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Abstract

In this paper we study a formal notion of knowledge forgetting in S5 modal logic. We
propose four postulates and prove that these postulates precisely characterize both semantic
and logical properties of knowledge forgetting. We then investigate possible applications
of knowledge forgetting in various epistemic reasoning scenarios. In particular, we show
that different forms of knowledge updates may be represented via knowledge forgetting.
We also demonstrate how knowledge forgetting can be used in formalizing and reasoning
about knowledge games with bounded memory.
Key words: epistemic reasoning, reasoning about belief and knowledge, knowledge up-
date, knowledge games, nonmonotonic reasoning

1 Introduction

Epistemic reasoning concerns the problem of how to reason about agents’ epis-
temic states (knowledge) in a dynamic environment, e.g. [6,26]. In the last decade,
it has been demonstrated that epistemic reasoning has many important applications
in computer science and AI [23,25]. Amongst various theories and approaches, one
major assumption in the study of epistemic reasoning is that agents always remem-
ber their previous knowledge (i.e. agents have perfect recall) [11,24]. However, as
pointed by Fagin et al.: “There are often scenarios of interest where we want to
model the fact that certain information is discarded. In practice, for example, an
agent may simply not have enough memory capacity to remember everything he has
learned.” [11, page 129]. Hence knowledge forgetting is an important behaviour for
an agent under certain circumstances.

As a logical notion, forgetting was first studied in propositional and first order log-
ics from a KR perspective by Lin and Reiter [21]. Over the years, researchers have
used the notion of propositional forgetting to deal with issues in abductive reason-
ing, belief revision/update, and reasoning about knowledge [19,22,27]. In recent
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years, theories of forgetting have also been proposed under the answer set program-
ming semantics and used in solving logic program conflicts and updates [10,28].
We can see that forgetting has many applications in knowledge representation and
reasoning.

However, existing forgetting definitions in propositional logic and answer set pro-
gramming are not directly applicable in modal logics. For instance, in propositional
forgetting theory, forgetting atom q from T ≡ (p→ q)∧((q∧r) → s) is equivalent
to a formula T [q/>] ∨ T [q/⊥], where T [q/>] is a formula obtained from T by re-
placing each q with > and T [q/⊥] is obtained from T by replacing each q with ⊥,
which is (r → s) ∨ ¬p. However, this method cannot be extended to an S5 modal
logic formula. Consider an S5 formula T ′ ≡ ¬Kq ∧ ¬K¬q. If we want to forget
atom q from T ′ by using the above method, we would have T ′[q/>]∨T ′[q/⊥] ≡ ⊥.
This is obviously not correct because after forgetting q, the agent’s knowledge set
should not become inconsistent!

An earlier formal study on the concept of forgetting in epistemic logic (called
knowledge forgetting) was Baral and Zhang’s work on knowledge update [1], where
they treated knowledge forgetting as a special form of update with the effect ¬Kφ∧
¬K¬φ: after knowledge forgetting a propositional formula φ, the agent would nei-
ther know φ nor ¬φ.

Recently, van Ditmarsch et al. have also considered the issue of forgetting in a
modal logical context [8]. Their forgetting concept is similar to Baral and Zhang’s
forgetting update in the sense that after (knowledge) forgetting atom p the agent
should conclude ¬Kp∧¬K¬p, but based on a dynamic modal logic. They showed
that their dynamic modal logic of forgetting is sound and complete.

While both Baral and Zhang’s and van Ditmarsch et al.’s work have made inter-
esting contributions to formalize the notion of knowledge forgetting, its underlying
semantics still remains unclear. For instance, neither of their knowledge forgetting
notions always results in intuitive solutions. Specifically, by restricting to classical
propositional logic, their forgetting notions are not consistent with propositional
variable forgetting.

In recent modal logic research, notions of bisimulation quantification and uniform
interpolation have been extensively studied, which eventually provide semantic and
logical interpretations for knowledge forgetting. Based on the notion of bisimula-
tion quantification, French, Ghilardi and Zawadowski defined the semantics of for-
mula ∃V φ [12,14], where V is a finite set of propositional atoms and φ is a formula
in certain modal logic. Intuitively, an interpretation M is a model of ∃V φ iff there
is a model M ′ of φ and M and M ′ are bisimilar with exception over atoms in V ,
i.e. M and M ′ are V -bisimilar.

Ghilardi et al. studied the notion of uniform interpolation in modal logic, and indi-
cated that S5 has the uniform interpolation property. Informally, this means that for
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every S5 formula φ and every finite set V of atoms, there exists an S5 formula ∃V φ
which does not contain atoms from V but is logically closest to φ in some sense
[15]. It is not difficult to show that this logical definition of ∃V φ is equivalent to
French’s semantic interpretation of ∃V φ [12].

Nevertheless, two major issues still remain unaddressed. Firstly, it is not clear
yet whether we can precisely capture both semantic and logical interpretations of
knowledge forgetting through general principles or postulates, as in the analogous
work in belief revision and update [17]. Secondly, the application of knowledge
forgetting to different epistemic reasoning has not been thoroughly studied. In this
paper we propose four general postulates for knowledge forgetting and show that
these four postulates precisely characterize the notion of knowledge forgetting de-
scribed above in S5 modal logic. We then focus on the study of applications of
knowledge forgetting in various epistemic reasoning scenarios. Specifically, we
study the relationship between knowledge update and knowledge forgetting, and
show that knowledge forgetting may be used as a flexible notion to represent differ-
ent forms of knowledge updates. We also demonstrate how knowledge forgetting
can be used in formalizing and reasoning about knowledge games with bounded
memory.

The rest of the paper is organized as follows. Section 2 provides some logical back-
ground and presents a semantic definition of knowledge forgetting under our con-
text. Section 3 proves a representation theorem for knowledge forgetting and stud-
ies other related semantic properties. Section 4 shows that different forms of knowl-
edge updates may be represented through knowledge forgetting. Section 5 demon-
strates an interesting application of knowledge forgetting in describing knowledge
games with bounded memory. Finally section 6 concludes this paper with some
remarks.

2 Defining knowledge forgetting

Our knowledge forgetting will be defined on a basis of propositional modal logic
S5. Let Atom be a set of atoms (also called variables). The language L of proposi-
tional S5 modal logic is defined recursively by Atom, classical connectives ⊥, ¬,
⊃ and a modal operator K as follows:

φ ::= ⊥ | p | ¬φ | φ ⊃ ψ | Kφ,

where p ∈ Atom. >, φ ∧ ψ and φ ∨ ψ, are defined as the standard way. Elements
in L are called formulas. Formulas without modal operators are called objective
formulas. A knowledge set is a finite set of formulas. Literals are atoms and their
negations. Let φ be a formula and Γ a knowledge set, we write V ar(φ) and V ar(Γ)
to denote the sets of atoms occurred in φ and Γ respectively.
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For convenience, we usually use a, b, c, · · ·, p, q, · · · to denote atoms; φ, ψ, υ, · · · to
denote formulas; and Γ, T , · · · to denote knowledge sets. Sometimes, we also use
the conjunction φ1 ∧ · · · ∧ φn to represent a finite set of formulas {φ1, · · · , φn}.

A Kripke structure is a triple S = 〈W,R, L〉, where W is a set of possible worlds,
R an equivalence relation on W , and L a set of interpretations for each world in
W 1 . A Kripke interpretation is a pair M = 〈S,w〉 where w ∈ W . As mentioned
in [23], an S5 Kripke interpretation can be simplified as M = 〈W,w〉, where W is
the set of all possible worlds, each world is identified as a set of atoms, and w ∈ W
is called the actual world. In this case, we call M = 〈W,w〉 a k-interpretation.

