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Abstract

In this paper, we investigate knowledge reasoning within a simple framework called
knowledge structure. We use variable forgetting as a basic operation for one agent to reason
about its own or other agents’ knowledge. In our framework, two notions namely agents’
observable variables and the weakest sufficient condition play important roles in knowledge
reasoning. Given a background knowledge base Γ and a set of observable variables Oi for
each agent i, we show that the notion of agent i knowing a formula ϕ can be defined as a
weakest sufficient condition of ϕ over Oi under Γ. Moreover, we show how to capture the
notion of common knowledge by using a generalized notion of weakest sufficient condition.
Also, we show that public announcement operator can be conveniently dealt with via our
notion of knowledge structure. Further, we explore the computational complexity of the
problem whether an epistemic formula is realized in a knowledge structure. In the general
case, this problem is PSPACE-Complete; however, for some interesting subcases, it can
be reduced to co-NP. Finally, we discuss possible applications of our framework in some
interesting domains such as the automated analysis of the well-known muddy children
puzzle and the verification of the revised Needham-Schroeder protocol. We believe that
there are many scenarios where the natural presentation of the available information about
knowledge is under the form of a knowledge structure. What makes it valuable compared
to the corresponding multi-agent S5 Kripke structure is that it can be much more succinct.

1. Introduction

Epistemic logics, or logics of knowledge are usually recognized as having originated in the
work of Jaakko Hintikka - a philosopher who showed how certain modal logics could be

*. The revised and extended version of a paper which appeared in Proceedings of KR 2004 (Su, LV, &
Zhang, 2004)
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used to capture intuitions about the nature of knowledge in the early 1960s (Hintikka,
1962). In the mid of 1980s, Halpern and his colleagues discovered that S5 epistemic logics
could be given a natural interpretation in terms of the states of processes (commonly called
agents) in a distributed system. This model now is known as the interpreted system model
(Fagin, Halpern, Moses, & Vardi, 1995). It was found that this model plays an important
role in the theory of distributed systems and has been applied successfully in reasoning
about communication protocols (Halpern & Zuck, 1992). However, the work on epistemic
logic has mainly focused on theoretical issues such as variants of modal logic, completeness,
computational complexity, and derived notions like distributed knowledge and common
knowledge.

In this paper, we explore knowledge reasoning within a more concrete model of knowl-
edge. Our framework of reasoning about knowledge is simple and powerful enough to
analyze realistic protocols such as some widely used security protocols.

To illustrate the problem investigated in this paper, let us consider the communication
scenario that Alice sends Bob a message and Bob sends Alice an acknowledgement when
receiving the message. We assume Alice and Bob commonly have the following background
knowledge base ΓCS :

Bob recv msg ⇒ Alice send msg
Bob send ack ⇒ Bob recv msg
Alice recv ack ⇒ Bob send ack

where Bob recv msg and Bob send ack are observable variables to Bob, while Alice send msg
and Alice recv ack are observable to Alice.

The problem we are concerned with is how to verify that Alice or Bob knows a statement
ϕ. Intuitively, we should be able to prove that for a statement observable to Alice (Bob),
Alice (Bob) knows the statement if and only if the statement itself holds. As for the
knowledge of non-observable statements, the following should hold:

1. Alice knows Bob recv msg if Alice recv ack holds; on the other hand, if Alice knows
Bob recv msg, then Alice recv ack holds, which means that , in the context of this
example, the only way that Alice gets to know Bob recv msg is that Alice receives
the acknowledgement from Bob.

2. Bob knows Alice send msg if Bob recv msg holds; moreover, if Bob knows Alice send msg,
then Bob recv msg holds. The latter indicates that the only way that Bob gets to
know Alice send msg is that Bob receives the message from Alice.

3. Finally, Bob does not know Alice recv ack.

The idea behind the presented knowledge model for those scenarios demonstrated above
is that an agent’s knowledge is just the agent’s observations or logical consequences of the
agent’s observations under the background knowledge base.

One of the key notions introduced in this paper is agents’ observable variables. This
notion shares a similar spirit of those of local variables in (van der Hoek & Wooldridge,
2002) and local propositions in (Engelhardt, van der Meyden, & Moses, 1998; Engelhardt,
van der Meyden, & Su, 2003). Informally speaking, local propositions are those depending
only upon an agent’s local information; and an agent can always determine whether a
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given local proposition is true. Local variables are those primitive propositions that are
local. Nevertheless, the notion of local propositions in (Engelhardt et al., 1998, 2003) is a
semantics property of the truth assignment function in a Kripke structure, while the notion
of local variables in (van der Hoek & Wooldridge, 2002) is a property of syntactical variables.
In this paper, we prefer to use the term “observable variable” in order to avoid any confusion
with the term “local variable” used in programming, where “non-local variables” such as
“global variables” may often be observable.

Our knowledge model is also closely related to the notion of weakest sufficient condition,
which was first formalized by (Lin, 2001). Given a background knowledge base Γ and a set
of observable variables Oi for each agent i, we show that the notion of agent i knowing a
formula ϕ can be defined as the weakest sufficient condition of ϕ over Oi under Γ, which
can be computed via the operation of variable forgetting (Lin & Reiter, 1994). Moreover,
we generalize the notion of weakest sufficient condition and capture the notion of common
knowledge.

The notion of variable forgetting or eliminations of middle terms (Boole, 1854) has
various applications in knowledge representation and reasoning. For example, (Weber, 1986)
applied it to updating propositional knowledge bases. More recently, (Lang & Marquis,
2002) used it for merging a set of knowledge bases when simply taking their union may
result in inconsistency. The notion of variable forgetting is also closely related to that of
formula-variable independence, because the result of forgetting the set of variables V in
a formula ϕ can be defined as the strongest consequence of ϕ being independent from V
(Lang, Liberatore, & Marquis, 2003).

Now we briefly discuss the role of variable forgetting in our knowledge model. Let us
examine the scenario described above again. Consider the question: how can Alice figure
out Bob’s knowledge when she receives the acknowledgement from Bob? Note that Alice’s
knowledge is the conjunction of the background knowledge base ΓCS and her observations
Alice recv ack etc. Moreover, all Alice knows about Bob’s knowledge is the conjunction
of the background knowledge base ΓCS and all she knows about Bob’s observations. Thus,
Alice gets Bob’s knowledge by computing all she knows about Bob’s observations. In our
setting, Alice gets her knowledge on Bob’s observations simply by forgetting Bob’s non-
observable variables in her own knowledge.

There is a recent trend of extending epistemic logics with dynamic operators so that the
evolution of knowledge can be expressed (van Benthem, 2001; van Ditmarsch, van der Hoek,
& Kooi, 2005a). The most basic extension is public announcement logic (PAL), which is
obtained by adding an operator for truthful public announcements (Plaza, 1989; Baltag,
Moss, & Solecki, 1998; van Ditmarsch, van der Hoek, & Kooi, 2005b). We show that public
announcement operator can be conveniently dealt with via our notion of knowledge struc-
ture. This makes the notion of knowledge structure genuinely useful for those applications
like the automated analysis of the well-known muddy children puzzle.

From the discussion above, we can see that our framework of reasoning about knowledge
is appropriate in those situations where every agent has a specified set of observational
variables. To further show the significance of our framework, we investigate some of its
interesting applications to the automated analysis of the well-known muddy children puzzle
and the verification of the revised Needham-Schroeder protocol (Lowe, 1996).
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We believe that there are many scenarios where the natural presentation of the available
information about knowledge is under the form of a knowledge structure. What makes it
valuable compared to the corresponding multi-agent S5 Kripke structure is that it can be
much more succinct. Of course, the price to be paid is that the problem determining whether
a formula holds in a knowledge structure is PSPACE-complete in the general case, while
it is in PTIME when the corresponding S5 Kripke structure is taken as input. However,
the achieved trade-off between time and space can prove computationally valuable. In
particular, the validity problem from a knowledge structure can be addressed for some
instances for which generating the corresponding Kripke structure would be unfeasible.
The Muddy Children Puzzle shows this point clearly: generating the corresponding Kripke
structure is impossible from a practical point of view, even for the least number of children
considered in the experiments.

The organization of this paper is as follows. In the next section, we briefly introduce the
concept of forgetting and the notion of weakest sufficient and strongest necessary conditions.
In Section 3, we define our framework of reasoning about knowledge via variable forgetting.
In Section 4, we generalize the notion of weakest sufficient condition and strongest necessary
condition to capture common knowledge within our framework. In Section 5, we show
that public announcement operator can also be conveniently dealt with via our notion of
knowledge structure. Section 6 deals with the computational complexity issue about the
problem of whether an epistemic formula is realized in a knowledge structure. In the general
case, this problem is PSPACE-Complete; however, for some interesting subcases, it can be
reduced to co-NP. In Section 6, we consider a case study by applying our framework to deal
with the well known muddy children puzzle. We further apply our framework of knowledge
reasoning to security protocols verification in Section 7. Finally, we conclude the paper
with some remarks.

2. Preliminaries

2.1 Forgetting

Given a set of propositional variables P , we identify a truth assignment over P with a subset
of P . We say a formula ϕ is a formula over P if each propositional variable occurring in ϕ
is in P . For convenience, we define true as an abbreviation for a fixed valid propositional
formula, say p ∨ ¬p, where p is primitive proposition in P . We abbreviate ¬true by false.

We also use |= to denote the usual satisfaction relation between a truth assignment and
a formula. Moreover, for a set of formulas Γ and a formula ϕ, we use Γ |= ϕ to denote that
for every assignment σ, if σ |= α for all α ∈ Γ, then σ |= ϕ.

Given a propositional formula ϕ, and a propositional variable p, we denote by ϕ( p
true)

the result of replacing every p in ϕ by true. We define ϕ( p
false) similarly.

The notion of variable forgetting (Lin & Reiter, 1994), or eliminations of middle terms
(Boole, 1854), can be defined as follows:

Definition 1 Let ϕ be a formula over P , and V ⊆ P . The forgetting of V in ϕ , denoted
as ∃V ϕ, is a quantified formula over P , defined inductively as follows:

1. ∃∅ϕ = ϕ;
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2. ∃{p}ϕ = ϕ
( p
true

) ∨ ϕ
( p
false

)
;

3. ∃(V ∪ {p})ϕ = ∃V (∃{p}ϕ).

For convenience, we use ∀V ϕ to denote ¬∃V (¬ϕ).

Example 2: Let ϕ = (p∨ q)∧ (¬p∨ r). We have ∃{p}ϕ ≡ (q∨ r) and ∃{q}ϕ ≡ (¬p∨ r).

Many characterizations of variable forgetting, together with complexity results, are re-
ported in (Lang & Marquis, 1998). In particular, the notion of variable forgetting is closely
related to that of formula-variable independence (Lang et al., 2003).

Definition 3 Let ϕ be a propositional formula, and V a set of propositional variables. We
say ϕ is independent from V if and only if ϕ is locally equivalent to a formula in which none
of the variables in V appears.

The following proposition was given in (Lang et al., 2003).

Proposition 4 Let ϕ be a propositional formula, and V a set of propositional variables.
Then ∃V ϕ is the logically strongest consequence of ϕ that is independent from V (up to
logical equivalence).

Proof: First, it is easy to see that |= p ⇒ ϕ ⇒ ϕ
( p
true

)
and |= ¬p ⇒ ϕ ⇒ ϕ

( p
false

)
.

