Compliance Checking for Usage-Constrained
Credentials in Trust Negotiation Systems

Jinwei Hu', Khaled M. Khan2, Yun Bai®, and Yan Zhang3

! Department of Computer Science, TU Darmstadt, Germany
hu@mais.informatik.tu-darmstadt.de
2 Department of Computer Science and Engineering, Qatar University, Qatar
k.khan@qgqu.edu.qga
3 School of Computing and Mathematics, University of Western Sydney, Australia
{ybai,yan}@scm.uws.edu.au

Abstract. We propose an approach to placing usage-constraints on R7T creden-
tials; issuers specify constraints by designing non-deterministic finite automata.
We show by examples that this approach can express constraints of practical in-
terest. We present a compliance checker in the presence of usage-constraints,
especially for trust negotiation systems. Given an RT policy, the checker is able
to find all minimal satisfying sets, each of which uses credentials in a way con-
sistent with given constraints. The checker leverages answer set programming,
a declarative logic programming paradigm, to model and solve the problem. We
also show preliminary experimental results: supporting usage-constraints on cre-
dentials incurs affordable overheads and the checker responds efficiently.

1 Introduction

Compliance checking aims to, given a policy p and a set C of credentials, answer the
questions of whether and how a subset of C satisfies p. Such a subset is called a satisfy-
ing set of p in C. A credential is a cryptographic certificate from a credential issuer, who
asserts attributes about a principal. For example, “University says Alice is a student” is
a credential, where University is the issuer, Alice is the principal, and “is-a-student” is
the attribute. A policy is a statement to be proved, e.g., “Alice can access files”.
Compliance checkers can be broadly categorized into three types [9]. Type-1 check-
ers return no satisfying set in any case but a Boolean value indicating whether p is sat-
isfied. Type-2 checkers return one satisfying set of p, if any. Type-3 checkers are able
to find all minimal satisfying sets of p in C. This feature distinguishes types-3 checkers
from the other two and makes them proper checkers for trust negotiation (TN) systems
[6U11]. In TN, two participants, say Alice and Bob, iteratively exchange credentials to
gradually increase trust between each other. When requesting (sensitive) attributes of
Alice, Bob may receive a (release) policy p from Alice, which specifies attributes that
Bob should exhibit before Alice discloses her attribute. In this case, Bob uses his com-
pliance checker to search for satisfying sets of p in his credential set. There are two
main reasons why type-3 checkers are more appropriate for TN than type-1 and type-2
checkers. On the one hand, a type-3 checker ensures that TN establishes trust whenever

D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 290-B05] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Compliance Checking for Usage-Constrained Credentials 291

possible. In event of not establishing trust with a negotiation tactic, TN may restart ne-
gotiation with an alternative tactic, owing to the use of type-3 checkers. On the other
hand, it also broadens choices of negotiation strategies. For example, one may choose
to disclose the set of credentials that reveals least sensitive information.

When a compliance checker finds a satisfying set of a policy, it actually composes
a proof of the policy (e.g., as defined in Section .1}, using the credentials in the set.
Credential issuers, however, may not foresee all the proofs that their credentials con-
tribute to and all the consequences that their credentials make possible, largely be-
cause of the open nature of TN systems. This uncertainty annoys credential issuers
sometimes; they may want to restrict the circumstances under which their credentials
are used. For example, a bank may require its credentials to be used for limited pur-
poses set out in agreementsﬂ Therefore, credential issuers may specify a constraint
stating valid ways to use its credentials. For example, the bank may attach to its creden-
tials a constraint listing proofs allowed by the agreements. Compliance checkers (e.g.,
Bob’s checker) ought to work out satisfying sets which prove a policy in a way con-
sistent with constraints. A principal who uses the proof (e.g., Alice) should verify the
consistency.

In this paper, we propose such a compliance checker. We first devise a mechanism for
credential issuers to specify usage-constraints. A constraint is defined based on NFAs
(non-deterministic finite automaton). We employ ASP (answer set programming) to
encode the checking problem and ASP solvers to compute all satisfying sets.

The remainder of the paper is organized as follows. We state the assumptions made in
this work and review RT (a family of role-base trust-management languages) in Section
Bl We discuss related work in Section 3l In Section] we define usage-constraints on
credentials and propose the type-3 compliance checking problem in the presence of
constraints. Section [3] describes an ASP encoding of the problem, while the detailed
encoding is presented in Appendix[Al In Section[6]we undertake a group of experiments
to evaluate the performance of our approach. Finally, we conclude in Section[Z]

2 Background

Assumptions When Bob searches for proofs of Alice’s policy p, we assume that Bob’s
credential set is fixed. That is, the compliance checker works on a static set of creden-
tials. We refer to this set as a credential context.

After receiving a proof, Alice is obliged to verify any usage-constraints on creden-
tials that are used in the proof. This is because any otherwise forbidden access that
results from a proof not complying with constraints may only cause loss to Alice. For
example, suppose that a companyC issues a qualification certificate to Bob but puts
a constraint that the certificate be used only in companyC. Suppose further Alice ac-
cepts a proof using this certificate and therefore allows Bob to access her sensitive
files. The companyC is not held responsible for this access, because it already states
the restriction on the certificate. On the contrary, it is Alice who did not enforce the
constraint.

! http://www.nbnz.co.nz/onlineservices/directtrade/PDFs/
PKIagreements.pdf

http://www.nbnz.co.nz/onlineservices/directtrade/PDFs/PKIagreements.pdf
http://www.nbnz.co.nz/onlineservices/directtrade/PDFs/PKIagreements.pdf

292 J. Hu et al.

Policy language RT [8] is a family of role-base trust-management languages. We as-
sume that TN uses two of its sub-language, RTy and RT', to represent credentials.
RT\ credentials make assertions by defining role memberships. Memberships can be
defined in four ways, corresponding four kinds of RT'y credentials. Since an NFA reads
a string from left to right in convention, we reverse the arrow direction in RT'.

