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1 Introduction

As a predominant approach for nonmonotonic reasoning, Default Logic (DL)
[20] has attracted many researchers in the last three decades. Default logic is
theoretically significant not only because of its elegant syntax and semantics,
but also its expressive power to capture other important nonmonotonic reasoning
approaches, such as autoepistemic logic, defeasible reasoning, and so on [1, 11,
8, 21].

However, despite the remarkable success on theoretical aspects, default logic
has encountered huge difficulties from a practical viewpoint. Although many
endeavors have been done [3, 18, 17], the implementation of default logic still
remains unsatisfactory. Consequently, the practical value of default logic has
been severely restricted.

This paper intends to address this issue by translating default logic into
Answer Set Programming (ASP) [7], a promising approach that has been suc-
cessfully implemented by a number of sophisticated solvers [6, 19, 12, 13]. It is
well-known that ASP is a special case of default logic by restricting the for-
mulas in default theories to atoms/literals [8, 21]. An interesting question arises
whether the converse can also be done to some extent. In other words, is it
possible to translate default logic back into answer set programming?

We answer this question positively. We show that default logic in the propo-
sitional case can be translated to answer set programming by identifying the
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internal relationships among formulas in a default theory. By internal relation-
ships, we mean those implication rules whose head is a formula, whose body is
a set of formulas occurred in the default theory, and the body entails the head
in propositional logic.

This translation is not only theoretically interesting but also of practical
relevance. Based on the translation, we implement a new solver for default logic,
called dl2asp. We report some experimental results, which demonstrate that the
performance of dl2asp is rather satisfactory.

The paper is organized as follows. Section 2 recalls some basic notions and
definitions in default logic and answer set programming. Section 3 presents the
translation from default logic to answer set programming, and discusses some
related properties. Section 4 explains the implementation of dl2asp in detail.
Section 5 reports some experiments, while Section 6 considers an application
of dl2asp for solving the fair division problem in social choice theory. Finally,
Section 7 concludes the paper.

2 Preliminaries

2.1 Reiter’s default logic

We consider Reiter’s default logic [20] in propositional case. A default theory ∆
is a pair ⟨W,D⟩, where W is a set of propositional formulas and D is a set of
defaults of the following form:

α : β1, . . . , βn/γ, (1)

where α, β1, . . . , βn, γ are propositional formulas. In addition, α is called the
prerequisite, β1, . . . , βn the justifications, and γ the conclusion of the default. Let
∆ be a default theory. We use P∆, J∆ and C∆ to denote the sets of prerequisites,
justifications and conclusions occurred in the default theory respectively.

Definition 1 (Extension [20]). Let ∆ = ⟨W,D⟩ be a default theory and T a
theory. We say that T is an extension of ∆ if T = Γ (T ), where for any theory
S, Γ (S) is the minimal set (in the sense of set inclusion) satisfying the following
three conditions:

1. W ⊆ Γ (S).
2. Γ (S) is a theory.
3. For any default rule α : β1, . . . , βn/γ ∈ D, if α ∈ Γ (S) and ¬βi ̸∈ S, (1 ≤

i ≤ n), then γ ∈ Γ (S).

Example 1. Consider the default theory ∆1 = ⟨D1,W1⟩, where W1 = {¬b ∨
¬c, c ∨ d} and D1 contains the following four defaults:

: ¬b/a, (2)

: ¬a,¬c/b, (3)

: a ∧ ¬b/¬d, (4)

¬c : ¬a/¬a. (5)
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It can be checked that∆1 has two extensions (under equivalence): E1 = Th(W1∪
{a,¬d}) and E2 = Th(W1 ∪ {¬a, b}). 4

2.2 Answer set programming

An answer set program (program for short) is a set of rules of the following form:

a← b1, . . . , bm, not bm+1, . . . , not bn, (6)

where 0 ≤ m ≤ n, a is either an atom or ⊥, and b1, . . . bn are atoms. In addition,
a is called the head of the rule and {b1, . . . , bm, not bm+1, . . . , not bn} the body
of the rule. More specifically, {b1, . . . , bm} is called the positive body of the rule,
while {bm+1, . . . , bn} is called the negative body of the rule. We call a rule a
constraint if a is ⊥, fact if n = 0, and positive if m = n.

