
International Journal of Information Security manuscript No.
(will be inserted by the editor)

On the Sequence of Authorization Policy Transformations

Yun Bai1, Yan Zhang1, Vijay Varadharajan2

1 School of Computing and Information Technology, University of Western Sydney, Locked Bag 1797, Penrith South DC,
NSW 1797, Australia, Email: {ybai,yan}@cit.uws.edu.au

2 Department of Computing, Macquarie University, North Ryde, NSW 2109, Australia, Email: vijay@ics.mq.edu.au

Abstract In [2,3], we proposed a model-based approach
to specify the transformation of authorizations based on
the principle of minimal change [10] and its applica-
tion in database systems. Nevertheless, there were some
limitations in this approach. Firstly, we could not rep-
resent a sequence of transformations. Secondly, default
authorizations could not be expressed. In this paper,
we propose two high-level formal languages Ls and Lsd

to specify a sequence of authorization transformations
and default authorizations. Our work starts with Ls, a
simple, but expressive language to specify certain se-
quence of authorization transformations. Furthermore,
Lsd has more powerful expressiveness than Ls in the
sense that constraints, causal and inherited authoriza-
tions, and general default authorizations can be speci-
fied.
Key words: Authorization Policy, Policy Transforma-
tions, Formal Language, Default Logic

1 Introduction

The development of information technology in recent
years has led to the widespread use of information sys-
tems in various institutions and organizations. This has
meant that more and larger amounts of data is managed
by today’s modern, large, complex information systems.
In such an environment, security issues are becoming
increasingly important. Security, like performance and
accuracy, is now being considered as a key factor in the
evaluation of the quality of an information system.

As a security mechanism, authorization or access con-
trol is responsible for ensuring that all accesses to the
system resources occur exclusively according to the ac-
cess polices and rules specified by the security strate-
gies. It has been extensively studied in [1,5,6,13–16,18,
22] etc. and a variety of authorization specification ap-
proaches such as access matrix, capability list, proce-
dural and logical specifications have been investigated.

In [2,3], we proposed a model-based approach to spec-
ify the transformation of authorizations based on the
principle of minimal change [10] and its application in
database systems. Nevertheless, there were some limita-
tions in this approach. Firstly, we could not represent a
sequence of transformations. For instance, this approach
could not handle a problem like: given a policy base
and a sequence of transformations, what is the resulting
policy base after performing such a sequence of trans-
formations? Secondly, default authorizations could not
be expressed. In certain situation, default policies are
needed to specify desired authorizations. In this paper,
we propose a high-level formal languages Ls and then ex-
tend Ls to Lsd to specify authorization transformations1

in secure computer systems. In particular, both Ls and
Lsd can specify sequence of authorization transforma-
tions. Though it has a simple syntax and semantics, we
show that Ls is expressive enough to specify some well-
known examples of authorization transformations such
as separation of duty and Chinese wall security policy.
Language Lsd is an augmentation of Ls which includes
default propositions into the domain description of au-
thorization policies. However, the semantics of Lsd is
not just a simple extension of the semantics of Ls. We
show that Lsd has more powerful expressiveness than Ls

in the sense that constraints, causal and inherited au-
thorizations, and general default authorizations can be
specified within Lsd. For description purpose, we refer
policy base as policy domain description in this paper.
The two terms are used interchangeably.

To simplify our presentation, we assume the exis-
tence of a system security officer administering the au-
thorization transformations. This assumption enables us
to concentrate on a single administering agent system
and hence avoid the problem of coordination among mul-
tiagents.

1 In this paper, the terms authorization transformation, au-
thorization policy transformation and policy transformation
will be used interchangeably.

2 Yun Bai et al.

The rest of the paper is organized as follows. Sec-
tion 2 describes language Ls by outlining both its syn-
tax and semantics and gives some well known autho-
rization policies such as separation of duty, Chinese wall
security policy and dynamic separation of duty specified
by the language. Section 3 specifies the language Lsd

which is an augmentation of Ls. Lsd is able to represent
more complex authorization policies such as constraints,
causal and inherited policies as well as default policies.
Section 4 discusses some related work. Finally, section 5
concludes the paper.

2 Syntax and Semantics of Language L
s

In this section, we propose a language Ls for specify-
ing sequence of authorization policy transformations. We
provide both its syntax and semantics.

2.1 Syntax of Ls

Language Ls includes the following seven disjoint sorts
for subject, group-subject, access-right, group-access-right,
object, group-object and transformation together with
predicate symbols holds, ∈, ⊆ and logic connectives ∧
and ¬.

The seven disjoint sorts and the predicate symbols ∈
and ⊆ are defined as follows:

1. Sort subject: with subject constants S, S1, S2, · · ·, and
subject variables s, s1, s2, · · ·.

2. Sort group-subject: with group subject constants G,
G1, G2, · · ·, and group subject variables g, g1, g2, · · ·.

3. Sort access-right: with access right constants A,A1,
A2, · · ·, and access right variables a, a1, a2, · · ·.

4. Sort group-access-right: with group access right con-
stantsGA,GA1, GA2, · · ·, and group access right vari-
ables ga, ga1, ga2, · · ·.

5. Sort object: with object constants O,O1, O2, · · ·, and
object variables o, o1, o2, · · ·.

6. Sort group-object: with group object constants GO,
GO1, GO2, · · ·, and group object variables go, go1,
go2, · · ·.

7. Transformation with finite number of transforma-
tions T, T1, T2, · · ·.

8. A ternary predicate symbol holds which takes ar-
guments as subject or group-subject, access-right or
group-access-right and object or group-object respec-
tively.

9. A binary predicate symbol ∈ which takes arguments
as subject and group-subject or access-right and group-
access-right or object and group-object respectively.

10. A binary predicate symbol ⊆ whose both arguments
are group-subjects, group-access-rights or group-objects.

In language Ls, the fact that a subject S has access
right R for object O is represented using a ground atom
holds(S,A,O). The fact that a subject S is a member

of G is represented by S ∈ G. Similarly, we represent
inclusion relationships between subject groups such as
G1 ⊆ G2 or between access right groups such as GA1 ⊆
GA2.

In general, we define a fact F to be an atomic for-
mula of Ls or its negation, while a ground fact is a fact
without variable occurrence. We view ¬¬F as F . Fact
expressions of Ls are defined as follows: (i) each fact is
a satisfiable fact expression; (ii) if φ and ψ are fact ex-
pressions, then φ ∧ ψ is also a fact expression. A ground
fact expression is a fact expression without variable oc-
currence. A ground fact expression is called a ground in-
stance of a fact expression if this ground fact expression
is obtained from the fact expression by replacing each
of its variable occurrence with the same sort constant.
Now we are ready to formally define the propositions in
Ls.

