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Abstract

In this paper, we investigate knowledge reasoning within a simple framework called
knowledge structure. We use variable forgetting as a basic operation for one agent to reason
about its own or other agents’ knowledge. In our framework, two notions namely agents’
observable variables and the weakest sufficient condition play important roles in knowledge
reasoning. Given a background knowledge base I' and a set of observable variables O; for
each agent ¢, we show that the notion of agent ¢ knowing a formula ¢ can be defined as a
weakest sufficient condition of ¢ over O; under I'. Moreover, we show how to capture the
notion of common knowledge by using a generalized notion of weakest sufficient condition.
Also, we show that public announcement operator can be conveniently dealt with via our
notion of knowledge structure. Further, we explore the computational complexity of the
problem whether an epistemic formula is realized in a knowledge structure. In the general
case, this problem is PSPACE-Complete; however, for some interesting subcases, it can
be reduced to co-NP. Finally, we discuss possible applications of our framework in some
interesting domains such as the automated analysis of the well-known muddy children
puzzle and the verification of the revised Needham-Schroeder protocol. We believe that
there are many scenarios where the natural presentation of the available information about
knowledge is under the form of a knowledge structure. What makes it valuable compared
to the corresponding multi-agent S5 Kripke structure is that it can be much more succinct.

1. Introduction

Epistemic logics, or logics of knowledge are usually recognized as having originated in the
work of Jaakko Hintikka - a philosopher who showed how certain modal logics could be
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used to capture intuitions about the nature of knowledge in the early 1960s (Hintikka,
1962). In the mid of 1980s, Halpern and his colleagues discovered that S5 epistemic logics
could be given a natural interpretation in terms of the states of processes (commonly called
agents) in a distributed system. This model now is known as the interpreted system model
(Fagin, Halpern, Moses, & Vardi, 1995). It was found that this model plays an important
role in the theory of distributed systems and has been applied successfully in reasoning
about communication protocols (Halpern & Zuck, 1992). However, the work on epistemic
logic has mainly focused on theoretical issues such as variants of modal logic, completeness,
computational complexity, and derived notions like distributed knowledge and common
knowledge.

In this paper, we explore knowledge reasoning within a more concrete model of knowl-
edge. Our framework of reasoning about knowledge is simple and powerful enough to
analyze realistic protocols such as some widely used security protocols.

To illustrate the problem investigated in this paper, let us consider the communication
scenario that Alice sends Bob a message and Bob sends Alice an acknowledgement when
receiving the message. We assume Alice and Bob commonly have the following background
knowledge base I'cg:

Bob_recv_msg = Alice_send_msg
Bob_send_ack = Bob_recv_msg
Alice_recv_ack = Bob_send_ack

where Bob_recv_msg and Bob_send_ack are observable variables to Bob, while Alice_send_msg
and Alice_recv_ack are observable to Alice.

The problem we are concerned with is how to verify that Alice or Bob knows a statement
©. Intuitively, we should be able to prove that for a statement observable to Alice (Bob),
Alice (Bob) knows the statement if and only if the statement itself holds. As for the
knowledge of non-observable statements, the following should hold:

1. Alice knows Bob_recv_msg if Alice_recv_ack holds; on the other hand, if Alice knows
Bob_recv_msg, then Alice_recv_ack holds, which means that , in the context of this
example, the only way that Alice gets to know Bob_recv_msg is that Alice receives
the acknowledgement from Bob.

2. Bob knows Alice_send_msg if Bob_recv_msg holds; moreover, if Bob knows Alice_send_msg,
then Bob_recv_msg holds. The latter indicates that the only way that Bob gets to
know Alice_send_msg is that Bob receives the message from Alice.

3. Finally, Bob does not know Alice_recv_ack.

The idea behind the presented knowledge model for those scenarios demonstrated above
is that an agent’s knowledge is just the agent’s observations or logical consequences of the
agent’s observations under the background knowledge base.