Therefore, |= ϕ ⇒ (ϕ
( p
true

) ∨ ϕ
( p
false

)
), i.e., |= ϕ ⇒ ∃{p}ϕ. Hence, |= ϕ ⇒ ∃V ϕ, and we

have that ∃V ϕ is a logical consequence of ϕ. Moreover, ∃V ϕ is independent from V by the
definition. To complete the proof, we need only to show that, for every formula ψ that is
independent from V , if ψ is a logical consequence of ϕ, then |= ∃V ϕ ⇒ ψ. However, from
|= ϕ ⇒ ψ, we have that |= ∃V ϕ ⇒ ∃V ψ. By the condition that ψ that is independent from
V , we have |= ψ ⇔ ψ′ for some formula ψ′ in which none of the variables in V appears.
Therefore, |= ∃V ψ ⇔ ∃V ψ′ and |= ∃V ψ′ ⇔ ψ′. As a result, |= ∃V ψ ⇒ ψ and hence
|= ∃V ϕ ⇒ ψ.

2.2 Weakest Sufficient Conditions

The formal definitions of weakest sufficient conditions and strongest necessary conditions
were first formalized via the notion of variable forgetting by (Lin, 2001), which in turn play
an essential role in our approach.

Definition 5 Let V be a set of propositional variables and V ′ ⊆ V . Given a set of formulas
Γ over V as a background knowledge base and a formula α over V .

• A formula ϕ over V ′ is called a sufficient condition of α over V ′ under Γ if Γ |= ϕ ⇒ α.
It is called a weakest sufficient condition of α over V ′ under Γ if it is a sufficient
condition of α over V ′ under Γ, and for any sufficient condition ϕ′ of α on V ′ under
Γ, we have Γ |= ϕ′ ⇒ ϕ.

• A formula ϕ over V ′ is called a necessary condition of α over V ′ under Γ if Γ |= α ⇒ ϕ.
It is called a strongest necessary condition of α over V ′ under Γ if it is a necessary
condition of α over V ′ under Γ, and for any necessary condition ϕ′ of α over V ′ under
Γ, we have Γ |= ϕ ⇒ ϕ′.
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The notions given above are closely related to theory of abduction. Given an observation,
there may be more than one abduction conclusion that we can draw. It should be useful to
find the weakest of such conclusions, i.e., the weakest sufficient condition of the observation
(Lin, 2001). The notions of strongest necessary and weakest sufficient conditions of a
proposition also have many potential applications in other areas such as reasoning about
actions. The following proposition, which is due to Lin (Lin, 2001), shows how to compute
the two conditions.

Proposition 6 Given a background knowledge base {θ} over V , a formula α over V , and
a subset V ′ of V . Let SNCα and WSCα be a strongest necessary condition and a weakest
sufficient condition of α over V ′ under {θ} respectively. Then

• WSCα is equivalent to ∀(V − V ′)(θ ⇒ α); and

• SNCα is equivalent to ∃(V − V ′)(θ ∧ α).

2.3 Epistemic Logic and Kripke Structure

We now recall some standard concepts and notations related to the modal logics for multi-
agents’ knowledge.

Given a set V of primitive propositions. The language of epistemic logic, denoted by
Ln(V ), is a propositional language with primitive propositions in V augmented with modal
operator Ki for each agent i. Kiφ can be read “agent i knows φ ”. Let LC

n (V ) be the
language of Ln(V ) augmented with and modal operator C∆ for each set of agents ∆. A
formula C∆α indicates that it is common knowledge among agents in ∆ that α holds. We
omit the argument V and write Ln and LC

n , if it is clear from context.
According to (Halpern & Moses, 1992), semantics of these formulas can be given by

means of Kripke structure (Kripke, 1963), which formalizes the intuition behind possible
worlds. A Kripke structure is a tuple (W,π,K1, · · · ,Kn), where W is a set of worlds,
π associates with each world a truth assignment to the primitive propositions, so that
π(w)(p) ∈ {true, false} for each world w and primitive proposition p, and K1, · · · ,Kn are
binary accessibility relations. By convention, WM , KM

i and πM are used to refer to the
set W of possible worlds, the Ki relation and the π function in the Kripke structure M ,
respectively. We omit the superscript M if it is clear from context. Finally, let C∆ be the
transitive closure of

⋃
i∈∆Ki.

A situation is a pair (M, w) consisting of a Kripke structure and a world w in M . By
using situations, we can inductively give semantics to formulas as follows: for primitive
propositions p,

(M, w) |= p iff πM (w)(p) = true.

Conjunctions and negations are dealt with in the standard way. Finally,
(M, w) |= Kiα iff for all w′ ∈ W such that wKM

i w′, we have that (M, w′) |= α; and
(M, w) |= C∆α iff for all w′ ∈ W such that wCM

∆ w′, we have that (M, w′) |= α.
We say a formula α is satisfiable in Kripke structure M if (M, w) |= α for some possible

world w in Kripke structure M .
A Kripke structure M is called an S5 Kripke structure if, for every i, KM

i is an equivalence
relation. A Kripke structure M is called a finite Kripke structure if the set of possible worlds
is finite. According to (Halpern & Moses, 1992), we have the following lemma.
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Lemma 7 If a formula is satisfiable in an S5 Kripke structure, then so is in a finite S5
Kripke structure.

3. Knowledge and Weakest Sufficient Conditions

In our framework, a knowledge structure is a simple model of reasoning about knowledge.
The advantage of this model is, as will be shown later, that agents’ knowledge can be
computed via the operation of variable forgetting.

3.1 Knowledge Structure

Definition 8 A knowledge structure F with n-agents is a (n + 2)-tuple (V, Γ, O1, · · · , On)
where (1) V is a set of propositional variables; (2) Γ is a set of boolean formulas over V ;
and (3) for each agent i, Oi ⊆ V .

The variables in Oi are called agent i’s observable variables. An assignment that satisfies
Γ is called a state of knowledge structure F . Given a state s of F , we define agent i’s local
state at state s as s ∩Oi.

A pair (F , s) of knowledge structure F and a state s of F is called a scenario.
Given a knowledge structure (V, Γ, O1, · · · , On) and a set V of subsets of V , we use EV

to denote a relation between two assignments s, s′ on V satisfying Γ such that (s, s′) ∈ EV
iff there exists a P ∈ V with s ∩ P = s′ ∩ P . We use E∗V to denote the transitive closure of
EV .

Let V∆ = {Oi | i ∈ ∆}. We then have that (s, s′) ∈ EV∆
iff there exists an i ∈ ∆ with

s ∩Oi = s′ ∩Oi. We now give the semantics of language LC
n based on scenarios.

Definition 9 The satisfaction relationship |= between a scenario (F , s) and a formula ϕ is
defined by induction on the structure of ϕ.

1. For each primitive proposition p, (F , s) |= p iff s |= p.

2. For any formulas α and β, (F , s) |= α ∧ β iff (F , s) |= α and (F , s) |= β; and
(F , s) |= ¬α iff not (F , s) |= α.

3. (F , s) |= Kiα iff for all s′ of F such that s′ ∩Oi = s ∩Oi, (F , s′) |= α.

4. (F , s) |= C∆α iff (F , s′) |= α for all s′ of F such that (s, s′) ∈ E∗V∆
.

We say that a proposition formula is an i-local formula if it is over Oi. Clearly, agent i
knows an i-local formula ϕ in F iff Γ |= ϕ.

Let F = (V, Γ, O1, · · · , On) be a knowledge structure. We say that a formula α is realized
in knowledge structure F , if for every state s of F , (F , s) |= α. For convenience, by F |= α,
we denote formula α is realized in knowledge structure F .

We concludes this subsection by the following lemma, which will be used in the remains
of this paper.

Lemma 10 Let V be a finite set of variables, F = (V, Γ, O1, · · · , On) be a knowledge struc-
ture, and s be a state of F . Also suppose that ∆ ⊆ {1, · · · , n}, and V∆ = {Oi | i ∈ ∆}.
Then
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1. for any objective formula ψ (i.e., propositional formula over V , (F , s) |= ψ iff s |= ψ;

2. for any formula γ ∈ Γ, (F , s) |= γ;

3. for any i-local formula β, (F , s) |= Kiβ ⇔ β;

4. for any V∆-definable formula β, (F , s) |= C∆β ⇔ β;

5. for any formulas α1 and α2, (F , s) |= Ki(α1 ⇒ α2) ⇒ (Kiα1 ⇒ Kiα2);

6. for any formulas α1 and α2, (F , s) |= C∆(α1 ⇒ α2) ⇒ (C∆α1 ⇒ C∆α2);

7. for any formula α and i ∈ ∆, (F , s) |= C∆α ⇒ KiC∆α.

Proof:

1. The first item of this proposition can be proved by induction on the structure of ψ.
When ψ is a primitive proposition, it is done by the first item of Definition 9. When
ψ is of the form of negation or conjunction, the conclusion also follows immediately
by the first item of Definition 9.

2. The second item of this proposition can be proved by the first item and the fact s
satisfies Γ.

3. Given an i-local formula β, it suffices to show (F , s) |= Kiβ iff (F , s) |= β. By the
first item of this proposition, we have that (F , s) |= β iff s |= β. Moreover, as β is
i-local or over Oi, for all assignments s′ with s′ ∩Oi = s ∩Oi, we have that s′ |= β iff
s |= β. Therefore, we get the the following three “iff”s: (F , s) |= Kiβ iff, for all state
s′ of F with s′ ∩ Oi = s ∩ Oi, we have that (F , s′) |= β iff, for all state s′ of F with
s′ ∩Oi = s ∩Oi, we have that s′ |= β iff s |= β. Thus, (F , s) |= Kiβ iff (F , s) |= β.

4. Suppose that formula β is V∆-definable, we need to show (F , s) |= C∆β ⇔ β. First,
because (s, s) ∈ EV∆

⊆ E∗V∆
, for all formula α, we have that (F , s) |= C∆α implies

(F , s) |= α. Therefore, it suffices to prove that (F , s) |= β ⇒ C∆β. Assume (F , s) |= β.
To prove that (F , s) |= C∆β, we need to show that for every assignment s′ such that
(s, s′) ∈ E∗V∆

, (F , s′) |= β. From the definition of E∗V∆
, it suffices to show that for every

finite sequence of assignments s0, · · · , sk with s0 = s and (sj , sj+1) ∈ EV∆
(0 ≤ j < k),

we have that for every j ≤ k, (F , sj) |= β. We show this by induction on j. When
j = 0, the result is clearly true. Assume (F , sj) |= β. Now we prove (F , sj+1) |= β.
Because (sj , sj+1) ∈ EV∆

, there is an i ∈ ∆ such that Oi ∩ sj = Oi ∩ sj+1. On the
other hand, because β is V∆-definable formula and i ∈ ∆, we have that β is equivalent
under Γ to an i-local formula. Thus, sj |= β iff sj+1 |= β. Hence, (F , sj+1) |= β as
desired.

5. It suffice to show that if (F , s) |= Ki(α1 ⇒ α2) and (Kiα1 then Kiα2). Assume that
(F , s) |= Ki(α1 ⇒ α2) and (Kiα1, by item 3 of Definition 9 we get that, for all s′ of F
with s′∩Oi = s∩Oi, we have (F , s′) |= (α1 ⇒ α2) and (F , s′) |= α1. However, by item
2 of Proposition 9, we get (F , s′) |= α2 from (F , s′) |= (α1 ⇒ α2) and (F , s′) |= α1.
Therefore, we get that, for all s′ of F with s′ ∩Oi = s ∩Oi, we have (F , s′) |= α2. It
follows immediately that Kiα2.