A policy proposition in Ls is an expression of the form

φ after T1, · · · , Tm, (1)

where φ is a ground fact expression and T1, · · · , Tm (m ≥
0) are transformations. A policy proposition specifies a
static fact expression after a sequence of transforma-
tions. Intuitively, this proposition means that after per-
forming transformations T1, · · · , Tm sequentially, the
ground fact expression φ holds. If m = 0, we will rewrite
(1) as

initially φ, (2)

which is called initial policy proposition.
A transformation proposition is an expression of the

form

T causes φ if ψ, (3)

where T is a transformation, φ and ψ are ground fact
expressions. A transformation proposition specifies a dy-
namic transformation procedure. Intuitively, a transfor-
mation proposition expresses the following meaning: at a
given state, if the pre-condition ψ is true, then after per-
forming the transformation T at this state, the ground
fact expression φ will be true in the resulting state.

If the set of ψ is empty, we will rewrite (3) as

T causes φ, (4)

which means that there is no precondition to perform
the transformation or the precondition is always true.
That is, the transformation can always be performed.

A proposition is a ground proposition if it does not
contain variables. A policy domain description D in Ls

is a finite set of initial policy propositions and transfor-
mation propositions.

Given a domain description D, for a proposition con-
taining variables, we treat it as a set of all ground propo-
sitions obtained by substituting each variable with its
corresponding constants in D.

Example 1 The following is a domain description:

On the Sequence of Authorization Policy Transformations 3

initially holds(S1, Read,O)∧holds(S1,Write, O),
initially holds(S2, Read,O)∧holds(S2,Write, O),
Delete-write(s,Write, o) causes

¬holds(s,Write, o).

This domain description expresses the following informa-
tion: initially subjects S1 and S2 have Read and Write
rights for object O. A transformation Delete-write(s,
Write, o) is available in this domain; if this transforma-
tion occurs, then the subjects S1 and S2 will no longer
have the Write right on object O.

Since in this domain the set of subject is (S1, S2), the
set of object is O, after the transformation, we would ex-
pect to get ¬holds(S1,Write, O) and ¬holds(S2,Write,
O).

Example 2 A domain description D consists of the fol-
lowing propositions:

initially holds(S,Own,O),
holds(S,Own,O) causes holds(S,Write, O)

if ¬holds(S,Write, O),
Delete-own(S,Own,O) causes ¬holds(S,Own,O)).

This domain description states that: initially subject S
owns object O. If S cannot write on O is not explicitly
specified in the domain, then S has write right on O, and
S will no longer owns O if holds(S,Own,O) is removed
from the domain.

Example 3 Let us now consider the more general access
policy on dynamic separation of duty. In this case, a
subject can potentially execute any operation in a given
set, though s/he cannot execute all of them. By exe-
cuting some operation, s/he will automatically rule out
the possibility of executing the others. The policy is re-
ferred to as dynamic in the sense that which actions a
user can execute is determined by the user. For instance,
consider the following simple example. Let a group offi-
cer be represented using a group-subject G-Officer. Let
this group have access rights to submit, evaluate and ap-
prove a budget. Let the budget be represented using an
object B. Now if a subject S belongs to G-Officer, that
is, S ∈G-Officer, then holds(S, Submitable, B), holds(S,
Evaluateable, B) and holds(S,Approveable, B). Let the
transformations be Rqst(S, Submit, B),Rqst(S, Evaluate,
B) and Rqst(S, Approve,B). The domain description D
can be represented as follows:

initially S ∈G-Officer,
initially holds(S, Submitable, B),
initially holds(S,Evaluateable, B),
initially holds(S,Approveable, B),

Rqst(S, Submit, B) causes

holds(S, Submit, B)∧
¬holds(S,Evaluateable, B)∧
¬holds(S,Approveable, B)
if S ∈G-Officer ∧holds(S, Submitable, B).

Rqst(S,Evaluate, B) causes

holds(S,Evaluate, B)∧
¬holds(S,Approveable, B)∧
¬holds(S, Submitable, B)
if S ∈G-Officer ∧holds(S,Evaluateable, B).

Rqst(S,Approve,B) causes

holds(S,Approve,B)∧
¬holds(S,Evaluateable, B)∧
¬holds(S, Submitable, B)
if S ∈G-Officer ∧holds(S,Approveable, B).

Example 4 Now we consider the specification of the Chi-
nese wall access policy [8] using our domain description.
The Chinese wall access policy can be viewed as a spe-
cial kind of dynamic separation of duty. In Chinese wall
policy, objects are grouped into company datasets, for in-
stance Company-1 and Company-2. Company datasets
whose organizations are in competition are then grouped
together into conflict of interest classes. A subject can
potentially access an object from either company dataset,
but if the subject accesses an object in a company dataset
1, it cannot be allowed anymore to access any object in
a company dataset that appear in a conflict of interest
class with dataset 1. In our language, company datasets
can be represented by a group-object. For instance, if
Company1 and Company2 are in the same conflict of
interest class, a subject who has accessed an object of
Company1 will not be allowed to access any object in
Company2 and vice versa.

Suppose that Company1 and Company2 are in the
same conflict of interest class,O1 is an object of Company1

and O2 is an object of Company2 and S is a subject. We
use holds(S, Accessable, O1) and holds(S,Accessable, O2)
to represent that S can potentially access both O1 and
O2. We have the following transformations:Rqst(S, Access,
O1) and Rqst(S,Access,O2). The domain description D
is specified as follows:

initially O1 ∈ Company1,
initially O2 ∈ Company2,
initially holds(S,Accessable, O1),
initially holds(S,Accessable, O2),

Rqst(S,Access,O1) causes

holds(S,Access,O1) ∧
¬holds(S,Accessable, O2)
if O1 ∈ Company1∧O2 ∈ Company2∧holds(S,

Accessable, O1),

Rqst(S,Access,O2) causes

holds(S,Access,O2) ∧
¬holds(S,Accessable, O1)
if O1 ∈ Company1∧O2 ∈ Company2∧holds(S,

Accessable, O2).

That is, if S accessesO1, then it will not be able to ac-
cess O2 due to the transformation Rqst(S,Access,O1).

4 Yun Bai et al.

Similarly, if S accesses O2, it will not be able to access
O1.

2.2 Semantics of Ls

Now we define the semantics of language Ls. A state is a
finite set of ground facts. Given a ground fact F (i.e. F is
holds(S,A,O) or ¬holds(S,A,O)) and a state σ, we say
F is true in σ iff F ∈ σ, and F is false in σ iff ¬F ∈ σ.
A ground fact expression φ ≡ F1 ∧ · · · ∧ Fk, where each
Fi (1 ≤ i ≤ k) is a ground fact, is true in σ iff each Fi

(1 ≤ i ≤ k) is in σ. Furthermore, a fact expression with
variables is true in σ iff each of its ground instances is
true in σ. A state σ is complete if for any ground fact F
of Ls, F or ¬F is in σ. Otherwise σ is called a partial
state. An inconsistent state σ is a state containing a pair
of complementary ground facts F and ¬F .