One of the key notions introduced in this paper is agents’ observable variables. This
notion shares a similar spirit of those of local variables in (van der Hoek & Wooldridge,
2002) and local propositions in (Engelhardt, van der Meyden, & Moses, 1998; Engelhardt,
van der Meyden, & Su, 2003). Informally speaking, local propositions are those depending
only upon an agent’s local information; and an agent can always determine whether a



given local proposition is true. Local variables are those primitive propositions that are
local. Nevertheless, the notion of local propositions in (Engelhardt et al., 1998, 2003) is a
semantics property of the truth assignment function in a Kripke structure, while the notion
of local variables in (van der Hoek & Wooldridge, 2002) is a property of syntactical variables.
In this paper, we prefer to use the term “observable variable” in order to avoid any confusion
with the term “local variable” used in programming, where “non-local variables” such as
“global variables” may often be observable.

Our knowledge model is also closely related to the notion of weakest sufficient condition,
which was first formalized by (Lin, 2001). Given a background knowledge base I" and a set
of observable variables O; for each agent ¢, we show that the notion of agent ¢ knowing a
formula ¢ can be defined as the weakest sufficient condition of ¢ over O; under I'; which
can be computed via the operation of variable forgetting (Lin & Reiter, 1994). Moreover,
we generalize the notion of weakest sufficient condition and capture the notion of common
knowledge.

The notion of wvariable forgetting or eliminations of middle terms (Boole, 1854) has
various applications in knowledge representation and reasoning. For example, (Weber, 1986)
applied it to updating propositional knowledge bases. More recently, (Lang & Marquis,
2002) used it for merging a set of knowledge bases when simply taking their union may
result in inconsistency. The notion of variable forgetting is also closely related to that of
formula-variable independence, because the result of forgetting the set of variables V' in
a formula ¢ can be defined as the strongest consequence of ¢ being independent from V
(Lang, Liberatore, & Marquis, 2003).

Now we briefly discuss the role of variable forgetting in our knowledge model. Let us
examine the scenario described above again. Consider the question: how can Alice figure
out Bob’s knowledge when she receives the acknowledgement from Bob? Note that Alice’s
knowledge is the conjunction of the background knowledge base I'cg and her observations
Alice_recv_ack etc. Moreover, all Alice knows about Bob’s knowledge is the conjunction
of the background knowledge base I'cg and all she knows about Bob’s observations. Thus,
Alice gets Bob’s knowledge by computing all she knows about Bob’s observations. In our
setting, Alice gets her knowledge on Bob’s observations simply by forgetting Bob’s non-
observable variables in her own knowledge.

There is a recent trend of extending epistemic logics with dynamic operators so that the
evolution of knowledge can be expressed (van Benthem, 2001; van Ditmarsch, van der Hoek,
& Kooi, 2005a). The most basic extension is public announcement logic (PAL), which is
obtained by adding an operator for truthful public announcements (Plaza, 1989; Baltag,
Moss, & Solecki, 1998; van Ditmarsch, van der Hoek, & Kooi, 2005b). We show that public
announcement operator can be conveniently dealt with via our notion of knowledge struc-
ture. This makes the notion of knowledge structure genuinely useful for those applications
like the automated analysis of the well-known muddy children puzzle.

From the discussion above, we can see that our framework of reasoning about knowledge
is appropriate in those situations where every agent has a specified set of observational
variables. To further show the significance of our framework, we investigate some of its
interesting applications to the automated analysis of the well-known muddy children puzzle
and the verification of the revised Needham-Schroeder protocol (Lowe, 1996).



We believe that there are many scenarios where the natural presentation of the available
information about knowledge is under the form of a knowledge structure. What makes it
valuable compared to the corresponding multi-agent S5 Kripke structure is that it can be
much more succinct. Of course, the price to be paid is that the problem determining whether
a formula holds in a knowledge structure is PSPACE-complete in the general case, while
it is in PTIME when the corresponding S5 Kripke structure is taken as input. However,
the achieved trade-off between time and space can prove computationally valuable. In
particular, the validity problem from a knowledge structure can be addressed for some
instances for which generating the corresponding Kripke structure would be unfeasible.
The Muddy Children Puzzle shows this point clearly: generating the corresponding Kripke
structure is impossible from a practical point of view, even for the least number of children
considered in the experiments.