8



6. This item can be shown in the same way as in the proof of item 4.

7. It suffices to prove that for those state s′′ such that there is a state s′ with s ∩ Oi =
s′ ∩Oi and s′EV∆

s′′, we can get sE∗V∆
s′′, which follows immediately from the fact that

E∗V∆
is the transitive closure of EV∆

.

3.2 Relationship with S5 Kripke Structure

Given a knowledge structure F = (V, Γ, O1, · · · , On), let M(F) be Kripke structure (W,π,K1, · · · ,Kn),
where

1. W is the set of all states of F ;

2. for each w ∈ W , the assignment π(w) is the same as w; and

3. for each agent i and assignments w, w′ ∈ W , we have that wKiw
′ iff w∩Oi = w′ ∩Oi.

The following proposition indicates that a knowledge structure can be viewed as a spe-
cific Kripke structure.

Proposition 11 Arbitrarily given a knowledge structure F , a state s of F , and a formula
α, we have that (F , s) |= α iff the situation (M(F), s) |= α.

Proof: Immediately by the definition of the satisfaction relationship between a scenario
and a formula and that between a situation and a formula.

From Proposition 11, we conclude that if a formula in LC
n is satisfiable in some knowledge

structure, then the formula is also satisfiable in some Kripke structure. From the following
proposition and Lemma 7, we can get that if a formula in LC

n is satisfiable in some Kripke
structure, then the formula is also satisfiable in some knowledge structure.

Proposition 12 For a finite Kripke structure M with the primitive proposition set V and
possible world w in M , there is a knowledge structure FM and a state sw of F such that,
for every formula α ∈ LC

n (V ), we have that (FM , sw) |= α iff (M, w) |= α.

Proof: Let M = (W,π, R1, · · · , Rn), where W is a finite set and R1, · · · , Rn are equivalence
relation. Let O1, · · · , On be sets of new primitive propositions such that

1. O1, · · · , On are finite and disjoint to each other; and

2. for each i (0 < i ≤ n), the number of all subsets of Oi is not less than that of all
equivalence classes of Ri.

By the latter condition, there is, for each i, a function gi: W 7→ 2Oi such that for all
w1, w2 ∈ W , gi(w1) and gi(w2) are the same subset of Oi iff w1 and w2 are in the same
equivalence class of Ri.

Let V ′ = V ∪⋃
0<i≤n Oi. We define a function g : W 7→ 2V ′ as follows. For each possible

world w in W ,
g(w) = {v ∈ V | π(w)(v) = true} ∪

⋃

0<i≤n

gi(w).

The following two claims hold:
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C1 For all w1, w2 ∈ W , and i (0 < i ≤ n), we have that g(w1) ∩ Oi = g(w2) ∩ Oi iff
w1Riw2.

C2 For all w ∈ W and v ∈ V , we have that v ∈ g(w) iff π(w)(v) = true.

Let
ΓM = {α | α is over V ′, and g(w) |= α for all w ∈ W}.

We then get a knowledge structure

FM = (V ′,ΓM , O1, · · · , On).

We now show that following claim:

C3 For every s ⊆ V ′, s is a state of FM iff s = g(w) for some w ∈ W.

The “if” part of claim C3 is easy to prove. If s = g(w′) for some w′ ∈ W , then by the
definition of ΓM , we have that g(w′) |= ΓM and hence g(w′) is a state of FM . To show
the “only if” part, assume that for every w ∈ W , s 6= g(w). Then, for every w ∈ W , we
have formula αw over V ′ such that s |= αw but g(w) |= ¬αw. Therefore, s |= ∧

w∈W αw.
Moreover, we have that, for every w′ ∈ W , g(w′) |= ∨

w∈W ¬αw, and hence
∨

w∈W ¬αw ∈
ΓM . Consequently, we have that s 6|= ΓM and hence s is not a state of FM .

To complete the proof, it suffices to show, for every α ∈ LC
n (V ), that (FM , g(w)) |= α

iff (M, w) |= α. With conditions C1, C2 and C3, we can do so by induction on α. For the
base case, we assume α is a primitive proposition, say p. Then, by condition C2, we have
that (FM , g(w)) |= p iff p ∈ g(w) iff π(w)(p) = true iff (M, w) |= p.

Suppose that α is not a primitive proposition and the claim holds for every subformula
of α. There are there cases:

1. α is of form ¬β or β ∧ γ. This case can be dealt with by the definitions of satisfaction
relations directly.

2. α is of form Kiβ. In this case, we have (FM , g(w)) |= Kiβ iff (FM , s) |= β for all states
s of FM with g(w) ∩Oi = s ∩Oi. By condition C3, we have that (FM , g(w)) |= Kiβ
iff (FM , g(w′)) |= β for all w′ ∈ W with g(w) ∩ Oi = g(w′) ∩ Oi. By condition C1,
we then have (FM , g(w)) |= Kiβ iff (FM , g(w′)) |= β for all w′ ∈ W with wRiw

′.
Therefore, by the induction assumption, we have (FM , g(w)) |= Kiβ iff (M, w′) |= β
for all w′ ∈ W with wRiw

′. The right part is just (M, w) |= Kiβ.

3. α is of form C∆β. Recall that, for arbitrary two states s and s′ of FM , (s, s′) ∈ EV∆

iff there exists an i ∈ ∆ with s ∩Oi = s′ ∩Oi. By condition C1, for all w1, w2 ∈ W ,

(g(w1), g(w2)) ∈ EV∆
iff (w1, w2) ∈

⋃

i∈∆

Ri.

As E∗V∆
is the transitive closure of EV∆

, and CM
∆ is that of

⋃
i∈∆ Ri, by condition C3

we get that
(g(w1), g(w2)) ∈ E∗V∆

iff (w1, w2) ∈ CM
∆

for all w1, w2 ∈ W .

10



We want to show that (FM , g(w)) |= C∆β iff (M, w) |= C∆β. On one hand, (FM , g(w)) |=
C∆β iff for all states s of FM with (g(w), s) ∈ E∗V∆

, (FM , s) |= β. By condition C3,
we have that (FM , g(w)) |= C∆β iff for all w′ ∈ W with (g(w), g(w′)) ∈ E∗V∆

. On
the other hand, (M, w) |= C∆β iff for all w′ ∈ W with (w, w′) ∈ CM

∆ . Therefore, we
conclude that (FM , g(w)) |= C∆β iff (M, w) |= C∆β by the above discussion.

3.3 Knowledge as Weakest Sufficient Conditions

The following theorem establishes a bridge between the notion of knowledge and the notion
of weakest sufficient and strongest necessary conditions.

Theorem 13 Let V be a finite set of variables, F = (V, Γ, O1, · · · , On) a knowledge struc-
ture, α a proposition over V , and for an agent i, WSCα

i and SNCα
i a weakest sufficient

condition and a strongest necessary condition of α over Oi under Γ respectively. Then, for
each state s of F ,

(F , s) |= Kiα ⇔ WSCα
i

and
(F , s) |= ¬Ki¬α ⇔ SNCα

i .

Proof: We only show (F , s) |= Kiα ⇔ WSCα
i , while the other part can be proved in a

similar way. Because WSCα
i is a sufficient condition of α under Γ, we have Γ |= WSCα

i ⇒
α. Let θ be the conjunction of all formulas in Γ, then we have |= θ ⇒ (WSCα

i ⇒ α),
which leads to (F , s) |= KiWSCα

i ⇒ Kiα (by item 5 of Lemma 10.) Because WSCα
i

is i-local, by Lemma 10 (item 3) again, we have (F , s) |= WSCα
i ⇒ KiWSCα

i . Hence,
(F , s) |= WSCα

i ⇒ Kiα.
To show the other direction (F , s) |= Kiα ⇒ WSCα

i , we consider the formula ∀(V −
Oi)(θ ⇒ α), where θ is the same as above. By Proposition 6, we have Γ |= ∀(V −Oi)(θ ⇒
α) ⇒ WSCα

i . On the other hand, we know that (F , s) |= Kiα ⇒ ∀(V −Oi)(θ ⇒ α) by the
definition of Kiα. This proves (F , s) |= Kiα ⇒ WSCα

i .

The following corollary presents a symbolic way to compute an agent’s knowledge.

Corollary 14 Let V be a finite set of variables, F = (V, {θ}, O1, · · · , On) a knowledge
structure with n agents, and α a formula over V . Then, for every state s of F ,

(F , s) |= Kiα ⇔ ∀(V −Oi)(θ ⇒ α).

Proof: Immediately by Theorem 13 and Proposition 6.

Example 15 : Now we consider the communication scenario between Alice and Bob
addressed in section 1 once again. To show how our system can deal with the knowledge
reasoning issue in this scenario, we define a knowledge structure F as follows:

F = (V, {θ}, OA, OB),

where

• OA = {Alice send msg, Alice recv ack},

11



• OB = {Bob recv msg, Bob send ack},
• V = OA ∪OB, and

• θ is the conjunction of the following three formulas:

Bob recv msg ⇒ Alice send msg,
Bob send ack ⇒ Bob recv msg,
Alice recv ack ⇒ Bob send ack,

Now given a state of F

s =





Alice send msg,
Alice recv ack,
Bob recv msg,
Bob send ack





,

we would like to know whether Alice knows that Bob received the message. Consider the
formula

∀
{

Bob recv msg,
Bob send ack

}
(θ ⇒ Bob recv msg).

From Definition 1, the above formula is simplified as Alice recv ack, which, obviously, is
satisfied in the scenario (F , s), i. e. ,

(F , s) |= Alice recv ack.

Then from Corollary 10, we have

(F , s) |= KABob recv msg.

Similarly, we can show that

(F , s) |= KAAlice send msg

and
(F , s) |= KAAlice recv ack,

which indicates that Alice knows that she sent the message and she knows that she received
acknowledgement from Bob.

Given a set of states S of a knowledge structure F and a formula α, by (F , S) |= α, we
mean that for each s ∈ S, (F , s) |= α. The following proposition presents an alternative
way to compute an agent’s knowledge.

Proposition 16 Let V be a finite set of variables, F = (V, Γ, O1, · · · , On) a knowledge
structure with n agents, ψ a formula over V , and α a formula in LC

n . Suppose that SNCψ
i

is a strongest necessary condition of ψ over Oi under Γ, Sψ denotes the set of those states s
of F such that (F , s) |= ψ, and S

SNCψ
i

denotes the set of those states s such that (F , s) |=
SNCψ

i . Then, for each agent i, we have that

(F , Sψ) |= Kiα iff (F , S
SNCψ

i
) |= α.

12



Proof: Let S1 be the set of all states s satisfying (F , s) |= ∃(V − Oi)(θ ∧ ψ). Because
Γ |= SNCψ

i ⇔ ∃(V −Oi)(θ∧ψ), we have S1 = S
SNCψ

i
. Also it is easy to see that for state s

of F , s ∈ S1 iff there is a state s′ of F such that s′ |= ψ and s∩Oi = s′ ∩Oi. Therefore we
have (F , Sψ) |= Kiα iff S1 ⊆ {s | (F , s) |= α}. This leads to (F , Sψ) |= Kiα iff (F , S1) |= α
iff (F , S

SNCψ
i
) |= α.

The intuitive meaning behind Proposition 16 is that if all we know about the current
state is ψ, then all we know about agent i’s knowledge (or agent i’s observations) is the
strongest necessary condition of ψ over Oi.