A transition function ρ maps a set (T, σ) into a state,
where T is a transformation and σ is a state. Intuitively,
ρ(T, σ) denotes the resulting state caused by performing
transformation T in σ. A structure M is a pair (σ, ρ),
where σ is a state, and ρ is a transition function. For any
structure M and any set of transformations T1, · · · , Tm,
the notation MT1,···,Tm denotes the state

ρ(Tm, ρ(Tm−1, · · · , ρ(T1, σ) · · ·)),

where ρ is the transition function of M , and σ is the
state of M .

We denote a policy proposition φ is satisfied in a
structure M as M |=Ls φ after T1, · · · , Tm. This is true
iff φ is true in the state MT1,···,Tm . Given a domain de-
scription D, we say that a state σ0 is the initial state
of D iff (i) for each initial policy proposition initially

φ of D, φ is true in σ0; (ii) if there is another state σ
satisfying condition (i), then σ0 ⊆ σ (i.e. σ0 is the least
state satisfying all initial policy propositions of D).

Furthermore, we restrict that the domain description
D does not contain transformations such as T causes φ
if ψ1 and T causes ¬φ if ψ2. This restriction ensures
that inconsistent state will not occur after transforma-
tions.

Definition 1 A structure (σ0, ρ) is a model of a domain
description D iff σ0 is a consistent initial state of D,
and for any transformation T and state σ, the following
conditions hold:

1. if D includes a transformation proposition T causes

φ if ψ, and ψ is true in σ, then φ is true in ρ(T, σ);
2. for each F in D and F ∈ σ, F ∈ ρ(T, σ) iff ¬F 6∈
ρ(T, σ).

Condition 1 says that if precondition ψ for trans-
formation T is true in the current state σ, then after
performing the transformation, the effect of the trans-
formation φ should be true in the resulting state ρ(T, σ).
Condition 2 states that for any existing fact F in current

state, F still holds in the resulting state after transfor-
mation T if and only if ¬F is not generated from the
transformation T .

We say that a domain description D is consistent if
D has a model. A policy proposition φ after T1, · · · , Tm

is entailed by D, denoted as D |=Ls φ after T1, · · · , Tm,
iff it is true in each model of D.

Proposition 1 A consistent domain description D has
a unique model.

Proof Obviously, a consistent domain description D has
a model. From the definition of domain description, D is
a finite set of initial policy propositions and transforma-
tion propositions. As each initial policy proposition has
the form

initially φ,

where φ is a conjunction of ground atomic formulas or
their negations. Then there must be a unique initial state
σ0 in which each initial policy proposition of D is true.
Now consider each transformation proposition in D:

T causes φ if Ψ .

Since both φ and Ψ are conjunctions of atomic formu-
las or their negations, for any transition ρ, the resulting
state ρ(T, σ) is unique. Therefore, according to Defini-
tion 1, it is obvious that the model (σ0, ρ) of D is unique.

Example 5 Continuation of Example 3. For the dynamic
separation of duty example, the initial state of D is:

σ0 = {S ∈G-Officer, holds(S, Submitable, B),
holds(S, Evaluateable, B),
holds(S,Approveable, B)}.

It can be easily shown that the following results hold:

D |=Ls S ∈G-Officer∧holds(S, Submit, B) ∧
¬holds(S, Evaluateable, B)∧
¬holds(S,Approveable, B)
after Rqst(S, Submit, B),

D |=Ls S ∈G-Officer∧
holds(S,Evaluate, B) ∧
¬holds (S, Submitable, B)∧
¬holds(S,Approveable, B)
after Rqst(S,Evaluate, B),

D |=Ls S ∈G-Officer∧holds(S,Approve,B) ∧
¬holds(S, Submitable, B)∧
¬holds(S,Evaluateable, B)
after Rqst(S,Approve,B).

Example 6 Continuation of Example 4. For the Chinese
wall policy, the initial state of D is:

σ0 = {O1 ∈ Company1, O2 ∈ Company2,
holds(S,Accessable, O1),
holds(S,Accessable, O2)}.

From the above description, it is not difficult to show
that

On the Sequence of Authorization Policy Transformations 5

D |=Ls O1 ∈ Company1 ∧ O2 ∈ Company2 ∧
holds(S,Access,O1) ∧
¬holds(S,Accessable, O2)
after Rqst(S,Access,O1),

D |=Ls O1 ∈ Company1 ∧ O2 ∈ Company2 ∧
holds(S,Access,O2) ∧
¬holds(S,Accessable, O1)

after Rqst(S,Access,O2),
D |=Ls O1 ∈ Company1 ∧ O2 ∈ Company2 ∧

holds(S,Access,O1) ∧
¬holds(S,Accessable, O2)

after Rqst(S,Access,O1), Rqst(S,Access,O2),
D |=Ls O1 ∈ Company1 ∧ O2 ∈ Company2 ∧

holds(S,Access,O2) ∧
¬holds(S,Accessable, O1)

after Rqst(S,Access,O2), Rqst(S,Access,O1).

2.3 Document Release Example

In this section, we consider a slightly modified version of
the well-known document release example [24] and spec-
ify the authorization transformations using our language
Ls.

Example 7 The following is cited from [24]:

“· · · a scientist creates a document and hence gets
own, read and write access rights to it. After prepar-
ing the document for publication, the scientist asks
for a review from a patent officer. In the process,
the scientist loses the write right to the document,
since it is clearly undesirable for a document to be
edited during or after a (successful) review. After
review of the document, the patent officer grants
the scientist an approval. It is reasonable to disal-
low further attempts to review the document after
an approval is granted. Thus the review right for
the document is lost as approval is granted. Af-
ter obtaining approval from the patent officer, the
scientist can publish the document by getting a
release right for the document. · · · ”

We use subject constant Sci to denote the scientist,
subject constant PO to denote the patent officer , ob-
ject constant Doc to denote the document, access right
constants Own, Read, Write, Review, Pat-ok, Pat-reject,
Release to denote the rights own, read, write, review,
patent-ok, patent-reject and release respectively. We also
have the following transformations Rqst(Sci,Doc, PO),
Get-approval(Sci,Doc, PO), Get-rejection(Sci,Doc,
PO), Release-doc(Sci, Doc) and Revise-doc(Sci,Doc).
The domain description D expressing the access policy
within our framework is given as follows:

initially holds(Sci, Own,Doc),
initially holds(Sci, Read,Doc),
initially holds(Sci,Write,Doc),

Rqst(Sci,Doc, PO) causes

holds(PO,Review,Doc)∧¬holds(Sci,Write,Doc)
if holds(Sci, Own,Doc)∧holds(Sci,Write,Doc),

Get-approval(Sci,Doc, PO) causes

holds(Sci, Pat-ok,Doc)∧¬holds(PO,Review,Doc)
if holds(PO,Review,Doc)∧holds(Sci, Own,Doc),

Get-rejection(Sci,Doc, PO) causes

holds(Sci, Pat-reject,Doc)∧¬holds(PO,Review,
Doc),

if holds(PO,Review,Doc)∧holds(Sci, Own,Doc),

Release-doc(Sci,Doc) causes

holds(Sci, Release,Doc)∧¬holds(Sci, Pat-ok,Doc)
if holds(Sci, Pat-ok,Doc),

Revise-doc(Sci,Doc) causes holds(Sci,Write,Doc)
if holds(Sci, Pat-reject,Doc).

