A Formal Language for XML Authorisations
Based on Answer Set Programming and
Temporal Interval Logic Constraints

Sean Policarpio and Yan Zhang

Intelligent Systems Laboratory
School of Computing and Mathematics
University of Western Sydney
Penrith South DC, NSW 1797, Australia
{spolicar, yan}@scm.uws.edu.au

Abstract. The Extensible Markup Language is susceptible to security
breaches because it does not incorporate methods to protect the infor-
mation it encodes. Our work presented in this paper focuses on the devel-
opment of a formal language which can provide role-based access control
to information stored in XML formatted documents. Our language has
the capacity to reason whether access to an XML document should be
allowed. The language, A*™ (™) allows for the specification of authori-
sations on XML documents and distinguishes itself from other research
with the inclusion of temporal interval reasoning and the XPath query
language.

Keywords: Al in computer security, logic programming, knowledge rep-
resentation and reasoning, access control, authorisations, XML databases
and security

1 Introduction

The Extensible Markup Language [WWW Consortium, 2008] has steadily be-
come a common encoding format for software applications. It is a popular and
reliable formatting structure for the storage, presentation, and communication
of data over the Internet. Many applications use XML to encode important, and
in many cases, private information. Because XML does not have an inherent
security model as part of its specification there is a necessity for methods in
which access to XML documents can be controlled [WWW Consortium, 2008].

In this paper, we present the development of a formal language that will
provide access control to XML documents. A7 (T) is used to define a security
policy base capable of specifying all the access rights that subjects in the scope
of an XML environment should have or be denied.

The formal language has particular aspects that differ from most other im-
plementations. First, it incorporates the XML query language, XPath, into it for
the purpose of defining which documents (or elements within a document) we

would like to restrict access to [WWW Consortium, 1999]. An XPath is a string
representation of traversing through an XML document to return an element
within the document. For example, the following is an XPath that follows the
tree-like structure of a document to return the element author:

/library/books/book/author

XPath also includes other interesting features. These include, but are not
limited to, XPath predicates and wildcards which allow for broader and much
more expressive XPath queries [WWW Counsortium, 1999]. As opposed to static
XPath’s which are only meant to return specific nodes within XML documents,
we can use these features to write dynamic paths that can represent zero to
many elements within the database of documents.

Secondly, the formal language uses the Role-based Access Control model
[Ferraiolo et al., 1995] as a basis for the structure of authorisations to subjects.
This primarily means rather than applying authorisations directly to subjects,
we create roles that can have one or more specified authorisations. This gives us
better control over which subjects have what authorisations and is the foremost
reason this model is chosen over others (ie. Discretionary and Mandatory Access
Control models) [Ferraiolo et al., 1995]. Consequently, it also allows us to easily
incorporate the principles of separation of duty and conflict resolution directly
into the language [Ferraiolo et al., 1995].

Finally, we incorporate temporal interval logic reasoning into the formal lan-
guage. Temporal intervals are representative of specific sections of quantitative
time. Temporal interval logic is the study of relating these various points and
sections of time with each other. We use temporal intervals in our formal lan-
guage for the purpose of specifying when authorisations to XML documents
should be applied. We also use temporal logic to reason upon relationships that
authorisations could have with each other with respect to time.

Temporal logic is a well studied field and many models or methods have been
proposed in the last decades. For our purposes, we choose to use Allen’s Temporal
Interval Relationship algebra [Allen, 1984]. Allen’s temporal relationships cover
all possible ways in which intervals can relate to one another (such as before,
meets, equal, etc.) and are incorporated into the syntax of our formal language.
However, it should be noted that what makes Allen’s temporal interval logic
differ from others, and what makes it appealing for our work, is that it forgoes
relating intervals with specific quantities of time. Simply, Allen’s logic relates
intervals without the need to specify or know exactly when an interval takes
place. This is possible due to the fact that when a temporal interval takes place
is implied by its relationship(s) with all other intervals. Therefore, for an interval
to exist and be relevant, it only need have at least one of Allen’s relationships
with at least one other interval.

The semantics of our formal language is provided through its translation
into a logic program. Answer Set Programming (ASP) is a relatively new form
of programming in the field of knowledge representation and reasoning. It is a
form of declarative programming for search problems involving nonmonotonic

reasoning and is based on Gelfond’s and Lifschitz’s stable model semantics of
logic programming [Baral, 2003,Gelfond and Lifschitz, 1988, Lifschitz, 2008].

ASP is used to represent known information which can be reasoned upon to
produce further knowledge or answers based on the validity of said information.
This is possible because the initial information can be nondeterministically writ-
ten with variableness so that different outputs can be computed from it. Simply,
we can describe a scenario with an understanding that various conclusions or
answer sets are achievable within it. We can then query under what conditions
those conclusions can be met.

Access control specific to XML documents is an issue still sought out in the
field of computer security. There have been different approaches to the prob-
lem. One of those approaches involves the principle of the fine-grained access
control model [Damiani et al., 2002]. This model takes an XML document and
designates access rights on each element. Implementations of rule propagation,
positive and negative authorisations, and conflict resolution exist in the model.
Through their algorithm, a source XML document can be processed by remov-
ing all objects of negative authorisation and returning a document with only
elements that are allowed to be viewed [Damiani et al., 2002]. In most cases,
this is the general framework for XML access control. However, we believe that
an approach that closely resembles the role-based access control model is pre-
ferred.

In [Bertino et al., 2000,Bertino et al., 2004], they discussed their own imple-
mentation of an access control system for XML documents. Their work does
follow the role-based access control model to a certain extent (we did not see
methods for role propagation or separation of duty). Subjects are granted au-
thorisation through credentials and objects are specified through XPath’s. The
implementation includes features such as the propagation of policy rules and
conflict resolution. Bertino et al. include in their formalisation temporal con-
straints based on their previous work in [Bertino et al., 1998]. However, their
approach seems restricted in terms of handling XPath expressions in authorisa-
tion reasoning.

