
A Case Study for CTL Model Update

Yulin Ding and Yan Zhang

School of Computing & Information Technology
University of Western Sydney

Kingswood, N.S.W. 1797, Australia
email: {yding,yan}@cit.uws.edu.au

Abstract. Computational Tree Logic (CTL) model update is a new
system modification method for software verification. In this paper, a
case study is described to show how a prototype model updater is imple-
mented based on the authors’ previous work of model update theoret-
ical results [4]. The prototype is coded in Linux C and contains model
checking, model update and parsing functions. The prototype is applied
to the well known microwave oven example. This case study also illus-
trates some key features of our CTL model update approach such as the
five primitive CTL model update operations and the associated minimal
change semantics. This case study can be viewed as the first step towards
the integration of model checking and model update for practical system
modifications.

1 Introduction

As one of the most promising formal methods, automated verification has played
an important role in computer science development. Currently, model checkers
with SMV [2] or Promela [8] series as their specification languages are widely
available for research, experiment, such as paper [11] and partial industry usage.
Nowadays SMV, NuSMV [3], Cadence SMV [9] and SPIN [8] are well accepted as
the state of the art model checkers. More recently, the MCK [5] model checker
has added a knowledge operator to currently in use model checkers to verify
knowledge related properties.

Buccafurri and his colleagues [1] applied AI techniques to model checking and
error repairing. Harris and Ryan [6] proposed an attempt of system modification
with a belief updating operator. Ding and Zhang [4] recently developed a formal
approach called CTL model update for system modification, which was the first
step towards a theoretical integration of CTL model checking and knowledge
update. In this paper, we illustrate a case study of the microwave oven model
to show how our CTL model updater can be used in practice to update the
microwave oven example.

2 The Relationship between Model Checking and Model

Update

Model checking is to verify whether a model satisfies certain required properties.
Model checking is performed by the model checker. The SMV model checker was

first developed by McMillan [10] based on previous developed model checking
theoretical results. This SMV model checker uses SMV as its specification lan-
guage. Models and specification properties are all in the form of SMV language
as the input. The SMV model checker parses the input into a structured repre-
sentation for processing. Then, the system conducts model checking by SAT [2,
7] algorithms. The output is counterexamples which report error messages as
the result of model checking. During the model checking, there was a state ex-
plosion problem, which significantly increases the SMV model checking search
space. The introduction of OBDD [2, 7] in the SMV model updater solves the
state explosion problem. After the first successful SMV compiler, the enhanced
model checking compilers, NuSMV and Cadence SMV, were developed. NuSMV
is an enhanced model checker from SMV and is more robust by the integration
of a CUDD package [3]. It also supports LTL model checking. Cadence SMV was
implemented for industrial use. The counterexample free concept is introduced
in Cadence SMV. From SMV, NuSMV to Cadence SMV, the model checkers are
developed from experimental versions to industrialized usage versions.

Model update is to repair errors in a model if the model does not satisfy
certain properties. It is performed by the model updater. Our model updater
updates the model after checking by the model checker if it does not satisfy
the specification properties. The eventual output should be an updated model
which satisfies the specification properties. In Fig. 1, the part of flow before “the
original model” shows the model checking process. The part of flow after “The
Original model” shows the model updater. The whole figure shows the complete
process of model checking and model update.

Example: microwave oven

Properties in CTL
 Specification

 (Transition state graph)

Abstractions

The Original Model Kripke Model
The Updated

Counterexamples

Properties
Confirmed

corrected
SMV Errors are identified & The Model Checker

The Model Updater

 The Kripke Model

A Software System

Fig. 1. The Model Checking and Model Update System

3 The Theoretical Principles of the CTL Model Updater

Ding and Zhang [4] have developed the theoretical principle of the model up-
dater. The prototype of the model updater described later is implemented based
on these results. Before we introduce the CTL model updater, we review the
CTL syntax and semantics and the theoretical results of CTL model update.

3.1 CTL Syntax and Semantics

Definition 1. [2] Let AP be a set of atomic propositions. A Kripke model M

over AP is a three tuple M = (S, R, L) where 1. S is a finite set of states. 2.
R ⊆ S × S is a transition relation. 3. L : S → 2AP is a function that assigns
each state with a set of atomic propositions (named variables in our system).