The satisfaction relation |= between k-interpretations and formulas in L is defined
recursively as follows 2 :

(1) 〈W,w〉 6|= ⊥;
(2) 〈W,w〉 |= p iff p ∈ w, where p ∈ Atom;
(3) 〈W,w〉 |= ¬φ iff 〈W,w〉 6|= φ;
(4) 〈W,w〉 |= φ ⊃ ψ iff 〈W,w〉 6|= φ or 〈W,w〉 |= ψ;
(5) 〈W,w〉 |= Kφ iff ∀w′ ∈ W , 〈W,w′〉 |= φ.

We say thatM is a k-model of φ iffM |= φ. An S5 formula φ is satisfiable if it has a
k-model. φ is valid if for each k-interpretation 〈W,w〉, 〈W,w〉 |= φ. In this case, we
also denote |= φ. We write Mod(φ) (or Mod(Γ) if Γ is a finite set of formulas) to
denote the set of all k-models of φ (or Γ resp.). We say that two S5 formulas (knowl-
edge sets) φ and ψ are equivalent, denoted by φ ≡ ψ, iff Mod(φ) = Mod(ψ). We
denote φ |= ψ iffMod(φ) ⊆Mod(ψ). That is, we treat |= as the local consequence
relation in S5.

To present a formal definition of knowledge forgetting, we need the concepts of
bisimulation [2] and bisimulation quantification that have been studied in modal
logic [12,14]. Let w and w′ be two worlds identified as two sets of atoms respec-
tively, and V ⊆ Atom a set of atoms. We denote w 'V w′ if for all p ∈ Atom \ V ,
p ∈ w iff p ∈ w′.

Definition 1 [12] Let M = 〈W,w〉 and M ′ = 〈W ′, w′〉 be two k-interpretations,
and V ⊆ Atom a set of atoms. We say thatM andM ′ are V -bisimilar (i.e. bisimilar
with exception on V ), denoted by M ↔V M ′, iff the following conditions hold:

(1) w 'V w′;
(2) ∀w∗ ∈ W , ∃w∗′ ∈ W ′ such that w∗ 'V w∗′ (the forth condition); and
(3) ∀w∗′ ∈ W ′, ∃w∗ ∈ W such that w∗ 'V w∗′ (the back condition).

1 In this paper, we will only consider Kripke structures for logic S5 where R is restricted
to be an equivalence relation. In the rest of the paper, we will not explicitly mention this
whenever there is no confusion.
2 We write 〈W,w〉 6|= F if it is not the case that 〈W,w〉 |= F .
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Note that even if M ↔V M ′, M and M ′ may have different number of worlds.

Proposition 1 Let M1 and M2 be two k-interpretations, V a set of atoms and p an
atom. If M1 and M2 are V ∪ {p}-bisimilar, then there exists a k-interpretation M ′

such that M1 and M ′ are {p}-bisimilar and M ′ and M2 are V -bisimilar.

Proof. Let M1 = 〈W1, s1〉 and M2 = 〈W2, s2〉 and M1 'V ∪{p} M2. We construct a
k-interpretation M ′ = 〈W ′, s′〉 as follows: (1) for all pairs w1 ∈ W1 and w2 ∈ W2

such that w1 'V w2, let w′ ∈ W ′ and (a) p ∈ w′ iff p ∈ w2, (b) for all atoms q ∈ V ,
q ∈ w′ iff q ∈ w1, (c) for all other atoms q′, q′ ∈ w′ iff q′ ∈ w2 iff q ∈ w1; (2) delete
duplicated worlds in W ′; (3) let s′ be the world such that (a) p ∈ s′ iff p ∈ s2, (b)
for all atoms q ∈ V , q ∈ s′ iff q ∈ s1, (c) for all other atoms q′, q′ ∈ s′ iff q′ ∈ s2

iff q′ ∈ s1. Then it is easy to verify that M1 ↔{p} M
′ and M ′ ↔V M2. 2

The following are also standard results from bisimulation quantification [12].

Proposition 2 The relation ↔V is an equivalence relation.

Proposition 3 If two k-interpretations M1 and M2 are V -bisimilar, then they sat-
isfy the same formulas if the latter do not contain atoms from V.

Now we define knowledge forgetting as follows.

Definition 2 (Knowledge forgetting) Let Γ be a knowledge set and V ⊆ Atom a
set of atoms. A knowledge set, denoted as KForget(Γ, V ), is the result of knowledge
forgetting V from Γ, if the following condition holds:

Mod(KForget(Γ, V )) = {M ′ | ∃M ∈Mod(Γ) and M ↔V M ′}.

From Definition 2, we can see that for each k-model M of Γ, M is a k-model
of KForget(Γ, V ). Further, if we simply add all worlds into M that differ from
worlds of M only on the evaluation of variables in V , then the newly formed k-
interpretation M ′ is also a k-model of KForget(Γ, V ).

Example 1 Consider knowledge sets K(p ∨ q), Kp ∨ Kq and K(p ∧ q). From
Definition 2, it is easy to check that KForget(K(p ∨ q), {p}) ≡ >, KForget(Kp ∨
Kq, {p}) ≡ >, and KForget(K(p ∧ q), {p}) ≡ Kq.

We should mention that our knowledge forgetting definition KForget(Γ, V ) is equiv-
alent to the semantic definition of formula ∃V Γ in [12]. It is also equivalent to the
notion of uniform interpolation - a logical definition of formula ∃V Γ [15]. Ghilardi
et al. further described an algorithm to construct formula ∃V Γ (or KForget(Γ, V )
in our context) with exponential size of Γ.

5



3 Semantic characterizations

In this section we study essential semantic properties of knowledge forgetting which
have not been addressed in previous work. We will first propose a set of postulates
and show that these postulates precisely characterize the semantics of knowledge
forgetting. We then discuss other semantic properties of knowledge forgetting. Re-
lated computational properties of knowledge forgetting have been studied in [29].

3.1 A representation theorem

Consider a formula φ. Intuitively, if a propositional variable a does not occur in
V ar(φ), we may consider that φ is irrelevant to a. It is not surprising that the notion
of irrelevance plays an important role in characterizing the semantics of knowledge
forgetting. We first give the following formal definition.

Definition 3 (Irrelevance) Let Γ be a knowledge set and V a set of atoms. We say
that Γ is irrelevant to V , denoted by IR(Γ, V ), if there exists a knowledge set Γ′

such that Γ ≡ Γ′ and V ar(Γ′) ∩ V = ∅.

Let Γ and Γ′ be two knowledge sets and V a set of atoms. Now we propose the
following postulates:

(W) Weakening: Γ |= Γ′.
(PP) Positive Persistence: if IR(φ, V ) and Γ |= φ, then Γ′ |= φ.
(NP) Negative Persistence: if IR(φ, V ) and Γ 6|= φ, then Γ′ 6|= φ.
(IR) Irrelevance: IR(Γ′, V ).

By specifying Γ′ ≡ KForget(Γ, V ), (W), (PP), (NP) and (IR) are called postulates
for knowledge forgetting. Let us take a closer look at these postulates. (W) is an
essential requirement for knowledge forgetting: after forgetting some information
from a knowledge set, the resulting knowledge set then becomes weaker. Indeed,
as demonstrated in propositional variable forgetting [21,22], forgetting weakens the
original formula. The postulates of positive persistence (PP) and negative persis-
tence (NP) simply state that knowledge forgetting a set of atoms should not affect
those positive or negative information respectively that is irrelevant to this set of
atoms. Finally, irrelevance (IR) means that after knowledge forgetting, the result-
ing knowledge set should be irrelevant to those atoms which we have (knowledge)
forgotten. We argue that these postulates capture the basic properties that knowl-
edge forgetting should satisfy.