Besides Bertino et al., only a small group of other researchers have pro-
duced research utilising logic programming for XML policy base descriptions
[Anutariya et al., 2003,Gabillon, 2005]. To the best of our knowledge, a logic-
based formal language for XML authorisations has not yet been developed with
the inclusion of temporal constraints, the complete role-based access control
model, and nonmonotonic reasoning capabilities of answer set programming.

The aim of this paper is to introduce the application and expressive power of
our formal language of authorisation for XML documents. The rest of the paper
is organised as follows. Section 2 presents the formal syntax of our language
AT llustrates its expressive power through various XML access control
scenarios, and defines queries on XML policy bases. Section 3 describes the
semantics of language A*™(T) based on its translation into a logic program
under answer set semantics. In section 4, a case study is presented to show
the application of A*™T) in XML authorisation specification and reasoning.

<rule> ::
<deny-rule> ::
<head-statement> ::

<body-statements> ::
<body-statement> ::

<relationship-statement> ::
< grant-statement> ::

<relationship-atom> ::

<subject> ::
<role-name> :

<temporal-interval> ::=

<auth-statement> ::
<query-statement> ::

<role-statement> ::
<role-atom> :
<sign> :
<xpath-statement> :
<document-name> :
<xpath-expressions> :
<xpath-node> :
<node-name> :

<xpath-predicate> ::=

<child-node-name> ::
<attribute-name> :
<predicate-relationship> :

<privilege> ::=

<head-statement> [if [<body-statements>] [with absence
<body-statements> |]
admin will deny [if [<body-statements>] [with absence
<body-statements> |]
<relationship-statement> | <grant-statement> |
<query-statement> | <auth-statement> |
<role-statement >
<body-statement> | <body-statement>, <body-statements>
<relationship-statement> | <grant-statement> |
<query-statement> | <auth-statement> |
<role-statement >
admin says <relationship-atom>
admin grants <role-name> to <subject> during
<temporal-interval >
below(<role-name>, <role-name>) |
separate(<role-name>, <role-name>) |
during(<temporal-interval>, <temporal-interval>) |
starts(<temporal-interval>, <temporal-interval>) |
finishes(<temporal-interval>, <temporal-interval>) |
before(<temporal-interval>, <temporal-interval>) |
overlap(<temporal-interval>, <temporal-interval>) |
meets(<temporal-interval>, <temporal-interval>) |
equal(<temporal-interval>, <temporal-interval>)
<subject-constant> | <subject-variable>
<role-name-constant> | <role-name-variable>
<temporal-interval-constant> | <temporal-interval-variable>
admin says that <subject> can use the <role-atom>
during <temporal-interval>
admin asks does <subject> have <privilege> rights to <xpath-statement>
during <temporal-interval>
admin creates <role-atom>
role(<role-name>, <sign>, <xpath-statement>, <privilege>)
+1-
in <document-name>, return <xpath-expressions>
<document-name-constant> | <document-name-variable>
<xpath-node> | <xpath-node>, <xpath-expressions>
[/] <node-name> [<xpath-predicate>] /
<node-name-constant> | <node-name-variable> | * | //
<child-node-name> <predicate-relationship> <variable-value> |
<attribute-name> <predicate-relationship> <variable-value>
<child-node-name-constant> | <child-node-name-variable>
<attribute-name-constant> | <attribute-name-variable>
<|>1=
read | write

Table 1. BNF for A*™(T)

Finally, section 5 briefly introduces an experimental software implementation of
A*mUT) before concluding the paper with some remarks.

2 Formal Language A*™(T)

Our language, A*™(T) consists of a finite set of predicate statements. These
statements are used to create various rules in a security policy base. We present
the syntax of our language in Backus-Naur Form (Table 1) with a definition of

each element.

A rule is a conditional statement that allows the policy writer to specify a
predicate statement to be validated based on the truth of other predicates. Rules
include nonmonotonic reasoning derived through the absence of predicates. Our

language also includes deny-rule statements which are for specifying conditional
states that should never be allowed.

The head-statement from a rule consists of the predicate statements that will
be validated true if the rules conditions are true as well. The head-statement itself
can either be one of five statements; a relationship-statement, grant-statement,
query-statement, auth-statement, or role-statement.

The body-statement(s) of a rule are the conditions that are reasoned upon to
validate the head-statement. These are also made up of the same five statements
used in the head-statement.

A relationship-statement confirms that some relationship between two ob-
jects in the security policy base are true. These relationships are represented
by those predicate symbols found under the relationship-atom. There are a few
relationship-atoms available that can be used in relationship-statements. Rela-
tionships for example could be hierarchical (below), mutually exclusive (separate),
or be based on Allen’s Temporal Interval relationships (during, starts, meets, etc.)
[Allen, 1984].

The role-statement creates an access control role. The role-atom used in
the statement includes a role-name, a sign which represents either positive or
negative access to the object in question, an zpath-statement to identify an XML
object, and finally the privilege that can be performed on the object.

An zpath-statement in A*™T) is a formal representation of an XPath ex-
pression. These expressions include the primary features of the syntax of XPath,
such as single node queries, tree-like structured queries, wildcard queries, and
predicate filters on nodes and attributes [WWW Consortium, 1999].

Grant-statements serve the purpose of assigning an access control role to a
subject (a person requiring authorisation). This statement also includes a tem-
poral argument to specify when the roles authorisation should be applied.

A query-statement is used when a query for subject authorisation is made.
It represents the policy writers attempt to discover if a particular subject can
perform the authorisation rights of a role at a specific temporal-interval.

Auth-statements specify that a subject who has been previously granted a
role now has authorisation to access an object. We create rules in the policy
base that will validate these statements by checking if a subject has positive
authorisation to a role and that there are no conflicting rules. If these are true,
then an auth-statement is created.

A Policy Base, which defines all the rights which subjects have over XML
documents, is made up of rule statements and other facts about the access
controlled environment. Rules, which can be written with variable arguments, are
reasoned upon to determine when a subject is allowed to access a particular XML
document (specified with an XPath expression). Facts are additional information
such as <relationship-statements> that define role or temporal interval relations
or <grant-statements> which specify that a subject be granted membership to
a role. Facts aid in the reasoning of rules. We define a policy base as follows:

Definition 1. A policy base D4 consists of finite facts and rules defining the
access control rights that subjects have over XML objects in a database. Sub-

jects, roles, XML objects, temporal intervals and all the relationships that ezist
between them exist within a domain and can be represented in D4 using the
formal language A*™1T),

2.1 Expression Examples with A*™(T)

In this section, we demonstrate utilising our formal language to express some
common relationships and rules for a security policy base. In all cases, the
AT expressions have a similar natural language meaning.