Proposition 17 Let V be a finite set of variables, F = (V, {θ}, O1, · · · , On) a knowledge
structure with n agents, α and ψ two formulas over V , and Sψ denotes the set of states s
of F such that (F , s) |= ψ. Then, for each agent i1, · · · , ik, we have (F , Sψ) |= Ki1 · · ·Kikα
holds iff

|= θ ∧ ψk ⇒ α

where ψk is defined inductively as follows:

ψ1 = ∃(V −Oi1)(θ ∧ ψ);

and for each j < k,
ψj+1 = ∃(V −Oij+1)(θ ∧ ψj).

Proof: We show this proposition by induction on the nested depth of knowledge opera-
tions. The base case is implied directly by Proposition 16. Assume that the claim holds for
those cases with nested depth k, we want to show it also holds when the nested depth is
k + 1, i. e. ,

(F , Sψ) |= Ki1 · · ·Kik+1
α iff |= θ ∧ ψk+1 ⇒ α.

By Proposition 16, we have

(F , Sψ) |= Ki1 · · ·Kik+1
α iff (F , Sψ1) |= Ki2 · · ·Kik+1

α.

By the inductive assumption, we have that

(F , Sψ1) |= Ki2 · · ·Kik+1
α iff |= θ ∧ ψk+1 ⇒ α.

Combining two assertions above, we get

(F , Sψ) |= Ki1 · · ·Kik+1
α iff |= θ ∧ ψk+1 ⇒ α.

When we consider the case where the nested depth of knowledge operators is more than
2, we get the following corollary.

Corollary 18 Let V,F , α, ψ and Sψ be as in Proposition 17. Then, for each agent i and
each agent j, we have

13



1. (F , Sψ) |= Kiα holds iff

|= (θ ∧ ∃(V −Oi)(θ ∧ ψ)) ⇒ α;

2. (F , Sψ) |= KjKiα holds iff

|= (θ ∧ ∃(V −Oi)(θ ∧ ∃(V −Oj)(θ ∧ ψ))) ⇒ α.

Proof: Immediately from Proposition 17.

As will be illustrated in our analysis of security protocols (i.e. Section 6), the part 2 of
Corollary 18 is useful for verifying protocol specifications with nested knowledge operators.
Given a background knowledge base θ, when we face the task of testing whether KjKiα holds
in those states satisfying ψ, by part 2 of Corollary 18, we can first get φ1 = ∃(V −Oj)(θ∧ψ),
which is a strongest necessary condition of ψ over Oj . This is all we know about what agent
j observes from ψ. Then we compute φ2 = ∃(V −Oi)(θ∧φ1), i. e. , the strongest necessary
condition of φ1 over Oi which is, from the viewpoint of agent j, about what agent i observes.
In this way, the task of checking KjKiα is reduced to a task of checking θ ∧ φ2 ⇒ α.

Corollary 19 Let V be a finite set of propositional variables and F = (V, {θ}, O1, · · · , On)
a knowledge structure with n agents, α and ψ two formulas over V . Suppose that Sψ denotes
the set of all states s of F such that (F , s) |= ψ, and SNCψ

i and WSCα
i are a strongest

necessary condition of ψ over Oi and a weakest sufficient condition of α over Oi under {θ}
respectively. Then

1. (F , Sψ) |= Kiα iff |= (θ ∧ ψ) ⇒ WSCα
i ; and

2. (F , Sψ) |= Kiα iff |= (θ ∧ SNCψ
i ) ⇒ α.

Proof: The first part of the corollary follows from Theorem 13 and Lemma 10, while the
second part follows immediately by Proposition 16.

In our analysis of security protocols, we observe that very often, it seems more efficient
to check an agent’s knowledge via the second part of Corollary 19 rather than via the first
part. But this may not be always true for some other applications (e.g. see the example of
the muddy children puzzle in the next section).

4. Common Knowledge

Common knowledge is a special kind of knowledge for a group of agents, which plays an
important role in reasoning about knowledge (Fagin et al., 1995). A group of agents ∆
commonly know ϕ when all the agents in ∆ know ϕ, they all know that they know ϕ,
they all know that they all know that they know ϕ, and so on ad infinitum. We recall
that common knowledge can be characterized in term of Kripke structure. Given a Kripke
structure M = (W,π,K1, · · · ,Kn), a group ∆ of agents commonly know ϕ ( or in modal
logic language, C∆ϕ is true ) in a world w iff ϕ is true in all worlds w′ such that (w, w′) ∈ C∆,
where C∆ denotes the transitive closure of

⋃
i∈∆Ki.

In this section, we generalize the concept of weakest sufficient and strongest necessary
conditions so that they can be used to compute common knowledge.
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4.1 Generalized Weakest Sufficient and Strongest Necessary Conditions

The following gives a generalized notion of weakest sufficient conditions and strongest nec-
essary conditions.

Definition 20 Given a set of formulas Γ over V as a background knowledge base. Let α
be a formula over V , and V a set of subsets of V .

• A formula ϕ is called V-definable under Γ (or simply called V-definable if there is no
confusion in the context), if for each P ∈ V, there is a formula ψP over P such that
Γ |= ϕ ⇔ ψP .

• A formula ϕ is called a V-sufficient condition of α under Γ if it is V-definable and
Γ |= ϕ ⇒ α. It is called a weakest V-sufficient condition of α under Γ if it is a
V-sufficient condition of α under Γ, and for any other V-sufficient condition ϕ′ of α
under Γ, we have Γ |= ϕ′ ⇒ ϕ.

• Similarly, formula ϕ is called a V-necessary condition of α under Γ if it is V-definable
and Γ |= α ⇒ ϕ. It is called a strongest V-necessary condition of α under Γ if it is a
V-necessary condition of α under Γ, and for any other V-necessary condition ϕ′ of α
under Γ, we have Γ |= ϕ ⇒ ϕ′.

We notice that the notion of V-definability introduced here is a simple elaboration of
the notion of V-definability as given in (Lang & Marquis, 1998): φ is V-definable under
Γ iff φ is V -definable under Γ for each V ∈ V. Moreover, it is easy to see that that the
formulas implied by Γ or inconsistent with it are exactly the formulas ∅-definable under Γ,
and that definability exhibits a monotonicity property: if φ is V -definable under Γ, then φ
is V ′-definable under Γ for each superset V ′ of V (Lang & Marquis, 1998).

To give some intuition and motivation of the above definition, let us consider the fol-
lowing example.

Example 21: Imagine that there are two babies, say Marry and Peter, playing with a
dog. Suppose the propositions “The dog is moderately satisfied” (denoted by m, for short)
and “The dog is full”(f) are understandable to Marry, and the propositions “The dog is
hungry” (h) and “The dog is unhappy”(u) are understandable to Peter.

Let Γ = {h ⇒ u,¬(m∧ f), (m∨ f) ⇔ ¬h}, V1 = {m, f}, V2 = {h, u}, and V = {V1, V2}.
We will show that

1. h is V-definable under Γ;

2. h is a weakest V-sufficient condition of u under Γ; and

3. ¬h is a strongest V-necessary condition of ¬u under Γ.

The first claim is easy to check by the definition. The last two claims follow immediately if
we can prove that all the V-definable propositions under Γ are false, true, h and ¬h (up
to logical equivalence under Γ). There are 16 propositions over V1 up to logical equivalence
and 8 propositions over V2 up to logical equivalence under Γ. The 8 propositions are:
true, false, m,¬m, f,¬f,m ∨ f,¬m ∧ ¬f . Similarly, there are 8 propositions over V1 up to
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logical equivalence under Γ, i.e., true, false, h,¬h, u,¬u, h ∨ ¬u,¬h ∧ u. However, we can
find, between the two classes of propositions, only 4 pairs of equivalence relations under Γ,
i.e., Γ |= true ⇔ true, Γ |= false ⇔ false, Γ |= (m ∨ f) ⇔ ¬h, Γ |= (¬m ∧ ¬f) ⇔ h.
Therefore, all the V-definable propositions under Γ are false, true, h and ¬h (up to logical
equivalence under Γ).

Example 22: Now we recall the background knowledge ΓCS about the communication
scenario between Alice and Bob in the introduction section. ΓCS is the set of the following
three formulas:

Bob recv msg ⇒ Alice send msg
Bob send ack ⇒ Bob recv msg
Alice recv ack ⇒ Bob send ack

Let
OA = {Alice send msg, Alice recv ack},
OB = {Bob recv msg, Bob send ack},
VAB = {OA, OB}.

Clearly, if a formula ϕ is logically implied by ΓCS or inconsistent with ΓCS , then ϕ is
VAB-definable under ΓCS . Moreover, as in Example 21, we are able to check that there
are no VAB-definable formulas other than those implied by ΓCS or inconsistent with ΓCS .
Therefore, given a formula α, a weakest VAB-sufficient condition of α under ΓCS is implied
by ΓCS if T |= α, or inconsistent with ΓCS .

Given a set of formulas Γ over V as a background knowledge base and P ⊆ V , a formula
is a weakest {P}-sufficient condition of α under Γ iff it is equivalent to a weakest sufficient
condition of α over P .

The following lemma says that the notions of weakest V-sufficient conditions and strongest
V-necessary ones are dual to each other.

Lemma 23 Given a set of formulas Γ over V as a background knowledge base, and V a
set of subsets of V . Let ϕ and α be formulae over V . Then, we have that ϕ is a weakest
V-sufficient condition of α under Γ iff ¬ϕ is a strongest V-necessary condition of ¬α under
Γ.

Proof: Let Γ, V and V be as given in the lemma. We will show that if ϕ is a weakest
V-sufficient condition of α under Γ then ¬ϕ is a strongest V-necessary condition of ¬α under
Γ. Let ϕ be a weakest V-sufficient condition of α under Γ. Then, by the definition, ϕ is
V-definable, and so is ¬ϕ. For an arbitrarily given V-necessary condition ϕ′ of ¬α, we have
Γ |= ¬α ⇒ ϕ′, i.e., Γ |= ¬ϕ′ ⇒ α. Thus, ¬ϕ′ is a V-sufficient condition of α. Because ϕ is
a weakest V-sufficient condition of α, we get that Γ |= ¬ϕ′ ⇒ ϕ, i.e., Γ |= ¬ϕ ⇒ ϕ′. Thus,
¬ϕ is a strongest V-necessary condition of ¬α under Γ.

Let Γ be a set of formulas, V a set of propositional variables, and V a set of subsets
of V . The following proposition gives the existence of weakest V-sufficient and strongest
V-necessary conditions. For a given formula α over V , a weakest V-sufficient condition φ1 of
α and a strongest V-necessary condition φ2 of α can be obtained in the proposition. Indeed,
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the set of assignments satisfying φ1 and that of assignments satisfying φ2 can be given in
terms of relation EV .

Proposition 24 Given a finite set V of propositional variables, a set Γ of formulas over V
as a background knowledge base, a formula α over V , and a set V of subsets of V . Denote by
Sα

WSC the set of assignments s over V such that s |= Γ, and for all assignments s′ satisfying
Γ with (s, s′) ∈ E∗V , s′ |= α. Also denote by Sα

SNC the set of assignments s over V such that
s |= Γ, and there exists an s′ such that s′ |= Γ, s′ |= α and (s, s′) ∈ E∗V .

• if a formula satisfies exactly those assignments in Sα
WSC , then the formula is a weakest

V-sufficient condition of α under Γ; and

• if a formula satisfies exactly those assignments in Sα
SNC , then the formula is a strongest

V-necessary condition of α under Γ.

Proof: We first prove the former point, and then show the other by Lemma 23. Let φ1

be a boolean formula over V such that, for all assignments s, s |= φ1 iff s ∈ Sα
WSC . Then,

for every assignment s ∈ Sα
WSC , we have s |= α because (s, s) ∈ E∗V . Thus, φ1 |= α.