Now we have the following representation theorem which states that our forget-
ting postulates indeed precisely characterize the underlying knowledge forgetting
semantics.

Theorem 1 (Representation theorem) Let Γ and Γ′ be two knowledge sets and

6



V ⊆ Atom a set of atoms. Then the following statements are equivalent:

(1) Γ′ ≡ KForget(Γ, V );
(2) Γ′ ≡ {φ | Γ |= φ, IR(φ, V )};
(3) Postulates (W), (PP), (NP) and (IR) hold.

Proof. It is observed that 1 ⇔ 2 is implied by the result that S5 has uniform inter-
polation property, mentioned in Ghilardi et al.’s work [15]. 2 ⇒ 3 is obvious from
Definitions 2 and 3. Now we show 3 ⇒ 2. Suppose that all postulates hold. By
Positive Persistence, we have Mod(Γ′) ⊆ Mod({φ | Γ |= φ, IR(φ, V )}). On the
other hand, by postulate (IR), we know that Γ′ is irrelevant to V . Also note that Γ′

is a finite set of formulas. Further from postulate (W), we have Γ |= Γ′. Therefore,
Γ′ ∈ {φ | Γ |= φ, IR(φ, V )}. So Mod({φ | Γ |= φ, IR(φ, V )}) ⊆Mod(Γ′) holds.
2

Theorem 1 is significant in the sense that it provides an “if and only if” charac-
terization on knowledge forgetting. That is, given a knowledge set Γ and a set of
atoms V , an S5 formula Γ′ represents a result of knowledge forgetting V from Γ if
Γ′ satisfies postulates (W), (PP), (NP) and (IR), and vice versa.

Corollary 1 Let Γ be a knowledge base, φ a formula and V a set of atoms. If
IR(φ, V ), then KForget(Γ, V ) |= φ iff Γ |= φ.

3.2 Other semantic properties

As we mentioned in Introduction, the notion of forgetting has been defined and used
in a variety of contexts under propositional logic [18,19,21]. It is important to know
the relationship between variable forgetting in propositional logic and knowledge
forgetting in S5 propositional modal logic.

Let φ be an objective formula. We use φ[p/⊥] and φ[p/>] to denote the formu-
las obtained from φ by replacing atom p with ⊥ and > respectively. Then formula
Forget(φ, p) is obtained from φ by forgetting p from φ, if Forget(φ, p) ≡ φ[p/⊥] ∨
φ[p/>]. By forgetting a set of atoms V in φ, we recursively define Forget(φ, V ∪
{p}) = Forget(Forget(φ, p), V ), where Forget(φ, ∅) = φ. We first have the follow-
ing result.

Theorem 2 Let φ be an objective formula and V a set of atoms. Then we have
KForget(φ, V ) ≡ Forget(φ, V ) and KForget(Kφ, V ) ≡ K(Forget(φ, V )).

Proof. We prove Result 1 as follows. Suppose that M = 〈W,w〉 is a k-model of
KForget(φ, V ). Then there exists M ′ = 〈W ′, w′〉 ∈ Mod(φ) such that M ′ ↔V M .
Thus, w′ 'V w. Since w′ |= φ, w |= Forget(φ, V ). Hence, M is also a k-model
of Forget(φ, V ). On the other hand, suppose that M = 〈W,w〉 is a k-model of
Forget(φ, V ). Then there exists w′ |= φ and w′ 'V w. Construct a k-interpretation
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M ′ = 〈W ′, w′〉 such that W ′ = W ∪ {w′}\{w}. It’s clear that M ′ is a k-model of
φ and M ′ ↔V M . Hence, M is also a k-model of KForget(φ, V ).

Now consider Result 2. Suppose thatM = 〈W,w〉 is a k-model of KForget(Kφ, V ).
Then there exists M ′ = 〈W ′, w′〉 ∈ Mod(Kφ) such that M ′ ↔V M . We have
that for all w′

1 ∈ W ′, w′
1 |= φ. Since M ′ ↔V M , for all w1 ∈ W , there exists

w′
1 ∈ W ′ such that w1 'V w′

1. Therefore w1 |= Forget(φ, V ). This shows that
M |= K(Forget(φ, V )). On the other hand, suppose that M = 〈W,w〉 is a k-model
of K(Forget(φ, V )). Then for all w1 ∈ W , w1 |= Forget(φ, V ), and there exists
w′

1 |= φ and w′
1 'V w. Construct a k-interpretation M ′ = 〈W ′, w′〉 such that W ′ is

the set of all w′
1 mentioned above and w′ 'V w. It’s clear that M ′ is a k-model of

K(φ) and M ′ ↔V M . Hence, M is also a k-model of KForget(Kφ, V )). 2

Theorem 2 simply reveals that propositional variable forgetting is a special case
of knowledge forgetting, and also knowledge forgetting of formulas with the form
Kφ (where φ is objective) can be achieved through the corresponding propositional
variable forgetting. The following results further illustrate other essential semantic
properties of knowledge forgetting.

Theorem 3 Let Γ, Γ1 and Γ2 be three knowledge sets, φ1 and φ2 two formulas, and
V a set of atoms. Then the following results hold:

(1) KForget(Γ, V ) is satisfiable iff Γ is satisfiable;
(2) If Γ1 ≡ Γ2, then KForget(Γ1, V ) ≡ KForget(Γ2, V );
(3) if Γ1 |= Γ2, then KForget(Γ1, V ) |= KForget(Γ2, V );
(4) KForget(φ1 ∨ φ2, V ) ≡ KForget(φ1, V ) ∨ KForget(φ2, V );
(5) KForget(φ1 ∧ φ2, V ) |= KForget(φ1, V ) ∧ KForget(φ2, V ).

Proof. To prove Result 1, suppose that M is a k-model of Γ. Then M is also a
k-model of KForget(Γ, V ). This shows that KForget(Γ, V ) is satisfiable. On the
other hand, suppose that Γ is unsatisfiable. Then, Mod(Γ) = ∅. It follows that
Mod(KForget(Γ, V )) = ∅.

Result 2 directly follows from Definition 2 and the fact Mod(Γ1) = Mod(Γ2).

Now we prove Result 3. Suppose thatM is a k-model of KForget(Γ1, V ), then there
exists a k-model M ′ of Γ1, V such that M ↔V M ′. Since Γ1 |= Γ2, M ′ is also a
k-model of Γ2. Hence, M is a k-model of KForget(Γ2, V ) as well.

To prove Result 4, we need to show Mod(KForget(φ1 ∨ φ2, V )) = Mod(KForget

(φ1, V ) ∨ KForget(φ2, V )). Suppose that M is a k-model of KForget(φ1 ∨ φ2, V ),
then there exists a k-model M0 of φ1 ∨ φ2 such that M0 ↔V M . Since M0 is a k-
model of φ1 ∨ φ2, M0 is a k-model of φ1 or φ2. Without loss of generality, suppose
that M0 is a k-model of φ1. We have that M is a k-model of KForget(φ1, V ). Thus,
M is a k-model of KForget(φ1, V ) ∨ KForget(φ2, V ).
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On the other hand, suppose thatM as a k-model of KForget(φ1, V )∨KForget(φ2, V ),
then M is a k-model of KForget(φ1, V ) or a k-model of KForget(φ2, V ). Without
loss of generality, suppose thatM is a k-model of KForget(φ1, V ), then there exists
a k-model M0 of φ such that M0 ↔V M . M0 is also a k-model of φ1 ∨ φ2. Thus,
M is a k-model of KForget(φ1 ∨ φ2, V ).