Creating a temporal interval relationship The policy base writer can specify that
the interval morning_tea is before afternoon_tea and that the interval play_time

meets nap_time:

admin says before(morning_tea, afternoon_tea).
admin says meets(play_time, nap_time).

XML elements and attributes Using the xpath-statement, an arbitrary element
named cleaning_log with the child element cleaning_area from the document
“database.xml” can be represented like this:

in database.xml, return cleaning_log/cleaning_area

The policy writer can also specify more in the XPath by using predicates
or wildcards. This zpath-statement uses a wildcard (*) to specify a single step
between the elements cleaning_information and cleaning_log. The policy writer
also uses a predicate expression to filter cleaning_area’s that have the attribute
type equal to office.

in database.xml, return /janitor_logs/
cleaning_information/* /cleaning_log/cleaning_area[@type="office"]

Role Creation, Role Relationships, and Granting Authorisations The policy writer
can create the janitor role. This role is allowed to read the element specified in
our XPath from the previous example.

admin creates role(janitor, +, in database.xml, return /janitor_logs/
cleaning_information/* /cleaning_log/cleaning_area[@type="office”], read).

The policy writer can specify relationship statements between roles. They can
state that the role staff is below the role manager, or in other words, is a child
role, and that they also be mutually exclusive by specifying that they be separate.

admin says below(staff, manager).

admin says separate(staff, manager).

The policy writer can add a subject to a role’s membership. For example,
they can add the subject tyler to the role janitor. He will be able to access this
role only during the afternoon temporal interval.

admin grants janitor to tyler during afternoon.

Here, the policy writer creates a complex rule stating that if any subject is a
member of the role janitor during any time, then they should also be a member

of the role window_washers during the same interval. The interval must also finish
at the same time as maintenance_time. They add the condition that the subject
also not be a member of the electrician role.
admin grants window_washer to SubX during TimeY

if admin grants janitor to SubX during TimeY,

admin says finishes(TimeY, maintenance,time),

with absence admin grants electrician to SubX during TimeZ.

The deny-rule is useful for specifying rules where the validity of the body-
statements are not desired. A deny-rule can be written to indicate that patrick
should never be a member of the role janitor during any interval.

admin will deny if admin grants janitor to patrick during TimeY.

Query Statements The policy writer can query if a subject has the privilege to
access an XML node(s) at a specific time. For example, they can check if joel
can read /a/b/c during morning.

admin asks does joel have read rights to in example.xml, return /a/b/c during morning.

We have demonstrated some of the general expressiveness of A*"(T) How-
ever, we have purposely only shown how to specify XML objects, roles, and
subject membership to those roles. We have not explained how we know if or
when a subject is allowed to perform the privileges given for a role. To do this,
we must reason upon the policy base with a variety of rules. We discuss these
rules in the next section.

2.2 Producing Authorisations with the XML Policy Base

With a security policy base D4 written in A*™HT) it is possible to find which

subjects have authorisations to what objects based on the roles they have been

granted membership to. To do this, we reason upon statements that have been

written in the policy base. The subject authorisations are found with a rule we

refer to as the authorisation rule.

admin says that SUBJECT can use role(ROLE-NAME, +, XPATH, PRIVILEGE) during INTERVAL
if admin grants ROLE-NAME to SUBJECT during INTERVAL,

admin creates role(ROLE-NAME, +, XPATH, PRIVILEGE),

with absence role(ROLE-NAME, -, XPATH, PRIVILEGE)

This rule is written to pertain to all grant-statements. It ensures that a role
be positively authorised for use by a subject only if it does not conflict with a
possible negative role with the same privileges and temporal interval (conflict
resolution) [Ferraiolo et al., 1995]. If this rule produces an auth-statement, that
is the indication that the subject in question does in fact have authorisation
based on those specified in the role-statement.

Other defined rules like this applying to many aspects of our formal language
must also be reasoned upon before authorisation is given to a subject. We refer
to these as language rules within A% (T) They are discussed in more depth in
the formal semantics of our language and are defined in two groups:

— Role-based Access Control Rules are included to ensure that features of the
model are present (ie. separation of duty, conflict resolution, role propaga-
tion) and that authorisations are generated when querying the policy base
(ie. the authorisation rule).

— Temporal Interval Relationship Reasoning Rules allow for defined temporal
intervals to adhere to the relationships defined in Allen’s work [Allen, 1984].

By using A7) to define a security policy base, we now have a determinable
way to reason who has authorisation to what XML objects based on facts about
subject privileges. However, to produce these authorisations and to also prove
that our policy base written in A*™/T) is satisfiable, we need a method to
compute a result. To do this, we provide the semantics of our language in the
form of an answer set program.

3 Semantics

We chose Answer Set Programming as the basis for our semantics because it pro-
vides the reasoning capabilities to compute the authorisations defined using our
formal language. If properly translated, we can use an ASP solver (such as smod-
els) to find which authorisations will be validated true [Niemel4 et al., 2000].
What we want to produce is an answer set that will have the same results as
those produced from our formal language A*™/T) We first present the alphabet
of our ASP based language App and then its formal semantics.

3.1 The Language Alphabet A p

Entities Subjects, temporal intervals, role names, role properties, XPath’s, and
XPath properties make up the types of entities allowed in the language. These
can either be constant or variable entities, distinguished by a lowercase or up-
percase first letter respectively.

Function symbols

— role(role-name, sign, isXPath(), priv), where role-name is the name of this
role, sign is a + or — depending on if the role is allowing or disallowing
a privilege, isXPath is an xpath predicate representing an element(s) from
an XML document, and priv is the privilege that can be performed on the
object (ie. read or write).