Type-1: D — A.r, where A and D are principals and r is a role name. A issues this
credential to assert that D is a member of A.r. A.r is called a normal role.

Type-2: B.r" — A.r, where A and B are principals and r and 7’ are role names. By
issuing this credential, A asserts that a member of B.r’ is also a member of A.r.

Type-3: A.r;.r2 — A.r, where A is a principal and r; and 79 are role names. This
credential means that a principal is a member of A.r if it is a member of B.ry for
any principal B who is a member of A.ry. A.ry.ro is called a linked role.

Type-4: B;.r; N---N B,.r,, — A.r, where A and B; are principals, and r and r;
are role names. The credential asserts that a principal is a member of A.r if it is a
member of B;.r; for all i € [1.n]. By.ry N -+ N By.ry, is called an intersection
role.

We recall some notions of RT [[12]]. We say a credential of the form e — A.r defines
the role A.r, where e can be D, B.r', A.ri.rg, or By.r1 N --- N B,,.r,,. Given a set C
of RT credentials, let Prin(C) be the set of principals in C; define NRole(C) as the
set of normal roles A.r such that A is a principal in C and r is a role name in C. Let
LRole(C) be the set of linked roles in C and IRole(C) be the set of intersection roles
in C. Further, let Role(C) = NRole(C) U LRole(C) be the set of roles in C, containing
normal and linked roles; let £(C) = Prin(C) U Role(C) U IRole(C) be the set of role
expressions in C, containing principals, roles, and intersection roles.

Definition 1. [I2]] The semantics of C is given by the least -¢C E(C) x E(C) such
that (1) forany e € £(C), e —¢ ¢, (2)if e; —¢ ez and ez —»¢ eg then e; —»¢ eg, (3)
for any credential e — A.rinC, e —¢ A.r, (4)if Ari.ro € E(C) and B —¢ A.ry,
then B.rg —»¢ A.ry.re, and (5) if By.ry N --- N By.ry, € E(C) and e —¢ By.r; for
i € [1..n], then e —¢ By.ry N -+ N By.1y. We write — if C is clear from the context.

Example 1. Suppose that a parking lot provides parking services to staff of its partners
(e.g., a medical center). The lot provides special service for people with disability. We
let Cj,; be the credential context consisting of the following credentials.
c1 : Bob — Med.staff co : Med — Lot.partner cs : Lot.partner.staff — Lot.pk
¢4 : Bob — HR.dis c¢5: HR.dis — Med.dis c¢ : Med.dis — Lot.dis
c7 : Lot.pk N Lot.dis — Lot.spk
We have Bob —¢,, Lot.pk and Bob —»¢,, Lot.spk. O

RT1 credentials allow the use of parameterized roles. For ease of exposition, we focus
mainly on RTy credentials.

3 Related Work

Bauer et al. [3]] present an approach to constraining credential usage for proof-carrying
authorization (PCA). It has a heavy influence on this work: we follow the idea to place
constraints on proofs. Nevertheless, we observe some essential differences between

Compliance Checking for Usage-Constrained Credentials 293

PCA and TN; these differences dissuade us from adapting their approach to TN. First,
PCA does not search for proofs but only verifies proofs submitted by access-requester.
This makes it possible to define constraints as arbitrary functions over proofs. In con-
trast, a compliance checker of TN ought to search for proofs by itself. It appears difficult
for an efficient search algorithm to work with arbitrary functions. This consideration
leads to our definition of constraints as NFA properties. It seems restrictive to define
constraints as NFA properties, instead of arbitrary functions over proofs; but, as it turns
out, most example constraints in [3] could be expressed. Second, compliance checkers
are expected to find all proofs of a conclusion. Even though some mechanisms [2] as-
sist principals in composing proofs in PCA, they only find one proof and thus provide
inadequate help for TN. Finally, PCA policy languages are seldom used in TN.

Lee and Winslett present an efficient type-3 compliance checker CLOUSEAU [6].
CLOUSEAU compiles credentials and policies into an intermediate representation that
is analyzed using efficient pattern matching algorithms. Another type-3 compliance
checker SSgen is proposed by Smith et al. [11]. Given an input, SSgen iteratively in-
vokes a type-2 checker, which generates only one satisfying set with the input; SSgen
feeds the type-2 checker with modified input so that previously generated proofs are
excluded and an alternative proof can be found. It remains unclear, however, how to
extend existing type-3 checkers like CLOUSEAU and SSgen to deal with constraints on
credential usage.

To restrict credential usage, one may attempt to employ a type-3 checker to generate
satisfying sets and remove the sets that violate usage-constraints; so the remaining sets
respect the constraints. Here, the constraints can be arbitrary functions over proofs, as
one only needs to verify proofs against them. We take a closer look at this approach
with CLOUSEAU as the checker.

First, CLOUSEAU has to supply all satisfying sets but not only the minimal ones.
For a counter-example, suppose that C; = {c1, ca,¢3,cq,¢5} is a satisfying set and
Cy = {c1,c2} a minimal one. Suppose further that a constraint requires that the use
of co be accompanied by the use of 039 In this case, Cy is a set conforming to the
constraint, but C5 is not. In the worst case, the number of minimal satisfying sets for a
given policy can be exponential [6/11]], not to speak of the number of all satisfying sets.
It is challenging to efficiently verify the sets against constraints, in spite of the efficient
algorithms used in CLOUSEAU.

