Γ to
denote the theory Th({Γ}) if it clear from the context. For instance, we write ∅
to denote the theory of all tautologies; we write {p} to denote the theory of all
logic consequences of p. We say that a theory T is inconsistent if there is a fact
F such that T |= F and T |= ¬F , otherwise, we say that T is consistent.

We introduce a set of new connectives, called rule connectives. They are −
for negation as failure or rule negation, ⇒ for rule implication, & for rule and,
| for rule or and ⇔ for rule equivalence respectively. We define a propositional
language R recursively by facts and rule connectives as follows:

R ::= F | R⇒ R | R & R | R |R,

where F is a fact. −R and R ⇔ S are considered as shorthands of R ⇒ ⊥ and
(R ⇒ S) & (S ⇒ R) respectively, where R and S are formulas in R. Formulas
in R are called rules or rule formulas. Particularly, facts are also rules. A rule
base ∆ is a set of rules.

The order of priority for these connectives are

{¬} > {∧,∨} > {→,↔} > {−} > {& , | } > {⇒,⇔}.

For example, −p ∨ ¬p⇒ q is a well defined rule, which denotes the rule (−(p ∨
(¬p))) ⇒ q. Both ¬p ∨ p and ¬p | p are well defined rules. The former is also a
fact but the latter is not a fact. However, ¬(p | p) is not a well defined rule.

We define the subrule relationship between two rules recursively as follows:

1. R is a subrule of R;
2. R and S are subrules of R⇒ S;
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3. R and S are subrules of R & S;
4. R and S are subrules of R | S,

where R and S are rules. Thus, clearly, R is a subrule of −R. For example, p is
a subrule of ¬p | p but not a subrule of ¬p ∨ p.

We now define the satisfaction relation |=R between a theory and a rule
inductively:

– If R is a fact, then T |=R R iff T |= R.
– T |=R R & S iff T |=R R and T |=R S;
– T |=R R | S iff T |=R R or T |=R S;
– T |=R R⇒ S iff T 6|=R R or T |=R S.

Thus, T |=R −R iff T |=R R → ⊥ iff T 6|=R R or T |=R ⊥. If T is consistent,
then T |=R −R iff T 6|=R R. If T is inconsistent, then for every rule R, T |=R R.
T |=R R⇔ S iff T |=R (R⇒ S) & (S ⇒ R) iff T |=R R⇒ S and T |=R S ⇒ R.

We say that T satisfies R, also T is a model of R iff T |=R R. We say that T
satisfies a rule base ∆ iff T satisfies every rule in ∆. We say that two rule bases
are weakly equivalent if they have the same set of models.

For example, let T be ∅. T is a model of ¬p∨p, but T is not a model of ¬p |p.
This example also shows a difference between the two connectives ∨ and | . As
another example, T is a model of −p but not a model of ¬p. This example also
shows a difference between the two connectives ¬ and −.

Theorem 1. Let T be a theory and R, S two rule formulas in R.

1. T |=R −−R iff T |=R R.
2. T |=R −(R & S) iff T |=R −R | − S.
3. T |=R −(R | S) iff T |=R −R & − S.
4. T |=R R⇒ S iff T |=R −R | S.

Proof. These assertions follow directly from the definitions. As an example, we
write down the proof of assertion 2 here. According to the definition, T |=R

−(R & S) iff T is not a model of R & S, which holds iff a) T is not a model of
R or b) T is not a model of S. On the other hand, T |=R −R | − S iff a) T is a
model of −R or b) T is a model of −S, which holds iff a) T is not a model of R
or b) T is not a model of S. Hence, assertion 2 holds.

2.2 Extension

Let T be a theory and R a rule in R. The reduction of R on T , denoted by RT ,
is the formula obtained from R by replacing every maximal subrules of R which
is not satisfied by T with ⊥. It can also be defined recursively as follows:

– If R is a fact, then RT =

{

R if T |=R R
⊥ otherwise

,

– If R is R1 ⊙ R2, then RT =

{

RT
1 ⊙RT

2 if T |=R R1 ⊙R2

⊥ otherwise
, where ⊙ is & ,

⇔, | or ⇒.
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Thus, if R is −S and T is consistent, then RT =

{

⊥ if T |=R S
⊤ otherwise

.