— node(name, id, level, doc), represents a node in an XML document, where
name is the name of that node (element), id is a distinct key in the docu-
ment, level represents its hierarchical placement, and doc the document it
originates from. We label each node with an ID and level for the purpose
of distinguishing individual nodes. The reasoning behind this is based on
various methods to do with query rewriting. This concept is presently be-
yond the scope of our work, however, we do direct you to their purposes in
[Almendros-Jiménez et al., 2008,di Vimercati et al., 2005,Fan et al., 2004].

— xpred(axis, query), represents an XPath predicate, where axis is the location
of the node to apply the predicate query on.

Predicate symbols The first set of symbols are used for representing relationships

between roles and temporal intervals. Their definitions are taken directly from
Amml(T).

below(role-nameo, role-namej) before(tempinty, tempintip)
separate(role-namey, role-namej)
during(tempinta, tempinti) . .
starts(tempinta, tempinti) meets (tempints, tempint;)
finishes(tempinty, tempintg) equal (tempinty, tempinti)

overlap(tempints, tempinti)

This next set of symbols is used for defining and querying authorisations in
the policy base and are also similar to their A*™/T) equivalents.

grant (subject, role-name, tempint)

query(subject, isXPath(), priv, tempint)

auth(subject, isXPath(), priv, tempint)

A new predicate symbol is introduced in Ay p for conflict resolution reasoning
on subject authorisations.

— exist neg(subject, xpath(), priv, tempint) states that at least one negative
grant for a subject exists.

And finally, four predicates are also introduced for providing relationships
between XML nodes.

— isXPath(node(), xpred()), represents an XPath, consisting of a node() and
xpred().

— isNode(node()), indicates that the node() function exists.

— isParent(nodes(), node;()), means nodes is the parent or is hierarchically
above node;, where both are node functions.

— isLinked(nodes (), node; ()), means nodes can be reached directly (is descended)
from node;, where both are node functions.

— isAttr(attr_name, node()), means attr_name is an XML attribute of the node
function

In most cases, with an understanding of A*"(T) the transformations and
meanings of symbols and rules from Ay p are self explanatory (see Table 2).

AzmiT) ‘ALP

admin says below(doctor, admin_doctor). |below(doctor, admin_doctor).

admin says meets(open_shop, close_shop). |meets(open_shop, close_shop).

admin grants RoleX to SubY during TimeZ.|grant (SubY, RoleX, TimeZ).

Table 2. Transformation Examples

3.2 Formal Definitions

We define the semantics of our formal language by translating A*™/T) into an
answer set program. We refer to this translation as Trans. A policy base, D 4, is
a finite set of rules and/or deny-rules, 1, written in A*™ ™) as specified in Table
1. The generic rules, or language rules, for the same policy base, D 4, are a finite
set of statements, «, written in A=™HT)

« contains statements to provide:

— conflict resolution,

— separation of duty,

— role propagation,

— temporal interval relationship reasoning, and
— authorisation reasoning

Definition 2. Let Ds be a policy base. We define Trans(Da) to be a logic
program translated from D 4 as follows:

1. for each rule or deny-rule, 1, in Da, Trans(y) is in Trans(Da)
2. for each statement « in D4, Trans(a) is in Trans(Dy)

A translated rule or deny-rule, Trans(t)), has the same form as those de-
fined in Gelfond et al’s Stable Model Semantics and answer set programming
[Baral, 2003,Gelfond and Lifschitz, 1988]. A translated rule has the following
form:

Trans (head-statement) <

Trans (body-statement) j41,...,

Trans (body-statement), ,

not Trans(body-statements) ,41,...,

not Trans(body-statements),.

A translated deny-rule has the same form except for the dismissal of the
head-statement.

The conflict resolution rules in « are located in the authorisation rule (Section
2.2). In T'rans(a), conflict resolution rules are transformed into a new rule that
checks if a subject has at least one negative grant for a role. We use this to reason
if a conflict with a positive grant is possible. In Ay p, exist neg was introduced
for this purpose. The translated rule is as follows:
exist_neg(S, isXPath(node(N, I, L, D), xpred(A, Q)), P, T) «

grant(S, R, T),

role(R, -, isXPath(node(N, I, L, D),

xpred(A, Q)), P).

Separation of duty in « is translated with a simple deny rule:
< grant(S, Ri, T1), grant(S, Rz, T2), separate(R2, Ri).

Role propagation in « is also translated similarly in Trans(a) with two
generic rules. The original rules were (1.) to do with transitivity between roles
and (2.) for propagation of role properties. Their translation is as follows:

1. below(Ri, R3) < below(Ri, Rz), below(Rz, R3).

10

2. role(Ry, Si, isXPath(node(N, I, L, D), xpred(4, Q)), P) +
below(Ry, Ra), role(Ra, Si,
isXPath(node(N, I, L, D), xpred(A, Q)), P)

« contains numerous rules that pertain to temporal interval relationship rea-
soning. Again, many of these rules are transformed from A*™(T) to App triv-
ially. We show some of these rules from Trans(«a):

Temporal Interval Containment Rule:
grant(S, R, T2)

grant(S, R, T1), during(T2, Ti1).

Implicit Temporal Interval Relationships:
during(Tg, T1) < starts(T2, Ti).

during(T2, T1) < finishes(T2, T1).

before(Ty, T1) < meets(Tg, T1).

Temporal Interval Transitive Relationships:
before(T).73) « before(T1,T2), before(Ts,T3).
during(77.73) < during(74,7%), during(T>,73).
starts(71.73) <« starts(T1,T2), starts(7n,73).
finishes(77.73) < finishes(77,7%), finishes(Th,73).
equal(T71.73) < equal(7y,7%2), equal(ln,T3).
Temporal Interval Bounded Rule:

during(T4, T1) <«

starts(T2, T1), finishes(T3, T1),

before(T2, T4), before(Ty, T3).
Classical Negated Temporal Interval Rules:

As part of our semantics, we have also included classical negation in some
aspects of the language. We use it in temporal interval reasoning for finding
inconsistencies in the relationships defined in the policy base. For example, it is
understood that if the predicate during(A, B) is true, then before(A, B) can not
exist. The following rules are included to find this and any similar violations.
We use the — symbol to indicate classical negation of predicates.