Finally we prove Result 5. Suppose that M is a k-model of KForget(φ1 ∧ φ2, V ),
then there exists a k-model M0 of φ1 ∧ φ2 such that M0 ↔V M . Therefore, M0 is
a k-model of φ1. Thus, M is also a k-model of KForget(φ1, V ). Similarly, M is a
k-model of KForget(φ2, V ) as well. 2

We note that the converse of Result 5 in Theorem 3 does not hold generally. For
instance, let φ be q ≡ p and ψ be q ≡ r. Then, KForget(φ ∧ ψ, {p}) is equivalent
to q ≡ r, while KForget(φ, {p}) ∧ KForget(ψ, {p}) ≡ >.

4 Knowledge forgetting and knowledge update

As we discussed in Section 1, knowledge forgetting and knowledge update repre-
sent two different perspectives of modeling an agent’s knowledge change. In this
section, we show that knowledge forgetting can be also used as a flexible logical
notion to represent various knowledge updates. In the rest of this section, we will
first compare our knowledge forgetting with Baral and Zhang’s knowledge update,
and then provide two different methods to define knowledge update operators via
knowledge forgetting. We will also restrict our underlying language to be finite, in
order to relate our knowledge update to traditional update postulates [17].

4.1 Comparison with Baral and Zhang’s forgetting update

Traditional belief revision and update are based on classical propositional logic,
e.g. [13,20]. Recently, Baral and Zhang studied the theory of update based on the
finite propositional S5 modal logic, which they called knowledge update [1]. They
considered knowledge forgetting is a special kind of update called forgetting up-
date. In particular, let Γ be a knowledge set, and φ an objective formula, then in
Baral and Zhang’s update formulation, knowledge forgetting φ from Γ is achieved
by performing the forgetting update Γ � (¬Kφ ∧ ¬K¬φ). Intuitively, this means
that after knowledge forgetting φ, the resulting knowledge set will not entail any
knowledge about φ: neither knowing φ nor knowing ¬φ.

Since Baral and Zhang’s knowledge update deals with arbitrary propositional for-
mulas while ours only considers atoms, we first restrict their forgetting update on
atoms in order to make these two formulations comparable. We use notion Γ �BZ

(¬Ka∧¬K¬a) to denote the result of forgetting update on atom a from Γ by using
Baral and Zhang’s approach. Then from Proposition 7 in [1], Γ�BZ (¬Ka∧¬K¬a)
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can be defined as follows.

Definition 4 (Baral and Zhang’s forgetting update [1]) A k-interpretationM ′ =
〈W ′, w′〉 ∈ Mod(Γ �BZ (¬Ka ∧ ¬K¬a)) iff there exists a k-model M = 〈W,w〉
of Γ such that

(1) w′ = w;
(2) W ′ = W ∪ {w∗}, where (a) a 6∈ w∗ if M |= Ka, or (b) a ∈ w∗ if M |= K¬a;
(3) W ′ = W if M 6|= Ka and M 6|= K¬a.

Example 2 Suppose Γ ≡ Kb∧(Ka∨K¬a). Letw0 = {a, b},w1 = {b},w2 = {a}
andw3 = ∅. Clearly, Γ has two k-models:M0 = 〈{w0}, w0〉 andM1 = 〈{w1}, w1〉.
Using Definition 4, it is observed that Γ �BZ (¬Ka ∧ ¬K¬a) has four k-models:
M ′

0 = 〈{w0, w1}, w0〉, M ′
1 = 〈{w0, w3}, w0〉, M ′

2 = 〈{w0, w1}, w1〉 and M ′
3 =

〈{w1, w2}, w1〉.

By applying knowledge forgetting definition (i.e. Definition 2), we can see that
Mod(KForget(Γ, {a})) contains k-models M0, M1, M ′

0, and M ′
2, from which we

conclude that KForget(Γ, {a}) ≡ Kb.

From Example 2, we can see that even for this simple case, our knowledge forget-
ting is different from Baral and Zhang’s forgetting update. In the above example,
we also observe Γ �BZ (¬Ka ∧ ¬K¬a) 6|= Kb although from our intuition knowl-
edge forgetting a should not affect the agent’s knowledge about b. In general we
have the following result.

Proposition 4 Baral and Zhang’s forgetting update defined in Definition 4 does
not satisfy forgetting postulates (W), (PP), (NP), and (IR).

Proposition 4 suggests that specifying knowledge forgetting based on knowledge
update, as the way proposed in [1], cannot capture the desired properties of forget-
ting.

4.2 Representing knowledge update via knowledge forgetting

Although Baral and Zhang’s forgetting update does not satisfy our forgetting postu-
lates (W), (PP) and (NP), their knowledge update satisfies traditional Katsuno and
Mendelzon’s update postulates (U1)-(U8) [1,17]. In the following, we consider how
we can represent knowledge update through the notion of knowledge forgetting and
whether such knowledge update satisfies these postulates. Firstly, we provide Kat-
suno and Mendelzon’s update postulates as follows.

(U1) Γ � φ |= φ.
(U2) If Γ |= φ, then Γ � φ ≡ Γ.
(U3) If both Γ and φ are satisfiable, then Γ � φ is also satisfiable.
(U4) If Γ1 ≡ Γ2 and φ1 ≡ φ2, then Γ1 � φ1 ≡ Γ2 � φ2.
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(U5) (Γ � φ) ∧ ψ |= Γ � (φ ∧ ψ).
(U6) If Γ � φ |= ψ and Γ � ψ |= φ, then Γ � φ ≡ Γ � ψ.
(U7) If Γ has a unique k-model, then (Γ � φ) ∧ (Γ � ψ) |= Γ � (φ ∨ ψ).
(U8) (Γ1 ∨ Γ2) � φ ≡ (Γ1 � φ) ∨ (Γ2 � φ).

A straightforward way to define knowledge update via forgetting seems as follows.
Let Γ be a knowledge set and µ a satisfiable S5 formula. Γ is updated by µ, denoted
as Γ �k1

µ, is a formula satisfying the following condition:

Mod(Γ �k1
µ) =

⋃

Vmin

Mod(KForget(Γ, Vmin) ∧ µ)), (1)

where Vmin ⊆ V ar(Γ) is a minimal subset of V ar(Γ) such that KForget(Γ, Vmin)∧
µ) is consistent.

Under the definition of �k1
, the update of Γ with formula µ is achieved by knowl-

edge forgetting all minimal subsets of atoms Vmin from Γ while keeping KForget(Γ,
Vmin) ∧ µ consistent.

Example 3 Let us consider the knowledge update problem discussed in Example 2
once again. Γ ≡ Kb∧(Ka∨K¬a) and µ ≡ ¬Ka∧¬K¬a. As showed in Example
2, Γ �BZ µ has four k-models: M ′

0 = 〈{w0, w1}, w0〉, M ′
1 = 〈{w0, w3}, w0〉, M ′

2 =
〈{w0, w1}, w1〉 and M ′

3 = 〈{w1, w2}, w1〉.

Now we consider Γ �k1
µ. Clearly, Vmin = {a} is the only minimal set of atoms

that retains KForget(Γ, Vmin)∧µ to be consistent. So we have KForget(Γ, Vmin) ≡
Kb and hence Γ �k1

µ ≡ Kb ∧ ¬Ka ∧ ¬K¬a, which has two k-models M ′
1 =

〈{{a, b}, {b}}, {a, b}〉 and M ′
2 = 〈{{a, b}, {b}}, {b}〉.

Theorem 4 Knowledge operator �k1
satisfies Katsuno and Mendelzon’s update

postulates (U1) - (U7), but does not satisfy postulate (U8).