The initial state of D is

σ0 = {holds(Sci, Own,Doc), holds(Sci, Read,Doc),
holds(Sci,Write,Doc)}.

Let us now consider the policy propositions that are
entailed from D. From the semantics presented previ-
ously, we can prove that the following results hold.

D |=Ls holds(PO,Review,Doc) ∧
¬holds(Sci,Write,Doc)
after Rqst(Sci,Doc, PO),

D |=Ls holds(Sci, Pat-ok,Doc) ∧
¬holds(PO,Review,Doc)
after Rqst(Sci,Doc, PO),

Get-approval(Sci,Doc, PO),
D |=Ls holds(Sci, Pat-reject,Doc) ∧

¬holds(PO,Review,Doc)
after Rqst(Sci,Doc, PO),

Get-rejection(Sci,Doc, PO),
D |=Ls holds(Sci, Release,Doc)∧

holds(Sci, Pat-ok,Doc)
after Rqst(Sci,Doc, PO),

Get-approval(Sci,Doc, PO),
Release-doc(Sci,Doc),

D |=Ls holds(Sci,Write,Doc)
after Rqst(Sci,Doc, PO),

Get-rejection(Sci,Doc, PO),
Revise-doc(Sci,Doc).

The above results describe the expected solutions
with respect to the execution of different sequences of
transformations. Furthermore the following results show
that the performance of sequence of transformations will
not affect the scientist’s own right for the document.

The following results hold.

D |=Ls holds(Sci, Own,Doc)
after Rqst(Sci,Doc, PO),

D |=Ls holds(Sci, Own,Doc)

6 Yun Bai et al.

after Rqst(Sci,Doc, PO),
Get-approval(Sci,Doc, PO),

D |=Ls holds(Sci, Own,Doc)
after Rqst(Sci,Doc, PO),

Get-rejection(Sci,Doc, PO),
D |=Ls holds(Sci, Own,Doc)

after Rqst(Sci,Doc, PO),
Get-approval(Sci,Doc, PO),
Release-doc(Sci,Doc),

D |=Ls holds(Sci, Own,Doc)
after Rqst(Sci,Doc, PO),

Get-rejection(Sci,Doc, PO),
Revise-doc(Sci,Doc).

2.4 Properties of Language Ls

Language Ls has the following properties:

– Incomplete information is allowed. In Ls, the state of
the authorization policies can be specified to be in-
complete in the sense that some authorizations may
not be represented in the state. For instance, in Ex-
ample 7, the initial state σ0 is incomplete because it
does not include the facts holds(PO,Review,Doc)
or ¬holds(PO,Review,Doc).

– Denials are expressed explicitly. As incomplete in-
formation is allowed in the state of authorization
policies, denials (negations of authorization policies)
must be explicitly represented in the state.

– The entailment relation |=Ls of Ls is nonmonotonic
with respect to transformation propositions. Recall
that a domain description D is a finite set of policy
propositions and transformation propositions. The
nonmonotonicity of |=Ls with respect to transforma-
tion propositions states that adding more transfor-
mation propositions into D may result in a policy
proposition being no longer entailed in the domain
description. This is because a new transformation
proposition may change an authorization policy to
become negative. For example, consider a domain
description D consisting of the following policy and
transformation propositions:

initially holds(S,Read, F ile),
Assign-write(S,Write, F ile) causes

holds(S,Write, F ile).

Clearly, we have D |=Ls holds(S,Write, F ile) after

Assign-write(S,Write, F ile). However, if we add
another transformation proposition into D:

Delete-write(S,Write, F ile) causes

¬holds(S,Write, F ile)
if holds(S,Write, F ile),

Then we have D′ |=Ls ¬holds(S,Write, F ile) after

Assign-write(S,Write, F ile),
Delete-write(S,Write, F ile).

where D′ is the new domain description with the
above transformation proposition added into D.

– |=Ls is also nonmonotonic with respect to policy propo-
sitions. This can be observed from the following ex-
ample. Suppose a domain description D consists of
the following policy and transformation propositions:

initially holds(S,Own, F ile),
Delete-own(S,Own, F ile) causes

¬holds(S,Own, F ile) if S ∈ G.
As the pre-condition S ∈ G of Delete-own(S,Own,
F ile) does not hold in the initial state, we haveD |=Ls

holds(S,Own, F ile) afterDelete-own(S,Own, F ile).
However, if we add a policy proposition S ∈ G into D
to form a new domain description D′, then we have

D′ |=Ls ¬holds(S,Own, F ile) after

Delete-own(S,Own, F ile).

Now let us discuss some limitations of Ls:

– Ls cannot express inherited and causal authorization
policies. For instance, in many situations, a subject
can inherit an access right from its group’s access
right. Unfortunately, this kind of fact cannot be ex-
pressed by Ls. Also an authorization policy may have
a causal relationship with other policies. For exam-
ple, we may need to express the fact that if subject S
has Write right on object O, then subject S ′ should
also have Read right on object O. Ls is not able to
express this kind of causal relation.

– Ls cannot express default authorization policies. For
instance, the closed world assumption on the state
of authorization policies can be viewed as a general
default authorization: any policy that is not explic-
itly represented in the state will be assumed to be
its negation. Therefore, if holds(S,Write, O) is not
explicitly specified in the domain, by default, we as-
sume that S cannot write on O.

– Ls cannot express constraints. Sometimes we need
to specify some restrictions on authorization policies.
For instance, we are unable to specify that group G1

remains a subgroup of G in any state in the domain.
Such restriction is represented by constraints which
should be satisfied by any state.

3 Syntax and Semantics of Language L
sd

Because of its simple syntax and semantics, Ls has rel-
atively low cost for implementation. With its expressive
power, Ls is ideal for some information systems where
extensive authorization control is not necessary.

For some systems where more flexible authorizations
are needed, Ls can be extended to Lsd to overcome these
limitations mentioned above, to satisfy more complex
authorization requirements.