Before we proceed the proof, we remark that for arbitrarily given formula ϕ over V and
assignment s over V , s |= ∀(V −P )ϕ iff for all assignments s′ over V such that s∩P = s′∩P ,
we have s′ |= ϕ.

To prove that φ1 is V-definable, we show that, for each P ∈ V, φ1 |= ∀(V −P )φ1, which
implies that φ1 is equivalent to the formula ∀(V −P )φ1 over P . To prove φ1 |= ∀(V −P )φ1,
in a semantical way, it suffices to show that, for every assignment s ∈ Sα

WSC and s′ |= Γ, if
s∩P = s′ ∩P , then s′ ∈ Sα

WSC . Let s and s′ be given as above and suppose s∩P = s′ ∩P .
Then, (s, s′) ∈ EV . Given an assignment t such that t |= Γ, if (s′, t) ∈ E∗V , then (s, t) ∈ E∗V
by (s, s′) ∈ EV . Thus, s′ ∈ Sα

WSC . This proves that φ1 is V-definable.
Now we show that φ1 is a weakest V-sufficient condition under Γ. Suppose φ is a V-

definable and sufficient condition of α under Γ, we want to prove that Γ |= φ ⇒ φ1. The
semantical argument of such a proof is as follows. Let s be an assignment with s |= Γ
and φ, we must show that s ∈ Sα

WSC , i.e., for every assignment s′ with s′ |= Γ such that
(s, s′) ∈ E∗V , s′ |= α. Because Γ |= φ ⇒ α, it suffices to show that s′ |= φ. By the condition
(s, s′) ∈ E∗V , there is a finite sequence of assignments s0, · · · , sk such that sj |= Γ with s0 = s
and sk = s′, and for every j < k, (sj , sj+1) ∈ EV . By the V-definability of φ, we know that
for every j < k, sj |= φ implies sj+1 |= φ. Thus, we have s′ |= φ by induction.

Now we prove the second point of this proposition by Lemma 23. Let φ2 be a boolean
formula over V such that, for all assignments s, s |= φ2 iff s ∈ Sα

SNC . Let θ be the
conjunction of formulas in Γ. Then, s |= ¬φ2 ∧ θ iff for all assignments s′ with s′ |= Γ such
that sE∗Vs′, we have s′ |= ¬ϕ. Thus, by the first point of this proposition, we have that
¬φ2 ∧ θ is a weakest V-sufficient condition of ¬α. Thus, φ2 ∨¬θ and hence φ2 is a strongest
V-necessary condition of α according to Lemma 23.

The above proposition can be thought of as a semantical characterization of weakest
V-sufficient and strongest V-necessary conditions.
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4.2 Characterizations with Least and Greatest Fixed Points

We investigate the computation of the weakest V-sufficient and strongest V-necessary con-
ditions by using the notions of a least and a greatest fixed points of an operator, which is
introduced as follows.

Let ξ be an operator from the set of boolean formulas over x to the set of boolean
formulas over x. We say a ψ is a fixed point of ξ, if |= ξ(ψ) ⇔ ψ. We say a ψ0 is a greatest
fixed point of ξ, if ψ0 is a fixed point of ξ and for every fixed point ψ of ξ, we have |= ψ ⇒ ψ0.
Clearly, any two greatest fixed points are logically equivalent to each other. Thus, we denote
a greatest fixed point of ξ by gfpZξ(Z). Similarly, We say a ψ0 is a least fixed point of ξ, if
ψ0 is a fixed point of ξ and for every fixed point ψ of ξ, we have |= ψ0 ⇒ ψ. We denote a
least fixed point of ξ by lfpZξ(Z). We say ξ is monotonic, if for every two formulas ψ1 and
ψ2 such that |= ψ1 ⇒ ψ2, we have |= ξ(ψ1) ⇒ ξ(ψ2). For a finite set x of boolean formulas
if ξ is monotonic, then there exist a least fixed point and a greatest fixed point (Tarski,
1955).

Theorem 25 Let V be a finite set of variables, F = (V, {θ}, O1, · · · , On) a knowledge
structure, α a formula over V , ∆ ⊆ {1, · · · , n}, V∆ = {Oi | i ∈ ∆}. Assume that Λ1 and
Λ2 be two operators such that

Λ1(Z) =
∧

i∈∆

∀(x−Oi)(θ ⇒ Z)

and
Λ2(Z) =

∨

i∈∆

∃(x−Oi)(θ ∧ Z).

Then,

• a weakest V∆-sufficient condition of α under {θ} is equivalent to gfp Z(α ∧ Λ1(Z));
and

• a strongest V∆-necessary condition of α under {θ} is equivalent to lfp Z(α ∨Λ2(Z)).

Proof: Let WSCα
∆ be a weakest V∆-sufficient condition of α under {θ}. Note that the

operator (α ∧ Λ1(Z)) is monotonic and thus there exists a greatest fixed point of it. Let
ψ1= gfp Z(α ∧ Λ1(Z)). To prove the first point of this theorem, we must show that
θ |= WSCα

∆ ⇔ ψ1.
We first show that θ |= WSCα

∆ ⇒ ψ1. For this purpose, we only need to prove

1. θ |= WSCα
∆ ⇒ (α ∧ Λ1(true)); and

2. for all formulas ϕ on V , if θ |= WSCα
∆ ⇒ ϕ, then θ |= WSCα

∆ ⇒ (α ∧ Λ1(ϕ)).

The first point is trivially true because Λ1(true) is equivalent to true and WSCα
∆ is a

sufficient condition of α under {θ}. To show the second point, suppose θ |= WSCα
∆ ⇒ ϕ.

For i ∈ ∆, let αi be the formula over Oi such that θ |= WSCα
∆ ⇔ αi. Then, θ |= αi ⇒ ϕ.

It follows that |= αi ⇒ (θ ⇒ ϕ) and hence |= αi ⇒ ∀(V − Oi)(θ ⇒ ϕ) because αi does
not depend on the variables in (V − Oi). So, we have that, for all i ∈ ∆, θ |= WSCα

∆ ⇒
∀(V −Oi)(θ ⇒ ϕ). The conclusion of the second point follows immediately.

We now show that θ |= ψ1 ⇒ WSCα
∆, or θ |= (θ ⇒ ψ1) ⇒ WSCα

∆. It suffices to show
that θ ⇒ ψ1 is V∆-sufficient condition of α under {θ}, that is,
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1. θ ⇒ ψ1 is V∆ definable; and

2. θ |= (θ ⇒ ψ1) ⇒ α.

By the fact that ψ1 is a fixed point of the operator (α ∧ Λ1(Z)), we have that

|= ψ1 ⇒ (α ∧
∧

i∈∆

∀(x−Oi)(θ ⇒ ψ1)).

It follows that |= ψ1 ⇒ α, and hence θ |= (θ ⇒ ψ1) ⇒ α. To show the other point, for
i ∈ ∆, we need to prove that θ ⇒ ψ1 is equivalent to a formula over Oi. By the above, we
have that ψ1 ⇒ ∀(V − Oi)(θ ⇒ ψ1). It follows that θ |= (θ ⇒ ψ1) ⇒ ∀(V − Oi)(θ ⇒ ψ1),
and hence

θ |= (θ ⇒ ψ1) ⇔ ∀(V −Oi)(θ ⇒ ψ1)

because |= ∀(V − Oi)(θ ⇒ ψ1) ⇒ (θ ⇒ ψ1) holds trivially. Thus (θ ⇒ ψ1) is equivalent
under θ to ∀(V − Oi)(θ ⇒ ψ1), which is over Oi. This completes the first point of the
conclusion of the theorem.

We now show the second point of this theorem by using the first point and Lemma 23.
Let SNCα

∆ be a strongest V∆-necessary condition of α under {θ}. By Lemma 23,
¬SNCα

∆ is a weakest V∆-sufficient condition of ¬α under {θ}. Thus, by the first point
of this theorem, ¬SNCα

∆ is equivalent to gfp Z(¬α ∧ Λ1(Z)) under θ. Hence, SNCα
∆ is

equivalent to ¬gfp Z(¬α ∧ Λ1(Z)) under θ. However, ¬gfp Z(¬α ∧ Λ1(Z)) is logically
equivalent to lfp Z(¬(¬α∧Λ1(¬Z))), which is in turn equivalent to lfp Z(α∨Λ2(Z)). This
completes the second point of the theorem.

4.3 Common Knowledge as Weakest V-sufficient Conditions

Given a set ∆ of agents and a family V∆ of observable variable sets of these agents, we
investigate the relationship between common knowledge and the weakest V∆-sufficient and
strongest V∆-necessary conditions.

Theorem 26 Let V be a finite set of variables, F = (V, Γ, O1, · · · , On) a knowledge struc-
ture, ∆ ⊆ {1, · · · , n}, V∆ = {Oi | i ∈ ∆}, α a formula over V , and WSCα

∆ and SNCα
∆

a weakest V∆-sufficient condition and a strongest V∆-necessary condition of α under Γ
respectively. Then, for every state s of F ,

(F , s) |= C∆α ⇔ WSCα
∆

and
(F , s) |= ¬C∆¬α ⇔ SNCα

∆.

Proof: We only show the first part of this theorem, i.e., (F , s) |= C∆α ⇔ WSCα
∆, by

which and Lemma 23 we can get the other part immediately. Because WSCα
∆ is a sufficient

condition of α, we have that Γ |= WSCα
∆ ⇒ α. Let θ be the conjunction of all formulas

in Γ, we have that |= θ ⇒ (WSCα
∆ ⇒ α), which leads to (F , s) |= C∆WSCα

∆ ⇒ C∆α (by
point 6 of Lemma 10). Because WSCα

∆ is V∆-definable, we have, by point 4 of Lemma 10,
(F , s) |= WSCα

∆ ⇒ C∆WSCα
∆. Hence, (F , s) |= WSCα

∆ ⇒ C∆α.
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To show the other direction (F , s) |= C∆α ⇒ WSCα
∆, we consider the formula ψ1 in the

proof of Theorem 25, i.e., the greatest fixed point of the operator

ξ(Z) = α ∧
∧

i∈∆

∀(V −Oi)(θ ⇒ Z).

Because we already have (F , s) |= ψ1 ⇒ WSCα
∆ by Theorem 25, it suffices to show (F , s) |=

C∆α ⇒ ψ1. Because the greatest fixed point ψ1 of the operator ξ can be obtained by a
finite iteration of the operator with the starting point ξ(true), we only need to prove that

1. F |= C∆α ⇒ ξ(true); and

2. for an arbitrary boolean formula ϕ over V , if F |= C∆α ⇒ ϕ, then F |= C∆α ⇒ ξ(ϕ).

The first point is trivially true because ξ(true) is equivalent to α. To prove the second,
suppose F |= C∆α ⇒ ϕ. Then, for each i ∈ ∆, F |= Ki(C∆α ⇒ ϕ). Thus, we have that
F |= C∆α ⇒ Kiϕ by points 5 and 7 of Lemma 10. Hence, F |= C∆α ⇒ ∀(V −Oi)(θ ⇒ ϕ)
(by Corollary 14). It follows that F |= C∆α ⇒ ∧

i∈∆ ∀(V − Oi)(θ ⇒ ϕ) and hence F |=
C∆α ⇒ ξ(ϕ). We thus get F |= C∆α ⇒ ψ1. This completes the proof.