Proof. It is easy to show that �k1
satisfies (U1)-(U4). Now we prove (U5). Suppose

thatM is a k-model of (Γ�k1
φ)∧ψ. Then there exists V which is minimal andM is

a k-model of KForget(Γ, V ) ∧ φ. Thus, M is a k-model of KForget(Γ, V )∧ φ∧ ψ.
Therefore V is also a minimal set of atoms such that KForget(Γ, V ) ∧ φ ∧ ψ is
consistent. This shows that M is also a k-model of Γ �k1

(φ ∧ ψ).

Now we prove (U6). Suppose that M is a k-model of Γ �k1
φ. Then, M is also a k-

model of ψ. There existsV which is minimal andM is a k-model of KForget(Γ, V )∧
φ. ThereforeM is a k-model of KForget(Γ, V )∧ψ. This shows that KForget(Γ, V )∧
ψ is consistent. Moreover, V is also the minimal set. Otherwise, suppose that
V1 ⊂ V such that KForget(Γ, V1)∧ψ is consistent as well. Then, KForget(Γ, V1)∧φ
should also be consistent, which contradicts to the fact that V is the minimal set of
atoms such that KForget(Γ, V ) ∧ ψ is consistent. Hence, M is also a k-model of
Γ �k1

ψ. Similarly, if M is a k-model of Γ �k1
ψ, it is a k-model of Γ �k1

φ too.

11



Now we prove (U7). Suppose that Γ has the unique k-model M and M1 is the k-
model of both Γ �k1

φ and Γ �k1
ψ. Then there exist V1 and V2 which are minimal

such that M1 is a k-model of both KForget(Γ, V1) ∧ φ and KForget(Γ, V2) ∧ ψ.
Thus, M1 ↔V1

M and M1 ↔V2
M . Therefore M1 ↔V1∩V2

M . Thus, M1 is a
k-model of KForget(Γ, V1 ∩ V2). Therefore V1 = V2, otherwise V1 (or V2) is not
the minimal set. M1 is a k-model of KForget(Γ, V1) ∧ (φ ∨ ψ) as well. More-
over, V1 is the minimal set such that KForget(Γ, V1) ∧ (φ ∨ ψ) is satisfiable. Other-
wise, suppose that V3 ⊂ V1 such that KForget(Γ, V3) ∧ (φ ∨ ψ) is satisfiable. Then
KForget(Γ, V3) ∧ φ or KForget(Γ, V3) ∧ ψ is satisfiable. Without loss of general-
ity, suppose that KForget(Γ, V3) ∧ φ is satisfiable, then V1 is not the minimal set, a
contradiction. So M1 is also a k-model of KForget(Γ, V3) ∧ (φ ∨ ψ).

As a counterexample of (U8), let Γ1 and Γ2 be p∧q∧r and p∧¬r respectively, and
φ be ¬p∧¬q. We have that (Γ1 ∨ Γ2) �k1

φ is KForget((p∧ q ∧ r)∨ (p∧ ¬r), p)∧
(¬p ∧ ¬q), which is equivalent to ¬p ∧ ¬q ∧ ¬r. However, (Γ1 �k1

φ) ∨ (Γ2 �k1
φ)

is (KForget(p ∧ q ∧ r, {p, q}) ∧ (¬p ∧ ¬q)) ∨ (KForget(p ∧ ¬r, p) ∧ (¬p ∧ ¬q)),
which is equivalent to ¬p ∧ ¬q. They are not equivalent to each other. 2

Theorem 4 reveals that the knowledge update specified through knowledge forget-
ting in such a way of (1) does not precisely capture the update semantics. This is
not very surprising, because from the definition of operator �k1

, we observe that �k1

seems not to be associated to any Γ’s k-model based pre-ordering (see Theorem 3.4
in [17]).

In the following, we will propose another method of defining knowledge update
via knowledge forgetting which will satisfy all postulates (U1)-(U8). For this pur-
pose, we first specify a formula which completely characterizes a given (finite)
k-interpretation. Let π be an interpretation and V a finite set of atoms, the charac-
teristic formula of π on V , denoted by C(π, V ), is defined as:

∧
a∈π,a∈V a ∧

∧
b6∈π,b∈V ¬b.

It is clear that π |= C(π, V ).

Now consider a (finite) k-interpretation M = 〈W,w〉 and a finite set V of atoms.
Then the characteristic formula of M on V , denoted by C(M,V ), is defined as:

C(w, V ) ∧
∧

{w′∈W} ¬K¬C(w′, V )∧∧
{∀w′′∈2Atom∧w′′ 6∈W,6∃w∗∈Ws.t.w′′↔Atom\V w∗}K¬C(w′′, V ).

It is not difficult to see that M |= C(M,V ). We can also prove that for any k-
interpretation M ′, M ′ |= C(M,V ) iff M ′ ↔Atom\V M .

Definition 5 Let Γ be a knowledge set and µ a satisfiable formula. The knowledge
update operator �k2

is defined as follows:

12



Mod(Γ �k2
µ) =

⋃

M∈Mod(Γ)

⋃

Vmin

Mod(KForget(C(M,Atom), Vmin) ∧ µ), (2)

where C(M,Atom) is the characteristic formula of M , and Vmin ⊆ Atom is a
minimal subset of atoms that makes KForget(C(M,Atom), Vmin) ∧ µ consistent.

Knowledge update defined in Definition 5 can be viewed as a model based update
specification, since Γ�k2

µ is achieved by minimally changing every k-model of Γ to
make it consistent with µ. Note that the characteristic formula C(M,Atom) is the
syntactic representation of model M , and KForget(C(M,Atom), Vmin) guarantees
the change of M is minimal with respect to µ.

By comparing (1) and (2), we can see the difference between these two knowledge
update definitions: in (1) the minimal set Vmin of forgotten atoms does not depend
on any particular k-model of Γ, while in (2), each k-model of Γ has a corresponding
minimal set of forgotten atoms.

Now we can define a partial ordering over the set of k-interpretations that links
to knowledge operator �k2

. Let M,M1, and M2 be three k-interpretations. We say
that M1 is at least as close to M as M2 is, denoted by M1 ≤M M2, iff for any
V2 ⊆ Atom such that M2 ↔V2

M , there exists a V1 ⊆ Atom such that M1 ↔V1
M

and V1 ⊆ V2. We denote M1 <M M2 iff M1 ≤M M2 and M2 6≤M M1.

Proposition 5 Let M be a k-interpretation. Then ≤M defined in Definition 5 is a
partial ordering.

Let M be a collection of all k-interpretations and M a k-interpretation, we use
Min(M, ≤M ) to denote the set of all minimal k-interpretations with respect to
ordering ≤M . Then we have the following theorem.

Theorem 5 Let Γ be a knowledge set and µ a satisfiable S5 formula. ThenMod(Γ�k2

µ) =
⋃

M∈Mod(Γ) Min(Mod(µ),≤M ).

Proof. Consider a k-model M ′ ∈ Mod(Γ �k2
µ). We show that there exists some

M ∈ Mod(Γ) such that M ′ ∈ Min(Mod(µ),≤M ). Definition 5, we know that
there exists someM ∈Mod(Γ) such thatM ′ ∈

⋃
Vmin

Mod(KForget(C(M,Atom),
Vmin) ∧µ). Further, there is a particular V ′

min ⊆ Atom such that M ′ ↔V ′
min

M and
M ′ ∈Mod(µ). Since such V ′

min is a minimal subset of Atom satisfying these prop-
erties, it concludes that for any other k-model M ′′ of µ, we have M ′ ≤M M ′′, that
is M ′ ∈Min(Mod(µ),≤M ).