3.1 Syntax of Lsd

The language Lsd has the same sorts and types of propo-
sitions as the language Ls but in addition has one more

On the Sequence of Authorization Policy Transformations 7

type of proposition that we refer to as default proposition
of the form:

φ implies ψ with absence γ, (5)

where φ, ψ and γ are fact expressions. Note that φ, ψ
and γ may contain variables. In this case, the default
proposition (5) will be treated as a set of default propo-
sitions obtained from (5) by replacing φ, ψ and γ with
their ground instances respectively.

Intuitively, the default proposition says that if φ is
true in a state σ, and it can not be derived that γ is true
in σ, then we will infer that ψ is true in σ.

When φ is tautology, that is φ is always true, (5)
becomes:

ψ with absence γ, (6)

This can be used to specify default authorization such as
closed world assumption.

Another special form of the default proposition when
the set γ is empty in (5). In this case, we rewrite (5) as

φ provokes ψ, (7)

which is viewed as a causal or inheritance relation be-
tween φ and ψ. For example, in many situations, a sys-
tem should satisfy the following relation:

holds(s,Own, o) provokes holds(s,Read, o) ∧
holds(s,Write, o).

Furthermore, when the set φ is empty in (7), we
rewrite (7) as

always ψ, (8)

which represents a constraint that should be satisfied by
any state in the domain. For instance, we may express
a constraint stating that the Root has any right for any
object as follows:

always holds(Root, a, o).

We define a transformation-based policy domain de-
scriptionD (or domain description for short) in language
Lsd as a finite set of initial policy propositions, transfor-
mation propositions and default propositions.

Example 8 The following is an example of domain de-
scription D specified by Lsd:

initially holds(S,Own,O),
holds(S,Own,O) implies holds(S,Write, O)

with absence ¬holds(S,Write, O),
Delete-write(S,Write, O)

causes ¬holds(S,Write, O).

3.2 Semantics of Lsd

The semantics of Lsd is not just a simple extension of the
semantics of Ls although the syntax of Lsd is a simple
augmentation of that of Ls. The reason is that to define a
proper semantics of the default proposition (5), we have
to employ a fix-point semantics that shares the spirit of
fix-point semantics used in logic programs [17].

Given a domain description D, we first define the ini-
tial state of D. Suppose that a domain description Dp

only contains initial policy propositions, default propo-
sitions of the special form (7) and transformation propo-
sitions.

Definition 2 A state σ0 is an initial state of Dp iff σ0 is
the smallest state that satisfies the following conditions:

1. for each initial policy proposition initially φ, φ is
true in σ0;

2. for each default proposition with the form φ pro-

vokes ψ, if φ is true in σ0, then ψ is also true in
σ0.

This definition describes how to get the initial state
(initial policy base) from a domain description which
only consists of initial policy propositions, default propo-
sitions of the special form (7) and transformation propo-
sitions. Condition 1 states that part of the facts of the
initial state is obtained from these initial policy propo-
sitions, while Condition 2 states that part of the facts
of the initial state is obtained from these default propo-
sitions φ provokes ψ. For these propositions, if φ is
already in the initial state σ0, ψ will also be included
in σ0. Since we require that the state is the smallest one
which satisfy both conditions, this makes the initial state
to be unique.

For instance, if the domain description is as follows:

initially a,
initially b,
initially c, and
c provokes f,
d provokes e.

The initial state we get from this domain description is
{a,b,c,f}.

Now we consider a domain description D containing
default propositions with the general form (5). To define
the initial state of D, we first translate D to domain
description Dp described above.

Definition 3 Let σ0 be a state. Suppose domain descrip-
tion Dp is obtained from D as follows:

1. by deleting each default proposition φ implies ψ with

absence γ from D if for every Fi in γ, Fi is true in
σ0

2;

2 Recall that γ ≡ F1∧· · ·∧Fi∧· · ·∧Fk, each Fi (1 ≤ i ≤ k)
is a ground fact.

8 Yun Bai et al.

2. by translating all other default propositions φ im-

plies ψ with absence γ to the form φ provokes

ψ.

Now if this state σ0 is an initial state of Dp, then we
also define it to be an initial state of D.

In this definition, it further divides the general de-
fault propositions φ implies ψ with absence γ into
two sorts, in which γ is either true or false in the initial
state. (1) states that for these propositions in which γ is
true, φ implies ψ with absence γ will not hold, so they
need to be deleted. (2) states that for these propositions
in which γ is false, φ implies ψ with absence γ holds
and can be further simplified as φ provokes ψ.

Taking default propositions into account, it turns out
that the initial state of a domain description may be not
unique, or may not even exist. This is shown by the
following example.

Example 9 A domain description D consists of the fol-
lowing propositions:

initially holds(S,Own,O),
holds(S,Own,O) implies holds(S,Write, O) with

absence ¬holds(S,Write, O),
holds(S,Own,O) implies¬holds(S,Write, O) with

absence holds(S,Write, O),
Delete-own(S,Own,O) causes ¬holds(S,Own,O)).

Clearly, D has two initial states:

σ0 = {holds(S,Own,O), holds(S,Write, O)}, and
σ′

0 = {holds(S,Own,O),¬holds(S,Write, O)}.

Consider another domain description D′ consisting of
the following propositions:

initially holds(S,Own,O),
holds(S,Own,O) implies holds(S,Write, O) with

absence holds(S,Write, O),
Delete-own(S,Own,O) causes ¬holds(S,Own,O)).

D′ has no initial state according to the definition de-
scribed above.

Similarly to that defined in the language Ls, we de-
fine that a structure of D to be a pair (σ, ρ), where σ is a
state, and ρ is a transition function introduced in section
1.2. A policy proposition (1) is satisfied in a structure
M , denoted as M |=Lsd φ after T1, · · · , Tm, if φ is true
in state MT1,···,Tm .

Now, we define the model of a domain description.

Definition 4 Given a domain description D, let (σ0, ρ)
be a structure of D, where σ0 is a consistent initial state
of D, and ρ is a transition function introduced in section
1.2. (σ0, ρ) is a model of D iff for any transformation T
and state σ, the following conditions hold:

1. if D includes a transformation proposition T causes

φ if ψ, and ψ is true in σ, then φ is true in ρ(T, σ);

2. for each F in D and F ∈ σ, F ∈ ρ(T, σ) iff ¬F 6∈
ρ(T, σ).

The above definition is similar to Definition 1, since
after Definition 2 and 3, the initial state of a general do-
main description with default proposition is defined. So
the model of a general domain description is defined the
same way as the model of a domain description without
default proposition does.

Clearly, a domain description D may have one or
more or no models. D is consistent if D has a model. A
policy proposition φ after T1, · · · , Tm is entailed by D,
denoted as D |=Lsd φ after T1, · · · , Tm iff it is true in
each model of D. A model M of D is complete if for any
policy proposition φ after T1, · · · , Tm, either D |=Lsd φ
after T1, · · · , Tm or D |=Lsd ¬φ after T1, · · · , Tm.