Definition 2. [7] Computation tree logic (CTL) has the following syntax given
in Backus naur form (only listed syntax related to the case study in this paper):

φ ::= p|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|AGφ|EGφ|AFφ|EFφ

where p is any propositional atom.

Definition 3. [7] Let M = (S, R, L) be a Kripke model for CTL. Given any
s in S, we define whether a CTL formula φ holds in state s. We denote this
by M, s |= φ. Naturally, the definition of the satisfaction relation |= is done by
structural induction on all CTL formulas (only listed semantics related to the
case study in this paper):

1. M, s |= p iff p ∈ L(s).
2. M, s |= ¬φ iff M, s 6|= φ.
3. M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2.
4. M, s |= φ1 ∨ φ2 iff M, s |= φ1 and M, s |= φ2.
5. M, s |= AGφ holds iff for all paths s0 → s1 → s2 → · · ·, where s0 equals s,

and all si along the path, we have M, si |= φ.
6. M, s |= EGφ holds iff there is a path s0 → s1 → s2 → · · ·, where s0 equals

s, and for all si along the path, we have M, si |= φ.
7. M, s |= AFφ holds iff for all paths s0 → s1 → s2 → · · ·, where s0 equals s,

there is some si such that M, si |= φ.
8. M, s |= EFφ holds iff there is a path s0 → s1 → s2 → · · ·, where si = s,and

for some si along the path, we have M, si |= φ.

3.2 CTL Model Update with Minimal Change

Definition 4. [4] (CTL Model Update) Given a CTL Kripke model M =
(S, R, L) and a CTL formula φ such that M= (M, s0) 6|= φ, where s0 ∈ S. An
update of M with φ, is a new CTL Kripke model M ′ = (S′, R′, L′) such that
M′ = (M ′, s′

0) |= φ where s′

0 ∈ S′. We use Update(M, φ) to denote the result
M′.

The operations to update the CTL model can be decomposed into 5 atomic
updates called primitive operations in [4]. They are the foundation of our pro-
totype for model update and are denoted as PU1, PU2, PU3, PU4 and PU5.
PU1: adding a relation only; PU2: removing a relation only; PU3: substituting
a state and its associated relation(s) only; PU4: adding a state and its associ-
ated relation(s) only; PU5: removing a state and its associated relation(s) only.
Their mathematical specifications are in [4]. Model update should obey minimal
change rules, which are described as follows.

Given models M = (S, R, L) and M ′ = (S′, R′, L′), where M ′ is an updated
model from M by only applying operation PUi on M . we define DiffPUi(M, M ′) =
(R−R′)∪ (R′ −R) (i = 1, 2), DiffPUi(M, M ′) = (S−S′)∪ (S′ −S) (i = 3, 4, 5)
and Diff(M, M ′) = (DiffPU1(M, M ′), · · · ,DiffPU5(M, M ′)).

Definition 5. [4](Closeness Ordering) Given three CTL Kripke models M ,
M1 and M2, where M1 and M2 are obtained from M by applying PU1 − PU5
operations. We say that M1 is closer or as close to M as M2. denoted as M1 ≤M

M2, iff Diff(M, M1) � Diff(M, M2). We denote M1 <M M2 if M1 ≤M M2

and M2 6≤M M1.

Definition 6. [4] (Admissible Update) Given a CTL Kripke model M =
(S, R, L), M = (M, s0) where s0 ∈ S, and a CTL formula φ, Update(M, φ) is
called admissible if the following conditions hold: (1) Update(M, φ) = (M ′, s′

0
) |=

φ where M ′ = (S′, R′, L′) and s′

0
∈ S′; and (2) there does not exist another re-

sulting model M ′′ such that (M ′′, s′′

0) |= φ and M ′′ <M M ′.

4 The Prototype of the CTL Model Updater

We have simulated a prototype of the CTL model updater in Linux C as the im-
plementation of our algorithms. Unlike SMV, the input models are pre-specified
in C code. Our system does not contain OBDD [7] optimization as the SMV
mode updater. Thus, there is not excessive processing load for our prototype as
with the SMV compiler for its parsing and checking phases. We have coded our
own model checking functions to perform the model checking duty during the
update process. The CTL model updater includes library functions, predefined
model definition functions, a specification string parser, model checking func-
tions and model update functions. The diagram of the code structure is shown
in Fig 2. A detailed description of the system follows.