Now we consider a k-model M ′ ∈
⋃

M∈Mod(Γ) Min(Mod(µ),≤M ). Then there
exists someM ∈Mod(Γ) such that M ′ ∈Min(Mod(µ),≤M ). Let Vmin be a min-
imal subset of atoms such that M ′ ↔Vmin

M . Then according to the definition of
≤M , we know that there does not exist another k-model M ′′ ∈ Mod(µ) such that
M ′′ ↔V ′′ M and V ′′ ⊂ Vmin. This follows thatM ′ ∈Mod(KForget(C(M,Atom),
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Vmin) ∩Mod(µ). So M ′ ∈Mod(Γ �k2
µ). 2

From Theorem 5, we can show that the following result holds for �k2
.

Theorem 6 Knowledge update operator �k2
satisfies Katsuno and Mendelzon’s up-

date postulates (U1) - (U8).

Example 4 Consider a knowledge set Γ ≡ K(a ∧ b ∧ c) ∨K(a ∧ ¬b ∧ ¬c), and a
formula µ ≡ K¬a ∧K¬b. Now we first consider the update of Γ with µ under the
operator �k1

. It is easy to see that Vmin = {a} is the only minimal set of atoms that
makes KForget(Γ, Vmin) ∧ µ consistent. That is, we have Γ �k1

µ ≡ K¬a ∧K¬b ∧
K¬c.

Now we consider the same update under operator �k2
. Since Γ has two k-models:

M1 = 〈{{a, b, c}}, {a, b, c}〉 andM2 = 〈{{a}}, {a}〉,Mod(KForget (C(M1, {a, b,
c}), {a, b})∧(K¬a∧K¬b)) contains a unique k-interpretationM ′

1 = 〈{{c}}, {c}〉,
where Vmin = {a, b} is the only minimal set of atoms that makes KForget(C(M1,
{a, b, c}), Vmin) ∧ (K¬a∧K¬b) consistent, and Mod(KForget (C(M2, {a, b, c}),
{a}) ∧ (K¬a ∧ K¬b)) contains a unique k-interpretation M ′

2 = 〈{∅}, ∅〉. This
gives thatMod(Γ�k2

µ) = {M ′
1,M

′
2}. That is, Γ�k2

µ ≡ K¬a∧K¬b∧(Kc∨K¬c).

Comparing the results of Γ �k1
µ ≡ K¬a ∧ K¬b ∧ K¬c and Γ �k2

µ ≡ K¬a ∧
K¬b∧ (Kc∨K¬c), it seems that the later gives a more intuitive knowledge update
solution: since Γ |= Kc ∨K¬c, and atom c does not occurs in µ, we would expect
that the resulting knowledge set still entails Kc ∨K¬c. This is true for Γ �k2

µ but
not for Γ �k1

µ.

It is worth mentioning that knowledge update operator �k2
is defined in a spirit

of the traditional possible models approach (PMA), but under S5 model seman-
tics. By restricting to a propositional language, �k2

coincides with Doherty et al.’s
propositional belief update operator [9,16] - a modified version of PMA.

5 A knowledge game with bounded memory

As indicated by Fagin et al. [11], there are scenarios where an agent may have
to forget some facts that he knows previously. To show how such a scenario can
be modeled using the theory of knowledge forgetting, in this section we study a
specific knowledge game with bounded memories in a finite language. The issue
of knowledge games has been extensively studied by van Ditmarsch [4], in which
information contained in a game state and information change due to a game action
are specifically considered. While memory is usually not an issue in knowledge
games, i.e. each agent will never forget his knowledge during a game play, here
we will consider that in a game, the player only has bounded memory, therefore in
order to continue his play in a game, he may have to forget some of his previous
knowledge.

14



5.1 The game

The knowledge game we consider here is a simple card game over a finite domain
with only one player. The game is described informally as follows. There are N
different cards, each with a number from 1 to N (the player knows that). Before the
game starts, these N cards are facing down on the table so that the player cannot
see the numbers on these cards. Then the player starts the game by picking up cards
from the table, one at a time (of course the player then can see the numbers on the
cards he is holding).

However, the player can at most hold M cards at the same time (M < N ). That
is, if the player already holds M cards and wants to continue the game, he has
to discard one or more cards in order to pick up a new card from the table. The
discarded cards then cannot be used any more. The player may pick up at most
P cards (M ≤ P ≤ N ) during a game. The game terminates if the player stops
the game (e.g. the player has realised that he has won the game), or the player has
exhausted all his P cards. The player wins the game if when the game terminates,
the player holds M cards and these cards have such a property: sum ∈ X , where
sum is the sum of all numbers on these M cards, and X is a set of integers 3 .
Otherwise, the player loses the game.

Although this card game looks similar to those proposed by van Ditmarsch, such as
Pit [5], what makes this one different from other card games (knowledge games),
is that the player has a bounded memory which leads him to only have imper-
fect recall. That is, during a game, once the player discards a card, he will forget
the number on that card. Then such forgetting will influence the player’s current
knowledge about the game. We call a game like this a memory bounded card game,
and denote as GN,M,P

X , where parameters N,M, P and X are as described above.

5.2 Game states, game actions and game instances

In the following, we will formalize this card game. In particular, we consider game
G5,2,3
{6,7}. That is, there are 5 cards named a, b, c, d and e, each with a number from 1

to 5, the player can only hold 2 cards at the same time, and the player can at most
pick up 3 cards altogether. The player wins the game if, at the end, he holds two
cards having sum of 6 or 7. Results presented in this section can be extended to
general cases.

In our formalism, atoms a, b, c, d, e denote that the player holds cards a, b, c, d, e
respectively, and atoms suma+b = 3, suma+c = 4, · · ·, sumd+e = 9 denote the
sums of cards a and b, a and c, · · ·, d and e respectively. Finally atoms guess(a) =
1, guess(a) = 2, · · ·, are used to denote the player’s guess of card a’s number is 1,

3 We assume that among the given N cards, there exists at least one collection of M

different cards satisfying this property.
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2, · · ·.

For convenience, we also introduce meta variables in our descriptions such as
x, y, · · ·, and n, n(x), n(y), n(x+y), · · ·, where x, y, · · ·, are cards from {a, b, c, d, e},
n, n(x), n(y), · · ·, are cards’ numbers from {1, 2, 3, 4, 5}, and n(x + y), · · ·, are
sums of two cards x and y from {3, · · · , 9} respectively. In this way, we may write
guess(x) = n, ¬guess(y) = n(x), sumx+y = n(x + y) and so on to express
that the player’s guess on card x’s number is n, the player will never guess card
y’s number is the same as card x’s number, the sum of cards x and y’s numbers is
n(x + y), etc..

A game state in a G5,2,3
{6,7} game is a k-interpretation (W,w), where W is the set of all

worlds that the player thinks possible, and w is the actual world where the player
is. Since we are formalizing the situation from the player’s viewpoint where the
player does not know his actual world w, here we may simply refer W to the game
state. In an arbitrary G5,2,3

{6,7} game, the player will always start the same initial state:
he has no card in hand, and all cards are on the table. Formally, we specify the
initial game state Winit of a G5,2,3

{6,7} game to be the set of worlds, where w ∈ Winit

iff w |=
∧

x∈{a,b,c,d,e}(guess(x) = 1 ⊕ · · · ⊕ guess(x) = 5) ∧
∧

x∈{a,b,c,d,e}¬x
4 .

Note that if w ∈ Winit, then for any other world w′ such that w′ ↔V w, where
V = {suma+b = 3, · · · , sumd+e = 9}, w′ ∈ Winit.