Proposition 27 Given V , F , ∆, V∆, α as defined in Theorem 26. Let ψ be a formula
over V . Assume that a strongest V∆-necessary condition of ψ is SNCψ

∆. Denote by Sψ the
set of those states s of F such that (F , s) |= ψ, and by S

SNCψ
∆

the set of those states s such

that (F , s) |= SNCψ
∆. Then, for each agent i, we have

(F , Sψ) |= C∆α iff (F , S
SNCψ

∆
) |= α.

Proof: Let S1 be the set of all states s such that there is a state s′ with s′ |= ψ and
(s′, s) ∈ V∆. We have that (F , Sψ) |= C∆α iff for every s ∈ S1, (F , s) |= α. This leads
to (F , Sψ) |= C∆α iff (F , S1) |= α. On the other hand, by Proposition 24, we have that
S1 = S

SNCψ
∆
. Then the conclusion of the proposition follows immediately.

Note that, in Proposition 27, if α is a formula, we have that (F , Sψ) |= C∆α iff Γ |=
SNCψ

∆ ⇒ α. Moreover, by Theorem 26, we have (F , Sψ) |= C∆α iff Γ |= ψ ⇒ WSCα
∆,

where WSCα
∆ is a weakest V∆-sufficient of α.

5. Adding Public Announcement Operator

There is a recent trend of extending epistemic logic with dynamic operators so that the evo-
lution of knowledge can be expressed. The most basic such extension is public announcement
logic (PAL), which is obtained by adding an operator for truthful public announcements.
In this section, we show that public announcement operator can be conveniently dealt with
via our notion of knowledge structure.

5.1 Public Announcement Logic

Given a set of agents A = {1, . . . , n} and a set V of primitive propositions. The language
of public announcement logic (PALn )is inductively defined as

ϕ ::= p|¬ϕ|ϕ ∧ ψ|Kiϕ|CΓϕ|[ϕ]ψ
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where p ∈ V , i ∈ A and Γ ⊆ A.
In other words, PALn is obtained from epistemic logic LC

n (V ) by adding public an-
nouncement operator [ϕ] for each formula ϕ. Formula [ϕ]ψ means that “after public an-
nouncement of ϕ, formula ψ is true.”

We now give the semantics of public announcement logic under Kripke Model. Given a
Kripke structure M = (W,π,K1, . . . ,Kn), the semantics of the new operators is defined as
follows.

M, w |= [ϕ]ψ iff M, w |= ϕ implies M |ϕ, w |= ψ, where M |ϕ is a Kripke structure such
that M |ϕ = (W ′, π′,K′1, . . . ,K′n) and

• W ′ = {w ∈ W |M, w |= ϕ},
• π′(w′)(p) = π(w′)(p) for each w′ ∈ W ′ and each p ∈ V , and

• K′i = Ki ∩ (W ′ ×W ′) for each i ∈ A.

5.2 Semantics under Knowledge Structure

The semantics of public announcement logic can be conveniently characterized by our notion
of knowledge structure. We define the satisfaction relationship |= between a scenario (F , s)
and a formula in PALn. We need only consider those formulas of the form [ϕ]ψ; other cases
are the same as in Definition 9.

Let V be a finite set of primitive propositions and F = (Γ, V,O1, · · · , On). The semantics
definition for the new operators is as follows. First, let F|ϕ be the knowledge structure
({θ}, V,O1, · · · , On), where θ is a boolean formula on V such that (F , s) |= ϕ iff s satisfies
θ. Then, we set that (F , s) |= [ϕ]ψ iff (F , s) |= ϕ implies that (F|ϕ, s) |= ψ.

We remark that if formula ϕ is equivalent to boolean one ϕ′, i.e., F |= ϕ ⇔ ϕ′, then we
can simply define F|ϕ as (Γ ∪ {ϕ′}, V,O1, · · · , On).

The following proposition indicates that the semantics of public announcement logic
under knowledge structure coincides with that under Kripke model.

Proposition 28 Let V be a finite set of primitive propositions and F = (Γ, V,O1, · · · , On).
For every state s of F and every formula α ∈ PALn, we have that (F , s) |= α iff the
situation (M(F), s) |= α.

Proof: Let us proceed by induction on the structure of formula α. We consider only the
case that α is of the form [ϕ]ψ; other cases are straightforward by the definitions.

By the definition, we have that (F , s) |= [ϕ]ψ iff (F , s) |= ϕ implies that (F|ϕ, s) |= ψ.
Thus, by the inductive assumption, we have that (F , s) |= [ϕ]ψ iff (M(F), s) |= ϕ implies
that (M(F|ϕ), s) |= ψ. We want to show that (F , s) |= [ϕ]ψ iff (M(F), s) |= [ϕ]ψ. It suffices
to show that M(F|ϕ) equals M(F)|ϕ because (M(F), s) |= [ϕ]ψ iff (M(F), s) |= ϕ implies
that (M(F)|ϕ, s) |= ψ.

First, the set of possible states of M(F|ϕ) equals to the set of those states s′ of F with
(F , s′) |= ϕ. By the inductive assumption, (F , s′) |= ϕ iff (M(F), s′) |= ϕ. Thus, the set
of possible states of M(F|ϕ) equals to the set of those states s′ of F with (M(F), s′) |= ϕ,
hence equals to the set of possible of M(F|)ϕ. Second, we have that for each s′ of F with
(M(F), s′) |= ϕ, πM(F|ϕ)(s′) = s′ and πM(F)|ϕ(s′) = πM(F)(s′) = s′. Hence πM(F|ϕ) =
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πM(F)|ϕ . Finally, for all states s1 and s2 of F with (M(F), s1) |= ϕ and (M(F), s2) |= ϕ,
we have that (s1, s2) ∈ KM(F|ϕ)

i iff (s1, s2) ∈ KM(F)
i iff s1 ∩ Oi = s2 ∩ Oi. Moreover,

(s1, s2) ∈ KM(F)|ϕ
i iff s1 ∩Oi = s2 ∩Oi. Therefore, KM(F|ϕ)

i = KM(F)|ϕ
i . This completes the

proof for M(F|ϕ) = M(F)|ϕ.

Notice that, for every formula in PALn, we can get an equivalent boolean formula. More
specifically, we have the following:

Remark 29 Let V be a finite set of primitive propositions and F = ({θ}, V,O1, · · · , On).
Given a formula α ∈ PALn, we define a boolean formula bαeθ by induction on the structure
of α:

• If α is a boolean formula, then bαeθ = α.

• bα ∧ βeθ = bαeθ ∧ bβeθ.
• bKiαeθ = ∀(V −Oi)(θ ⇒ bαeθ).
• Let ∆ ⊆ {1, · · · , n}, V∆ = {Oi | i ∈ ∆}. Then

bC∆αeθ = WSC
bαeθ
∆

where WSC
bαeθ
∆ is a weakest V∆-sufficient condition bαeθ under θ.

• b[ϕ]αeθ = bαeθ∧bϕeθ

Then, for every α ∈ PALn, we have that F |= α ⇔ bαeθ.

6. Complexity Results

We are interested in the following problem: given a knowledge structure F and a formula α
in the language of epistemic logic, whether formula α is realized in structure F . This kind of
problem is called the realization problem. In this section, we examine the inherent difficulty
of the realization problem in terms of computational complexity. In the general case, this
problem is PSPACE-Complete; however, for some interesting subset of the language, it can
be reduced to co-NP.

The realization problem here is closely related to the model checking problem: given an
epistemic formula α and a Kripke structure M , to determine whether M |= α. By checking
the definition of Kripke structure semantics for epistemic logic, we can see that the model
checking problem can be solved in polynomial time (with respect to the input size (| M |
+ | α |). We can determine whether a formula α is realized in a knowledge structure F by
first translating knowledge structure F into a Kripke structure M then checking M |= α.
However, the resulting algorithm will be exponential in space. This is because the size of the
corresponding Kripke structure M |= α is exponential with respect to knowledge structure
F .

A number of algorithms for model checking epistemic specifications and the compu-
tational complexity of the related realization problems were studied in (Meyden, 1998).
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However, like Kripke structure, the semantics framework they adopt is to list all global
states explicitly. As a result, the size of the input of the concerned decision problem can be
very large.

Proposition 30 The realization problem is PSPACE-complete.

Proof: The proposition is of two parts: the PSPACE-easiness and the PSPACE-hardness.
The PSPACE-easiness part means that there is an algorithm that determines in polynomial
space whether an epistemic formula α ∈ LC

n is realized in a knowledge structure F . The
PSPACE-completeness indicates that there is a PSPACE-hard problem, say the satisfiability
problem for quantified propositional formulas (QBF) (Stockmeyer & Meyer, 1973), can be
effectively reduced to the realization problem we consider.

It is not difficult to see the PSPACE-easiness. Given a knowledge structure and epistemic
formula α, by Corollary 14, we can replace knowledge modalities by boolean quantifiers in
formula α. And by Theorems 26 and 25, we can replace common knowledge modalities by
fixed point operators. So, the problem of whether α is realized in F is reduced to determine
whether a boolean function expressed by quantifiers and fixed point operators is valid. The
latter can be done in polynomial space.

As for the PSPACE-hardness, it suffices to show that for every QBF formula

∀p1∃q2∀p2∃q3 · · · ∀pm−1∃qmA(p1, q2, p2, q3 · · · , pm−1, qm),

we can construct a knowledge structure F such that

` ∀p1∃q2∀p2∃q3 · · · ∀pm−1∃qmA(p1, q2, p2 · · · , pm−1, qm)

iff
F |= d1 ∧ ¬d2 ⇒ (K1¬K2¬)m−1(dm ∧A(p1, q2, p2, q3 · · · , pm−1, qm)).

Let F = (V, {θ}, O1, O2), where

1. V = {c} ∪ {d1, · · · , dm} ∪ {d′1, · · · , d′m} ∪ {p1, · · · , pm} ∪ {q1, · · · , qm}

2. θ is the conjunction of the following formulas

(a) ∧

j<m

(dj+1 ⇒ dj) ∧ (d′j+1 ⇒ d′j)

(b)
∧

j<m


dj ∧ ¬dj+1 ⇒

∧

i6=j

(pi ⇔ qi)




(c)
c ⇒

∧

j<m+1

(dj ⇔ d′j)
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(d)

¬c ⇒

(

(dm−1 ∧ ¬dm) ⇔ d′m
) ∧

∧

j<m−1

(
(dj ∧ ¬dj+1) ⇔ (d′j+1 ∧ ¬d′j+2)

)



3. O1 = {c} ∪ {d1, · · · , dm} ∪ {q1, · · · , qm}
4. O2 = {d′1, · · · , d′m} ∪ {p1, · · · , pm}
In our picture, we have only two agents: agents 1 and 2. For every j, dj expresses

that the depth of the state is at least j. Propositions d1, · · · , dm are observable to agent
1, but not to agent 2. Nevertheless, agent 2 can observe d′1, · · · , d′m, which are closely
related to d1, · · · , dm. The formula in item 2c indicates that d′1, · · · , d′m are the same as
d1, · · · , dm if c holds, while the formula in item 2d says that, if c does not hold, the depth
expressed by d1, · · · , dm is less than that by d′1, · · · , d′m and the difference is 1. The formula
in item 2b implies that, under the condition that the depth of the state is exactly j, only
pj is unobservable to agent 1 and only qj is unobservable to agent 2.