LetX be a set of atoms. We say thatX satisfies a rule of form (6) ifX satisfies
its head (i.e. a ∈ X) whenever X satisfies its body (i.e. {b1, . . . , bm} ⊆ X and
{bm+1, . . . , bn} ∩ X = ∅). Hence, X satisfies a constraint iff it does not satisfy
its body.

Definition 2 (Answer set [7]). Let Π be a program and X a set of atoms.
We say that X is an answer set of Π if X is the minimal set (in the sense of
set inclusion) that satisfies ΠX , where ΠX is obtained as follows:

– delete all rules whose bodies are not satisfied by X;

– delete not bi in the bodies of the remaining rules.

Gelfond and Lifschitz [8] showed that answer set programming is a special
case of default logic by simply rewriting a rule of form (6) to the following
default:

b1 ∧ . . . ∧ bm : ¬bm+1, . . . ,¬bn/a. (7)

Let Π be a program. By DL(Π), we denote the default theory obtained from Π
as above (Note that W in DL(Π) is obtained by facts in Π). Then, the answer
sets of Π and the extensions of DL(Π) are one-to-one corresponded.

Theorem 1 (From ASP to DL [8]). Let Π be a program and X a set of
atoms. Then, X is an answer set of Π iff Th(X) is an extension of DL(Π).

An interesting question arises whether the converse of Theorem 1 holds as
well. In other words, is it possible to translate default logic back into answer set
programming? In the next section, we answer it positively.

4 We use Th(S) to denote the deductive closure of a set S of formulas.
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3 From default logic to answer set programming

This section translates Reiter’s default logic in propositional case to answer set
programming. We start with deeper analysis of the translation from ASP to DL,
as mentioned in the previous section. Inspired from that, we present a natural
translation from DL to ASP. Furthermore, we simplify the proposed translation
with less additional rules. Finally, we discuss the problem of how many additional
rules are needed.

To begin with, let us take a closer look at the translation from ASP to DL.
In fact, this translation indicates that the rule of form (6) in ASP plays the same
role of the default (7) in DL. This means, conversely, a specific kind of default,
namely of form (7) plays the same role to an ASP rule, namely of form (6).
Analogously, its suggests that a default of form (1) in DL, i.e.

α : β1, . . . , βn/γ,

should play a similar role to

γ ← α, not ¬β1, . . . , not ¬βn.

However, this is not exactly an ASP rule. To fix this problem, we can simply
introduce a new atom pα for each formula α. Then, analogous to the translation
from ASP to DL, a default of form (1) in DL should play a similar role to the
following rule in ASP:

pγ ← pα, not p¬β1 , . . . , not p¬βn . (8)

Now, we have a naive translation from DL to ASP. Formally, let ∆ = ⟨D,W ⟩
be a default theory. We introduce a set of new atoms pα for each formula α ∈
W ∪ P∆ ∪ ¬J∆ ∪ C∆. 5 Let r be a default of form (1), by R(r), we denote the
ASP rule of form (8). Let ∆ = ⟨W,D⟩ be a default theory, by R(∆), we denote
the program

{pα | α ∈W} ∪ {R(r) | r ∈ D}.
Indeed, R(∆) is the answer set program obtained from the default theory ∆ by
mapping each formula occurred in the default theory to a corresponding new
atom.

Example 2. Recall Example 1. According to the above definition, R(∆1) contains
the following rules:

p¬b∨¬c ← pb ← not pa, not pc
pc∨d ← p¬d ← not p¬(a∧¬b)
pa ← not pb p¬a ← p¬c, not pa.

It can be checked thatR(∆1) has two answer sets:M1 = {p¬b∨¬c, pc∨d, pa, p¬d}
and M2 = {p¬b∨¬c, pc∨d, pb, p¬d}. Compared to the extensions of ∆1, while M1

exactly corresponds to E1, M2 and E2 are not related.

