
First-Order Expressibility and Boundedness of Disjunctive Logic Programs

Heng Zhang and Yan Zhang
Artificial Intelligence Research Group

School of Computing, Engineering and Mathematics
University of Western Sydney, Australia

Abstract
In this paper, the fixed point semantics developed
in [Lobo et al., 1992] is generalized to disjunctive
logic programs with default negation and over ar-
bitrary structures, and proved to coincide with the
stable model semantics. By using the tool of ultra-
products, a preservation theorem, which asserts that
a disjunctive logic program without default nega-
tion is bounded with respect to the proposed seman-
tics if and only if it has a first-order equivalent, is
then obtained. For the disjunctive logic programs
with default negation, a sufficient condition assur-
ing the first-order expressibility is also proposed.

1 Introduction
Disjunctive logic programming enhances the traditional log-
ic programming in both the expressive power and the ability
to represent indefinite knowledge. It has been widely recog-
nized as a powerful formalism for database querying [Eiter
et al., 1997], knowledge representation and declarative prob-
lem solving [Baral, 2003]. The dominating semantics for it
in these areas is the stable model semantics [Gelfond and Lif-
schitz, 1988; Ferraris et al., 2011; Lin and Zhou, 2011], or
equivalently the minimal model semantics if no default nega-
tion is involved [Lobo et al., 1992].

However, a main drawback of this formalism is its high un-
decidability or intractability [Chomicki and Subrahmanian,
1990; Eiter and Gottlob, 1997; Eiter et al., 1997]. Therefore,
one of the central issues of this formalism is to find tractable
or manageable fragments. Identifying first-order expressible
fragments is a rather natural way to achieve this goal. In this
way, we can then reduce the computations for disjunctive log-
ic programs to the solvers in classical logic, for example, first-
order theorem provers for Prolog-style inference, and SAT or
SMT solvers for answer-set solving on finite domains.

Recently, a lot of works have been devoted to this task. For
example, the first-order expressibility via a single sentence
without and with auxiliary predicates were studied by [Ca-
balar et al., 2009; Bartholomew and Lee, 2010; Zhang and
Ying, 2010; Zhang and Zhou, 2010; Chen et al., 2010; 2011;
Ferraris et al., 2011; Lee and Meng, 2011; Lifschitz and
Yang, 2012] and [Asuncion et al., 2012a; 2012b] respectively,
and the first-order expressibility via a possibly infinite theory

on finite structures was studied by [Chen et al., 2006]. How-
ever, almost all of these works were focusing on only suffi-
cient or only necessary conditions for the first-order express-
ibility. Unlike them, we are interested in finding conditions
that exactly capture the three kinds of first-order expressibil-
ity mentioned above. To assure these conditions are useful
in identifying first-order expressible fragments, we hope it is
intuitively easy to verify whether or not they are satisfied.

The candidate that we choose for such conditions, the
boundedness, originally comes from the area of mathematical
logic [Moschovakis, 1974; Barwise and Moschovakis, 1978],
and has then been thoroughly studied by the community of
Datalog as a valuable tool for Datalog optimization [Abite-
boul et al., 1995]. An elegant boundedness characterization
of the first-order expressibility for Datalog was independent-
ly obtained by [Kolaitis and Papadimitriou, 1990] and [Ajtai
and Gurevich, 1994]. Therefore, a natural problem is whether
or not it can be generalized to the disjunctive case. As the pro-
gression on a disjunctive logic program is significantly differ-
ent from that on a definite one, it is a challenging problem.

In this paper, we first show that the three kinds of first-order
expressibility coincide under the stable model semantics. To
solve the problem mentioned above, a fixed point semantics,
which was proposed in [Lobo et al., 1992] for negation-free
disjunctive logic programs over Herbrand structures, is then
generalized to disjunctive logic programs with default nega-
tion over arbitrary structures. By using the technique of ultra-
products, we prove that a disjunctive logic program without
default negation is bounded based on this semantics if and on-
ly if it is equivalent to a first-order sentence. For the case with
default negation, we also propose a definition for the bound-
edness and show that it implies the first-order expressibility.