Example 10 A credit union divides its customers into two
classes G1 and G2. The member of G1 has a credit limit
of up to $5000. The member of G2 has a credit limit
of up to $10000. The credit union reviews the credits
of its customers and upgrade or downgrade their credit
limits accordingly. A, B and C are three customers of
this credit union. Suppose he information we know is
that B belongs to G2, A has a credit limit of up to $5000
and C belongs to G1 and has a credit limit of $5000. The
domain description D for this example is:

initially holds(A,Credit, $5000),
initially holds(C,Credit, $5000),
initially B ∈ G2,
initially C ∈ G1,
holds(A,Credit, $5000) implies A ∈ G1

with absence A ∈ G2,
B ∈ G2 provokes holds(B,Credit, $10000).

Suppose x represents a general customer, the transfor-
mation propositions are:

Upgrade (x) causes x ∈ G2 if x ∈ G1,
Downgrade (x) causes x ∈ G1 if x ∈ G2.

The initial state of D is:

σ0 = {holds(A,Credit, $5000), holds(B,Credit,
$10000), holds(C,Credit, $5000),
A ∈ G1, B ∈ G2, C ∈ G1}

Obviously, the following holds:

D |=Lsd holds(A,Credit, $10000)∧holds(B,Credit,
$10000)∧ holds(C,Credit, $5000)∧
A ∈ G2 ∧ B ∈ G2 ∧ C ∈ G1

after Upgrade(A),
D |=Lsd holds(A,Credit, $5000)∧holds(B,Credit,

$5000)∧ holds(C,Credit, $5000)∧
A ∈ G1 ∧ B ∈ G1 ∧ C ∈ G1

after Downgrade(B).

After sequentially executing Upgrade(A) and
Downgrade(B), the following will hold:

On the Sequence of Authorization Policy Transformations 9

D |=Lsd holds(A,Credit, $10000)∧holds(B,Credit,
$5000)∧ holds(C,Credit, $5000)∧
A ∈ G2 ∧ B ∈ G1 ∧ C ∈ G1

after Upgrade(A), Downgrade(B).

3.3 Properties of Language Lsd

Now we summerize the properties of Language Lsd.

– Incomplete information is still allowed. Some autho-
rizations may not be specified in the domain if they
are not so relevant to the current situation. In exam-
ple 8, neither holds(S,Read,O) nor ¬holds(S,Read,O)
is stated in the domain.

– Negations of authorization are specified explicitly. Since
incomplete information is permitted, negative autho-
rizations must be specified clearly. If S cannot have
Write right onO, initially ¬holds(S,Write, O) must
be clearly specified in the domain.

– Nonmonotonicity of the entailment relation. From
example 8 and 9, we can see that the transforma-
tions cause some authorizations no longer valid.

– Inherited and causal authorization policies can be spec-
ified. For instance, the policy that a subject can in-
herit an access right from its group’s access right can
be specified as:

holds(G,Access,O) ∧ S ∈ G
implies holds(S,Access,O)
with absence ¬holds(S,Access,O)

If for some reason, holds(G,Access,O) is no linger a
valid authorization, this will cause holds(S,Access,O)
invalid. This can be represented as:

¬holds(G,Access,O) provokes ¬holds(S,Access,
O)

– Representation of default authorizations. Default au-
thorization can be properly specified now. The closed
world assumption stating that any authorization φ
which is not explicitly represented in the state will
be assumed to be its negation is specified as:

¬φ with absence φ
– Representation of constraint authorizations. For in-

stance, we can use always G1 ⊆ G to represent that
G1 is always a subgroup of G in the domain.

4 Background and Some Related Work

In a logical approach, authorizations are specified by us-
ing a high level independent semantics and are sepa-
rated from their implementation in system specific mech-
anisms. Furthermore, with its precise syntax and se-
mantics and expressive power, logical approaches in au-
thorization specification have drawn a great interests
of many researchers. Jajodia et al [19,20] proposed a
logic language for expressing authorizations. Similarly

to ours, they use predicates and rules to specify the au-
thorizations; their work mainly emphasizes the repre-
sentation and evaluation of authorizations, not autho-
rization transformations. The work of Bertino et al [4,7]
described an authorization mechanism based on a logic
formalism. It mainly investigates the access control rules
and their derivations. In their recent work [5], a formal
approach based on C-Datalog language was presented
for reasoning about access control models. The general
framework can be used to model a large variety of ac-
cess control models. Li et al [21] developed a logical lan-
guage called delegation logic to represent authorization
policies, credentials in large-scale, distributed systems.
The work emphasizes the delegation depth and a vari-
ety of complex delegation principals. Chomicki et al [9]
discussed security policy management using logic pro-
gramming approach. Woo and Lam proposed a formal
approach using default logic to represent and evaluate
authorizations [25].

Our work described in this paper is different from
most of the related works mentioned above. In summary,
most of their works emphasize enchancing the expressive
power of the authorization policies, their propagations,
reasoning and delegations, while our work is to address
the transformation of authorization policies. Our focus
is on the policy state after a sequence of changes been
performed. Though we all use logic-based approaches,
the issues addressed are quite different.

In Woo and Lam’s [25] logic-based approach for au-
thorizations, the set of authorizations is specified by a
policy base. The language used is a many-sorted first or-
der language with a rule construct. The rule construct
is similar to the default construct in default logic [23]
but with a different semantics. In terms of evaluation,
the policy based is translated to an extended logic pro-
gram first, then use the idea of stable model to evaluate
the extended logic program. Since among these works,
Woo and Lam’s approach is closest to ours in the sense
of both having default reasoning features, we will study
and compare our work with their’s in the next section.

4.1 Woo and Lam’s Approach: A Review

As both Woo and Lam and our approaches are able
to represent default authorizations, in this section, we
investigate the relationship between our approach and
Woo and Lam’s in details. To keep our presentation and
comparison clear and consistent, we now describe briefly
a simplified version of Woo and Lam’s formalism.

Basically, in Woo and Lam’s system, a set of au-
thorizations is specified by a policy base. The language
used is a many sorted first order language with rule con-

10 Yun Bai et al.

struct3. The rule construct is similar to the default con-
struct in default logic [23].

Formally, there are three different sets named the set
of subjects, set of objects and set of access rights respec-
tively in the system. A rule is a form written as f : f ′/g,
where f, f ′ and g are formulas and called the prerequi-
site, assumption and consequent of the rule respectively.
A rule is said to be ground if f, f ′ and g do not include or-
dinary variables. Usually, a rule including ordinary vari-
ables can be viewed as a set of all its ground instances.
Therefore, in practice, we only need to consider ground
rules.