Library
ModelChecking

Model
Update

Updated
Models

level
1

 level 2

level 3

Model

Properties

Parser

Functions

Fig. 2. The flow diagram of the Model Update System

4.1 Predefined Structures and Library Functions

We have coded a set of pre-defined structures for the whole system. The most
significant structures are the model definition structure, the state structure, the
state data structure, and the atom and calc pair structures for storing specifica-
tion string parsing results.

The model definition structure contains the major elements of a CTL model.
The definition structure contains a state pointer array and a state count, where
each reachable state is defined in a state structure. The structure contains the
names and number of the defined variables. The structure contains a path pointer
array and a path count, where each path is defined in a path structure. The
path is a structure containing a state count and array of state pointers. The
structure in C code is as Fig 3. In this structure, “name” is the name of a model;
“numvar” is the number of variables; “varname” is an array of variable names in
a model; “numstates” is the number of non repeated reachable states in a model.
“state[MAXSTATE]” is an array of pointers to state structures containing each
non repeated reachable state; “numpaths” is the number of paths in a model;
“path[MAXPATH]” is an array of pointers to the defining path structures. In
our CTL model updater, the model definition structure is defined as an static
instance. The change due to update on a model is eventually stored in the
definition instance.

typedef struct {
char name[MAXCHAR];
int numvar;
char

varname[MAXVAR][MAXCHAR];
int numstates;
state ptr state[MAXSTATE];
int numpaths;
path ptr path[MAXPATH];

} state defn;

Fig. 3. The state definition structure

typedef struct {
int num;
boolean initial;
boolean var[MAXVAR];
int numnext;
int next[MAXTRANS];
int numprev;
int prev[MAXTRANS];
boolean result;

} state;

Fig. 4. The state structure in C code

The state structure is the major component defining a model. The state struc-
ture contains all information in a state in particular the values of the variables
of the state, and the relations in between this state and its previous or succes-
sive states. The state structure is defined as Fig. 4. In this structure, “num”
is an identifier as an integer of a state; “initial” is a boolean variable to de-
fine this state as an initial state in the model; “var[MAXVAR]” is an array of
boolean variable values for this state; “numnext” is the total number of next
states; “next[MAXTRANS]” is an array of the integer identifiers of next states;
“numprev” is the total number of previous states; prev[MAXTRANS] is an ar-
ray of the integer indentifiers of previous states. “result” is a boolean variable
to store the checking result for the state.

Another major structure called “state data” is an interface structure to ac-
tually load a state structure.

The library functions include all initializations of the model in the definition
structure, simple operations for model checking and update, and printing func-
tions for a model and its paths. For the initializations, there are functions for
defining a model, its name and states, setting data in states, setting and clear-
ing links in between states and so on. The simple operations for model checking
and update include checking individual and all states in a model, checking a
path or all paths in a model, adding or removing states, building or removing
links in between states and calculating paths etc. The printing functions include
printing states, paths and the model. The printing functions assist the user in
understanding the operations performed by the model updater.

4.2 Parser

The parsing functions decompose a complex CTL formula, expressed as a string,
into a number of linked structures. The components of the structures have direct
equivalence to each recognizable component of the specification string as our
case study illustrates below. For our system the part which needs to be parsed
is the string representing the specification property, such as the property in
the microwave oven model: “¬EF(Start∧ EG¬Heat)”. Our parser rationalizes a
CTL specification string according to the Backus Naur form [7] expressed as
definition 2. There are two major structures used by our parsing library functions
which store our parsing results.

An atom structure (Fig. 5) stores the results of parsing a symbol φ expression
including ¬ and path navigation expressions. An atom structure assumes that
the string contains semantics such as AG, EG and so on with a boolean atomic
variable successor. In Fig. 5, “negate1” is the negation symbol in front of “nav-

typedef struct {
boolean negate1;
boolean negate2;
int navigate;
int varindex;
boolean error;

} atom;

Fig. 5. The atom structure in C

typedef struct {
boolean negate1;
boolean negate2;
int navigate;
optype operator;
atom ptr operand1;
atom ptr operand2;
void * nestedpair1;
void * nestedpair2;
boolean error;

} calc pair;