Let T be a theory and ∆ a rule base, the reduction of ∆ on T , denoted by
∆T , is the set of all the reductions of rules in ∆ on T .

For example, let T be {p}. The reduction of −p⇒ q on T is ⊥ ⇒ ⊥, which
is weakly equivalent to ⊤. The reduction of p | q on T is p. The reduction of
p ∨ q on T is p∨ q. This example also shows that although two rules are weakly
equivalent (e.g. −p⇒ q and p | q), their reductions on a same theory might not
be weakly equivalent.

This notion of reduction is similar to Ferraris’s notion of reduction for general
logic programs [3].

Definition 1. Let T be a theory and ∆ a rule base. We say that T is an exten-
sion of F iff:

1. T |=R ∆T .
2. There is no theory T1 such that T1 ⊂ T and T1 |=R ∆T .

Example 2. Consider the rule base ∆1 = {−p⇒ q}.

– Let T1 be ∅. The reduction of ∆1 on T1 is {⊥}. T1 is not a model of ∆T1

1 .
Hence, T1 is not an extension of ∆1.

– Let T2 be {p}. The reduction of ∆1 on T2 is ⊥ ⇒ ⊥. T2 is a model of ∆T2

1 .
But ∅ is also a model of ∆T2

1 and ∅ ⊂ T2. Hence, T2 is not an extension of
∆1.

– Let T3 be {q}. The reduction of ∆1 on T3 is⊤ ⇒ q, which is weakly equivalent
to q. T3 is a model of q and there is no proper subset of T3 which is also a
model of q. Hence, T3 is an extension of ∆1.

– Let T4 be {¬p∧q}. The reduction of ∆1 on T4 is ⊤ ⇒ q, which is also weakly
equivalent to q. T4 is a model of ∆T4

1 . But {q} is also a model of ∆T4

1 . Hence
T4 is not an extension of ∆1.

– We can examine that the only extension of ∆1 is T3.

Similarly, p | q has two extensions: {p} and {q}. p ∨ q has a unique extension
{p∨q}. This example shows that although two rules are weakly equivalent, their
extensions might not be the same (e.g. −p⇒ q and p | q).

Example 3 (Example 1 continued). Consider the example mentioned in the in-
troduction section again. Reformulated in general default logic with domain
D = {Mike}, the rule base 1, 2, 3′, denoted by ∆, is:

1. GoodAtMath(Mike)&−¬GoodAtPhysics(Mike)⇒ GoodAtPhysics(Mike);
2. GoodAtPhysics(Mike) & −¬GoodAtMath(Mike)⇒ GoodAtMath(Mike);
3’. GoodAtMath(Mike) ∨GoodAtPhisics(Mike).

Let T1 be the theory Th({GoodAtMath(Mike), GoodAtPhysics(Mike)}). The
reduction of ∆ on T1 is

1-1 GoodAtMath(Mike)⇒ GoodAtPhysics(Mike);
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1-2 GoodAtPhysics(Mike)⇒ GoodAtPhysics(Mike);
1-3 GoodAtMath(Mike) ∨GoodAtPhysics(Mike).

Although T1 is a model of ∆T1 , GoodAtMath(Mike) ∨ GoodAtPhysics(Mike)
is also a model of ∆T1 and it is a proper subset of T1. Thus, T1 is not a extension
of ∆. And we can examine the only extension of ∆ is {GoodAtMath(Mike) ∨
GoodAtPhysics(Mike)}.

It is clear that if ∆ is a set of facts, then ∆ has exactly one extension, which
is the deductive closure of itself.

Intuitively, the extensions of a rule base represent all possible beliefs which
can be derived from the rule base. The following theorem shows that every
extension of a rule base is also a model of it.

Theorem 2. Let T be a consistent theory and ∆ a rule base. If T is an extension
of ∆, then T satisfies ∆.

Proof. According to the definitions, it is easy to see that T |=R ∆T iff T |=R ∆.
On the other hand, if T is an extension of ∆, then T |=R ∆T . Hence, this
assertion holds.