For convenience, if any component formula is missing
from a rule, it is assumed to be true (T). Furthermore,
the notation f ⇒ g is used to represent a rule of the form
f : T/g. T ⇒ g which is further abbreviated to g. The
intuitive semantic meaning of a rule f : f ′/g is as follows:
If f is believed and if it is also consistent to believe f ′,
then g is believed as well. The Woo-Lam policy base is
a finite set of rules.

In Woo and Lam’s language, the fact that a subject
S is explicitly granted access right A to object O is ex-
pressed as the form (S,A,O) ∈ P+, while the fact that
a subject S is explicitly denied an access right A to ob-
ject O is expressed as (S,A,O) ∈ N+. These can be
translated into holds(S,A,O) and ¬holds(S,A,O) re-
spectively in our language4.

Therefore, when we express a policy base in Woo and
Lam’s formalism, we will use a modified form as shown
in the following example.

Example 11 A policy base B1 is specified as:

B1 = {: ¬holds(S,Write, O1)∧ holds(S,Write, O2)
/holds(S,Write, O3),
holds(S,Read,O1) ⇒ holds(S,Read,O2),
holds(S,Read,O1)}.

These three rules in this policy base represent the fol-
lowing knowledge respectively: (i) if it is consistent to
assume that subject S cannot write to object O1 and
can write to object O2, then it is believed that S can
write to object O3; (ii) if S can read O1, then S can
read O2 as well; (iii) subject S has Read right to object
O1.

The semantics of a policy base in Woo and Lam’s
approach is based on a concept called extension, which

3 Note that Woo and Lam’s language is a restricted first
order language as no quantifiers are considered in their lan-
guage.

4 Note that Woo and Lam’s P− and N− which record those
rights that cannot be explicitly granted and denied respec-
tively cannot be expressed as fact expressions in our lan-
guage. But it would not be difficult to extend our language
to capture this capability. For instance, we can add one more
predicate like holds−(s, a, o) in the language to achieve this
purpose.

is actually an analogy of the fixed point semantics of
Reiter’s default logic [23]. Instead of describing Woo and
Lam’s original definition of extension, here we give its
alternative which is based on Reiter’s definition [23] but
is semantically equivalent to Woo and Lam’s original
definition.

Definition 5 Let B be a policy base and E be a set of
formulas. We say that E is a r-extension (i.e. Reiter’s
extension) for B if it is one of the smallest deductively
closed sets of formulas E ′ satisfying the condition: For
any rule with the form f : f ′/g from B, if f ∈ E′ and
¬f ′ 6∈ E, then g ∈ E′. A set of ground literals Σ is called
a wl-extension (i.e. Woo-Lam’s extension) of B if and
only if there exists a r-extension E of B such that Σ
is the smallest set satisfying F ∈ Σ for every formula
f ∈ E. A ground literal l is derivable from B, denoted
as B `wl l, if and only if l is in every wl-extension of B.

Example 12 Example 11 continued. According to Defini-
tion 4, it is not difficult to see that the policy base B in
Example 11 has a unique wl-extension:

Σ = {holds(S,Read,O1), holds(S,Read,O2),
holds(S,Write, O3)}.

Clearly, we also haveB `wl holds(S,Read,O2) andB `wl

holds(S,Write, O3).

Obviously, as Woo and Lam’s policy base is based
on Reiter’s default logic, a policy base may have one or
more than one or even no extension at all [25]5.

4.2 Comparison

Now we can explore the connection between Woo and
Lam’s authorization specification and our domain de-
scription in language Lsd. Intuitively, as Woo and Lam’s
method only deals with the specification of authoriza-
tions, we have to restrict our domain description D to
the case of not including any transformation propositions
T causes φ if ψ.

A domain descriptionD without transformation propo-
sition is called static domain description. That is, D only
includes the following kinds of propositions:

initial policy proposition: initially φ,
default proposition: φ implies ψ with absence

γ, or its special forms:
φ provokes ψ, and
always ψ.

Note that here all occurrences of φ, ψ and γ are ground
fact expressions in our language because we assume that
any fact expression including variables is viewed as a set
of all its ground instances.

5 This is similar to the situation of the state for a domain
description in our language Lsd.

On the Sequence of Authorization Policy Transformations 11

From our previous discussion, we can assume that
Woo and Lam’s policy baseB only includes ground rules6.
Furthermore, for each rule f : f ′/g in the policy base B,
we restrict f, f ′ and g to be in the form of ground fact ex-
pressions in our language Lsd. This means that f, f ′ and
g should only be of the form [¬]holds(S1, A1, O1)∧ · · · ∧
[¬]holds(Sk, Ak, Ok), where notation [¬] means that the
negation sign “¬” may or may not occur.

Under these assumptions, we have the following re-
sults to illustrate the relationship between these two ap-
proaches.

Proposition 2 Let D be a static domain description in
language Lsd. We specify a Woo-Lam policy base B in
terms of D as follows:

(i) for each initial policy proposition initially φ in D,
we specify a rule φ in B;

(ii) for each default proposition φ implies ψ with ab-

sence γ in D, we specify a rule φ : ¬γ/ψ in B;
(iii) for each special default proposition φ provokes ψ,

we specify a rule φ⇒ ψ in B;
(iv) for each special default proposition always ψ, we

specify a rule ψ in B.

Then for any ground fact expression ψ, D |=Lsd initially

ψ if and only if B `wl ψ.

Proof Under the specification defined in Proposition 2,
we actually translate a static domain description D into
an equivalent Reiter’s default theoryB [23]. On the other
hand, from Definition 4, it can be shown that the model
of our domain description is coincident with the answer
set of extended logic program [17]. Then from the corre-
spondence between the answer set of an extended logic
program and the extension of a default theory, as proved
in [17], the result holds.

Proposition 3 Let B be a Woo-Lam policy base where
for each rule f : f ′/g in B, f, f ′ and g are expressed in
the form of ground fact expressions in language Lsd. We
specify a static domain description D in terms of B as
follows:

(i) for each rule f : f ′/g in B, we specify a default propo-
sition f implies g with absence ¬f ′

1∧· · ·∧f
′

k, where
f ′ ≡ f ′

1 ∧ · · · ∧ f ′

k;
(ii) for each rule g in B, we specify an initial policy

proposition initially g;
(iii) for each rule f ⇒ g in B, we specify a special default

proposition f provokes g in D.

Then for each ground fact expression ψ, B `wl ψ if and
only if D |=Lsd initially ψ.

Proof The proof is similar to that of Proposition 2.

6 Recall that a rule including ordinary variables can be
viewed as a set of all instances of this rule.

Propositions 2 and 3 reveal an important fact that
under some conditions, given a domain description D,
there exists an equivalent Woo-Lam policy base B, and
vice versa. In this sense, our system has the same capa-
bility to specify authorizations as Woo and Lam’s sys-
tem. But the fundamental difference between our ap-
proach and Woo and Lam’s and other related approaches
is that our approach can specify the sequence of transfor-
mations of authorization, which is essential in real world
applications.