Fig. 6. The pair structure in C

igate” (such as AG or EG); if “negate1” is true, the negation symbol in front of
“navigate” is there, otherwise, there is not a negation symbol; “negate2” is the
negation symbol after “navigate”. It behaves the same as “negate1”; “navigate”

is the semantics about the model such as “AG” or “EG”. We define numbers to
represent different semantics. For example, “AF” is 4, “AG” is 5 and “EG” is
6; “varindex” is the index number of the variables in our system and represents
the index position of the variable in the model definition object but includes
an adder to avoid conflict with other indexes, which serves for our code only;
“error” indicates whether the atom parsed correctly or not. If “error” is true,
it means that the atom may not exist in our model. For example, if a string
is “Start”, which is a name of a variable in the model, then the structure of
the parsed string should be the part of components after “operand1” and before
“operand2” in Fig. 7. If a string is “EG¬ Heat”, where “Heat” is a name of
the variables in a model, then the structure of the parsed string is the part of
components after “operand2” and before “nestedpair1” in Fig. 7.

primary pair →
negate1 · · · false
negate2 · · · false
navigate · · · 5
operator · · · 0
operand1 · · · 0x00000000
operand2 · · · 0x00000000
nested pair1 →

negate1 · · · true
negate2 · · · false
navigate · · · 0
operator · · · 22
operand1 →

negate1 · · · false
negate2 · · · false
navigate · · · 0
varindex · · · 101
error · · · false

operand2 →
negate1 · · · false
negate2 · · · true
navigate · · · 6
varindex · · · 103
error · · · false

nestedpair1 · · · 0x00000000
nestedpair2 · · · 0x00000000
error · · · false

nestedpair2 · · · 0x00000000
error · · · false

Fig. 7. The parsed structure for string
“AG(¬(Start∧ EG¬Heat))”

primary pair →
negate1 · · · false
negate2 · · · false
navigate · · · 0
operator · · · 23
operand1 →

negate1 · · · true
negate2 · · · false
navigate · · · 0
varindex · · · 101
error · · · false

operand2 →
negate1 · · · true
negate2 · · · true
navigate · · · 6
varindex · · · 103
error · · · false

nestedpair1 · · · 0x00000000
nestedpair2 · · · 0x00000000
error · · · false

Fig. 8. The parsed structure for string
“¬Start ∨ ¬EG¬Heat”

A pair structure stores results of parsing an expression containing two φ ex-
pressions and a separating operator. This structure includes storage for a path

navigation expression and leading and following negate declarations. If the struc-
ture of a string is more complex than an atom, then it needs to be expressed
in a pair structure in Fig. 6. In this structure, “negate1”, “negate2”, “navigate”
and “error” are the same concepts as those in the atom structure; “operator” is
a logic symbol such as “∧” or “∨” and is defined as an integer in the structure;
“operand1” is the “atom” before “operator”; “operand2” is the “atom” after
“operator”; “nestedpair1” (“nestedpair2”) is a casted type of “calc pair” if the
string before (or after) “operator” is a “calc pair”, which can accommodate re-
cursively nested “calc pair” structures; For example, the string “AG(¬(Start∧
EG¬Heat))” can be parsed into the “calc pair” structure as in Fig. 7. In this
figure, the elements before “nested pair1” match AG in the given string; the
elements after “nested pair1” and before “operator” are the “¬” after “AG”;
“operator· · · 22” is the “∧” in between “Start” and “EG¬ Heat”; the elements
after “operand1” and “operand2” are atoms which have been explained before
the pair structure description. During model checking and update, we select
the needed elements for any parts of the string from the corresponding parsed
structure.

The parser also contains a set of functions to rationalize negate symbols
(normalize) in a specification to simplify processing. These functions use the
parsing structures as input and output.

4.3 Model Checking Functions

The model checking functions are for checking CTL semantics, such as whether
“AG”, “EG”, are true or not. They are continually used for the whole process
of update. Before or after each step of update, they are called to do model
checking and identify error or correct states according to different semantics or
update requirements. Atomic model checking functions deal with model checking
for atomic variables only. In our model checking functions, we have checking
functions with “true” or “false” results to tell whether a specification property
satisfies CTL semantics. To assess whether a state satisfies the required property
or not, we compare the variables in a state with the variables in the required
property. For particular semantics such as “EG”, its model checking function is
performed for each path, where each state is checked. If all states on at least
one path satisfy the required property, then it means the model checking is
“true” with semantic “EG”. Besides, we also have functions which identify error
or correct paths or states for particular CTL semantics, which will be used
for model updating. For example, for semantics “EG”, there are functions to
identify correct or error states in a model or correct or error paths in a model.
The information contained in these functions is the state or path identification
numbers. If model update functions use them, they can locate the error paths or
states straight away to perform model update on these states or related relations.