In order to show that

` ∀p1∃q2∀p2∃q3 · · · ∀pm−1∃qmA(p1, q2, p2 · · · , pm−1, qm)

implies

F |= d1 ∧ ¬d2 ⇒ (K1¬K2¬)m−1(dm ∧A(p1, q2, p2, q3 · · · , pm−1, qm)),

it suffices to prove that, for every j ≤ m and boolean formula ϕ over p1, · · · , pm, q1, · · · , qm,

F |= dj ∧ ¬dj+1 ∧ ∀pj∃qj+1ϕ ⇒ K1¬K2¬(dj+1 ∧ ¬dj+2 ∧ ϕ)

To do so, we need only to show that

F |= dj ∧ ¬dj+1 ∧ ∀pjϕ ⇒ K1(dj ∧ ¬dj+1 ∧ ϕ)

and
F |= dj ∧ ¬dj+1 ∧ ∃qj+1ϕ ⇒ ¬K2¬(dj+1 ∧ ¬dj+2 ∧ ϕ).

As for the other direction, we notice that, for each l < m− 1,

F |= d1 ∧ ¬d2 ⇒ (K1K2)l¬dl+2.

We also notice that, for each 1 < m′ ≤ m,

F |= K1¬K2dm′ ⇒ dm′−1

and
F |= dm′−1 ∧ ¬dm′ ∧K1¬K2¬(dm′ ∧ ϕ) ⇒ ∀pm′−1∃qm′ϕ.

By applying the above three claims repeatedly, we can obtain that

F |= d1 ∧ ¬d2 ∧ (K1¬K2¬)m−1(dm ∧ ϕ) ⇒ ∀p1∃q2∀p2∃q3 · · · ∀pm−1∃qmϕ.
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Therefore, if
F |= d1 ∧ ¬d2 ⇒ (K1¬K2¬)m−1(dm ∧ ϕ)

then we have that ∀p1∃q2∀p2∃q3 · · · ∀pm−1∃qmϕ is satisfiable in F because so is d1 ∧ ¬d2.
However, as the QBF formula ∀p1∃q2∀p2∃q3 · · · ∀pm−1∃qmϕ does not contain any free vari-
ables, we immediately conclude that the QBF formula is valid from that QBF formula is
satisfiable in F .

Proposition 30 indicates that the realization problem in the general case is hard for a
computer to solve. Thus, it is interesting to give some special cases with lower computational
complexity. Let L+K

n be the fragment of positive formulas in LC
n . It consists of those

formulas such that the negation can be applied only to propositional formulas and the
modalities are restricted to K1, · · · ,Kn. For instance, formula K1K2p ∨K1K2¬p (where p
is propositional formulas) belongs to L+K

n , but formula K1K2p ∨K1¬K2p does not.
The sublanguage L+K

n is interesting in that it sufficient to represent most important
security properties for security protocols. Moreover, as shown in the following proposition,
the complexity of the realization problem for L+K

n is co-NP-complete.

Proposition 31 The realization problem for L+K
n is co-NP-complete.

Proof: It is well-known that the validity problem for propositional formulas is co-NP-
complete. We can easily get that the co-NP-hardness of the realization problem for L+K

n ,
because the validity problem for propositional formulas can be reduced to the realization
problem for propositional formulas (considering the case where background knowledge base
is a tautology).

On the other hand, to show the realization problem for L+K
n is in co-NP, we show it can

be reduced to the validity problem of propositional formulas. Given a knowledge structure
F and formula ϕ in L+K

n , we will translate ϕ into a propositional formula ‖ϕ‖F , so that ϕ is
realized in F iff θ ⇒ ‖ϕ‖F is valid, where θ is the background knowledge base of knowledge
structure F .

Suppose F = (V, {θ}, O1, · · · , On). For every subformula Kiψ of ϕ, we introduce a set
V i

ψ of new boolean variables such that | V i
ψ |=| V −Oi |.

The propositional translation ‖ϕ‖F is inductively given as follows.

1. If ϕ is a propositional formula, then ‖ϕ‖F = ϕ.

2. If ϕ is of the conjunction form ϕ1 ∧ ϕ2, then

‖ϕ‖F = ‖ϕ1‖F ∧ ‖ϕ2‖F .

3. If ϕ is of the form ϕ1 ∨Kiψ, then

‖ϕ‖F = ‖ϕ1‖F ∨ (θ ⇒ ‖ψ‖F )(
V −Oi

V i
ψ

),

where (θ ⇒ ‖ψ‖F )(V−Oi

V i
ψ

) is the formula obtained from (θ ⇒ ‖ψ‖F ) by replacing

variables in V −Oi by the new ones in V i
ψ.
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The idea behind the above translation is that we first translate formula ϕ into a quantified
boolean formula, where all the quantifiers are universal ones, and then eliminate those
universal quantifiers by introducing new variables.

Proposition 31 implies that, for an arbitrary formula ϕ in L+K
n and a knowledge structure

F with background knowledge base θ,

F |= ϕ iff θ ∧ ¬‖ϕ‖F is unsatisfiable.

Thus, we can solve the realization problem for formulas in L+K
n by using a propositional

satisfiability problem solver.

7. A Case Study: the Muddy Children Puzzle

In this section, we demonstrate how our framework can be applied to practical problems by
using the example of the muddy children puzzle.

7.1 Muddy Children Puzzle

The muddy children puzzle is a well-known variant of the wise men puzzle. The story goes
as follows (Fagin et al., 1995): Imagine n children playing together. Some of the children,
say k of them, get mud on their foreheads. Each can see the mud on others but not on
his/her own forehead. Along comes the father, who says, “at least one of you has mud on
your forehead.” The father then asks the following question, over and over: “Does any of
you know whether you have mud on your own forehead?”

Assuming that all children are perceptive, intelligent, truthful, and they answer simul-
taneously, what we want to show is that the first (k− 1) times the father asks the question,
they will say “No” but the kth time the children with muddy foreheads will all answer “Yes.”

7.2 Modeling the Muddy Children Puzzle

To model the muddy children puzzle, let mi be a propositional variable, which means that
child i is muddy (i < n). Denote by V the set {mi | i < n}. Suppose the assignment
s0 = {mi | i < k} represents the actual state: child 0, · · ·, child k − 1 have mud on their
foreheads; and the other children have not. This can be captured by the scenario (F0, s0),
where F0 = (V, Γ0, O0, · · · , On−1) with

• V = {mi | i < n};
• Γ0 = ∅;
• and Oi = V − {mi} for each i < n.

Let ϕ =
∧

i<n ¬Kimi, which indicates that every child does not know whether he has
mud on his own forehead. For convenience, we introduce, for all natural number l, the
notations [ϕ]lψ so that [ϕ]0ψ = ψ and [ϕ]l+1ψ = [ϕ][ϕ]lψ. The properties we want to show
is then formally expressed in PALn:

• [
∨

i<n mi][ϕ]jϕ for every 0 ≤ j < k − 1, and
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• [
∨

i<n mi][ϕ]k−1 ∧
i<k Kimi.

Formula [
∨

i<n mi][ϕ]jϕ means that the children will all say “No” for the j + 1th time the
father asks the question. In particular, when j = 0, the condition 0 ≤ j < k−1 is simplified
as k > 1; and the resulting formula [

∨
i<n mi]ϕ says that after the father announce

∨
i<n mi

every child says “No”. Formula [
∨

i<n mi][ϕ]k−1 ∧
i<k Kimi indicates that the kth time the

children with muddy foreheads will all answer “Yes.”
Therefore, what we want to prove is that

(F0, s0) |=

 ∧

0≤j<k−1

[
∨

i<n

mi][ϕ]jϕ


 ∧


[

∨

i<n

mi][ϕ]k−1
∧

i<k

Kimi


 .

To check the above, we basically follow the definition of PAL semantics under knowledge
structure. During the checking process, a series Fj (0 < j ≤ k) of knowledge structures are
constructed so that F1 = F0 |∨

i<n
mi

and, for every j (0 < j < k), Fj+1 = Fj |ϕ.
Specifically, we have that, for each step j ≤ k, we get

Fj = (V, Γj , O0, · · · , On−1)

where Oi = V − {mi} for each i < n, and Γj is defined as follows:

• At step 1: Γ1 = {∨i<n mi}.
• At step j + 1: Let ϕb =

∧
i<n ¬∀mi(Γj ⇒ mi). As for each i < n, Fj |= Kimi ⇔

∀mi(Γj ⇒ mi), we have that Fj |= ϕ ⇔ ϕb. Thus, we may set Γj+1 = Γj ∪
{
ϕb

}
.

Therefore, it suffices to verify, for 0 < j < k and i < n, (Fj , s0) |= ¬Kimi, and for i < k,
(Fk, s0) |= Kimi.

7.3 Experimental Results

Our framework of knowledge structure has been implemented by using the BDD library
(CUDD) developed by Fabio Somenzi at Colorado University. Notice that BDD-based
QBF solvers for satisfiability problems are not among the best solvers nowadays. However,
in the experiments here we need to compute and represent a serial of Boolean functions
(say Γj), which are not decision problems and can not be solved by a general QBF solver.

To check agents’ knowledge, we implemented two different algorithms in terms of Part
1 and 2 of Corollary 19 in Section 3, respectively. Algorithm 1, which is based on part 1
of Corollary 19, seems much more efficient than Algorithm 2, which is based on part 2 of
Corollary 19, for this particular example. The reason is as follows. It is clear that the main
task of both algorithms is to check whether (Fj , s0) |= Ki(mi). However, Algorithm 1’s
method is to compute s0 |= ∀mi(Γj ⇒ mi), while Algorithm 2 is to compute |= ∃mi(Γj ∧
s0) ⇒ mi. Now the main reason why Algorithm 1 is much more efficient for this particular
problem is clear: ∀mi(Γj ⇒ mi) is simply equivalent to ¬Γj( mi

false). Assuming half of the
children are muddy, Fig. 1 gives the performances for a Pentium IV PC at 2.4GHz, with
512RAM. In the figure, the x-axis is for the number of children, and the y-axis for the CPU
run time in seconds.
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Figure 1: Performances of the two algorithms for the muddy children puzzle

The muddy children puzzle as a famous benchmark problem of reasoning about knowl-
edge can be resolved by both proof-theoretic and semantical approaches, for example, (Bal-
tag et al., 1998; Gerbrandy, 1999; Lomuscio, 1999). Proof-theoretic approaches depend
on efficient provers for multi-modal logics; and semantical ones may suffer from the state-
explosion problem. Our approach is essentially a semantical one, but we give a syntactical
and compact way to represent Kripke structures by using knowledge structures, and hence
may avoid the state-explosion problem to some extent.

8. Application to Verification of Security Protocols

In this section, we apply our knowledge model to security protocol verification. Security
protocols that set up credits of the parties and deal with the distribution of cryptographic
keys are essential in communication over vulnerable networks. Authentication plays a key
role in security protocols. Subtle bugs that lead to attack are often found when the protocols
have been used for many years. This presents a challenge of how to prove the correctness
of a security protocol. Formal methods are introduced to establish and prove whether a
secure protocol satisfies a certain authentication specification.

8.1 Background on Authentication Protocols

Authentication protocols aim to coordinate the activity of different parties (usually referred
to as principals) over a network. They generally consist of a sequence of message exchanges
whose format is fixed in advance and must be conformed to. Usually, a principal can take
part into a protocol run in different ways, as the initiator or the responder ; we often call
the principal has different roles. Very often a principal can take part into several protocol
runs simultaneously with different roles.

The design of authentication protocols must have the conscious in mind that the mes-
sage may be intercepted and someone with malicious intention can impersonate an honest
principal. One of the key issues in authentication is to ensure the confidentiality, that is, to
prevent private information from being disclosed to unauthorized entities. Another issue is
to avoid intruder impersonating other principals. In general, a principal should ensure that
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the message he receives was created recently and sent by the principal who claims to have
sent it.