5 Conclusions

In this paper, we have proposed two higher level lan-
guages Ls and Lsd to specify sequences of authoriza-
tion transformations. We have shown that the language
Ls has a simple syntax and semantics, but is expres-
sive enough to represent some well known access policy
examples involving sequences of authorization transfor-
mations. Using the definition of policy proposition, we
are able to compute both the final state after performing
a sequence of transformations as well as any intermedi-
ate state within the sequence of transformations. The
language can represent incomplete information and al-
low denials to be represented explicitly. The entailment
relation |=Ls of Ls has a nonmonotonic property with
respect to both policy propositions and transformation
propositions. Language Lsd is an augmentation of Ls

which includes default propositions within the domain
description of authorization policies. We have also shown
that Lsd has more powerful expressiveness than Ls in
the sense that constraints, causal and inherited autho-
rizations as well as general default authorizations can be
specified. We have discussed the relationships between
our approach and Woo and Lam’s in detail.

In [11,12], an access control system has been imple-
mented with policy evaluation and dynamic policy up-
date. It is realized by first translating the policy base
which is specified by a logic-based language to a logic
program, then using stable model semantics [17] to eval-
uation the underlying logic program. A related work us-
ing logic programming for conflict resolution in reasoning
has also been implemented in [26]. It is our future work
to use logic programming (stable model semantics) to
implement language Lsd presented in this paper.

References

1. V. Atluri and A. Gal, An Authorization Model for Tempo-
ral and Derived Data: Securing Information Protals, ACM
Transactions on Information and System Security, Vol.5,
No.1, pp62–94, 2002.

2. Y. Bai and V. Varadharajan, Object Oriented Database
with Authorization Policies, Journal of fundamenta Infor-
maticae, Vol.53, Nos.3-4, pp229-250, 2002.

12 Yun Bai et al.

3. Y. Bai and V. Varadharajan, On Transformation of
Authorization Policies, Data and Knowledge Engineering,
Vol.45, No.3, pp333-357, 2003.

4. E. Bertino, F. Buccafurri, E. Ferrari and P. Rullo, A Logic-
based Approach for Enforcing Access Control, Computer
Security, vol.8, No.2-2, pp109–140, 2000.

5. E. Bertino, B. Catania, E. Ferrari and P. Perlasca, A Logi-
cal Framework for Reasoning about Access Control Models,
ACM Transactions on Information and System Security,
Vol.6, No.1, pp71–127, 2003.

6. E. Bertino, S. Jajodia and P. Samarati, Supporting Mul-
tiple Access Control Policies in Database Systems, Pro-
ceedings of IEEE Symposium on Research in Security and
Privacy, pp94–107, 1996.

7. E. Bertino, A. Mileo and A. Provetti, Policy Monitor-
ing with User-preferences in PDL, Proceedings of IJCAI-
03 Workshop for Nonmonotonic Reasoning, Action and
Change, pp37–44, 2003.

8. D.F.C. Brewer and M.J. Nash, The Chinese Wall Secu-
rity Policy, Proceedings of IEEE Symposium on Research
in Security and Privacy, pp215–228, 1989.

9. J. Chomicki, J. Lobo and S. Naqvi, A Logical Program-
ming Approach to Conflict Resolution in Policy Manage-
ment, Proceedings of International Conference on Princi-
ples of Knowledge Representation and Reasoning, pp121–
132, 2000.

10. T.S.C. Chou and M. Winslett, Immortal: A Model-based
Belief Revision System, Proceedings of International Con-
ference on Principles of Knowledge Representation and
Reasoning, pp99–110, 1991.

11. V. Crescini and Y. Zhang, Web Server Authorization
with Policy Updater: A Logical Based Access Control Sys-
tem, To appear in the Proceedings of IADIS International
Conference on WWW/Internet, 2004.

12. V. Crescini and Y. Zhang, A Logical Based Approach for
Dynamic Access Control, To appear in the Proceedings of
17th Australian Joint Conference on Artificial Intelligence,
2004.

13. M. Dacier and Y. Deswarte, Privilege Graph: an Exten-
sion to the Typed Access Matrix Model, Proceedings of
European Symposium on Research in Computer Security,
pp319–334, 1994.

14. D.E. Denning, A Lattice Model of Secure Information
Flow, Communication of ACM, vol.19, pp236–243, 1976.

15. E.B. Fernandez, E. Gudes and H. Song, A Security Model
For Object-Oriented Databases, Proceedings of IEEE Sym-
posium on Research in Security and Privacy, pp110–115,
1989.

16. E.B. Fernandez, R.B. France and D. Wei, A Formal Spec-
ification of an Authorization Model for Object-oriented
Databases, Database Security, IX: Status and Prospects,
pp95–109, 1995.

17. M. Gelfond and V. Lifschitz, Classical Negation in Logic
Programs and Disjunctive Databases, New Generation
Computing, vol.9, pp365–385, 1991.

18. L. Gong, A Secure Identity Based Capability System,
Proceedings of IEEE Symposium on Research in Security
and Privacy, pp56–63, 1989.

19. S. Jajodia, P. Samarati, M.L. Sapino and V.S. Subrah-
manian, Flexible Support for Multiple Access Control Poli-
cies, ACM Transactions on Database Systems, Vol.29, No.2,
pp214–260, 2001.

20. S. Jajodia, P. Samarati and V.S. Subrahmanian, A Log-
ical Language for Expressing Authorizations, Proceedings
of IEEE Symposium on Research in Security and Privacy,
pp31–42, 1997.

21. N. Li, B. Grosof and J. Feigenbaum, Delegation Logic: A
Logic-based Approach to Distributed Authorization, ACM
Transactions on Information and System Security, Vol.6,
No.1, pp128–171, 2003.

22. C. Meadows, Policies for Dynamic Upgrading, Database
Security, IV: Status and Prospects, pp241–250, 1991.

23. R. Reiter, A Logic for Default Reasoning, Artificial In-
telligence, vol. 13, pp81–132, 1980.

24. R.S. Sandhu and S. Ganta, On the Minimality of Testing
for Rights in Transformation Models, Proceedings of IEEE
Symposium on Research in Security and Privacy, pp230–
241, 1994.

25. T.Y.C. Woo and S.S. Lam, Authorization in Distributed
Systems: A Formal Approach, Proceedings of IEEE Sympo-
sium on Research in Security and Privacy, pp33–50, 1992.

26. Y. Zhang, C.M. Wu and Y. Bai Implementing Prioritized
Logic Programming, AI Communications, Vol.14, No. 4,
pp183–196, 2001.