4.4 Model Update Functions

The model updating functions are the most important part of the system and
demonstrate our previous theoretical results. They are called to update the model

either on paths (eventually on states of the path) or states among all reachable
states. The update functions frequently call model checking functions for each
step update to see whether the updated model satisfies certain features or not. If
the updated model satisfies the required feature, then the update is halted and
the system returns updated models. The update obeys our minimal change rules.
The resulting model could be more than one if they are not interchangeable. If
the update changes the model, the definition structure containing the model is
changed as well.

The update functions include atomic updates (level 1) PU1 to PU5, which
update single states and their relations, and atomic update for variables in a
state: adding or removing (changing) a variable. Above the atomic updates, we
have 2nd level update functions for updating the semantics of a model such as
AG, EG etc.. Above the 2nd level update functions, we have the outer level (level
3) update functions which are the combination of parsing, model checking and
updating if the input string is not an atomic variable.

If the string representing the required property is not an atomic variable,
then we parse the string before doing model checking and update. For example,
if the input required property is AG(Start∧¬ Error), then all states in a model
should satisfy the string after AG. The string, ”Start∧¬ Error”, should be parsed
before further update for each state on this model. This process is performed
by the functions at our 2nd and 3rd level updates which call the 1st level func-
tions. During the process, parsing string and nested model checking and update
involves certain degrees of intelligent reasoning depending on the semantics and
complexity of the string. The reasoning is done by update functions on the 3rd
level. If a required property is in a form such as “AG(Start)” where Start is
a variable, then it can be performed by the 2nd level update functions which
eventually call the 1st level update functions.

5 The Microwave Oven Model

The microwave oven model has a total of 24 = 16 states, where there are 7
reachable states and one initial state, and 4 variables with boolean values. The
Kripkle model of the microwave oven [2] is in Fig. 9, which shows its 7 reach-
able states {s1, s2, s3, s4, s5, s6, s7} and their 12 relations. The set of variables
is {Start, Close, Heat, Error} and each variable has boolean values. The spec-
ification property is “¬EF (Start ∧ EG¬Heat)”. The result of model checking
shows that the model does not satisfy the specification property. Our model up-
dater will update the model and the updated models will satisfy the specification
property.

The model is stored in an instance of the model definition structure. The
specification is predefined in a char array (string). First, we should parse the
specification string “¬EF (Start∧EG¬Heat)” into a parsing structure. Then, we
convert the structure into a new structure corresponding to specification formula
AG(¬(Start ∧ EG¬Heat)) to remove the front ¬. The conversion is performed
by a normalize function. The parsing structure of the string “AG(¬(Start ∧
EG¬Heat))” is shown in Fig. 7.