Second, CLOUSEAU returns credential sets, instead of proofs. From a credential set,
however, more than one proof might be constructed. For example, one can write two
proofs using credentials in C', as mentioned earlier. In this case, it is ambiguous which
proof a constraint concerns with.

Finally, this approach lacks an intuitive way to capture constraints over attributes
required of credential issuers [3]]. For example, Alice may say that her credentials can
only be used in a proof involving credentials from herself or her friends. We are not
aware of any simple extensions to CLOUSEAU which are able to enforce this constraint.

% Suppose that the given policy is A — C.r and that the credentials are ¢; : A — B.r,
c2:B.r— Cur,ez: Corr’ — Cryca: D — B.r,and ¢ : A — D.r’. One can compose
two distinct proofs using credentials {c1,c2} and {c1, c2, c3, c4, c5 }, respectively. Note that
the second proof relies on c3 rather than just spuriously include it.

294 J. Hu et al.

One might consider specifying credentials in more complicated languages. For ex-
ample, besides RTy and RT'1, the RT family includes more expressive languages such
as RTT. Similarly one might redesign policy languages so that principals can specify
in more detail how their assertions and judgements are to be used. This could entail the
introduction of new modalities [4] and of complex inference rules [3]. This approach
is less attractive for the following reasons. First, apart from the compliance checker, it
may result in changes to other TN components. Since a TN system uses its policy lan-
guage to represent credentials and release policies [9], this representation might need
revisions. Second, one has to design a new compliance checker that is able to efficiently
find all minimal satisfying sets in the presence of the new, more complicated language.
Finally, in this manner, only a set of predefined constraints can be enforced [3].

To sum up, based on these these observations, an alternative is arguably worth in-
vestigating. The challenge is to support constraints that capture practical requirements
while enabling efficient compliance checking. As such, we propose a novel definition
of constraints based on NFAs and employ ASP to enforce constraints.

Note that we do not concern ourselves with the information leakage and hiding prob-
lem in TN; instead, we simply focus on how to find all minimal proofs which use cre-
dentials in a way consistent with constraints.

4 Usage-Constraints on Credentials

To support usage-constraints on credentials, we follow an idea similar to the one in
[3]: allow credential issuers to specify constraints on proofs where their credentials are
to be used. A proof is decomposed into a set of strings. Constraints are defined based
on NFAs; a proof is required to be accepted by NFAs, either partially or entirely as
specified. A compliance checker is designed to return all such minimal proofs.

4.1 Defining Proofs

Suppose e; —»¢ eg; there is a proof justifying this statement. The proof can take various
forms. For example, Fig. [[l shows a proof tree of Bob —»¢,, Lot.spk. A node of a
proof tree is a pair of principal-role, which means the principal becomes a member
of the role. A proof like this hinders a simple definition of constraints. First, it could

Bob : Lot.spk
7 ~_
Bob : Lot.dis Bob : Lot.pk
T T
Bob : Med.dis Bob : Lot.partner.staff
T T T
Bob : HR.dis Bob : Med.staff Med : Lot.partner
T T 1
Bob : Bob Bob : Bob Med : Med

Fig. 1. A proof tree of Lot.spk —»¢,,, Bob. The star edge denotes a linked membership derived
from the outgoing node of the edge.

Compliance Checking for Usage-Constrained Credentials 295

contain redundant reasoning. For example, the tree in Fig. [I also serves as a proof
of Bob —¢,, Lot.pk; in this case, it includes superfluous applications of credentials.
Second, placing constraints on trees raises the bar for credential issuers to correctly
specify constraints.

A slight revision will provide a simpler solution but no less capability. In brief, we
borrow an idea of model checking linear temporal logic properties [S)]. We obtain a set
of sequences of principal-role pairs, when a tree is traversed: a traversal starts from a
leaf node and proceeds until it encounters a star edge or the root node. Consider again
the tree in Fig.[I} we have the following sequences.

[Bob : Bob, Bob : HR.dis, Bob : Med.dis, Bob : Lot.dis, Bob : Lot.spk]

[Bob : Bob, Bob : Med.staff, Bob : Lot.partner.staff, Bob : Lot.pk, Bob : Lot.spk]
[Med : Med, Med : Lot.partner]

Observe that each sequence concerns only one principal; it could be shortened as a role
path defined below.

Definition 2. A role path in C is a tuple [eg, €1, - , e,] where (1) eg € Prin(C), (2)
{e1,---,en} C Role(C), and (3) if e; = e; then i = j.

Condition 1 says that a role path begins with a principal. Condition 2 says that a princi-
pal is followed by a sequence of roles. Condition 3 says there is no cycle in a role path
For example, we have the following role paths in C;,¢; there, h1, ha, and hg correspond
to the tree in Fig.[1}

hi : [Bob, HR.dis, Med.dis, Lot.dis, Lot.spk)]

hs : [Bob, Med.staff, Lot.partner.staff , Lot.pk, Lot.spk]

hs : [Med, Lot.partner]

ha : [Bob, Med.staff , Lot.partner.staff , Lot.pk]

Definition 3. Let H be the set of role paths in C. We define a relation FC 2% x 2€x —»;
forany (H,C,e; — eg) €, we write H b¢ ey — eg. Forany H C H and C C C,
the followings hold:

If e € h for some h € H, then H ¢ e — e.

IfHbFc ey - egand H ¢ eg — eg, then H ¢ ey — eg.

Forany|--- €, €41,] € H, ife; — €1 € Cthen Hb¢ €; > €4 1.
IfHbte B — A.rg, thenforany |-+ ,Bura, Ary.ra,---] € H, H b¢ B.org —
A.’I"1.’I“2.

5. For any By.rynN---NByr, — Ar € C, if for i € [l.n] both
[[--,e,Bjri,Ar,---]€ Hand H t¢ e — Bj.r; hold, then H ¢ e - A.r.