—before(713.77) < during(7>,77).

—overlap(72.77) < during(T»,7%).

—meets(712.71) < during(7»,T1).
—equal(72.71) < during(7h,71).
—during(7>.71) < before(T>,T71).

—overlap(72.71) < before(T>,71).

—equal(71>2.71) < before(T»,T1).

—during(7%.71) < overlap(T»,T1).
—before(7>.71) < overlap(7s,71).

—meets(72.71) < overlap(7n,T7).
ﬂequal(Tg.Tl) — overlap(Tg,Tl).
—during(7%.71) < meets(T3,T1).
—overlap(72.71) < meets(72,71).
—equal(72.71) < meets(7n,77).

—during(7%.71) < equal(73,T71).
—before(1».71) <« equal(7y,T1).
—overlap(72.71) < equal(7z,77).
—meets(72.71) < equal(7s,771).

We did not define rules for starts and finishes as they will have been already
implicitly included under the predicate during. We can use a deny-rule to ensure
that these rules are enforced. The general rule would be like this:
< —during(72.71), during(T»,77).

A deny-rule similar to this would be written for each temporal relationship
predicate.

The Temporal Interval Equality Rule:

11

This rule simply ensures that any relationships for an interval that is equal
to another will be repeated. For example, the rule would be written like the
following for the predicate symbol during, and just like the classical negated
rules, one would be written for every predicate in App.
during(73,72) < equal(Ty,T%), during(73,T71).

Finally, the authorisation rule (Section 2.3) in A*™(T) is translated in Trans(«)
as follows:

auth(S, isXPath(node(N, I, L, D), xpred(A, Q)), P, T) <«
grant(S, R, T),
role(R, +, isXPath(node(N, I, L, D),
xpred(A, Q)), P),
not exist_neg(S, isXPath(node(N, I, L, D),
xpred(A, Q), P, T).
A query on Dy, ¢, written in A% T) is a query statement, as specified in

Table 1, and its translation, Trans(¢), is a query predicate from Ay p.

Definition 3. Let ¢ be a query on a policy base D4 written in A1) We
define Trans(¢) as the translation of the query statement from A7) to App.

An answer from a query ¢ is denoted as m and has the form of an authorisa-
tion statement, specified in Table 1, while its translation, Trans(r), is an auth
predicate from Ay p.

Definition 4. Let 7 be the answer from a query ¢ on policy base D 4 written in
A= D) We define Trans(r) as the translation of the authorisation statement
from AzmUT) 4o A;p.

We define the relationship between our formal language and its translation
into the semantics of answer set programming.

Definition 5. Let D be a policy base, ¢ a query on it, and 7 the answer from
that query. We say D entails w, or D4 |= 7, iff for every answer set, S, of the
logic program Trans(D) with the query Trans(¢), Trans(r) is in S.

Dy E 7 iff Trans(D4) | Trans(mw)

4 A Case Study

We will demonstrate the creation of a security policy for a scenario requiring
access control to XML documents.

Scenario Description A hospital requires the implementation of an access control
model to protect sensitive information it stores in a number of XML documents
(see Figure 1). We will discuss roles created for four particular subjects at the
hospital.

12

Roles for Hospital

administration

support

admin nurse

maintenance

¢ doctor_patients
cleaning_schedule
doctor_logs
doctor_shift_schedule

nurse_shift_schedule
staff_contact_info

nurse_logs

doctor db

support_staff_db

board_db

<

XML Database

volunteer_timesheet

financial_info

XML Document Layout

Fig. 1. Hospital Roles/XML Database Layout

Hospital Roles An administration role in the hospital will have access to read
two nodes named board_minutes and financial_info from a document named
board_db. Roles that are below the administration role will also inherit this rule.
For example, a role named board_member will inherit these privileges. However,
we will also include within the board_member role the privilege to write to the
document.

The role admin_doctor will inherit its initial authorisations from board_member.
Admin_doctor will be able to write to the board_minutes section of the board_db
document. however, we will not allow them to write to the financial_info docu-
ment.

In our policy base, we will allow the admin_doctor role to read and write
to a few other documents. They will have access to read a staff_contact_info
document and both read and write to the patient_db and doctor_db documents.

Finally, to demonstrate separation of duty, we will make the admin_doctor
role mutually exclusive with the administration and board-member roles.

Table 3 shows these roles written in A*"(T),

Policy Base Subjects and Rules Our first subject, Paul, will be granted member-
ship to the administration role. Next, John will be a board_member and receive

13

Administration

admin creates role(administration, +, in board_db, return /, read).

admin says below(board_member, administration).

admin creates role(board_member, +, in board_db, return /, write).

Administrative doctors

admin says below(admin_doctor, board_member).

admin says separate(admin_doctor, board_member).

admin says separate(admin_doctor, administration).

admin creates role(admin_doctor, -, in board_db, return /financial_info, write).

admin creates role(admin_doctor, +, in staff_contact_info, return /, read).

admin creates role(admin_doctor, +, in patient.db, return /, read).

admin creates role(admin_doctor, +, in patient_db, return /, write).

admin creates role(admin_doctor, +, in doctor_db, return /, read).

admin creates role(admin_doctor, +, in doctor_db, return /, write).
Table 3. Hospital Roles

the same privileges as Paul in addition with being able to write to the board_db
XML document. Both subjects will be granted their roles during the interval
wednesday.

Lucy and Rita will both be members of the admin_doctor role. Lucy will
utilize the privileges of the admin_doctor role for a single specific interval while
Rita must be active in that same role at an interval directly following Lucy’s.
We will grant Lucy the admin_doctor role during monday.

The XML access control rules in which these subjects must abide to in the
hospital are as follows. First, we will state relationships for some intervals like
so:
admin says meets(monday, tuesday).
admin says meets(tuesday, wednesday).
admin says starts(midWeekMeeting, wednesday).

With these statements, the intervals monday, tuesday, wednesday and mid-
WeekMeeting will be created. We can then make rules to specify during what
temporal intervals our subjects should be granted membership to their roles.

admin grants administration to paul during wednesday.
admin grants board_member to john during wednesday.
admin grants admin_doctor to lucy during monday.
admin grants admin_doctor to rita during INT_J
if admin grants admin_doctor to lucy during INT_I,
admin says meets(INT_I, INT_J).