~Start

~Heat
~Close

~Error

~Close
~Heat

Start

Error

~Start

~Heat
~Error

Close

warm up

~Start
Close

~Error
Heat

Start

~Heat
Error

Close
Start
Close

~Heat
~Error

Close
Heat

~Error

 Start

start oven open door

close door reset

3

start oven start cooking

close dooropen door

open door

1

2
4

5 6 7

s

s

s s

s

s

s

cook

done

Fig. 9. The Original CTL Kripke Struc-
ture of a Microwave Oven

~Start

~Heat
~Close

~Error

~Close
~Heat

Start

Error

~Start

~Heat
~Error

Close
~Start

warm up

Close

~Error
Heat

Start

~Heat
Error

Close
Start
Close

~Heat
~Error

Close
Heat

~Error

 Start

open door

close door reset

3

start oven start cooking

close dooropen door

open door

1

2
4

5 6 7

s

s

s s

s

s

s

cook

done

Fig. 10. The Updated Microwave Oven
Model with Primitive Update PU2

Then, we must check each state’s variables (because of AG) according to
the property ¬(Start ∧ EG¬Heat) which is a nested calc pair in our parsing
structure. This is performed by a model checking process for AG which is called
by level 3 update functions. We select EG¬Heat after ∧” to update first, whose
parsed elements are under “operand2” of “nested pair1” in Fig. 7, to apply model
checking functions to identify a path (or paths) for which EG is valid. In this
model, any path which has each state with variable Heat false should be identi-
fied. Here, we find the paths s1 → s2 → s5 → s3 → s1 · · · and s1 → s3 → s1 · · ·
which are Strongly Connected Components (SCC) loops [2] satisfying EG¬Heat.
Then, we check where the states have variable Start true, which is the atomic
string before ∧ in the specification string and maps the elements in between
“operand1” and “operand2” under “nested pair1” in the parsed structure in
Fig. 7. We identify states s2, s5,s6 and s7 with Start true by model check-
ing functions for AG because before ∧ “Start” is atomic and the “AG” before
“Start” should be mapped as the semantic symbol in front of “Start”. Now, we
must identify states which have both variables Start true and Heat false because
of the “∧” operator between “Start” and “EG¬Heat”. These states are s2 and
s5. It means that the two states satisfy Start ∧ EG¬Heat. However, the AG(¬
before them in AG(¬(Start ∧ EG¬Heat)) specifies that the model should not
have any state which satisfies this feature. Thus, we must update s2 and s5.

Now, the 2nd level update function for AG calls atomic (1st level) update
functions such as PU1-PU5. The results are three equal minimal updates: for
the atomic update PU2 case, relation (s1, s2) is deleted; for the atomic update
PU5 case, state s2 and relations (s1, s2), (s2, s5) and (s5, s2) are deleted; for
the PU3 case, we must normalize the part of string after “AG” before PU3 is
performed. ¬(Start ∧ EG¬Heat) = ¬Start ∨ ¬EG¬Heat. The corresponding
parsed structure for ¬Start ∨ ¬EG¬Heat is as Fig. 8:

Thus, eventually the faulty states s2 and s5 should be updated with either
¬Start or ¬EG¬Heat in an update function for the ∨ operator. Obviously,
¬Start is simpler thus is chosen. As we mentioned, the selection process involves
certain intelligent reasoning.

After these updates, the resulting model M′= (M ′, s1) |= ¬EF (Start ∧
EG¬Heat). The above three resulting models are all minimally changed from the
original model and are admissible. They are not interchangeable with each other
due to our minimal change rules. The updated models are shown as Fig. 10, 11
and 12.

~Start

~Heat
~Close

~Error

~Start

~Heat
~Error

Close
~Start

Close

~Error

done
Heat

Start

~Heat
Error

Close
Start
Close

~Heat
~Error

Close
Heat

~Error

 Start

open door

reset

warmup

3

start oven start cooking

close dooropen door

1

4

6 7

s

s

s s

s

cook

s5

Fig. 11. The Updated Microwave Oven
Model with Primitive Update PU5

~Start

~Heat
~Close

~Error

~Close
~Heat

Start

Error

~Start

~Heat
~Error

Close
~Start

done Close

~Error
Heat

Start

~Heat
Error

Close
Start
Close

~Heat
~Error

Close
Heat

~Error

 Start

start oven open door

close door reset

warmup

3

start oven start cooking

close dooropen door

open door

1

4

6 7

s

s

s s

s

s’

s’ ~

~
 2

 5

cook

Fig. 12. The Updated Microwave Oven
Model with Primitive Update PU3

6 The Simulation Results for Updating the Microwave

Oven Model

We show partial screen results by running the executable file as follows. In the
beginning, the screen shows the model name, variables, states and relations in
between states:

State Machine Model: Model name is Microwave Oven

Variable name #1 is Start

Variable name #2 is Close

Variable name #3 is Heat

Variable name #4 is Error

State Information for 7 states is ->

Id Initial Values Next Links Previous Links

1 *** false false false false -> 2 -> 3 <- 4 <- 3

2 true false false true -> 5 <- 1 <- 5

3 false true false false -> 6 -> 1 <- 1 <- 5 <- 4

4 false true true false -> 3 -> 1 -> 4 <- 7

5 true true false true -> 2 -> 3 <- 2

6 true true false false -> 7 <- 3

7 true true true false -> 4 <- 6

We omit parsed structure and paths here. The states which must be updated are
identified as s2 and s5. We only demonstrate three admissible updated results
as follows.