Ao~

Example 2. Continue with Example [Tl Consider the sets H,; = {hs,hs} and C =
{c1,c2,cs} C Ciop. One can derive Hyy, Fc Bob — Lot.pk. Hpy, shows how Bob —
Lot.pk is concluded using credentials in C: From hy4, Bob first becomes a Med.staff;
from hs, Med is a Lot.partner; continuing with hy, Bob turns into a Lot.partner.staff
because of Med’s membership in Lot.partner, and finally becomes a Lot.pk.

If we let Hyp, = {h1, h2, hs} and C = Cjor, we have Hgpy, Fo Bob — Lot.spk.
H,,p, explains Bob — Lot.spk in the same way as the proof tree in Fig.[Ildoes. Path h

3 This is not to be confused with policy cycles [7].

296 J. Hu et al.

seems to indicate that Bob gains Lot.spk simply because of his membership in Lot.pk,
which is granted to any Lot.partner.staff without the requirement of a membership
in Lot.dis. As indicated by the fact that {hz, hg} Fc Bob — Lot.spk does not hold,
however, this understanding is not correct. Actually, the intuition here is that Bob’s
membership in Lot.spk is preceded by his membership in Lot.pk. O

We write Hy < H, if Hy C H or for all h € Hy, there exists b’ € H, such that & is a
prefix of i’ Hand Hy, < H, if Hy < Hy and Hy # H,.

Definition 4 (Proof). We say H is a proof of e; — ez using C if H F¢ e; — ez and
forall H' < H it does not hold that H' ¢ e; — eg.

For example, {h3, h4} is a proof of Bob — Lot.pk using {c1, ca,c3}.

4.2 Defining Constraints

Semantically, a constraint defines a set of allowable proofs. A proof, in turn, is a set
of role paths. Further, a role path, when viewed as a string, is accepted or denied by an
NFA (non-deterministic finite automaton). Hence, credential issuers could design NFAs
to define allowable proofs.

Definition 5. [[I0] An NFA N is a tuple (S, X, 0, so, F), where S is a finite set of states,
X is a finite alphabet, & : S x (X U {e}) > 27 is the transition function, sy € S is the
start state, and F' C S is the set of accept states. For X' C X, we write 6(s1, X') = s2
as a shorthand for the set {6(s1,v) = s2 | v € X'} for any s1,s2 € S.

Let w be a string over the alphabet X'; we say N accepts w if we can write w as
V1Vg -+ - Uy, Where each v; is a member of X U{ e} and a sequence of states qo, q1, -+, Gm
exists in S with three conditions: (1) qo = S0, (2) gi+1 € 0(qi, viy1) fori € [0.m — 1],
and (3) qm € F. Let L(N) be the set of strings that N accepts.

Example 3 (Final-usage constraint). Continue with Example[Il Recall that the medi-
cal center issues the credential HR.dis — Med.dis defining the role Med.dis. Suppose
that the center confines the usage of the memberships of Med.dis to limited purposes.
For example, it can be used in proving entitlement to special parking service; rather, it
cannot be used in any commercial promotions where, for instance, people with disabil-
ity are given coupons. To this end, the center requires that each role path of a proof H
be accepted by the NFA N, in Fig.[2l Consider a path [eg, €1, - , €,] € H. N, says
that ey must be a principal such as Bob. Next, if N;,; does not confront Med.dis (i.e., no
credential defining Med. dis is used) all the way through the path, it will accept the path.
Suppose otherwise that e; = Med.dis (i.e, a credential of the form e;— ; — Med.dis is
used); Nj,; accepts the path if it ends with Lot.spk. Consequently, H is a proof where
credentials affirming disability by Med is only used for special parking service if and
only if all role paths in H are accepted by Nj,;. O

One may have noticed that IV;,; works only in the context of Cj,;. It is unlikely for the
center to specify a similar NFA for every situation where a credential defining Med.dis

* Apath [eg, -, e,] is a prefix of a path [ep, - , €n, - , €ntm] Where m > 0.

Compliance Checking for Usage-Constrained Credentials 297

Role(Cior)\{Med.dis} Role(Ciot)

Prin(Ciot) Q Med.dis Q Lot.spk
Nigt : = O © O O

Fig.2. An NFA Ny, that restricts the usage of credentials defining Med.dis to special parking
service in the context of Cj,;

may be used. Instead, the center is more willing to write a special NFA with a credential
context placeholder. In event of compliance checking, as the credential context is fixed,
a context like Cy,; is substituted for the placeholder.

Definition 6. A context-dependentNFA, denoted as vy, is an NFA (S, X, 0, so, F) where
the alphabet Y. consists of the following:

1. a finite set Prin of principals and a finite set Role of roles, and
2. a set of special symbols { Prin(C), Role(C)} U {Role(C)\A | A C Role}, where
C denotes the credential context placeholder.

The set Role contains roles that a principal is aware of, when designing a context-
dependent NFA; likewise, Prin contains principals. Take Example [3] for instance; the
center knows the roles Med.dis and Lot.spk, for it means to restrict the usage of cre-
dentials like HR.dis — Med.dis to the special parking service that is represented by
Lot.spk. In this case, Prin = {Med, Lot} and Role = { Med.dis, Lot.spk}.

A special symbol is treated as a single unit. Consider for example the NFA ~;,; in
Fig.[3} it accepts the following string.

Prin(C) Role(C)\{Med.dis} Med.dis Role(C) Lot.spk (1)

A special symbol turns into a set expression after a credential context C is substituted
for the placeholder. For example, if C;,; takes place of C, Role(C) turns into Role(Cjot),
which is the set of roles in Cj,;. Supposing that v is a special symbol, we write the set
expression obtained from the substitution as v|c.