5 We use ¬J∆ to denote the set of formulas {¬ϕ | ϕ ∈ J∆}.
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Let us take a closer look at Examples 1 and 2. One may observe that there
is no extension of ∆1 containing b when ¬d holds because W1 ∪ {¬d} |= c, thus
default (3) in ∆1 will never be triggered. This is the reason why M2 fails to
correspond to any extension of ∆1. Also, suppose that b is in an extension of
∆1. Then, ¬c must be in the extension as well because W ∪ b |= ¬c. As such,
default (5) in ∆1 could be triggered so that ¬a is also in the extension. This
explains why there is no answer sets of R(∆1) corresponding to E2.

In general, we can conclude that what is missing in R(∆) are the internal
relationships among formulas in ∆. By simply translating ∆ to R(∆), some
internal relationships among formulas are lost, which might be crucial for com-
puting a default theory’s extensions, for instance, the entailment relationship
W1 ∪ {¬d} |= c as discussed above.

Our main theoretical result in this paper is: together with the internal re-
lationships, R(∆) exactly captures the extensions of ∆. Formally, let ∆ be a
default theory and F∆ = W ∪ P∆ ∪ ¬J∆ ∪ C∆. The set of implication rules of
∆, denoted by I(∆), is the set of rules of the form

pϕ ← pϕ1
, . . . , pϕn

(9)

where {ϕ, ϕ1, . . . ϕn} ⊆ F∆, ϕ ̸∈ {ϕ1, . . . , ϕn} and {ϕ1, . . . , ϕn} |= ϕ.
Finally, let AS(∆) = R(∆)∪I(∆). The following theorem shows that AS(∆)

exactly captures the extensions of ∆. That is, the answer sets of AS(∆) is one-
to-one corresponding to the extensions of ∆.

Theorem 2 (From DL to ASP). Let ∆ be a default theory and T a consistent
theory. 6 Then, T is an extension of ∆ iff pT is an answer set of AS(∆), where
pT = {pα | α ∈ F∆, T |= α}.

Proof (sketch). 7 Firstly, it is observed that if T is an extension of ∆, then there
exists F ⊆ F∆ such that T is the deductive closure of W ∪ F .

Now, suppose that T is an extension of ∆. Then, pT satisfies all rules in
AS(∆) according to the definition. Thus, pT satisfies AS(∆)pT . Assume that pT
is not an answer set of AS(∆). Then, there exists X ⊂ pT such that X satisfies
AS(∆)pT as well. Let T ′ be the deductive closure of {α | pα ∈ X}. Then, it
can be checked that T ′ satisfies the conditions of the operator Γ with respect
to T (note that X satisfies I(∆)). Hence, Γ (T ) ⊆ T ′. In addition, T ′ ⊂ T since
X ⊂ pT . This shows that Γ (T ) ⊆ T ′ ⊂ T , a contradiction.

On the other hand, suppose that pT is an answer set of AS(∆). Then, pT
satisfies each rule in R(∆). Therefore, T satisfies the conditions of the operator
Γ with respect to T itself. Hence, Γ (T ) ⊆ T . Assume that Γ (T ) ⊂ T . Then,
pΓ (T ) satisfies R(∆)pT according to the definition of R(∆). Also, pΓ (T ) satisfies
I(∆)pT according to the definitions of I(∆) and pΓ (T ). Hence, pΓ (T ) satisfies
AS(∆)pT . In addition, pΓ (T ) ⊂ pT since Γ (T ) ⊂ T . This shows that pT is not
an answer set of AS(∆), a contradiction.

6 Here, we only consider consistent extensions. Inconsistency can be easily checked in
default logic [21].

7 Due to a space limit, proof in this paper, if given, are sketched.
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Although AS(∆) exactly captures the extensions of ∆, the implication rules
in I(∆) could be a lot. Next, we propose several techniques to reduce the number
of implication rules by the following observations:

– In ASP, suppose that there are two rules sharing the same head, the same
negative body but one rule’s positive body is a subset of another’s. Then, the
latter rule is “dummy” because these two rules are strongly equivalent to the
former one [15]. Hence, we can only consider those “minimal” implication
rules for a default theory ∆.