Cryptography is a fundamental element in authentication. A message transmitted over
a channel without any cryptographic converting is called plaintext. The intention of cryp-
tography is to transform a given message to some form that is unrecognizable by anyone
except the intended receiver. The procedure is called encryption and the corresponding
parameter is known as encryption key. The encoded message is referred to as ciphertext.
The reverse procedure is called decryption and uses the corresponding decryption key. The
symmetric-key cryptography, which is also called secret-key cryptography, uses the same key
for both encryption and decryption. The asymmetric-key cryptography, which is also called
public-key cryptography, uses different keys for encryption and decryption. The one for the
encryption is the public key that is generally available for anyone. Corresponding to the
public key is the private key, which is for the decryption and only owned by one principal.

8.2 The Dolev-Yao Intruder Model

The standard adversary model for the analysis of security protocols was introduced by
Dolev and Yao in 1983 and is commonly known as Dolev-Yao model (Dolev & Yao, 1983).
According to this model, a set of conservative assumptions are made as follows:

1. Messages are considered as indivisible abstract values instead of sequences of bits.

2. All the messages from one principal to any other principals must pass through the
adversary and the adversary acts as a general router in the communication.

3. The adversary can read, alter and redirect any messages.

4. The adversary can only decrypt a message if he has the right keys, can only compose
new messages from keys and messages that he already possesses.

5. The adversary can not perform any statistical or other cryptanalytic attacks.

Although this model has the drawback of finding implementation dependent attacks, it
simplifies the protocol analysis. It has been proved to be the the most powerful modeling
of the adversary (Cervesato, 2001) because it can simulate any other possible attackers.

8.3 The Revised Needham-Schroeder Protocol

As Lowe (Lowe, 1996) pointed out that the Needham-Schroeder protocol has the problem of
lacking the identity of the responder and can be fixed by a small modification. However, it is
not clear if the revised version is correct. Our approach provides a method to automatically
prove the correctness of security protocols instead of just finding bugs as usual analysis
tools do for security protocols.

In the cryptography literature, the revised Needham-Schroeder protocol is described as
follows:

1. A → B: {Na, A}Kb

2. B → A: {B,Na, Nb}Ka
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3. A → B: {Nb}Kb

where A → B : M is a notation for “A sends B the message M ” or “B receives the message
M from A”. The notation {M}K means the encryption of M with the key K. Also, A,B
denote the principal identifiers, Ka, Kb indicate, respectively, A’s and B’s public keys.
Moreover, Na and Nb are the nonces which are newly generated unguessable values by A
and B, respectively, to guarantee the freshness of messages.

Two informal goals or specifications of the protocol are “A knows that B knows A said
Na and Na is fresh,” and “B knows that A knows B said Nb and Nb is fresh .”

To analyze the protocol, we introduce A and B local histories for the protocol: If A
plays the role of the initiator in the protocol, and assumes that B be the responsor, then
A’s local history is that

1. A said {Na,A}KbA

2. A sees {BA, Na, NbA}Ka

3. A said {NbA}KbA

where “A said M” means that A sent the message M , or other message containing M ;
“A sees M” indicates that A receives M or got M by some received messages; BA is the
responsor of the protocol from A’s local view; KbA and NbA are, from A’s local view, the
responsor’s public key and nonce, respectively.

If B plays the role of the responsor in the protocol, and assumes A be the initiator, then
A’s local history is that

1. B sees {NaB, AB}Kb

2. B said {B,NaB, Nb}Ka

3. B sees {Nb}Kb

where AB is the initiator of the protocol from B’s local observations; KaB and NaB are,
from B’s local view, the initiator’s public key and nonce, respectively.

The main point of our analysis is that if an agent is involved in the protocol, then the
agent’s real observations should be compatible with the so-called local history. For example,
if A is the initiator of the protocol, A sees {B,NaB, Nb}Ka, then according to A’s local
history for the protocol we have that A assumes that B is the responsor of the protocol,
the responsor’s nonce is Nb, and from the responsor’s view, the initiator’s nonce is Na (see
the 4th formula of the background knowledge Γ below).

Let us see how our framework of reasoning about knowledge can be applied to this
protocol.

The variable set VRNS consists of the following atoms:

• fresh(Na): Nonce Na is fresh.

• fresh(Nb): Nonce Nb is fresh.

• role(Init, A): A plays the role of the initiator of the protocol.
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• role(Resp, B): B plays the role of the responder of the protocol.

• RespA = B: A assumes that the responder of the protocol is B.

• InitB = A: B assumes that the initiator of the protocol is A.

• NaB = Na: B assumes that the partner’s nonce in the execution of the protocol is
Na.

• NbA = Nb: A assumes that the partner’s nonce in the execution of the protocol is
Nb.

• said(B,Na): B said Na by sending a message containing Na.

• said(A,Nb): A said Nb.

• sees(B, {Na, A}Kb): B sees {Na,A}Kb (possibly by decrypting the messages re-
ceived.)

• sees(A, {B,NaB, Nb}Ka): A sees {B,NaB, Nb}Ka.

The background knowledge ΓRNS consists of the following formulas:

1.




sees(B, {Na,A}Kb)∧
said(B,Na)∧
fresh(Na)


 ⇒ role(Resp, B)

2.




sees(A, {B,NaB, Nb}Ka)∧
said(A,Nb)∧
fresh(Nb)


 ⇒ role(Init, A)

3.




role(Resp, B)∧
sees(B, {Na,A}Kb)∧
said(B,Na)∧
fresh(Na)


 ⇒

(
InitB = A∧
NaB = Na

)

4.




role(Init, A)∧
sees(A, {B,NaB , Nb}Ka)∧
said(A,Nb)∧
fresh(Nb)


 ⇒




RespA = B∧
NaB = Na∧
NbA = Nb




5.

(
role(Init, A)∧
RespA = B

)
⇒

(
sees(B, {Na, A}Kb)∧
said(B,Na)

)

6.
(

role(Resp, B)∧
InitB = A

)
⇒

(
sees(A, {B,NaB , Nb}Ka)∧
said(A,Nb)

)

7.
(role(Init, A) ⇒ fresh(Na))∧
(role(Resp, B) ⇒ fresh(Nb))
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Notice that the first two formulas are required for the rationality of the agents A and B.
The other formulas in Γ can be obtained automatically by some fixed set of meta rules. We
obtain the third and fourth formulas by comparing their local history for the protocols to
the conditions appearing in the formulas. To get the fifth formula informally, consider A’s
local history under the conditions role(Init, A) and RespA = B, which should be that

1. A said {Na,A}Kb

2. A sees {B,Na, NbA}Ka

3. A said {NbA}Kb.

According to A’s local history, A sees the nonce Na generated by A itself. Because Na is
only said in the message {Na,A}Kb, thus B, who has the inverse key of Kb, must see this
message and said Na. Similarly, we can see that the sixth formula holds. The last formula
follows immediately by the definition of the protocol.

The set OA of the observable variables to A is

{fresh(Na), role(Init, A), RespA = B}.
The set OB of the observable variables to B is

{fresh(Nb), role(Resp, B), InitB = A}.
Now consider the knowledge structure

F = (VRNS ,ΓRNS , OA, OB).

Let SpecA be the formal specification:



fresh(Na)∧
role(Init, A)∧
RespA = B


 ⇒ KAKB

(
said(A,Na)∧
fresh(Na)

)

and SpecB be the formal specification:



fresh(Nb)∧
role(Resp, B)∧
InitB = A


 ⇒ KBKA

(
said(B,Nb)∧
fresh(Nb)

)
.

It is easy to show that, for all states s of F ,

(F , s) |= SpecA ∧ SpecB

as desired.
We should mention that, in the original Needham-Schroeder protocol (R.M.Needham

& M.D.Schroeder, 1978), the second message is B → A: {Na, Nb}Ka instead of B → A:
{B,Na, Nb}Ka. Therefore, the fourth formula in Γ would be changed to




role(Init, A)∧
sees(A, {NaB , Nb}Ka)∧
said(A,Nb)∧
fresh(Nb)


 ⇒

(
NaB = Na∧
NbA = Nb

)
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Thus, RespA = B does not necessarily hold under the condition

role(Init, A) ∧ sees(A, {NaB, Nb}Ka) ∧ said(A,Nb) ∧ fresh(Nb).

This is why the specifications SpecA and SpecB do not hold for the original Needham-
Schroeder protocol.

8.4 Discussion

BAN logic (Burrows, Abadi, & Needham, 1990) is one of the most successful logical tools
to reason about security protocols. However, the semantics of BAN is always arguable, and
it is not clear under what assumption the rules of BAN logic is sound and complete. This
motivated the research of seeking more adequate frameworks (models). Providing a model-
theoretic semantics for BAN logic has been a central idea in the development of BAN-like
logics such as AT (Abadi & Tuttle, 1991) and SVO (Syversion & van Oorschot, 1996). The
advantage of our approach is that we use knowledge structures as semantical models to
verify the correctness of epistemic goals for security protocols.

An important problem is that, given a security protocol, where and how the correspond-
ing knowledge structure comes from. To get the knowledge structure corresponding to a
security protocol, we have developed a semantics model, and the background knowledge
base of the corresponding knowledge structure consists of those formulas valid in the se-
mantics model. Moreover, we can generate the background knowledge systematically. The
ongoing work is to implement our approach into a promising automatic security protocol
verifier.

9. Conclusion

In this paper, we have investigated knowledge reasoning within a simple framework called
knowledge structure. Variable forgetting is used as a basic operation for one agent to reason
about its own or other agents’ knowledge. Given a background knowledge base Γ, and a
set of observable variables Oi for each agent i, we have shown that the notion of agent i
knowing a formula ϕ can be defined as the weakest sufficient condition of ϕ over Oi under
Γ. Moreover, we have generalized the notion of weakest sufficient conditions to capture the
notion of common knowledge in framework. Also, we have shown that public announcement
operator can be conveniently dealt with via our notion of knowledge structure. Further, we
have examined the computational complexity of the problem whether a formula α is realized
in structure F . In the general case, this problem is PSPACE-Complete; however, there are
some interesting subcases where it can be reduced to co-NP. To illustrate the applications
of our knowledge structures, we have discussed the automated analysis of the well-known
muddy children puzzle and the verification of the corrected Needham-Schroeder protocol.

Our work presented in this paper can be further extended in several directions. First,
we will investigate whether our knowledge structures can be extended and used as a basis
for knowledge based programming (Fagin et al., 1995). Secondly, in our current framework
of knowledge structures, we have not considered the issue of only knowing which has been
extensively studied in other knowledge reasoning models, e.g. (Halpern & Lakemeyer, 1996;
van der Hock, Jaspars, & Thijsse, 2003; Levesque, 1990). It will be an interesting topic of
how our knowledge model handles only knowing in reasoning about knowledge.
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Finally, recent research has shown that knowledge update has many important applica-
tions in reasoning about actions and plans and dynamic modelling of multi-agent systems
(Zhang, 2003). A first step in this direction (in mono-agent S5) can be found in (Herzig,
Lang, & Marquis, 2003). Baral and Zhang have proposed a general model for perform-
ing knowledge update based on the standard single agent S5 modal logic (Baral & Zhang,
2001). We believe that their work can be extended to many agents modal logics by using the
knowledge structure defined in this paper and therefore to develop a more general system
for knowledge update. Along this direction, an interesting research issue is to explore the
underlying relationship between knowledge forgetting - a specific type of knowledge update,
and variable forgetting as addressed in this paper.
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