Case 1: after PU2 update on the relation between state 1 & 2

State Information for 7 states is ->

Id Initial Values Next Links Previous Links

1 *** false false false false -> 3 <- 4 <- 3

2 true false false true -> 5 <- 5

3 false true false false -> 6 -> 1 <- 1 <- 5 <- 4

4 false true true false -> 3 -> 1 -> 4 <- 7

5 true true false true -> 2 -> 3 <- 2

6 true true false false -> 7 <- 3

7 true true true false -> 4 <- 6

This output demonstrates the removal of the s1 to s2 state transition.

Case 2: after PU5 update on states 2 & 5

State Information for 6 states is ->

Id Initial Values Next Links Previous Links

1 *** false false false false -> 3 <- 4 <- 3

3 false true false false -> 6 -> 1 <- 1 <- 5 <- 4

4 false true true false -> 3 -> 1 -> 4 <- 7

5 true true false true -> 3

6 true true false false -> 7 <- 3

7 true true true false -> 4 <- 6

This output demonstrates the removal of s2 and its associated links.

Case 3: after PU3 update on states 2 & 5

State Information for 7 states is ->

Id Initial Values Next Links Previous Links

1 *** false false false false -> 3 -> 22 <- 4 <- 3

22 false false false true -> 55 <- 1 <- 55

3 false true false false -> 6 -> 1 <- 1 <- 4 <- 55

4 false true true false -> 3 -> 1 -> 4 <- 7

55 false true false true -> 3 -> 22 <- 22

6 true true false false -> 7 <- 3

7 true true true false -> 4 <- 6

This output demonstrates the modification of s2 and s5 (re-identified as 22 and
55) with updated variable values. 22 is s′2 and 55 is s′5 in Fig. 12.

7 Conclusions and Future Work

In this paper, we have demonstrated the implementation of model update theory
and minimal change rules with a prototype based on the well known microwave

oven example. It is an important step to advance model update from theoretical
research to practice. At this stage, after we have successfully demonstrated the
microwave oven example, we are coding another two well known examples: afs0
and afs1 models [11]. We intend to apply our model updater to these models
as well to demonstrate hosting a more complex model with a larger number of
states.

We are targeting to a formal CTL model update compiler which can accept
SMV as input. Thus, our intention is that counterexamples from the existing
SMV model checker will be used as part of the input of the model updater.
The internal integration of our model update philosophy and the existing SMV
model checker requires a comprehensive coding effort. This effort is a major
future milestones for system modification and will significantly improves the
usage of the SMV model checker.

8 Acknowledgement

The authors thank senior software engineer Neville Cockburn for his important
guidance and help for this system implementation.

References

1. Buccafurri, F., Eiter, T., Gottlob, G. and Leone, N. (1999). Enhancing model check-
ing in verification by AI techniques. Artificial Intelligence 112(1999) 57-104.

2. Clarke, E. Jr. et al. (1999). Model Checking, The MIT press, Cambridge, Mas-
sachusetts, London, England. ISBN 0-262-03270-8, Pp. 314.

3. Cimatti, A. et al. (1999). NUSMV: a new symbolic model verifier. In Proceedings

of the 11th International Conference on Computer Aided Verification. Vol. 1633 in
LNCS. Pp.495-499.

4. Ding,Y. and Zhang,Y.(2005). Model Update CTL Systems. In proceedings of The
18th Australian Joint Conference on Artificial Intelligence. Sydney, December, 2005.
Pp.1-12.

5. Gammie, P. and van der Meyden, R.(2004). MCK-Model checking the logic of knowl-
edge. In the Proceeding of the 16th International Conference on Computer Aided

Verification. Pp. 479 - 483.
6. Harris,H. and Ryan,M. (2003). Theoretical foundations of updating systems. In

the Prodeeding of the 18th IEEE International Conference on Automated Software

Engineering. Pp.291-298.
7. Huth, M. and Ryan, M. (2000). Logic in Computer Science: Modelling and Reasoning

about Systems. University Press, Canbridge.
8. Holzmann, Gerard. (2003). The SPIN Model Checking: Primer and Reference Man-

ual. Addison-Wesley Professional. ISBN: 0321228626. Pp.596.
9. McMillan,K. and Amla,N. (2002). Automatic abstraction without counterexamples.

Cadence Berkeley Labs, Cadence Design Systems.
10. McMillan,K. (1992). The SMV System. http://www.cs.cmu.edu/ mod-

elcheck/smv.html
11. Wing,J. and Vaziri-Farahani, M.(Oct.1995). A case study in model checking soft-

ware. In proceedings of 3rd ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering.