– In DL, given a default theory ∆ = ⟨W,D⟩, all the extensions must contain
W . Hence, we can fix W for the implication rules. That is, we can only
consider those internal relationships (i.e. implication rules) generated from
the set P∆ ∪ ¬J∆ ∪ C∆ under the context of W .

– Suppose that there exists an inconsistent (unsatisfiable) set of formulas.
Then, for any other ϕ, it generates an implication rule. Of course, this is
not necessary. All we need is a constraint stating that these formulas (their
corresponding atoms) cannot appear at the same time.

– Observed from Theorem 2.5 [20], all the extensions of a default theory ∆
can be rewritten as Th(W ∪C), where C is a subset of C∆. Hence, we only
need to consider the implication rules whose heads are only from P∆ ∪ ¬J∆
and bodies are only from C∆.

Based on the above observations and discussions, we can simplify the impli-
cation rules as follows. Let ∆ = ⟨W,D⟩ be a default theory. The set of modified
implication rules of ∆, denoted by I∗(∆), is the set of rules of form (9), where

– either ϕ is ⊥, 8 ϕi ∈ C∆, W ∪{ϕ1, . . . , ϕn} is unsatisfiable, and {ϕ1, . . . , ϕn}
is the minimal set satisfying the above conditions,

– or ϕ ∈ P∆ ∪ ¬J∆, ϕi ∈ C∆ \ {ϕ}, W ∪ {ϕ1, . . . , ϕn} is satisfiable, W ∪
{ϕ1, . . . , ϕn} |= ϕ, and {ϕ1, . . . , ϕn} is the minimal set satisfying the above
conditions.

Example 3. Recall ∆1 discussed in Examples 1 and 2 again. According to the
definition, I∗(∆) is the set of the following rules:

⊥ ← pa, p¬a pc ← p¬d
⊥ ← pb, p¬d p¬(a∧¬b) ← pb
p¬c ← pb p¬(a∧¬b) ← p¬a

It can be checked thatR(∆)∪I∗(∆) has two answer sets: {p¬b∨¬c, pc∨d, pa, p¬d}
and {p¬b∨¬c, pc∨d, p¬a, pb}, which are exactly corresponding to the extensions E1

and E2 of ∆1 respectively.

In general, let AS∗(∆) = R(∆) ∪ I∗(∆). The following theorem shows that
AS∗(∆) is enough to capture the extensions of ∆.

8 In this case, we define p⊥ as ⊥ for convenience.
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Theorem 3. Let ∆ be a default theory and T a consistent theory. Then, T is
an extension of ∆ iff p∗T is an answer set of AS∗(∆), where p∗T = {pα | α ∈
W ∪ C∆, T |= α}.

Clearly, the atoms used in AS∗(∆) is linear with respect o the size of ∆.
However, although the number of implication rules in I∗(∆) is significantly re-
duced compared to I(∆), there might be exponential number of such rules. It is
well-known that checking whether a default theory in the propositional case has
an extension is ΣP

2 complete [10], while checking whether a normal logic program
has an answer set is NP complete [4]. So we can observe that the exponential size
seems inevitable, providing some general assumptions in the complexity theory.

However, as we will show later in the experiments, the number of implication
rules is not really explosive. This is also partially evidenced by the research of
minimal unsatisfiable subset. For instance, the experiments in [14] showed that
the number of MUS (corresponding to minimal implication rules in I∗(∆)) is not
big for many cases. Although simple, it is worth mentioning that if the default
theory ∆ itself is ASP-like (i.e. W ∪C∆ ∪¬J∆ ∪P∆ only contains atoms), then
I∗(∆) is empty.

Encouraged by the above observations and the current sophisticated devel-
opments of efficient ASP solvers, we apply the theoretical results established in
this section to a practical solver for default logic.