The organization of this paper is as follows. In the next section, we briefly introduce the
concept of forgetting and the notion of weakest sufficient and strongest necessary conditions.
In Section 3, we define our framework of reasoning about knowledge via variable forgetting.
In Section 4, we generalize the notion of weakest sufficient condition and strongest necessary
condition to capture common knowledge within our framework. In Section 5, we show
that public announcement operator can also be conveniently dealt with via our notion of
knowledge structure. Section 6 deals with the computational complexity issue about the
problem of whether an epistemic formula is realized in a knowledge structure. In the general
case, this problem is PSPACE-Complete; however, for some interesting subcases, it can be
reduced to co-NP. In Section 6, we consider a case study by applying our framework to deal
with the well known muddy children puzzle. We further apply our framework of knowledge
reasoning to security protocols verification in Section 7. Finally, we conclude the paper
with some remarks.

2. Preliminaries

2.1 Forgetting

Given a set of propositional variables P, we identify a truth assignment over P with a subset
of P. We say a formula ¢ is a formula over P if each propositional variable occurring in ¢
is in P. For convenience, we define true as an abbreviation for a fixed valid propositional
formula, say p V —p, where p is primitive proposition in P. We abbreviate —true by false.

We also use = to denote the usual satisfaction relation between a truth assignment and
a formula. Moreover, for a set of formulas I" and a formula ¢, we use I' = ¢ to denote that
for every assignment o, if o =« for all a € I, then o = .

Given a propositional formula ¢, and a propositional variable p, we denote by o(hs)
the result of replacing every p in ¢ by true. We define p(gl) similarly.

The notion of variable forgetting (Lin & Reiter, 1994), or eliminations of middle terms
(Boole, 1854), can be defined as follows:

Definition 1 Let ¢ be a formula over P, and V' C P. The forgetting of V in ¢ , denoted
as IV, is a quantified formula over P, defined inductively as follows:

1. 30y = ¢;



2. Hpte = ¢ (the) V ¥ (iee)
3. (VU {p}he = V(Hply).

For convenience, we use YV¢ to denote =3V (—gp).
Example 2: Let ¢ = (pVq)A(—pVr). We have I{p}p = (¢Vvr) and IH{q}p = (-pVr). I

Many characterizations of variable forgetting, together with complexity results, are re-
ported in (Lang & Marquis, 1998). In particular, the notion of variable forgetting is closely
related to that of formula-variable independence (Lang et al., 2003).

Definition 3 Let ¢ be a propositional formula, and V' a set of propositional variables. We
say ¢ is independent from V' if and only if ¢ is locally equivalent to a formula in which none
of the variables in V appears.

The following proposition was given in (Lang et al., 2003).

Proposition 4 Let ¢ be a propositional formula, and V a set of propositional variables.
Then 3V is the logically strongest consequence of ¢ that is independent from V (up to
logical equivalence).

Proof: First, it is easy to see that = p = ¢ = ¢ (g5s) and = p = ¢ = ¢ (ghs)-

true

Therefore, = ¢ = (¢ (55s) V ¢ (ghs))s i-e., = @ = IH{p}y. Hence, = ¢ = IV, and we
have that 3V ¢ is a logical consequence of ¢. Moreover, 3V ¢ is independent from V by the

definition. To complete the proof, we need only to show that, for every formula 1 that is
independent from V, if v is a logical consequence of ¢, then = IV = 1. However, from
E ¢ = 1, we have that = 3V ¢ = 3V4). By the condition that ) that is independent from
V, we have = ¢ < ¢/ for some formula ¢ in which none of the variables in V' appears.
Therefore, = IV < VY and | VY < ¢'. As a result, = IV = ¢ and hence

EdVe=1v¢.1

2.2 Weakest Sufficient Conditions

The formal definitions of weakest sufficient conditions and strongest necessary conditions
were first formalized via the notion of variable forgetting by (Lin, 2001), which in turn play
an essential role in our approach.