Definition 7. Given a role path h = [eg,- - , e,] in a context C, we say (y,C) allows
h if v accepts a string vg - - - vy, such that for i € [0..n], either v; = e; or v; is a special
symbol and e; € v;|c. Denote the set of paths allowed by (v,C) as L(vy,C).

For instance, (yi0t, Ciot) allows the path [Bob, HR.dis, Med.dis, Lot.dis, Lot.spk], for
Y10t accepts the string in (). The center can specify the context-dependent NFA -y, in
Fig. B so as to restrict the usage of credentials defining Med.dis to special parking
service in any credential context. As discussed in Example[3] those credentials will not
be used for other purposes as long as role paths are allowed by (70¢,C).

We notice that L(v,C) is still a regular language, which can be directly captured
by an NFA. For example, Ny, in Fig. Rl recognizes L(viot, Ciot) (i-€., L(Nipt) =
L(Yiot, Ciot)). When designing a context-dependent NFA, credential issuers could first
specify an NFA for a specific context, and abstract it away later. Throughout the rest
of this paper, unless otherwise stated, references to an NFA imply a context-dependent
NFA. When C is clear from the context, we say -y allows a role path instead of (v, C).

298 J. Hu et al.

Role(C)\{Med.dis} Role(C)

Prin(C) Q Med.dis /Q Lot.spk
Yiot : =0 (@) @) O

Fig. 3. A context-dependent NFA -y;,; restricting the usage of credentials defining Med.dis to
special parking service

Definition 8 (Usage-constraint). A credential constraint is a tuple (y,) where =y is
an NFA and © € {V,3}. We say a proof H in C is valid with respect to (wrt) (v,)
if H C L(v,C) whenm = ¥ and H N L(v,C) # O when 7 = 3. A constraint {~,V)
requires that each role path of H be allowed by (v, C). A constraint (v, 3) says there is
at least one role path of H allowed by (,C).

Example 4 (Delegation depth). Recall that the parking lot delegates the judgement of
disability to the center by credential cg : Med.dis — Lot.dis. No restriction is placed
on the delegation; the center could re-delegate the judgement to any principal. The lot
may deem this over-permissive and want to control the delegation. For example, the
lot might decide that a principal’s disability should be asserted directly by the center;
namely, it allows no re-delegation from the center. As such, the lot designs an NFA 49
in Fig.dand put a constraint {49, V). When designing 74, the lot is aware of credential
¢g and thus of the sets Prin = {Lot, Med} and Role = { Lot.dis, Med.dis}.

We now examine the semantics of {49, V). Consider for example the credential
context Cj,¢. According to the constraint, all role paths of a valid proof wrt it should be
allowed by 4¢. A path is allowed if it meets one of the conditions: (1) Lot.dis does not
show up and (2) Lot.dis is preceded by Med.dis, which in turn is preceded by a prin-
cipal. In the latter case, Med.dis follows immediately a principal; this indicates the use
of a credential e — Med.dis, where e is a principal. Hence, a proof involving Lot.dis
uses no delegation of Med.dis if and only if it is valid wrt the constraint. Consider a
proof H gepen, containing a path [Bob, HR.dis, Med.dis, Lot.dis, Lot.spk]. Since 740
does not allow this path, the proof H ey, is not valid. On the other hand, H 4¢p¢p, does
use a delegation that the lot tries to prevent (e.g., a credential HR.dis — Med.dis).

Suppose that the lot now relaxes its requirement: it permits the center to re-delegate
to another principal, but disallows any further delegation. This time the lot designs an
NFA 741, as shown in Fig. 4l In comparison with v49, v4; permits an optional role
between a principal and Med.dis; this models a possible one-step re-delegation. O

One can proceed to define more constraints using logical connectives as below and
define their semantics as in the propositional logic.

con == (v,V) | (v,3) | (mcon) | (con A con) | (con V con) | (con = con)

We could also define a constraint like (—y1 V 72,V) so that a path is allowed by 7 if
allowed by ~;. Since regular languages are closed under the operations union, intersec-
tion, difference, and complement, there is a constraint (v, V) to the same effect.

Definition 9. Given a credential context C, a set I" of credential constraints, and a goal
D — A.r, we say C C C is a proving set of e; —» e if for all C' C C there is no

Compliance Checking for Usage-Constrained Credentials 299

. Prin(C) . Prin(C) ~ Role(C), e
Ydo - —>O—> Yd1: —>O U
Med.dis Med.dis
€ €
: Lot.dis 9 : Lot.dis 9
Role(C)\{Lot.dis} Role(C)\{Lot.dis}

Fig. 4. NFA ~,4 forbids re-delegation. NFA -4, allows an optional one-step re-delegation.

proof H' of e; — eg using C' such that H' is valid wrt all constraints in I". Type-3
compliance checking problem in the presence of constraints is to find all the proving
sets C1, ..., Cy. We denote this problem as (C,I', D — A.r).

5 ASP Representation

To solve the type-3 compliance checking problem in the presence of constraints, we
encode it in ASP. The use of ASP is motivated by, among others, its ability to return
all solutions to a problem. Intuitively, we view RT credentials as actions of adding
principals to roles’ member sets. For example, the application of a credential D — A.r
adds the principal D to A.r’s member set; another credential A.r — B.r’, if applied,
further makes D a member of B.r’". Therefore, a credential context is considered as a
set of actions that may be executed to grant principals role-memberships. Now, to de-
cide if a principal is a member of a role is to decide if there exists an action plan which
ultimately adds the principal to the role’s member set. The ASP encoding is parame-
terized on proof size. Given a proof H, define its size as size(H) = »_, o size(h),
where, assuming h = [eg, - - - , €,], size(h) = n. Given (C,I', D — A.r) and a proof
size parameter k, for any answer set that the ASP program returns, it corresponds to a
proving set with a proof H such that size(H) < k; on the other hand, for any proving
set C' with a proof H such that size(H) < k, then the program returns an answer set
corresponding to C.