4 Implementation

Based on the translation proposed in Section 3 from default logic to answer set
programming, we have implemented a new solver for default logic, called dl2asp,
which computes all extensions of a given default theory. More precisely, the key
idea of dl2asp is to translate a given default theory ∆ to AS∗(∆). Then, by
Theorem 3, the task of computing all the extensions of ∆ turns into computing
all the answer sets of AS∗(∆).

Default 

Theory
ASP ProgramsTranslator

ASP Solver

Convertor Answer SetsExtensions

Fig. 1. Outline of dl2asp

Figure 1 illustrates how dl2asp works. An input default theory is firstly trans-
lated to an answer set program by the translator in dl2asp. Then, an ASP solver
is called to compute the answer sets of the program. Finally, the answer sets will
be interpreted back to extensions of the original default theory by an convertor.

For the ASP solver module in dl2asp, we just use clasp9. The convertor in
dl2asp is trivial. As demonstrated in Theorem 3, one can simply interpret each

9 http://www.cs.uni-potsdam.de/clasp/
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atom in the answer sets to their corresponding formulas. Hence, the main issue
in dl2asp is the translator.

Let ∆ = ⟨W,D⟩ be a default theory. According to the construction, AS∗(∆)
contains two parts, namely R(∆) and I∗(∆). For R(∆), we can first introduce
a new atom pα for each formula α ∈ F∆, then get a new fact pα for each
formula α ∈ W and get a new rule of form (8) for each default in D of form
(1). However, I∗(∆) is relatively difficult. The most technical part of dl2asp is
to compute I∗(∆) - the set of modified implication rules.

For this purpose, we borrow some ideas and techniques of computing minimal
unsatisfiable subsets from [14]. Let S be a set of formulas. A subset S′ of S is a
Minimal Unsatisfiable Subset (MUS) if S′ is unsatisfiable and for any S′′ ⊂ S′,
S′′ is satisfiable. Liffiton and Sakallah [14] developed a sound and complete
algorithm, called CAMUS10, for computing all MUSes of a given set of clauses.
However, instead of computing MUSes directly, they computed so-called MCSes
first. Here, a subset S′ of S is a Maximal Correction Subset (MCS) if S\S′ is
satisfiable and for any S′′ ⊂ S′, S\S′′ is unsatisfiable. MCS and MUS are closely
related. In fact, all the MUSes are exactly all the minimal hitting sets of the
collection of all MCSes. Here, given a collection of sets Ω, a set H is a minimal
hitting set of Ω iff for all H0 ∈ Ω, H ∩H0 ̸= ∅ and there is no H ′ ⊂ H satisfying
the above condition.

We now apply this method to compute all the modified implication rules (i.e.
I∗(∆)) in our translation. Let ∆ be a default theory. According to the construc-
tion, I∗(∆) contains rules of the form pϕ ← pϕ1 , . . . , pϕn , where {pϕ1 , . . . , pϕn} is
a minimal set such thatW ∪{ϕ1, . . . , ϕn} |= ϕ. That is, it is a minimal set incon-
sistent with W ∪ {¬ϕ}. In other words, it is an MUS of the set W ∪ {¬ϕ} ∪C∆
by fixingW and {¬ϕ}. Hence, we can compute all the implication rules in I∗(∆)
as follows:

constraints compute all the MUSes of W ∪ C∆ by fixing W ;
other implication rules for all ϕi ∈ ¬J∆ ∪ P∆, compute all the MUSes of

W ∪ {¬ϕi} ∪ C∆ by fixing W and {¬ϕi}.

There are two major differences between this task and the one in [14] for
computing all MUSes. Firstly, we need to fix some formulas, e.g. formulas in W .
Secondly, we need to compute the MUSes for every ϕ in P∆ ∪¬J∆. Clearly, the
task of computing constraints can be considered as a special case of the second
case. In dl2asp, we first compute constraints, then the other implication rules,
where the latter is implemented by Algorithm 1.