In a G5,2,3
{6,7} game, the player can take three kinds of game actions: pick up a card,

discard a card, and stop the game. For a given game state W , a game state W ′ is
a successor game state (or simply called successor state) of W if W ′ represents a
game state resulting from W by taking one of the three game actions, denoted as
W ′ = succ(W,α), where

α ∈ Action = {pickup(a), · · ·, pickup(e), · · ·, discard(a), · · ·,
discard(e), stop}.

The following task is to specify succ(W,α) for a given W and α. Towards this
aim, we first introduce a useful notion. Let y1, y2, y3, and y4 be four different
cards from {a, b, c, d, e}, X and Y are two proper subsets of {1, 2, 3, 4, 5} such
that 0 ≤ |X| ≤ 2 and 0 ≤ |Y | ≤ 1. Then we use τ(y1, y2, y3)|{1, 2, 3, 4, 5}

−X

(or τ(y1, y2, y3, y4)|{1, 2, 3, 4, 5}
−Y ) to denote an arbitrary guess of the numbers on

cards y1, y2 and y3 (or y1, y2, y3, and y4, resp.) from {1, 2, 3, 4, 5} but not includ-
ing any numbers from X (or Y resp.). For instance, the following are two possible
guesses:

τ(c, d, e)|{1, 2, 3, 4, 5}−{2} = {guess(c) = 1, guess(d) = 3, guess(e) = 4},
τ(b, c, d, e)|{1, 2, 3, 4, 5}−{1} = {guess(b) = 3, guess(c) = 2,

guess(d) = 4, guess(e) = 5}.

4 Here ⊕ is exclusive or.
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Definition 6 (Game actions) LetW be a game state, succ(W, pickup(x)), succ(W ,
discard(x)) and succ(W, stop), where x ∈ {a, b, c, d, e} are defined as:

(1) There are two cases for specifying succ(W, pickup(x)):
(a) if ∀w ∈ W, ∃y ∈ w, where y ∈ {a, b, c, d, e}\{x}, then succ(W, pickup(x))

= {w∗ | ∀w ∈ W such that (guess(x) = n(x), sumx+y = n(x+y) ∈ w),
w∗ = w ∪ {x} \ {guess(x) = n(x)}};

(b) if ∀w ∈ W, 6 ∃y ∈ w, where y ∈ {a, b, c, d, e}\{x}, then succ(W, pickup(x))
= {w∗ | ∀w ∈ W such that (guess(x) = n(x) ∈ w),

w∗ = w ∪ {x} \ {guess(x) = n(x)}};
(2) There are two cases for specifying succ(W, discard(x)):

(a) if ∀w ∈ W, ∃y ∈ w, where y ∈ {a, b, c, d, e}\{x}, then succ(W, discard(x))
= {w∗ | w∗ = {y, τ(y1, y2, y3)|{1, 2, 3, 4, 5}

−{n(y)}} ∪X , where
y1, y2, y3 ∈ {a, b, c, d, e} \ {x, y}, and X is any subset
of {suma+b = 3, · · · , sumd+e = 9}};

(b) if ∀w ∈ W, 6 ∃y ∈ w, where y ∈ {a, b, c, d, e}\{x}, then succ(W, discard(x))
= {w∗ | w∗ = {τ(y1, y2, y3, y4)|{1, 2, 3, 4, 5}

−∅} ∪X , where
y1, y2, y3, y4 ∈ {a, b, c, d, e} \ {x} and X is any subset
of {suma+b = 3, · · · , sumd+e = 9};

(3) succ(W, stop) = W .

Let us take a closer look at condition (1) in Definition 6. Consider the definition
of succ(W, pickup(a)) first. Suppose the current game state of the player is W ,
in which the player already holds one card, say card b for example. Then after the
player picks up card a, the player should hold both cards a and b, and thus the player
also knows the sum suma+b of a and b. At this time, the player does not guess the
number on card a any more, but still has to guess other cards’ numbers that are not
in his hand. Condition (1.a) in Definition 6 exactly captures this intuition. If the
player does not hold any card at the state W , then after picking up card a, the only
information change is that the player does not guess card a’s number, while other
information represented in W does not change, as condition (1.b) in Definition 6
shows. A similar explanation follows for condition (2). Finally, since there is no
information change when the player stops the game, we have succ(W, stop) = W .

Definition 7 (Game instance) A game instance of G5,2,3
{6,7} is a finite sequence of

game states associating with a sequence of game actions:

I = 〈W1,W2, · · · ,Wk〉|α1 · α2 · · ·αk−1,

where W1 = Winit, and for each i (1 ≤ i < k), Wi+1 = succ(Wi, αi) for some
αi ∈ Action.

In Definition 7, we callWk the final game state of instance I. Note that if the player
stops the game, then we always have Wk = succ(Wk−1, stop) = Wk−1. However,
the game may also terminate if the player has exhausted his three cards. For a given
S5 formula φ and a game instance I, we also write W |=I φ if W |= φ and W is a
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game state in I.

Example 5 The following is a game instance for game G5,2,3
{6,7}:

I1 = 〈W1,W2,W3,W4,W5,W6〉|pickup(a) · pickup(b) · discard(a) ·
pickup(c) · stop.

It is easy to see that W6 |=I1
Ksumb+c = 5, from which we know that the player

loses the game in I1.

5.3 Knowledge characteristic of game G5,2,3
{6,7}

We have provided a semantic description for knowledge game G5,2,3
{6,7} by using k-

interpretations. To reason about the player’s knowledge in a game instance, we
would also prefer a logical account to characterize this semantic description, so
that reasoning about the player’s knowledge can be carried over at a logical level.

Since we deal with a finite language, from a given game state W , we always can
construct a knowledge set T that completely characterizes the information repre-
sented in W . That is, for any S5 formula ϕ, we will have

W |= ϕ iff T |= ϕ, (3)

as showed in [4]. However, such construction will make T exponentially large - the
same size of W . As an alternative, we would like to define such knowledge set T
in a succinct and syntactic way. But having a succinct characteristic of a game state
will no longer guarantee that (3) always holds. In the following, we will specify
an alternative characteristic criterion which is weaker than (3) but still effective
enough for our purpose.

A formula is called knowledge formula if it is of the form Kφ where φ is objective.
Under our knowledge game extent, although arbitrary S5 formulas will be used in
describing game constraints and states (see the following), we can see that mainly
knowledge formulas are of interests in reasoning about the player’s knowledge in
a game instance.

Definition 8 (Knowledge characteristic) Let T be a knowledge set and W a k-
interpretation 5 . T is called a knowledge characteristic of W if for any knowledge
formula Kφ, T |= Kφ if and only if W |= Kφ.

Obviously, if T is a knowledge characteristic of W , T can be viewed as a com-
plete characterization of W in terms of knowledge formulas. We say that a k-
interpretation W is a maximal k-model of T , if W ∈ Mod(T ) and there does not

5 As we mentioned earlier, the actual world in a k-interpretation is not interested to repre-
sent a game state.
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exist another k-modelW ′ ∈Mod(T ) such thatW ⊂ W ′ (i.e. proper set inclusion).
Then the following theorem is important for identifying a knowledge characteristic
for a given k-interpretation.

Theorem 7 Let T be a knowledge set andW a k-interpretation. Then T is a knowl-
edge characteristic of W if W is the unique maximal k-model of T .