Definition 5 Let V be a set of propositional variables and V' C V. Given a set of formulas
I" over V as a background knowledge base and a formula « over V.

e A formula ¢ over V" is called a sufficient condition of o over V' under T'if T = ¢ = a.
It is called a weakest sufficient condition of o over V' under T if it is a sufficient
condition of o over V/ under I', and for any sufficient condition ¢’ of o on V’ under
T, we have ' = ¢’ = o.

e A formula ¢ over V is called a necessary condition of o over V' under T'if T = o = .
It is called a strongest necessary condition of o over V' under T if it is a necessary
condition of o over V/ under I, and for any necessary condition ¢’ of a over V' under
I, we have I' |= p = ¢'.



The notions given above are closely related to theory of abduction. Given an observation,
there may be more than one abduction conclusion that we can draw. It should be useful to
find the weakest of such conclusions, i.e., the weakest sufficient condition of the observation
(Lin, 2001). The notions of strongest necessary and weakest sufficient conditions of a
proposition also have many potential applications in other areas such as reasoning about
actions. The following proposition, which is due to Lin (Lin, 2001), shows how to compute
the two conditions.

Proposition 6 Given a background knowledge base {0} over V, a formula a over V, and
a subset V' of V.. Let SNC* and WSC® be a strongest necessary condition and a weakest
sufficient condition of o over V' under {0} respectively. Then

e WSC* is equivalent to ¥Y(V — V') (0 = «a); and
e SNC® is equivalent to I(V — V') (0 A ).

2.3 Epistemic Logic and Kripke Structure

We now recall some standard concepts and notations related to the modal logics for multi-
agents’ knowledge.

Given a set V of primitive propositions. The language of epistemic logic, denoted by
L,(V), is a propositional language with primitive propositions in V' augmented with modal
operator K; for each agent i. K;¢ can be read “agent i knows ¢ 7. Let Eg(V) be the
language of £, (V) augmented with and modal operator Ca for each set of agents A. A
formula C'a« indicates that it is common knowledge among agents in A that « holds. We
omit the argument V and write £,, and LG, if it is clear from context.

According to (Halpern & Moses, 1992), semantics of these formulas can be given by
means of Kripke structure (Kripke, 1963), which formalizes the intuition behind possible
worlds. A Kripke structure is a tuple (W, 7,Kq,---,K,), where W is a set of worlds,
7w associates with each world a truth assignment to the primitive propositions, so that
m(w)(p) € {true, false} for each world w and primitive proposition p, and Ky, ---, K, are
binary accessibility relations. By convention, W™, ICZM and ™ are used to refer to the
set W of possible worlds, the K; relation and the 7 function in the Kripke structure M,
respectively. We omit the superscript M if it is clear from context. Finally, let Cao be the
transitive closure of (J;ca K.

A situation is a pair (M, w) consisting of a Kripke structure and a world w in M. By
using situations, we can inductively give semantics to formulas as follows: for primitive
propositions p,

(M, w) = piff 7™ (w)(p) = true.

Conjunctions and negations are dealt with in the standard way. Finally,

(M,w) = K;a iff for all w’ € W such that wKMw', we have that (M, w’) |= «; and

(M, w) = Caa iff for all w' € W such that wCMw’, we have that (M,w') = a.

We say a formula « is satisfiable in Kripke structure M if (M, w) = « for some possible
world w in Kripke structure M.

A Kripke structure M is called an S5 Kripke structure if, for every i, IClM is an equivalence
relation. A Kripke structure M is called a finite Kripke structure if the set of possible worlds
is finite. According to (Halpern & Moses, 1992), we have the following lemma.



Lemma 7 If a formula is satisfiable in an S5 Kripke structure, then so is in a finite S5
Kripke structure.