The last rule states that Rita be granted the role admin_doctor during a
variable interval that must proceed Lucy’s membership of the same role.

4.1 Logic Program Translation

With a completed policy base, we can translate all of the A*"(T) rules into an
A p answer set program. For our case study, we will demonstrate the translation
of some of the policies for our subjects.

Role Translations From the defined roles, we will show the translation of some
of the A*™HT) rules.

This is the translation of the administration roles only privilege; the ability
to read the board_db XML document.

14

role(administration, +, isXPath(node(/, 00, 0, board.db),
xpred(self, ¢¢’’)), read).

The XPath in this rule represents the root node of the board_db document,
which is at the top-level (0) of the document and has the ID 00.

This next role was originally written in A*"(T) to specify that the ad-
min_doctor not be allowed to write to the financial_info node in the board_db
document. In Ay p it is written as:
role(admin_doctor, -, isXPath(node(/financial_info, ID, 1, board._db),
xpred(self, “¢’’)), write).

The XPath in this rule represents the financial_info node, with any ID (vari-
able), at level (1) of the board_db document.

The following translated rules are for the hierarchical relationships of the
roles and for the separation of duty for the admin_doctor role:

below(board member, administration).
below(admin_doctor, board_member).
separate(admin_doctor, board member) .
separate(admin_doctor, administration).

The above velow statements will in turn generate the following language rules
for role propagation where it will be reasoned that admin_doctor is below admin-
istration due to transitive hierarchy and that the authorisation rights for those

propagated roles should also be inherited.

below(admin_doctor, administration) <
below(admin_doctor, board_member), below(board member, administration).
role(board member, +, isXPath(node(/, 00, O, board.db), xpred(self, ‘¢’’)), read) <
below(board_ member, administration), role(administration, +,
isXPath(node(/, Oa, 0, board-db), xpred(self, ‘¢’’)), read)
role(admin_doctor, +, isXPath(node(/, 00, O, board.db), xpred(self, ‘¢’’)), write) <
below(admin_doctor, board member), role(board member, +,
isXPath(node(/, Oa, O, board-db), xpred(self, ‘¢’’)), write)
role(admin _doctor, +, isXPath(node(/, 00, O, board.db), xpred(self, ‘¢’’)), read) <
below(admin_doctor, administration), role(administration, +,
isXPath(node(/, Oa, 0, board-db), xpred(self, ‘¢’’)), read)

The separate predicates would generate deny-rule statements, however, due
to space, we will just show the general rules with variables. In the real policy
base, the variables representing the subjects and temporal intervals would be
replaced with all those that exist. In our case, we are only concerned with the
rules that pertain to subjects who may be members of admin_doctor and are
attempting to join either board_member or administration or conversely.
< grant(S, admin doctor, T1), grant(S, board member, T3),

separate(admin_doctor, board member) .

< grant(S, admin doctor, T1), grant(S, administration, T2),
separate(admin_doctor, administration).

Grant and Temporal Interval Relationship Translations We will now translate
the rules granting subjects membership to roles and the temporal intervals we
are using in the example. In Ay p, they are straightforwardly translated as:

meets (monday, tuesday) .

meets (tuesday, wednesday) .
starts(midWeekMeeting, wednesday).
grant (paul, administration, wednesday).
grant (john, board member, wednesday).

15

grant (lucy, admin_doctor, monday) .

grant(rita, admin_doctor, INT_J)<—
grant (lucy, admin doctor, INT.I),
meets (INT_I, INT_J).

Implied Rules Because of the language rules of A*™(T) and Ay p, rules created
in the policy base that agree with them may produce other implied rules as well.
In this section, we will explain some of those implied rules.

during(midWeekMeeting, wednesday) <— starts(midWeekMeeting, wednesday) .
grant (paul, administration, midWeekMeeting) <—

grant (paul, administration, wednesday), during(midWeekMeeting, wednesday) .
grant (john, board member, midWeekMeeting) <—

grant (john, board member, wednesday), during(midWeekMeeting, wednesday).

The first rule is generated because of the implicit temporal interval relation-
ships we incorporate into the formal language (Section 3.2). Briefly, if an interval
starts or finishes another interval, then it is contained within it and a during
relationship is implied. This relationship is seen with our intervals mid Week-
Meeting and wednesday.

The second and third rules, which demonstrate the temporal interval con-
tainment rule, use the new knowledge of mid WeekMeeting’s containment within
wednesday to produce implied grant statements for Paul and John.

4.2 Experimenting with the Arp program

We now present some examples of experimenting with the authorisations and
rules of our Ay p policy base. The following queries and actions will be attempted:

1. Can Lucy write to the financial information XML node of the database on
monday?

2. Can Rita read the doctor database XML node of the database on tuesday?

3. Can John read a node from the board database during the interval mid Week-
Meeting.

4. Can Paul read a node from the patient database node on wednesday if we
grant him membership to the admin_doctor role?

We will explain the outcomes along with the A*™"T) and Ay p statements
made for each.

In query 1., we use the following A*"T) query to determine if Lucy can
perform the action she is requesting.
admin asks does lucy have write rights to in board_db, return /financial_info during monday.

It is translated into its logic program equivalent like so:
query(lucy, isXPath(node(/financial_info, 01, 1, board.db), xpred(self, ‘‘’’)),
write, monday) .

When the Ag p policy base is reasoned upon, the authorisation rule would de-
termine that Lucy can in fact not do this action. This is because the admin_doctor
role, which she is a member of, has a specific rule denying her this right. When
the policy base is reasoned, an existneg predicate would be validated true for
her. This would then in turn invalidate the authorisation rule hence denying her

16

the auth predicate required to access the XML node. The following is the Arp
fragment highlighting the exist neg predicate:
exist_neg(lucy, isXPath(node(/financial_info, 01, 1, board.db), xpred(self, ‘¢’’),
write, monday) <¢—

grant (lucy, admin doctor, monday),

role(admin_doctor, -, isXPath(node(/financial_info, 01, 1, board._db),

xpred(self, ‘¢’’)), write).