Proof. Suppose W is the unique maximal k-model of T . Since W ∈ Mod(T ),
then for any formula Kφ where φ is propositional, T |= Kφ implies W |= Kφ.
Now consider that T 6|= Kφ. In this case, there must be some k-model of T , say
W ′ ∈ Mod(T ), such that W ′ 6|= Kφ. Since W is the unique maximal k-model of
T , we have W ′ ⊆ W . This follows that W 6|= Kφ. 2

Definition 9 (Knowledge characteristic of instance I) Let I = 〈W1, · · · ,Wk〉|
α1 · · · αk−1 be an instance of game G5,2,3

{6,7}, and T = 〈T1, · · · , Tk〉 a sequence of
knowledge sets. We say that T is a knowledge characteristic of instance I if for
each i (1 ≤ i ≤ k), Ti is a knowledge characteristic of game state Wi.

In the following, we will show that we can use our knowledge forgetting effec-
tively define such T mentioned in Definition 9. We first specify a knowledge set Tc

consisting of game constraints as follows:

holdCard ≡
∧

x∈{a,b,c,d,e}(x→ (Kx ∧
∧

n∈{1,2,3,4,5}K¬guess(x) = n∧∧
y∈{a,b,c,d,e},y 6=xK¬guess(y) = n(x))),

knowSum ≡
∧

x,y∈{a,b,c,d,e},x6=y(Kx ∧Ky → Ksumx+y = n(x + y)),
know not holdCard ≡

∧
x∈{a,b,c,d,e}(¬x → K¬x),

not knowSum ≡
∧

x∈{a,b,c,d,e}(¬x→∧
y∈{a,b,c,d,e},y 6=x ¬Ksumx+y = n(x + y)),

guessCard ≡
∧

x,y∈{a,b,c,d,e},x6=y,n∈{1,2,3,4,5}K¬(guess(x) = n ∧ guess(y) = n).

Tc represents basic game constraints that every game state in any game instance
should satisfy. The intuitive meaning of these formulas is quite obvious. For in-
stance, holdCard states that if the player holds a card, then he knows that he is
holding that card. In this case the player will not need to guess the card’s num-
ber, and also the player should then not guess this card’s number for other cards.
knowSum says that if the player has held two cards, then he knows the sum of these
two cards’ numbers. On the other hand, not knowSum indicates that if the player
does not hold a card, then the player does not know the sum of this card’s number
with any other card’s numbers. Finally, guessCard simply says that the player will
never guess two cards with the same number.

Now we specify T0 to be a knowledge set consisting of the following formulas:
∧

x∈{a,b,c,d,e} ¬x, and
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∧
x∈{a,b,c,d,e}K(

⊕
n∈{1,2,3,4,5} guess(x) = n),

and let Tinit = T0 ∧ Tc be the initial knowledge set that represents the initial game
state Winit for any game instances.

Proposition 6 Tinit is a knowledge characteristic of Winit.

Proof. According to Theorem 7, it is sufficient to prove that Winit is the unique
maximal k-model of Tinit. From the fact that Tinit = T0 ∧ Tc, it is easy to see
that for any k-model W of Tinit and each world w ∈ W , w must contain one of
the following variables from {guess(a) = n1, guess(b) = n2, guess(c) = n3,
guess(d) = n4, guess(e) = n5}, where ni ∈ {1, 2, 3, 4, 5}; w does not contain
any variables from {a, b, c, d, e}; and w may or may not contain variables from
{suma+b = 3, · · · , sumd+e = 9}. This means that each world w ∈ W is also in
Winit. So Winit is the unique maximal k-model of Tinit. 2

Suppose that a given T is a knowledge characteristic of some game state W , and
W ′ = succ(W,α) is a successor state of W by taking action α. Then by using
knowledge forgetting, we can derive a new knowledge set T ′ from T which is also
a knowledge characteristic of W ′. To begin with, we first introduce the following
notions:

∆(x) = {x} ∪
⋃

n∈{1,2,3,4,5}{guess(x) = n} ∪⋃
y∈{a,b,c,d,e},y 6=x{sumx+y = n(x+ y)}, and

Θ(x) = ∆(x) ∪
⋃

y∈{a,b,c,d,e}\{x},n∈{1,2,3,4,5}{guess(y) = n}.

Intuitively, ∆(x) is the set of atoms that contains card x and other atoms that are
directly associated to x, while Θ(x) contains some extra atoms whose truth values
may be affected by discarding card x. Now we further specify a formula:

persist(T, {x}) =
∧

y∈{a,b,c,d,e}\{x}((T →
⊕

n∈{1,2,3,4,5} guess(y) = n) →⊕
n∈{1,2,3,4,5} guess(y) = n).

The intuitive meaning of persist(T, {x}) is that if at some game state (that is char-
acterized by T ) the player has a guess for any card from {a, b, c, d, e} \ {x}, then
the player should also have a guess for this card after discarding card x.

Definition 10 (Action-derived knowledge set) Let T be a knowledge set and α
an action. T ′ is called an action-derived knowledge set by applying α to T , if and
only if T ′ is defined as follows:

(1) If α = pickup(x), where x ∈ {a, b, c, d, e}, then
T ′ = KForget(T,∆(x)) ∧ x ∧ Tc;

(2) If α = discard(x), where x ∈ {a, b, c, d, e}, then
T ′ = KForget(T,Θ(x))∧ ¬x

∧
n∈{1,2,3,4,5}K(¬guess(x) = n)∧
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Kpersist(T, {x}) ∧ Tc;
(3) If α = stop, then T ′ = T .

Now we have the following result showing that the action-derived knowledge set
defined in Definition 10 forms a knowledge characteristic for any game instance of
G5,3,2
{6,7}.

Theorem 8 Let I = 〈W1, · · · ,Wk〉|α1 · α2 · · ·αk−1 be an instance of game G5,2,3
{6,7},

and T = 〈T1, · · · , Tk〉 a sequence of knowledge sets, where T1 = Tinit, and each
Ti+1 is an action-derived knowledge set by applying action αi to Ti (1 ≤ i < k) as
defined in Definition 10. Then T is a knowledge characteristic of I.

Proof. We prove by induction that for each i, Wi is the unique maximal k-model
of Ti. From the proof of Proposition 6, we know that Winit is the unique maxi-
mal k-model of Tinit. Assume for all i < k, Wi is the unique maximal k-model
of Ti. We need to show that Wk is also a unique maximal k-model of Tk. There
are three cases we should consider: (1) Wk = succ(Wk−1, pickup(x)), (2) Wk =
succ(Wk−1, discard(x)), and (3) Wk = succ(Wk−1, stop).

Proof for Case (3) is trivial. For Case (1), there are four subcases: (1.1) the player
already holds a card y in Wk−1, and the player has not discarded any card before;
(1.2) the player already holds a card y in Wk−1, but also the player has previously
discarded a card y′; (1.3) before picking up card x, the player has no card in hand,
and the player has not discarded any card yet; and (1.4) before picking up card
x, the player has no card in hand, and the player has previously discarded a card
y. For Case (2), there are two subcases: (2.1) the player has two cards x and y in
hand before discarding card x; and (2.2) the player only has card x in hand before
discarding x. Proofs for all these subcases are quite tedious but straightforward fol-
lowing the definitions and propositions presented in this section. So we omit those
details. 2

6 Concluding remarks

In this paper, we examined the notion of knowledge forgetting under S5 modal
logic. We provided a complete characterization on knowledge forgetting through
four postulates, and investigated its useful applications in knowledge updates and
knowledge games.

Many related issues remain for further study. In this paper, we only addressed the
problem of knowledge forgetting in modal logic S5. In a multi-agent system, it is
more common that an agent not only needs to forget his own knowledge due to a
memory limit, but also has to forget other agents’ knowledge for various reasons.
So generalizing our knowledge forgetting to the multi-agent modal logic S5 (and
other multi-agent modal logics) will be a challenge. One particular concern we

21



should take into account in this development is common knowledge which does
not occur in single agent modal logic.
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