Let use take a closer look at Algorithm 1. Step 1 fixes W as a background
formula set. Steps 2-4 (Steps 5-6) add a selector variable xi (yj) to the formula
¬ψi (ϕj resp.). The AtMost constraint in Step 7 is provided by MiniSat [5]
to restrict that at most one of {x1, . . . , xm} holds, and together with Step 8,
exactly one of {¬ψ1, . . . ,¬ψm} holds. In fact, xi is corresponding to those im-
plication rules whose head is pψi . Steps 9-16 compute all the MCSes in a similar
way to Figure 2 in [14] except that W and at most one of ψi are fixed. SAT

10 http://www.eecs.umich.edu/̃liffiton/camus/
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in Step 10 and IncrementalSAT in Step 12 uses MiniSat’s incremental solving
ability to find a model of a formula. BlockingClause in Steps 14 and 15 is pro-
vided by CAMUS to block the MCS that obtained before. Steps 17-20 compute
all the implication rules in the same way to computing MUSes in [14], where
ConstructMUS is provided by CAMUS for computing all minimal hitting sets,
and Rewrite is the function to rewrite an MUS to an implication rule of form
(9), and delete those self implication rules like pϕ ← pϕ and those implication
rules like pϕ ← pϕ1 , . . . , pϕn when there is already a constraint ⊥ ← pϕ1 , . . . , pϕn .

Algorithm 1: Computing Implication Rules

input : A default theory ∆ = ⟨W,D⟩, where C∆ = {ϕ1, . . . , ϕn} and
P∆ ∪ ¬J∆ = {ψ1, . . . , ψm}

output: the set of non-constraint implication rules of ∆

Φ←W // set W as background theory1

forall 1 ≤ i ≤ m do // add selector variables to ¬ψ2

MCS(¬ψi)← ∅3

Φ← Φ ∪ {¬ψi ∨ ¬xi}4

forall ϕj such that 1 ≤ j ≤ n do // add selector variables to ϕ5

Φ← Φ ∪ {ϕj ∨ ¬yj}6

Φ← Φ ∪AtMost({x1, . . . , xm}, 1) // at most one of xi holds7

Φ← Φ ∪ {x1 ∨ · · · ∨ xm} // at least one of xi holds8

k ← 19

while (SAT (Φ)) do // computing MCSes10

Φk ← Φ ∪AtMost({¬y1, . . . ,¬yn}, k)11

while (M = IncrementalSAT (Φk)) do12

MCS(¬ψi)←MCS(ψi) ∪ {ϕj | yj ∈M}13

Φk ← Φk ∪BlockingClause(M)14

Φ← Φ ∪BlockingClause(M)15

k ← k + 116

I∗(∆)← ∅17

forall 1 ≤ i ≤ m do // computing implication rules18

I∗(∆)← I∗(∆) ∪Rewrite(ConstructMUS(ψi))19

return I∗(∆)20

Example 4. Again, recall ∆1 discussed in Examples 1 and 2, and consider the
formula ¬(a∧¬b) ∈ ¬J∆. According to Algorithm 1, we haveMCS(¬(a ∧ ¬b)) =
{{b,¬a}} andMUS(¬(a ∧ ¬b)) = {{b}, {¬a}}. So, we have two rules p¬(a∧¬b) ←
pb and p¬(a∧¬b) ← p¬a in I∗(∆1) corresponding to the result above.

Finally, we end up this section by showing how the rest parts of dl2asp
work for the example. By calling clasp, R(∆1) ∪ I∗(∆1) has two answer sets:
{p¬b∨¬c, pc∨d, pa, p¬d} and {p¬b∨¬c, pc∨d, p¬a, pb}. Then, the convertor just rewrite
them as: {¬b∨¬c, c∨d, a,¬d} and {¬b∨¬c, c∨d,¬a, b}. In contrast with Example
1, these two formula sets are exactly the two extensions of ∆1.
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5 Experimental Results

In this section, we report some experimental results of dl2asp. First, we briefly re-
view some existing solvers for default logic, including DeReS, XRay, and GADEL.
Unfortunately, we are unable to run them properly because these solvers are out
of date, and the versions of softwares they used are too old to be compatible
with current versions.