To reiterate its meaning, because a role statement disallowing admin_doctors
from writing to the financial_info node exists and a grant for this role exists for

Lucy on monday, an exist neg will be generated.

In query 2., the following A*™T) and A;p queries are written for Rita:
admin asks does rita have read rights to in doctor_db, return / during tuesday.

It is translated into its logic program equivalent like so:
query(rita, isXPath(node(/, 00, O, doctor_db), xpred(self, ‘¢’’)),
read, tuesday).

In this case, in our original policy base we did not write that Rita have mem-
bership to the admin_doctor on any specific temporal intervals (her membership
would imply the privilege to read the database). We did however write a rule
that specified she be granted the role during a temporal interval that directly
followed one where Lucy was a member of the role. Upon reasoning the policy
base, that rule would generate a grant statement for Rita like so:
grant(rita, admin doctor, tuesday)<—

grant (lucy, admin doctor, monday),

meets (monday, tuesday).

Note the replacement of the variable temporal intervals with ones that would
conclude with Rita being a member of the admin_doctor role. This rule would
consequently produce an auth predicate for Rita since no other rules in the policy
base would conflict with it. For the purpose of completion, here is the authori-
sation rule for Rita:

auth(rita, isXPath(node(/, 00, O, doctor_db), xpred(self, ‘¢’’)), read, tuesday) <
grant(rita, admin doctor, tuesday),
role(admin_doctor, +, isXPath(node(/, 00, 0, doctor_db),

xpred(self, €¢’’)), read),
not exist neg(rita, isXPath(node(/, 00, 0, doctor_db),
xpred(self, ‘¢’’)), read, tuesday).

Our query matches an auth predicate found in the reasoned policy base. There-
fore, we use this knowledge to determine that although it was not directly spec-
ified, Rita can in fact read the doctor_db on tuesday.

Query 3. has a similar result to query 2. Although it is not directly specified
in the policy base, it will be determined that John can read the board_db XML
document during the interval mid WeekMeeting. The queries are as follows:
admin asks does john have read rights to in board_db, return / during midWeekMeeting.

It is translated into its logic program equivalent like so:

query(john, isXPath(node(/, 00, O, board.db), xpred(self, ‘¢’?)),
read, midWeekMeeting).

We already showed in the previous section that because of the language
rules of our formal language some implied rules are generated when the policy

17

base is reasoned. We wrote that John should be a member of the board_member
role during wednesday. This query is however concerned with the interval mid-
WeekMeeting. Fortunately, that interval starts wednesday. In our language, we
specified that the relationship starts implies the relationship during as well. This
implication therefore produces a during predicate for the two intervals. Our pol-
icy base is further reasoned upon to determine that the following circumstances
suffice for the temporal interval containment rule to produce a grant statement
for John giving him membership to board_member during mid WeekMeeting as
well as wednesday.

Therefore, with the implied grant statement present and the absence of any
conflicting rules, the authorisation rule would produce an auth predicate allowing
John to read the node similar to the one for query 2.

Finally, in query 4, the principle of separation of duty is demonstrated. We
actually can dispense with the query in this example because the action of at-
tempting to grant Paul membership to the role admin_doctor will produce a
fault in our policy base therefore making the query pointless.

Originally, we granted Paul membership to the role administration. However,
we also stated that this role be separate from the admin_doctor role. We already
discussed the generation of deny-rules for separation of duty in the previous
section. In this case, if we attempted to include the statement
grant (paul, admin doctor, wednesday).

the following deny-rules body would validate as true and therefore invalidate
the whole policy base.

< grant(paul, admin_doctor, wednesday), grant(paul, administration, wednesday),
separate(admin_doctor, administration).

As soon as the violating grant statement is present, the policy base is consid-
ered incorrect and any queries followed ignored until the violation is corrected.

This case study has demonstrated a minor amount of the expressive power of
AzmUT) and A p. We were able to show some simple examples of access control
using the language rules and principles incorporated into it. However, we only
just touched upon areas of the language such as the temporal interval reasoning
rules and role propagation. In any case, a general understanding of the formal
language should have been gained.

5 Consideration for an Implementation

Presently, we have an initial implementation to test the true expressiveness,
capability, and limitations of A*™/T) [Policarpio and Zhang, 2010].

This implementation is only an experimental prototype, so we intentionally
limited its development so that it was strictly capable of only doing the following
primary functions:

— A*mUT) policy base management (adding, editing, deletion of rules)
— translation of the A*™(T) policy base into an ALY logic program

18

INTERFACE

| ~_
PP -\\4 COMPUTE AUTHORISATIONS l
g ® \
f/ CREATE/UPDATE AXML(T)

POLICY BASE

(- |
e PHP INTERFACE \ K S

I | | CONVERT AXML(T) TO ALP | |

!
] —
\ / 2 iy
\ [[overesomonsanon] | S
g 3 . \\

\ 1 APPLICATION \
L e . L)
! ;S

R A
.]
ko S T |
b STABLE MODEL
T e
\\‘
%

™
\

s —— . /
P ; APPLICATION SERVER
A %
N
~ /Z_ T

st i

Fig. 2. System Structure

— computation of authorisations
— querying of the computed authorisations to discover what privileges a subject
has during some interval

Eventually, this prototype will be able to be extended so that it provides a
full fledged access controlled XML environment, however, at this point we were
currently only focused on examining A*™(T)’s feasibility as an access control
model and not as real world application. Our plan was to have the prototype
perform and produce the same actions and results we presented in our case study.

The high-level structure of the prototype application is shown in Figure 2.
We designed a management module called pb_mgr (policy base manager) that
contains a majority of the functionality mentioned. For ease of use, we incorpo-
rated a web-based user interface to execute the module. Besides the functionality
already mentioned, note the presence of an ASP solver and XML Documents
database in Figure 2. The Answer Set Program solver represents the tools we
use to ground the variables in the translated policy base and also compute a
stable model from it. For the sake of simplicity, and because this is only an ex-
perimental implementation, we stored the XML documents in a local directory
rather than a sophisticated XML storage system.