The converse of Theorem 2 does not hold in general. For instance, {p} is a
model of {− − p}, but not an extension of it.

2.3 Default logic

In this paper, we only consider Reiter’s default logic in propositional case. A
default rule has the form

p : q1, . . . , qn/r,

where p, qi, 1 ≤ i ≤ n and r are propositional formulas. p is called the prerequi-
site, qi, 1 ≤ i ≤ n are called the justifications and r is called the consequent. A
default theory is a pair ∆ = (W, D), where W is a set of propositional formulas
and D is a set of default rules. A theory T is called an extension of a default
theory ∆ = (W, D) if T = Γ (T ), where for any theory S, Γ (S) is the minimal
set (in the sense of subset relationship) satisfying the following three conditions:

1. W ⊆ Γ (S).
2. Γ (S) is a theory.
3. For any default rule p : q1, . . . , qn/r ∈ D, if p ∈ Γ (S) and ¬qi 6∈ S, 1 ≤ i ≤ n,

then r ∈ Γ (S).

We now show that Reiter’s default logic in propositional case can be embeded
into the logic R. Let R be a default rule with the form p : q1, . . . , qn/r. By R∗

we denote the following rule in R

p & − ¬q1 & . . . & − ¬qn ⇒ r.

Let ∆ = (W, D) be a default theory, by ∆∗ we denote the rule base

W ∪ {R∗ | R ∈ D}.
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Theorem 3. Let T be a theory and ∆ = (W, D) a default theory. T is an
extension of ∆ iff T is an extension of ∆∗.

Proof. ⇒: Suppose that T is an extension of ∆. Then T |=R WT since W is a
set of facts. Moreover, for all rule R ∈ D with the form p : q1, . . . , qn/r. There
are three cases:

– p 6∈ T . In this case, R∗T is weakly equivalent to ⊤. Thus, T |=R R∗T .
– There is a qi, 1 ≤ i ≤ n such that ¬qi ∈ T . In this case, R∗T is also weakly

equivalent to ⊤. Thus, T |=R R∗T .
– p ∈ T and there is no qi, 1 ≤ i ≤ n such that ¬qi ∈ T . In this case, according

to the definition of extensions in default logic, r ∈ T . Therefore, R∗T is
weakly equivalent to p⇒ r. Hence, T |=R R∗T .

This shows that for all R ∈ D, T |=R R∗T . Hence, T |=R ∆∗T . On the other
hand, there is no consistent theory T1 ⊂ T and T1 |=R ∆∗T . Otherwise, suppose
there is such a T1. T1 must satisfy W since W ⊆ ∆∗T . For all rule R ∈ D,
T1 satisfies R∗T . Therefore, T1 satisfies the third condition in the definition of
default extensions. Therefore, Γ (T ) ⊆ T1. Hence, Γ (T ) 6= T . This shows that T
is not an extension of ∆, a contradiction.
⇐: Suppose that T is an extension of ∆∗. We now show that T is the smallest

theory satisfying condition 1 to 3 in the definition of default extensions. First,
T |=R W since W ⊆ ∆∗ and W is a set of facts. Second, T is a theory. Finally,
for all rule R ∈ ∆ with the form p : q1, . . . , qn/r, if p ∈ T and there is no
qi, 1 ≤ i ≤ n such that ¬qi ∈ T , then R∗T is p ⇒ r. And T |=R R∗T , therefore
r ∈ T . This shows that T satisfies all those conditions. Now suppose otherwise
there is a proper subset T1 of T also satisfies Condition 1 to 3. Then, similarly
T1 |=R W and for all rule R ∈ D, T1 |=R R∗T . Thus, T1 |=R ∆∗T . This shows
that T is not an extension of ∆∗, a contradiction.

Observe that R and R∗ are essential the same except the syntax to represent
them. Thus, Reiter’s default logic in propositional case is a special case of general
default logic. In the rest of this section, we shall also show that Gelfond et al.’s
disjunctive default logic is a special case of R by a similar translation.