Nevertheless, it is still necessary to review these approaches, particularly
their test data. The task of all these approaches is to compute all extensions
of a given default theory. For this purpose, DeReS [3] directly uses search al-
gorithms to compute the extensions. In [3], some benchmarks in graph theory,
e.g. finding Hamiltonian circuit, are tested. Instead, XRay [18] is implemented
by using Prolog, and supporting local proof procedures. XRay tested the Hamil-
tonian circuit problem as well and some contextual default theories randomly
generated. GADEL [16] applies genetic algorithms to compute the extensions.
GADEL tested the Hamiltonian circuit problem as well as a handed-coded de-
fault theory about relationships among people (Example 4.1, [16]).

Similarly, dl2asp intends to find all extensions of a given default theory
as well. First of all, it is observed that if the default theory is ASP-like (i.e.
W ∪ C∆ ∪ ¬J∆ ∪ P∆ only contains atoms), then the set of implication rules is
empty. Furthermore, if the default theory is disjunction-free (i.e. all the formu-
las occurred in the default theory are literals), then all the implication rules are
constraints, and the total number is linear. This is because the implication rules
can only be of the form ⊥ ← pl, not p¬l, where l is a literal occurred in the
default theory and ¬l is the complementary literal of l. In both cases, Algorithm
1 can find out all the implication rules immediately. Hence, it is not interesting
to test such default theories for dl2asp.

However, most of the test benchmarks, e.g. the Hamiltonian circuit problem,
belong to the above two categories. Therefore, in the section, we only report our
experimental results for solving the people’s relationship problem11 (Example
4.1 in [16]), which is claimed difficult to be solved in default logic.

The system dl2asp is written in C++. The program is running on a ma-
chine with 4 processors(AMD Athlontm II X4 620) under Ubuntu 9.10 Linux
operating system. We record two series of time in seconds, timet - the time for
computing all implication rules and timeall - the overall time, taking the average
of 3 runs. numI∗ is the number of the rules in I∗(∆P). The experimental results
of the people’s relationship problem are summarized in Table 1.

Although we do not intend to compare dl2asp with other solvers on this
particular instance because of fairness reasons, we can see that dl2asp performs
rather satisfactory on this benchmark. As an example, for woman ∧ student,
while dl2asp only takes 0.3 seconds, GADEL and DeRes takes 1202 seconds and
more than 7200 seconds respectively under their test environments (see Table 2
in [16]).

11 For more details about this particular default theory, please refer to [16].
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Table 1. Experimental results of the people’s relationship problem

boy girl man woman man ∧ student woman ∧ student

numI∗ 10 10 11 12 10 11

timet 0.5134 0.5134 0.6427 0.7001 0.2453 0.2894

timeall 0.5227 0.5228 0.6534 0.7120 0.2520 0.2987

It can be observed from Table 1 that the most time-consuming part of dl2asp
is the translation. By noticing this fact, we wonder whether this part can be
improved. Also, it is possible to take some preprocesses, e.g. consistent checking
of W , to reduce the time costs. We leave this for our future work.

A single example might not be enough. Hence, we intend to find more in-
stances for testing dl2asp. A good idea is to consider a concrete application of
default logic, where some instances can be generated. In the next section, we ex-
plore one particular application of default logic, namely the fair division problem
in social choice theory.

6 Application to Fair Division Problem

In this section, we apply dl2asp for solving the fair division problem, which is
one of the central problems in social choice theory. The problem of fair division
is: given a set of agents, a set of goods and the preference among goods for each
agent, to obtain a “fair” solution for allocating the goods to the agents [2].