3. Knowledge and Weakest Sufficient Conditions

In our framework, a knowledge structure is a simple model of reasoning about knowledge.
The advantage of this model is, as will be shown later, that agents’ knowledge can be
computed via the operation of variable forgetting.

3.1 Knowledge Structure

Definition 8 A knowledge structure F with n-agents is a (n + 2)-tuple (V,I',O1,---,0,)
where (1) V is a set of propositional variables; (2) I' is a set of boolean formulas over V;
and (3) for each agent i, O; C V.

The variables in O; are called agent i’s observable variables. An assignment that satisfies
T" is called a state of knowledge structure F. Given a state s of F, we define agent i’s local
state at state s as s N O;.

A pair (F,s) of knowledge structure F and a state s of F is called a scenario.

Given a knowledge structure (V,I',01,---,0,,) and a set V of subsets of V', we use &y
to denote a relation between two assignments s, s’ on V satisfying ' such that (s,s’) € &y
iff there exists a P € V with sN P = s’ N P. We use &, to denote the transitive closure of
Ey.

Let VA = {O; | i € A}. We then have that (s,s’) € €y, iff there exists an ¢ € A with
5N O0; = s' NO;. We now give the semantics of language L& based on scenarios.

Definition 9 The satisfaction relationship |= between a scenario (F, s) and a formula ¢ is
defined by induction on the structure of .

1. For each primitive proposition p, (F,s) = p iff s E p.

2. For any formulas a and 3, (F,s) = a A g iff (F,s) E « and (F,s) = §; and
(F,s) = —aiff not (F,s) [ a.

3. (F,s) E K;a iff for all s’ of F such that ' NO0; =sNO;, (F,s) E a.
4. (F,s) E Cacaiff (F,5') £ a for all s’ of F such that (s, s") € &), .

We say that a proposition formula is an i-local formula if it is over O;. Clearly, agent 4
knows an i-local formula ¢ in F iff T' = .

Let F = (V,T',04,- -+, Oy) be a knowledge structure. We say that a formula « is realized
in knowledge structure F, if for every state s of F, (F,s) = a. For convenience, by F = «,
we denote formula « is realized in knowledge structure F.

We concludes this subsection by the following lemma, which will be used in the remains
of this paper.

Lemma 10 Let V be a finite set of variables, F = (V,I',O1,---,0y) be a knowledge struc-
ture, and s be a state of F. Also suppose that A C {1,---,n}, and VA = {O; | i € A}.
Then
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. for any objective formula v (i.e., propositional formula over V, (F,s) = v iff s = 1;
. for any formula v € T, (F,s) = ~;
. for any i-local formula B, (F,s) E K0 < 5;

2

3

4. for any Va-definable formula 3, (F,s) E CaB < (;

5. for any formulas a1 and ag, (F,s) E Ki(a1 = az) = (K;a1 = K;a);
6

. for any formulas oy and ag, (F,s) = Ca(ar = ag) = (Caag = Caae);
7. for any formula o and i € A, (F,s) E Caa = K;Cac.
Proof:

1. The first item of this proposition can be proved by induction on the structure of .
When 1) is a primitive proposition, it is done by the first item of Definition 9. When
1 is of the form of negation or conjunction, the conclusion also follows immediately
by the first item of Definition 9.

2. The second item of this proposition can be proved by the first item and the fact s
satisfies I'.

3. Given an i-local formula f, it suffices to show (F,s) = K;5 iff (F,s) = (. By the
first item of this proposition, we have that (F,s) = g iff s = . Moreover, as [ is
i-local or over O;, for all assignments s’ with s'N O; = sN O;, we have that s’ = 3 iff
s = . Therefore, we get the the following three “iff”’s: (F,s) = K;f iff, for all state
s' of F with s N O; = s N O;, we have that (F,s’) = g iff, for all state s’ of F with
s NO; = sNO;, we have that s’ |= 3 iff s = . Thus, (F,s) = K;8 iff (F,s) = .