A disjunctive default rule has the form

p : q1, . . . , qn/r1, . . . , rk,

where p, qi, 1 ≤ i ≤ n and rj , 1 ≤ j ≤ k are propositional formulas. A disjunctive
default theory is a pair ∆ = (W, D), where W is a set of propositional formulas
and D is a set of disjunctive default rules. A theory T is called an extension
of a disjunctive default theory ∆ = (W, D) if T = Γ (T ), where for any theory
S, Γ (S) is the minimal set (in the sense of subset relationship) satisfying the
following three conditions:

1. W ⊆ Γ (S).
2. Γ (S) is a theory.
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3. For any default rule p : q1, . . . , qn/r1, . . . , rk ∈ D, if p ∈ Γ (S) and ¬qi 6∈
S, 1 ≤ i ≤ n, then for some j, 1 ≤ j ≤ k, rj ∈ Γ (S).

We now show that Gelfond et al.’s default logic in propositional case can be
embeded into the logic R as well. Let R be a disjunctive default rule with the
form p : q1, . . . , qn/r1, . . . , rk. By R∗ we denote the following rule in R

p & − ¬q1 & . . . & − ¬qn ⇒ r1 | . . . | rk.

Let ∆ = (W, D) be a disjunctive default theory, by ∆∗ we denote the rule base

W ∪ {R∗ | R ∈ D}.

Theorem 4. Let T be a theory and ∆ = (W, D) a disjunctive default theory. T
is an extension of ∆ iff T is an extension of ∆∗.

Proof. This proof is quite similar with the proof of Theorem 3.

2.4 General logic programming

Ferraris’s general logic programs are defined over propositional formulas. Given a
propositional formula F and a set of atoms X , the reduction of F on X , denoted
by FX , is the proposition formula obtained from F by replacing every subformula
which is not satisfied by F into ⊥. Given a set of propositional formulas ∆, ∆X

is the set of all reductions of formulas in ∆ on X . A set of atoms X is said to be
a stable model of ∆ iff X is the minimal set (in the sense of subset relationship)
satisfying ∆X .

Let F be a propositional formula. By F ∗ we denote the formula in R ob-
tained from F by replacing every classical connectives into corresponding rule
connectives, that is, from → to ⇒, from ¬ to −, from ∧ to & , from ∨ to | and
from ↔ to ⇔. Let ∆ be a general logic program, by ∆∗ we denote the rule base

{F ∗ | F ∈ ∆}.

Lemma 1. Let X be a set of atoms and F a propositional formula. Th(X) is a
model of F ∗ iff X is a model of F .

Proof. We prove this assertion by induction on the structure of F .

1. If F is ⊤ or ⊥, it is easy to see that this assertion holds.
2. If F is an atom p, then Th(X) |=R F ∗ iff p ∈ X iff X is a model of F .
3. If F is ¬G, then Th(X) |=R F ∗ iff Th(X) |=R −G∗ iff Th(X) is not a model

of G∗ iff X is not a model of G iff X is a model of ¬G.
4. If F is G ∧ H , then Th(X) |=R F ∗ iff Th(X) |=R G∗ & H∗ iff Th(X) is a

model of G∗ and Th(X) is a model of H∗ iff X is a model of G and X is a
model of H iff X is a model of G ∧H .

5. If F is G ∨ H , then Th(X) |=R F ∗ iff Th(X) |=R G∗ | H∗ iff Th(X) is a
model of G∗ or Th(X) is a model of H∗ iff X is a model of G or X is a
model of H iff X is a model of G ∨H .
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6. If F is G → H , then Th(X) |=R F ∗ iff Th(X) |=R G∗ ⇒ H∗ iff Th(X) is
not a model of G∗ or Th(X) is a model of H∗ iff X is not a model of G or
X is a model of H iff X is a model of G→ H .

7. If F is G↔ H , then Th(X) |=R F ∗ iff Th(X) |=R G∗ ⇔ H∗ iff a) Th(X) is
both a model of G∗ and a model of H∗ or b) Th(X) is neither a model of
G∗ nor a model of H∗ iff a) X is both a model of G and a model of H or b)
X is neither a model of G and nor a model of H iff X is a model of G↔ H .

This completes the induction proof.

Theorem 5. Let X be a set of atoms and ∆ a general logic program. X is a
stable model of ∆ iff Th(X) is an extension of ∆∗.