6 Experimental Results

In this section, we evaluate the performance of our compliance checker and the over-
heads resulting from the support of usage-constraints on credentials. Our concerns lie
mainly in the computing time required to find all proving sets for a given policy. Ex-
periments were carried out on a Windows 7 laptop with Intel Core 2.66GHz i5-560M
processor and 4GB RAM. ASP programs were executed with the grounder gringo 3.0.3
and the solver clasp 2.0.30 In each test, the compliance checking is performed in a cre-
dential context of 50 RT'y credentials, i.e., |C| = 50. All results for a specific parameter
setting were averaged over 5 independent tests.

3 http://sourceforge.net/projects/potassco/

http://sourceforge.net/projects/potassco/

300 J. Hu et al.

600 T

T T T
L One proving set
580 U proving sets
& 960 [Two proving sets
E 540 [—— No proving sets - /
2 520 e -
= 500 Gy
[o) 2 /
S 480 /
T 460 AL
< 440 e
420 : ==
400 M | | | | ! ! !

0 2 4 6 8 10 12 14 16 18 20
Size of the union of all proving sets (U)

Fig. 5. The computing time as a function of the size of the union of all proving sets

Average time
(ms)

BAGIUINOININ000
SUICTIOIOUIOOT
[Sislslalslalslalsla]

5 Number of
proving sets

each proving set

Fig. 6. Computing time as a function of the number of proving sets and the size of each set

We conducted three groups of experiments. First, we evaluated the checker’s perfor-
mance with respect to the size of proving sets. We considered three cases: (i) the policy
had one proving set of size U, (ii) the policy had U proving sets of size one, (iii) the
policy had two proving sets of size ?f , where U is the size of the union of all proving
sets. These are the most interesting cases explored in literature [6411]]. We placed on
credentials 20 manually created constraints of types in [3]]; these constraints concerned
at least 80% of the credentials in C. We set k as 25; namely we only searched for proofs
of size smaller than 25. Fig. [5 shows the results. In all cases, it took the checker less
than 600 ms to find all proving sets. Besides, we also tested the cases when no proving
sets existed. To perform such tests, when we obtained the single proving set in cases of
(i), we included one more constraint to rule it out so that no such set existed. In all four
cases, the running time grew linearly.

Further we examined the computing time as a function of the number of proving
sets and the size of each proving set. Again we put 20 manually created constraints and
set k, the limit of proof size, as 25. Fig. l6l shows the results, which confirm that the
computing time grew linearly with respect to the number and the size of proving sets.

Similar experiments were conducted on CLOUSEAU in [6]]. Although our checker is
several times slower than CLOUSEAU, it responded within 850 ms in all previous tests.

Second, we examined the overheads incurred by supporting constraints; we varied
the number of constraints |I'|. In this experiment, we set & = 25. Initially, we had
|I"| = 0 and 10 proving sets each of size 15. Later, we incrementally added constraints.

Compliance Checking for Usage-Constrained Credentials 301

10

s ‘(i) The ‘number‘of proving sets‘ remaiHs A

5 —<— (ii) The number of proving sets decreases)

] 2

o £

£ 1 -

;ﬂ——) ek = : 4

g o 8 8 6 6

5]

>

<

01 Il Il Il Il Il Il Il Il Il

0 5 10 15 20 25 30 35 40

The number of constraints

Fig.7. Computing time as a function of the number of constraints. Below the data points of case
(ii) is labelled the number of proving sets in each case of |I'|.

35 T

e ()] sét size fr‘om 3 KE; 21 /t

5 30 [- (i) set size from 5 to 10 b —
IS —&— (iii) set size from 15 to 20 /i
o 25 2
Q /y
k) /
> 20
£ /
= 15 3
[})
j=2)
g 10 /22“{
[4
> o
< 5 a

N S

0 5 10 15 20 25 30 35 40 45
The proof size (k)

Fig. 8. Computing time as a function of the proof size parameter k

We considered two cases: (i) All proving sets remained, i.e., constraints did not invali-
date any of them; (ii) some sets were not valid wrt some added constraints. Recall that
a proof should be valid wrt every constraint in I'; hence, the ASP program encoded all
constraints in I". Fig.[Zlshows the results. In both cases, the checker performed well be-
fore |I'| grew to 30 and turned impractical afterwards. Comparing the times for |I"| = 0
and 0 < |I'] < 30, we note that constraints incurred overheads less than 1 second.
Finally, we evaluated the influence of proof size on performance by varying the pa-
rameter k. In this experiment, we had 20 constraints and 10 proving sets. We considered
three cases according to the size of proving sets: (i) the size ranged from 3 to 21, (ii)
the size ranged from 5 to 10, and (iii) the size ranged from 15 to 20. Fig. Bl shows
the results. We see that k had a heavy influence on performance. The indistinguishable
time difference between the three cases also implies that k£ played a major role in per-
formance. The checker responded within 3 seconds when k& = 30; but the performance
degenerated rapidly as k grew. This is in accordance with our ASP encoding, which is
parametric to k. We observed from practical proofs that their size seldom exceeds 30.

7 Conclusions

In this paper, we presented a definition of usage-constraints on credentials based on
NFAs (non-deterministic finite automaton). We illustrated by examples that the defini-
tion is able to express important constraints in practice. Based on an encoding in ASP

302 J. Hu et al.

(answer set programming), we proposed a compliance checker that is able to find all
minimal sets of credentials for a given policy; each such set not only constitutes a proof
of the policy but also uses the credentials in a way consistent with given constraints.
Experiment results showed the efficiency of our approach.