Formally, a fair division problem is a tuple P = ⟨I,X,R⟩, where I =
{1, . . . , N} is a set of agents, X = {x1, . . . , xp} is a set of indivisible goods,
and R = {R1, . . . , RN} is a preference profile, where each Ri is a reflexive, tran-
sitive and complete relation on 2X . An (complete) allocation for P = ⟨I,X,R⟩
is a mapping π : I → 2X such that for all i and j ̸= i, π(i) ∩ π(j) = ∅, and for
every x ∈ X there exists an i such that x ∈ π(i). An allocation π is (Pareto-)
efficient iff there is no π′ such that π′ dominates π, where for two allocations π
and π′, π dominates π′ iff for all i, (π(i), π′(i)) ∈ Ri, and there exists an i such
that (π′(i), π(i)) ̸∈ Ri. An allocation π is envy-free iff (π(i), π(j)) ∈ Ri holds for
all i and all j ̸= i.

A preference Ri is dichotomous iff there exists a subset Goodi of 2
X such

that for all A,B ⊆ X, (A,B) ∈ Ri iff A ∈ Goodi or B ̸∈ Goodi. A dichotomous
preference can be naturally represented by a single propositional formula, where
variables correspond to goods. Given a dichotomous preference Ri, we can always
use formula ϕi =

∨
A∈Goodi(

∧
x∈A x ∧

∧
x ̸∈A ¬x) to represent Ri. Thus, a fair

division problem with dichotomous preference P = ⟨I,X,R⟩ can always be
represented by ⟨ϕ1, . . . , ϕN ⟩, and I, X and R are obviously determined from
⟨ϕ1, . . . , ϕN ⟩. The following proposition shows that for fair division problem with
dichotomous preference, it can be translated into default logic.

Proposition 1 (Proposition 3, [2]). Let P = ⟨ϕ1, . . . , ϕN ⟩ be a fair division
problem. Let ∆P be the default theory ⟨ΓP , ΦP ∪ {¬ΛP : /⊥}⟩, where
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– ΓP =
∧
x∈X

∧
i ̸=j ¬(xi ∧ xj),

– ΛP =
∧
i=1,...,N

[
ϕ∗i ∨

(∧
j ̸=i ¬ϕ∗j|i

)]
, and

– ΦP is the set of defaults of the form : ϕ∗i /ϕ
∗
i , i = 1, . . . , N ,

where ϕ∗i is obtained from ϕi by replace every variable x by a new symbol xi, and
ϕ∗j|i is obtained from ϕ∗i by replace every symbol xi by xj. Then, each extension
of ∆P is corresponding to an efficient and envy-free allocation of P.

Table 2. Experimental results of Fair Division Problem

(goods, agents) (3, 4) (4, 4) (4, 6) (4, 8) (4, 10) (4, 15) (4, 20) (4, 25)

numI∗ 1 1 1 1 14 21 410 460

timet 0.0213 0.0267 0.0653 0.2213 0.4427 1.7534 21.8267 33.2407

timeall 0.0333 0.0547 0.1000 0.2787 0.5320 1.9148 22.2241 33.8248

EXT 0 0 0 0 5 13 170 177

Based on this result, we are able to use dl2asp to compute all efficient and
envy-free allocations for a given fair division problem. Our experimental results
are shown in Table 2. Given the numbers of goods and agents, we randomly
generate a fair division problem instance, then compute all the extensions of
the default theory according to Proposition 1. EXT is the number of exten-
sions returned by dl2asp and numI∗ , timet and timeall are the same as those in
Table 1.

7 Conclusions and future work

This paper contributes the study of default logic both from a theoretical and
a practical point of view. Theoretically, we showed that default logic can be
translated into answer set programming by identifying the internal relationships
(i.e. implication rules) among formulas (Theorem 2), and indeed, the number of
such implication rules can be largely reduced (Theorem 3). Practically, based
on the above translation, we developed a new solver - dl2asp - for implementing
default logic via answer set programming. Our experimental results (Table 1)
illustrated that the performance of dl2asp is rather satisfactory, which is further
confirmed by applying dl2asp to solving the fair division problem (Table 2).

For future work, one important task is to develop more techniques for im-
proving dl2asp, especially for computing the implication rules. Another work
worth pursuing is to extend dl2asp for more expressive default logics, such as
disjunctive default logic [9] and general default logic [21]. Last but not least, it
is interesting to explore more applications of default logic by using dl2asp.
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