The policy base manager pb_mgr is written in the Python scripting language
while the web interface was written in PHP. We setup a local Linux server
with the Apache HTTP Server Project (httpd 2.2.15), PHP (5.3.2), and Python
(2.6.5).

19

We tested the prototype with various policy base scenarios, similar to the one
shown in our case study, to ensure that everything was working properly. Ex-
pectedly, A*™HT) performed well in terms of the basic features and principles we
incorporated into its formalisation and semantic translation. We did encounter
various implementation difficulties, however, for an in-depth explanation of the
prototype, its design, and the solutions to those difficulties, please refer to our
implementation paper [Policarpio and Zhang, 2010].

6 Conclusion

In this paper, we presented a formal language of authorisation for XML docu-
ments. We demonstrated its expressive power to provide role-based access control
with temporal constraints. We provided a semantic definition through the trans-
lation of the high level language into an answer set program. We presented a
case study that defined some security policies in A*™"T) | translated them into
an App logic program, and then computed the output from some queries and
actions performed on it. Finally, we briefly discussed our initial experiment with
an A7) software implementation.

In our continued research, we are looking into the concept of query contain-
ment. It may have been noticed, but the examples used in this paper do not
fully consider the fact that further authorisations may also be implied when the
results of an XPath query are contained within another XPath used in an auth
statement. We briefly touched upon this idea with the temporal interval contain-
ment rule. In either case, if it can be determined that containment is present,
then authorisations should be understood or generated for the contained results.
Query containment is useful because it allows us to bypass the reasoning re-
quired for contained queries. If we can determine (1) the containment of queries
and (2) the validity of the container query then a considerable amount of work
can be eliminated by deducing that (3) the contained queries are also valid.

We plan to present a newly updated formal language that will incorporate
this idea as a feature.

References

[Allen, 1984] Allen, J. F. (1984). Towards a general theory of action and time. Artif.
Intell., 23(2):123-154.

[Almendros-Jiménez et al., 2008] Almendros-Jiménez, J. M., Becerra-Terén, A., and
Enciso-ba Nos, F. J. (2008). Querying xml documents in logic programming*. Theory
Pract. Log. Program., 8(3):323-361.

[Anutariya et al., 2003] Anutariya, C., Chatvichienchai, S., Iwaihara, M., Wuwongse,
V., and Kambayashi, Y. (2003). A rule-based xml access control model. In RuleML,
pages 35—48.

[Apache Software Foundation, 2010] Apache Software Foundation (2010). The apache
http server project. http://httpd.apache.org/.

[Baral, 2003] Baral, C. (2003). Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press.

20

[Bertino et al., 1998] Bertino, E., Bettini, C., Ferrari, E., and Samarati, P. (1998).
An access control model supporting periodicity constraints and temporal reasoning.
ACM Trans. Database Syst., 23(3):231-285.

[Bertino et al., 2000] Bertino, E., Braun, M., Castano, S., Ferrari, E., and Mesiti, M.
(2000). Author-x: A java-based system for xml data protection. In In IFIP Workshop
on Database Security, pages 15—26.

[Bertino et al., 2004] Bertino, E., Carminati, B., and Ferrari, E. (2004). Access control
for xml documents and data. Information Security Technical Report, 9(3):19-34.

[Damiani et al., 2002] Damiani, E., di Vimercati, S. D. C., Paraboschi, S., and Sama-
rati, P. (2002). A fine-grained access control system for xml documents. ACM Trans.
Inf. Syst. Secur., 5(2):169-202.

[di Vimercati et al., 2005] di Vimercati, S. D. C., Marrara, S., and Samarati, P. (2005).
An access control model for querying xml data. In SWS ’05: Proceedings of the 2005
workshop on Secure web services, pages 36-42, New York, NY, USA. ACM.

[Fan et al., 2004] Fan, W., Chan, C., and Garofalakis, M. (2004). Secure xml querying
with security views. In SIGMOD, 2004: Proceedings of the 2004 ACM SIGMOD
international conference on Management Data. ACM Press.

[Ferraiolo et al., 1995] Ferraiolo, D. F., Cugini, J. A., and Kuhn, D. R. (1995). Role-
based access control (rbac): Features and motivations. In 11th Annual Computer
Security Applications Proceedings.

[Gabillon, 2005] Gabillon, A. (2005). A formal access control model for xml databases.
In Lecture notes in computer science, 3674, pages 86—103.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model
semantics for logic programming. In Kowalski, R. A. and Bowen, K., editors, Proceed-
ings of the Fifth International Conference on Logic Programming, pages 1070-1080,
Cambridge, Massachusetts. The MIT Press.

[Lifschitz, 2008] Lifschitz, V. (2008). What is answer set programming? In AAAI’08:
Proceedings of the 23rd national conference on Artificial intelligence, pages 1594—
1597. AAAI Press.

[Niemel4 et al., 2000] Niemel4, I., Simons, P., and Syrjanen, T. (2000). Smodels: a
system for answer set programming. In Proceedingsof the 8th International Workshop
on Non-Monotonic Reasoning.

[Policarpio and Zhang, 2009] Policarpio, S. and Zhang, Y. (2009). A formal language
for specifying complex xml authorisations with temporal constraints. In Inscrypt
2009: The 5th China International Conference on Information Security and Cryptol-
ogy, pages 169—-183, Beijing, China. State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing , China.

[Policarpio and Zhang, 2010] Policarpio, S. and Zhang, Y. (2010). An implementation
of A*™UT): A formal language of authorisation for xml documents. Manuscript.

[Python Software Foundation, 2010] Python Software Foundation (2010). Python pro-
gramming language. http://www.python.org/.

[The PHP Group, 2010] The PHP Group (2010). Php: Hypertext preprocessor.
http://www.php.net/.

[WWW Consortium, 1999] WWW Consortium (1999). Xml path language (xpath)
version 1.0. http://www.w3.org/TR/xpath.

[WWW Consortium, 2008] WWW Consortium (2008). Extensible markup language
(xml) 1.0 (fifth edition). http://www.w3.org/TR/REC-xml/.

21