We assumed that compliance checking is performed in a localized credential con-
text. In practice, however, the context may be distributed. In that case, the problem is
more challenging. For one thing, constraints may be stored with credentials and thus be
distributed too. For another, we still need to search for multiple, if not all, proving sets
for a given policy. We plan to study the compliance checking problem under distributed
credential contexts in future work.

Acknowledgment. Khaled M. Khan, Yan Zhang and Yun Bai are supported by an
NPRP grant (NPRP 09-079-1-013) from the Qatar National Research Fund (QNRF).
Jinwei Hu is supported by CASED (www.cased.de). The statements made herein are
solely the responsibility of the authors. We also thank Dieter Gollmann for shepherding
the paper and the anonymous reviewers for their helpful comments.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)
2. Bauer, L., Garriss, S., Reiter, M.K.: Distributed proving in access-control systems. In: IEEE
Symposium on Security and Privacy, pp. 81-95 (2005)
3. Bauer, L., Jia, L., Sharma, D.: Constraining credential usage in logic-based access control.
In: CSF, pp. 154-168 (2010)
4. Becker, M.Y.: Information flow in credential systems. In: CSF, pp. 171-185 (2010)
5. Huth, M., Ryan, M.: Logic in Computer Science: modelling and reasoning about systems.
Cambridge University Press (2004)
6. Lee, A.J., Winslett, M.: Towards an efficient and language-agnostic compliance checker for
trust negotiation systems. In: ASIACCS, pp. 228-239 (2008)
7. Li, J., Li, N., Winsborough, W.H.: Automated trust negotiation using cryptographic creden-
tials. ACM Trans. Inf. Syst. Secur. 13(1) (2009)
8. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: IEEE Symposium on Security and Privacy, pp. 114-130 (2002)
9. Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H., Yu, L.:
Requirements for policy languages for trust negotiation. In: POLICY, pp. 68-79 (2002)
10. Sipser, M.: Introduction to the Theory of Computation (2005)
11. Smith, B., Seamons, K.E., Jones, M.D.: Responding to policies at runtime in trustbuilder. In:
POLICY, pp. 149-158 (2004)
12. Winsborough, W.H., Li, N.: Towards practical automated trust negotiation. In: POLICY, pp.
92-103 (2002)

A ASP Encoding

Since uppercase letters are usually taken as variables in ASP and lowercase letters as
constants, we use lowercase letters to denote principals in ASP programs. We translate

Compliance Checking for Usage-Constrained Credentials 303

a compliance checking problem (C,I,d — a.r) into an ASP program, denoted as
II((C,I'yd — a.r),k). An ASP program is a finite set of rules of the form

a - by, ,by,n0t by, -+ ,n0t by,

where 0 < m < n, a is either an atom or L, b; is an atom, and not denotes (default)
negation. We say that a rule is a fact if n = 0. For simplicity, we omit :- when writing
facts. Readers are referred to [[1]] for details.

II((C,I,d — a.r), k) consists of four parts: I1(C), II (apply), II(d - a.r, k), and
II(I"). Except I (apply), the sub-programs are parametric to problems. Program I7(C)
models each credential in C. Program IT(apply) states how credentials are applied.
Program II(d — a.r, k) tests whether a proof of size smaller than % exists. Program
I1(I") interprets the constraints in I" and ensures that proofs extracted from answer sets
are valid wrt the constraints. Program I7(C) follows the original semantics of RT [8]];
we omit its presentation here.

We first present I1(d — a.r, k). Fact @) below declares our goal as proving that
principal d can obtain a membership in a.r. Rule (3) says that we prove the goal at step
T if the goal holds at T'. Rule @) says that once the goal is proved at T it is proved
afterwards. Rule (@) requires that an answer set should contain the atom prove(k) (i.e.,
the membership is proved within & steps).

goal(m(d, r(a.r))). 2)

prove(T) :- hold(M,T), goal(M), step(T). 3)
prove(T + 1) :- step(T), T < k, prove(T). 4)
1 :- not prove(k). (%)

A term m(d, r(a.r)) denotes d’s membership in a.r. Expression r(a.r) is short for
a term r(a,r, p), where p is a special constant used in our ASP programs. The term
r(a,r, p) denotes a role a.r € NRole(C). Similar shorthands are used below.

We proceed to describe IT (apply) (i.e., how credentials are applied), as shown in
Fig.[0l At each step, some credentials are applicable while others are not. As stated in
rule (@), a credential is applicable if there is a principal ready to accept the membership
it offers. Rule (@) says that, a principal is ready when his memberships satisfy the cre-
dential’s condition and he is not forbidden from being so. Rules (8) and (@) list the two
cases of a principal being not ready: one is when the principal already owns the mem-
bership that the credential offers; the other is when another principal is ready. Rules
(I0) and (II) are two auxiliary rules defining the satisfiability of conditions.

At each step, one and only one membership is granted; as a result, if more than
one membership can be granted at a step, only one of them succeeds and others are
blocked. In addition, if the goal d — a.r has been reached, no more membership is
needed. Rules (I2)-(I4) capture this idea. Specifically, rule (I2) says that, when the
goal has not yet been reached, a credential is applied if not blocked. A credential is
blocked in event of another credential being applied at the same time (rule (13)) or a
linked role membership being derived (rule (I4). Rule (I4) also implies that linked role
memberships take priority. Finally, rule (I3) says that only applicable credentials may
be applied; otherwise there arises a conflict.