Proof. By Lemma 1, it is easy to see that (∆X)∗ is the same as (∆∗)Th(X).

⇒: Suppose X is a stable model of ∆. Then X is the minimal set satisfy-
ing ∆X . By Lemma 1, Th(X) is a model of (∆X)∗. Thus Th(X) is a model
of (∆∗)Th(X). And there is no proper subset T1 of Th(X) such that T1 |=R

(∆∗)Th(X). Otherwise, T1 is a model of (∆X)∗. Let X1 be the set of atoms
{p | T1 |= p}. By induction on the structure, it is easy to see that for any set
of propositional formulas Γ , T1 is a model of Γ ∗ iff Th(X1) is a model of Γ ∗.
Hence, Th(X1) is a model of (∆X)∗. Therefore by Lemma 1, X1 is a model of
∆X . Moreover X1 ⊂ X since T1 ⊂ Th(X). This shows that X is not a stable
model of ∆, a contradiction.

⇐: Suppose Th(X) is an extension of ∆∗. Then Th(X) is the minimal set
satisfying (∆∗)Th(X). Therefore, Th(X) is the minimal set satisfying (∆X)∗. By
Lemma 1, it is easy to see that X is the minimal set satisfying ∆X . Therefore,
X is a stable model of ∆.

Actually, although Ferraris used the notations of classical connectives to de-
note the connectives in general logic programs, those connectives are still con-
nectives in answer set programming. They are essentially rule connectives. In
this paper, we use a set of rule connectives to denote them. Hence, the answer
set semantics for general logic programs is also a special case of general default
logic. Moreover, it is a special case of general default logic which only allows the
facts are atoms, while general logic programming with strong negation (namely
classical negation) is also a special case of general default logic which allows the
facts are literals.

In [4], Gelfond and Lifschitz showed that the answer set semantics for normal
logic programs is a special case of Reiter’s default logic; in [2], Gelfond et al.
showed that the answer set semantics for disjunctive logic programs is a special
case of their disjunctive default logic. Together with this work, one can observe
that the series of semantics for answer set programs (with classical negation)
are essentially special cases of corresponding semantics for default logics which
restrict the facts into atoms (literals).
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3 Applications

In this section, we show that this logic is flexible enough to represent several im-
portant situations in common sense reasoning, including rule constraints, general
closed world assumptions and conditional defaults.

3.1 Representing rule constraints

Similar to constraints in answer set programming, constraints in general default
logic eliminate the extensions which do not satisfy the constraints. Let R be a
rule, the constraint of R can be simply represented as

−R.

Theorem 6. T is an extension of ∆ ∪ {−R} iff T is an extension of ∆ and
T 6|=R R.

Proof. ⇒: Suppose that T is an extension of ∆∪ {−R}. Then by the definition,
T |=R (−R)T . Thus, T |=R −R. Therefore T 6|=R R. On the other hand, T |=R

∆T . We only need to prove that T is a minimal theory satisfying ∆T . Suppose
otherwise, there is a theory T1 such that T1 ⊂ T and T1 |=R ∆T . Notice that
(∆∪{−R})T is ∆T ∪{(−R)T }, which is ∆T ∪ {⊤}. Thus, T1 |=R (∆∪{−R})T .
This shows that T is not an extension of ∆ ∪ {−R}, a contradiction.
⇐: Suppose that T is an extension of ∆ and T 6|=R R. Then T is the minimal

theory satisfying ∆T . Thus, T is also the minimal theory satisfying (∆∪{−R})T

since (−R)T is ⊤. Therefore, T is an extension of ∆ ∪ {−R}.

3.2 Representing general closed world assumptions

In answer set programming, given an atom p, closed world assumption for p is
represented as follows:

¬p← not p.

Reformulated in general default logic, it is

−p⇒ ¬p.

However, this encoding of closed world assumption may lead to counter-
intuitive effects when representing incomplete information. Consider the follow-
ing example [8, 9].

Example 4. Suppose we are give the following information:

(*) If a suspect is violent and is a psychopath then the suspect is extremely dangerous.
This is not the case if the suspect is not violent or not a psychopath.