4. Suppose that formula 3 is Va-definable, we need to show (F,s) E Caf < (. First,
because (s,s) € &y, C &), for all formula a, we have that (F,s) = Caa implies
(F,s) = a. Therefore, it suffices to prove that (F, s) = 3 = Caf. Assume (F, s) = (.
To prove that (F,s) E Caf3, we need to show that for every assignment s’ such that
(s,8") €& L (F, s') = 3. From the definition of &y, » it suffices to show that for every
finite sequence of assignments s, - - -, s with so = s and (s;, sj41) € &y, (0<j < k),
we have that for every j < k, (F,s;) = . We show this by induction on j. When
J = 0, the result is clearly true. Assume (F,s;) = 8. Now we prove (F,s;i1) = 3.
Because (sj,5j+1) € Ey,, there is an i € A such that O; N's; = O; N sj41. On the
other hand, because 3 is Va-definable formula and ¢ € A, we have that 3 is equivalent
under I' to an i-local formula. Thus, s; = 8 iff sj41 = 8. Hence, (F,sj11) = 5 as
desired.

5. It suffice to show that if (F,s) = K;(a1 = a9) and (K;aq then K;ag). Assume that
(F,s) E Ki(aq = a2) and (K;a1, by item 3 of Definition 9 we get that, for all 5" of F
with s'NO; = sNO;, we have (F,s') = (a1 = a2) and (F,s') = a1. However, by item
2 of Proposition 9, we get (F,s') = ag from (F,s') = (a1 = ag) and (F,¢) E a;.
Therefore, we get that, for all s’ of F with s’ N O; = s N O;, we have (F,s') E as. It
follows immediately that K;aso.



6. This item can be shown in the same way as in the proof of item 4.

7. Tt suffices to prove that for those state s” such that there is a state s’ with s N O; =
s'NO; and s'Ey, 5", we can get s&;, 5", which follows immediately from the fact that
&y, s the transitive closure of &y, . 11

3.2 Relationship with S5 Kripke Structure

Given a knowledge structure 7 = (V,T', Oy, - - -, Oy,), let M (F) be Kripke structure (W, 7, Ky, - - -

where
1. W is the set of all states of F;
2. for each w € W, the assignment 7(w) is the same as w; and
3. for each agent 7 and assignments w,w’ € W, we have that wk;w’ iff wNO; = w' NO;.

The following proposition indicates that a knowledge structure can be viewed as a spe-
cific Kripke structure.

Proposition 11 Arbitrarily given a knowledge structure F, a state s of F, and a formula
a, we have that (F,s) = « iff the situation (M (F),s) = a.

Proof: Immediately by the definition of the satisfaction relationship between a scenario
and a formula and that between a situation and a formula. i

From Proposition 11, we conclude that if a formula in £ is satisfiable in some knowledge
structure, then the formula is also satisfiable in some Kripke structure. From the following
proposition and Lemma 7, we can get that if a formula in £ is satisfiable in some Kripke
structure, then the formula is also satisfiable in some knowledge structure.

Proposition 12 For a finite Kripke structure M with the primitive proposition set V and
possible world w in M, there is a knowledge structure Fp; and a state s, of F such that,
for every formula o € LS (V), we have that (Far, su) E a iff (M, w) = a.

Proof: Let M = (W,m, Ry,---, R,), where W is a finite set and Ry, - - -, R,, are equivalence
relation. Let Oq,---, O, be sets of new primitive propositions such that

1. Oy,---,0,, are finite and disjoint to each other; and

2. for each i (0 < ¢ < n), the number of all subsets of O; is not less than that of all
equivalence classes of R;.

By the latter condition, there is, for each i, a function g;: W +— 29 such that for all
wi, w2 € W, gi(w1) and g;(wz) are the same subset of O; iff w; and wy are in the same
equivalence class of R;.

Let V' = VUUpci<n Oi- We define a function g : W — 2V" as follows. For each possible
world w in W, -

g(w) ={veV |n(w)(v) =truetU (J gi(w).