304 J. Hu et al.

apbl(C,T) - rdy(X,C,T), cred(C), step(T). (6)
rdy(X,C,T) :- not not rdy(X,C,T), sat(cond(C, X),T). (@)
not rdy(X,C,T) :- effect(C, m(X, R)), hold(m(X, R),T). 8)
not rdy(X,C,T) - rdy(Y,C,T),X #Y, prin(X),prm(Y). 9)
sat(D,T) :- not not sat(D,T),in(, D), step(T). (10)

not sat(D,T) :- in(M,D),not hold(M,T), step(T). (11)
apl(C,T) :- cred(C), step(T),not goal(T"),not bik(C,T). (12)
blk(C,T) :- cred(C;C"), step(T), apl(C',T),C # C'. (13)
bik(C,T) :- linked(,T),cred(C). (14)

L - cred(C), step(T), apl(C,T),not apbl(C,T). (15)
obt(m(X,R),m(X,R), T +1) :- rdy(X,C,T), effect(C, m(X, R)), in(m(X,R),

cond(C, X)), apl(C,T),T < k — 1. (16)
obt(M', M, T 4 1) :- linked(M',M,T),T < k — 1. (17)
hold(M,T) :- obt(,M,T"),T" < T,step(T;T"). (18)
obt(m(X, r(X)), m(X,r(X)),1) = prin(X). 19)
need(M) :- goal(M). (20)
need(M) :- need(M'), obt(M,M’',). (21)
need(m(Y,r(Z.N))) :- obt(m(X,r(Y.N")), m(X,r(Z.N.N")),T),

need(m(X,r(Y.N"));m(X,r(Z.N.N"))). (22
L :- not need(M), obt(,M,T),T > 1. (23)

Fig. 9. Rules modelling how credentials are applied

A principal obtains a role membership when a credential is applied (rule (I8)) or
when a linked role membership is derived (rule (7). A fact obt(m1, ma, t) means that,
following m in a path, membership my is obtained at step ¢; note that m; and mo are
memberships of the same principal. The obtained memberships remain afterwards (rule
(18)). Rule (TI9) declares facts that a principal d is a member of r(d) at the beginning.

The rest of the encoding ensures that the proof is minimal. To retain only necessary
memberships, we traverse back from the goal. As stated in rule 20), the goal is needed.
Moreover, a membership next to a needed membership is necessary (rule (2I))). Rule
@2 considers the case of linked role memberships: if y’s membership in z.n helps
derive x’s membership in z.n.n’ from x’s membership in y.n’, then y’s membership in
z.n is necessary provided that the latter two are also necessary. Rule (23)) says that all
derived memberships should be necessary; otherwise there arises a conflict.

Finally, we present the program I1(I"). For each con € I', we have a program
II(con). Hence, IT(I") = U,opepr(II(con)). Here we only present the representa-
tion of a constraint (7, 3); other types of constraints can be likewise encoded. As-
sume that the credential context is C and that L(N) = L(v,C), i.e., N recognizes
the language L(v,C). We work with N. First we denote the NFA N in ASP. Sup-
pose N = (S, X,0,s0, F); we use a fact start(sg) to denote the start state s, a fact

Compliance Checking for Usage-Constrained Credentials 305

read(m (X, r(X)),S) - start(so), tran(so, X, S), need(m (X, r(X))). (24)
read(m(X, R),S) :- read(m(X,R),S"), tran(S', R, S),

obt(m(X,R"), m(X,R),T). (25)

read(M, S) - read(M,S"), tran(S', ¢, S). (26)

final(M) :- read(M,S), accept(S). 27

exist :- final(M), last(M). (28)

1 :- not exist. (29)

last(M) :- not not last(M), obt(, M,). (30)

not last(m(X,R)) - obt(m(X,R),m(X,R"),),R# R (€)))

Fig. 10. Rules encoding (v, 3)

accept(sy) to denote an accept state sy € F, and a fact tran(si, e, s2) to denote a
transition s € §(s1, €) where e € Prin(C) U Role(C) U {¢}.

Next we test if a role path is accepted by N. Recall that a path is seen as a se-
quence of principal-role pairs. For example, a path [ey, e;] corresponds to a sequence
[eo : €, € : e1]. In our ASP programs, we do not encode the path, but the sequence with
atoms of the form obt(m (e, r(eg)), m(eg, 7(€1)), t), where m(ep, r(e1)) denotes the
principal-role pair ey : e;. Therefore, we verify the sequence.

In Fig.[I0l rules @4)-@7) simulate N reading an input string and making state tran-
sitions accordingly. Rule (24) says, given a sequence [e : e, - - - | as input, N starts in
its start state s and, if there is a transition s € tran(so, ep), proceeds to another state s.
In a state s’, N proceeds to another state s, depending on what it reads from the input.
Suppose that N reaches s’ after reading e : e; and that the next symbol in a sequence is
eo : e;. In this case, N transits to another state s if there is a transition s € tran(s’, e;).
Rule 23) captures this idea; there, an atom read(m(ey, r(e;)), s) means that N is in
state s after reading e : e;. Rule (26) interprets the transition e as usual: in a state s’, N
moves to a state s reachable from s’ via €. This reading and transiting process goes on
until the input reaches its end or no transition is available. Rule (27) marks a member-
ship final if an accept state is reached after IV reads it. If the final membership is also
the last one in a sequence, IV accepts this sequence; namely, there exists a sequence
accepted by N, as stated in rule (28). As required by the constraint, such a sequence
must exist; hence rule (29) excludes answer sets where ezist is not true. Rules (30) and
(31D define the last membership in a sequence.

	Compliance Checking for Usage-Constrained
Credentials in Trust Negotiation Systems
	Introduction
	Background
	Related Work
	Usage-Constraints on Credentials
	Defining Proofs
	Defining Constraints

	ASP Representation
	Experimental Results
	Conclusions
	References