This statement can be represented (in general default logic) as three rules:

1. violent & psychopath⇒ dangerous.
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2. ¬violent⇒ ¬dangerous.

3. ¬psychopath⇒ ¬dangerous.

Let us also assume that the DB has complete positive information. This can
be captured by closed world assumption. In the classical approach, it can be
represented as follows:

4. −violent⇒ ¬violent.

5. −psychopath⇒ ¬psychopath.

Now suppose that we have a disjunctive information that a person is either
violent or a psychopath. This can be represented as:

6. violent | psychopath.

It is easy to see that the rule base 1− 6 5 has two extensions:

Th({¬violent, psychopath,¬dangerous});

Th({violent,¬psychopath,¬dangerous}).

Thus, we can get a result ¬dangerous. Intuitively, this conclusion is too opti-
mistic.

In our point of view, the reason is that the closed world assumption (4 and
5) are too strong. It should be replaced by

7. −(violent ∨ psychopath)⇒ ¬(violent ∨ psychopath).

We can see that 1− 3, 6, 7 has two extensions

Th({violent}) and Th({psychopath}).

Here, the answer of query dangerous is unknown.

Generally, given a fact F , the general closed world assumption of F can be
represented as (in general default logic)

−F ⇒ ¬F.

Given a rule base ∆ such that −F ⇒ ¬F ∈ ∆, it is clear that if a theory T is
an extension of ∆ and T 6|= F , then T |= ¬F .

5 There are fours kinds of formalization for this example in general default logic. It
depends on the way of representing the conjunctive connective in 1 and the way of
representing the disjunctive connective in 6. This kind of formalization is a trans-
lation from the representation in disjunctive logic program. However, all these four
kinds of formalization are fail to capture the sense of this example if the classical
approach of closed world assumption is adopted.
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3.3 Representing conditional defaults

A conditional rule has the following form:

R⇒ S,

where R and S are rules. R is said to be the condition and S is said to be the
body. Of course, this yields a representation of conditional defaults in Reiter’s
default logic.

Let us consider the following example about New Zealand birds from [10].
We shall show how we can represent it using conditional defaults in a natural
way.

Example 5. Suppose that we have the following information:

(*) Birds normally fly. However, in New Zealand, birds normally do not fly.

One can represent this information in Reiter’s default logic as follows:

d1 : bird : fly / fly;
d2 : bird ∧ newzealand : ¬fly / ¬fly.

Given the fact

1. bird,

the default theory (1, {d1, d2}) has exactly one extension Th({bird, f ly}). How-
ever, given the fact

2. newzealand, bird,

the default theory (2, {d1, d2}) has two extensions Th({bird, newzealand, f ly})
and Th({bird, newzealand,¬fly}).

In [10], Delgrande and Shaub formalized this example by using dynamic
priority on defaults. We now show that the information (∗) can be represented
by using conditional defaults in a natural way as follows:

3. newzealand⇒ (bird & − fly⇒ ¬fly).
4. −newzealand⇒ (bird & − ¬fly ⇒ fly).

We can see that the rule base 1, 3, 4 still has exactly one extension Th({bird, f ly}),
and the rule base 2, 3, 4 has a unique extension Th({newzealand, bird,¬fly}).

4 Conclusion

We have proposed a general default logic, called R. It extends Reiter’s default
logic by adding rule connectives, and Ferraris’s general logic program by allowing
arbitrary propositional formulas to be the base in forming logic programs. We
also show that this logic is flexible enough to capture several important situations
in common sense reasoning.
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Just as Lin and Shoham [11] showed that propositional default logic can
be embedded in the logic of GK, a non-standard modal logic with two modal
operators K for knowledge and A for assumption, and Lin and Zhou [12] showed
that Ferraris’s general logic programs can be embedded in the logic of GK, it
is possible to show that our new logic R can also be embedded in the logic of
GK. One potential benefit of doing so would be to obtain a way to check strong
equivalence in R in classical logic. Another important task is to compare the
expressive power of R with other non-monotonic formalisms. It is also possible
to extend our logic R to allow facts to be first order sentences as in Reiter’s
default logic. We leave these to future work.
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