0<i<n

The following two claims hold:



C1 For all wy,we € W, and i (0 < ¢ < n), we have that g(wi) N O; = g(wz) N O; iff
wlRiwg.

C2 For all w € W and v € V, we have that v € g(w) iff 7(w)(v) = true.

Let
'y ={a|aisover V', and g(w) | « for all w € W}.

We then get a knowledge structure
Fu = (V' Tpr,01,-+,0p).
We now show that following claim:
C3 For every s C V', s is a state of Fyy iff s = g(w) for some w € W.

The “if” part of claim C3 is easy to prove. If s = g(w’) for some w’ € W, then by the
definition of T'y;, we have that g(w’) = T'ps and hence g(w') is a state of Fp;. To show
the “only if” part, assume that for every w € W, s # g(w). Then, for every w € W, we
have formula o, over V' such that s = ay, but g(w) = —a,. Therefore, s = A,ew Q-
Moreover, we have that, for every w’ € W, g(w’) = Vew ~w, and hence \/ ey —0wy €
I'ps. Consequently, we have that s }= Iy and hence s is not a state of Fyy.

To complete the proof, it suffices to show, for every o € LS (V), that (Far, g(w)) E «
iff (M,w) = a. With conditions C1, C2 and C3, we can do so by induction on «. For the
base case, we assume « is a primitive proposition, say p. Then, by condition C2, we have
that (Far, g(w)) = p iff p € g(w) iff 7(w)(p) = true iff (M, w) = p.

Suppose that « is not a primitive proposition and the claim holds for every subformula
of a. There are there cases:

1. «ais of form = or B A~y. This case can be dealt with by the definitions of satisfaction
relations directly.

2. ais of form K;[. In this case, we have (Fir, g(w)) = K;B iff (Far, s) = 3 for all states
s of Fpr with g(w) N O; = sN O;. By condition C3, we have that (Fy,g(w)) = K,
iff (Far,g(w')) | B for all w' € W with g(w) N O; = g(w') N O;. By condition C1,
we then have (Far,g(w)) | KB iff (Fa,g(w')) = B for all w' € W with wR;w’.
Therefore, by the induction assumption, we have (Fys, g(w)) | K;8 iff (M,w'") E 8
for all w' € W with wR;w’. The right part is just (M,w) | K;8.

3. «a is of form Caf. Recall that, for arbitrary two states s and s of Fay, (s,s) € Ey,
iff there exists an 7 € A with s N O; = s’ N O;. By condition C1, for all wy,ws € W,

(9(w1), g(w2)) € Ev, iff (w1, ws) € |J Rs.
€A

As & is the transitive closure of &y, and CK[ is that of (J;ca R, by condition C3
we get that
(g(w1), g(ws)) € &), iff (w1, w2) € cA!

for all wy,wy € W.

10



We want to show that (Fas, g(w)) &= Cafiff (M, w) = CaB. Onone hand, (Fas, g(w)) E
CapB iff for all states s of Fy with (g(w), s) € &, (Fum,s) E B. By condition C3,
we have that (Fas,g(w)) | Cap iff for all w' € W with (g(w),g(w’)) € &,. On
the other hand, (M,w) = CafB iff for all w’ € W with (w,w’) € CAl. Therefore, we
conclude that (Fas, g(w)) E CaB iff (M, w) = Caf by the above discussion. I

3.3 Knowledge as Weakest Sufficient Conditions

The following theorem establishes a bridge between the notion of knowledge and the notion
of weakest sufficient and strongest necessary conditions.

Theorem 13 Let V be a finite set of variables, F = (V,I',01,---,0,) a knowledge struc-
ture, o a proposition over V, and for an agent i, WSC? and SNCY a weakest sufficient
condition and a strongest necessary condition of o over O; under I' respectively. Then, for
each state s of F,

(F,s) E Kiao & WSCY

and
(F,s) E ~Ki~a < SNCY.

Proof: We only show (F,s) E Kja < WSC{, while the other part can be proved in a
similar way. Because W SC{ is a sufficient condition of o under I', we have I' = WSC{* =
a. Let 6 be the conjunction of all formulas in I', then we have = § = (WSC? = «),
which leads to (F,s) = K;WSC? = Ko (by item 5 of Lemma 10.) Because WSC{*
is ¢-local, by Lemma 10 (item 3) again, we have (F,s) = WSC® = K;,WSC{. Hence,
(F,s) EWSCY = K;a.

To show the other direction (F,s) E K;a = WSC{, we consider the formula V(V —
0;)(0 = «), where 0 is the same as above. By Proposition 6, we have I' = V(V — 0;)(0 =
a) = WSC¢. On the other hand, we know that (F,s) = K;a = V(V — 0;)(0 = «) by the
definition of K;a. This proves (F,s) | K;a = WSC?. I

The following corollary presents a symbolic way to compute an agent’s knowledge.

Corollary 14 Let V' be a finite set of variables, F = (V,{0},01,---,0,) a knowledge
structure with n agents, and o a formula over V.. Then, for every state s of F,

(F,s) E Kia s VV —0;)(0 = «).
Proof: Immediately by Theorem 13 and Proposition 6. I

Example 15: Now we consider the communication scenario between Alice and Bob
addressed in section 1 once again. To show how our system can deal with the knowledge
reasoning issue in this scenario, we define a knowledge structure F as follows:

f - (V7 {9}7 OA7 OB)7
where

o Oy = {Alice_send_msg, Alice_recv_ack},
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e Op = {Bob_recv_msg, Bob_send_ack},
e V=04U0Opg, and
e ¢ is the conjunction of the following three formulas:

Bob_recv_msg = Alice_send_msg,
Bob_send_ack = Bob_recv_msg,
Alice_recv_ack = Bob_send_ack,

Now given a state of F
Alice_send_msg,
Alice_recv_ack,
Bob_recv_msg,
Bob_send_ack

we would like to know whether Alice knows that Bob received the message. Consider the
formula

Bob_recv_msg,
Bob_send_ack

} (0 = Bob_recv_msg).

From Definition 1, the above formula is simplified as Alice_recv_ack, which, obviously, is
satisfied in the scenario (F,s), i. e. ,

(F,s) | Alice_recv_ack.

Then from Corollary 10, we have

(F,s) = KaBob.recv_msg.

Similarly, we can show that
(F,s) = KqAlice_send_msg

and
(F,s) E KaAlice_recv_ack,

which indicates that Alice knows that she sent the message and she knows that she received

acknowledgement from Bob. I

Given a set of states S of a knowledge structure F and a formula «, by (F,S) = a, we
mean that for each s € S, (F,s) = a. The following proposition presents an alternative
way to compute an agent’s knowledge.

Proposition 16 Let V' be a finite set of variables, F = (V,I',01,---,0,,) a knowledge
structure with n agents, v a formula over V., and o a formula in LS. Suppose that SNC'Zp

is a strongest necessary condition of ¥ over O; under I', Sy, denotes the set of those states s
of F such that (F,s) = ¢, and S v denotes the set of those states s such that (F,s) =

SNC;p. Then, for each agent i, we have that

(f’Sw) ': Ko off (‘7:755]\70;/’) ): Q.
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Proof: Let S; be the set of all states s satisfying (F,s) E I(V — O;)(0 A ). Because
I = SNCY < 3(V —0;)(0 A), we have Sy = S
of F, s € Sy iff there is a state s’ of F such that s’ =4 and sNO; = s’ N O;. Therefore we
have (F,Sy) = Ko iff S1 C {s | (F,s) = a}. This leads to (F,Sy) E K;a iff (F,51) = «

it (F, Sqyev) F a1
The intuitive meaning behind Proposition 16 is that if all we know about the current

state is 1, then all we know about agent i’s knowledge (or agent i’s observations) is the
strongest necessary condition of ¢ over O;.

NCY- 