2 Preliminaries
Vocabularies are assumed to be sets of predicate constants
and function constants. Every constant is equipped with a
natural number, its arity. Nullary function constants are also
called individual constants, and nullary predicate constants
are called proposition constants. For some technical rea-
sons, a vocabulary is allowed to contain an arbitrary infinite
set of proposition constants. Logical symbols are defined as
usual, including a countable set of predicate variables and a
countable set of individual variables. Predicate constants and
variables are simply called predicates if no confusion occurs.

Terms, formulae, and sentences of a vocabulary υ (or short-
ly, υ-terms, υ-formulae, and υ-sentences) are built from υ, e-
quality, and variables in a standard way. The only thing which
may be special is that we treat ¬ϕ as a shorthand of ϕ → ⊥,
and ϕ↔ ψ as the conjunction of ϕ→ ψ and ψ → ϕ.

For all formulae ϕ and theories Σ, let υ(ϕ) and υ(Σ) be the
sets of all constants occurring in ϕ and Σ respectively. If x̄ =
x1 · · ·xm, τ is the set of Xj for all 1 ≤ j ≤ n, xi and Xj are
individual and predicate variables respectively, byQx̄ andQτ
we denote quantifier blocks Qx1 · · ·Qxm and QX1 · · ·QXn

respectively, where Q is ∀ or ∃. A first-order (second-order)
formula of the form ∀x̄ϑ (∀τϑ, respectively) is universal if ϑ
is first-order (second-order, respectively) quantifier-free.

Every structureA of a vocabulary υ (or shortly, υ-structure
A) is accompanied by a nonempty set A, the domain of A,
and interprets each n-ary predicate constant P in υ as an n-
ary relation PA onA, and interprets each n-ary function con-
stant f in υ as an n-ary function fA on A. A structure is
finite if its domain is finite; otherwise it is infinite. Given two
υ-structuresA,B with the same domain and a set τ of predi-
cates, we writeA 4τ B if the interpretation of each predicate
from τ inA is a subset of that in B, and interpretations of the
other predicates and functions inA are the same as that in B;
we write A ≺τ B if A 4τ B holds but B 4τ A does not.

Every assignment in a structureA is a function α that maps
each individual variable to an element of A and that maps
each predicate variable to a relation on A of the same arity.
Given an υ-formula ϕ and an assignment α in A, we write
(A, α) |= ϕ if α satisfies ϕ in A in the standard way. In
particular, if ϕ is a sentence, we simply write A |= ϕ, and
say A is a model of ϕ, or in other words,A satisfies ϕ.

Let τ be a set of predicates and let ϕ be any first-order sen-
tence. We say ϕ is positive with respect to τ if it is in the
smallest set that contains all atoms, and the negation of atoms
not involving any predicate in τ , and that is closed under con-
nectives ∧,∨ and first-order quantifiers ∃,∀; ϕ is negative
with respect to τ if ¬ϕ is equivalent to a sentence positive
with respect to τ . By a routine induction on the structure of
formulae, we can then obtain the following property:

Proposition 1. Let τ be a set of predicates and let A,B be
two structures such that A 4τ B. Let ϕ be any first-order
sentence which is positive (negative) with respect to τ . Then
B is a model of ϕ if (only if, respectively)A is a model ϕ.

For the propositional case, a slightly stronger version of
the above proposition is still true. A positive clause is defined
to be a finite disjunction of atoms. Given a vocabulary υ, let
PC(υ) be the set of all positive clauses of υ. Now, we give the
following property without a proof since it is in fact the same
as that of Theorem 1.2.16 in [Chang and Keisler, 1990].

Proposition 2. Let υ be a set of proposition constants and
suppose M,N ⊆ υ. Then M ⊆ N iff for all positive clauses
γ ∈ PC(υ), N is a model of γ wheneverM is a model of γ.

2.1 Circumscription
For the notion of circumscription we follow [Lifschitz, 1985],
but do not use varying constants. Let ϕ be a first-order sen-
tence and τ a finite set of predicate constants. For each pred-
icate P in τ we introduce a new predicate variable P ∗ of the

same arity. Let τ∗ be the set of all predicate variables P ∗
whereP is in τ . For the sake of convenience, we write τ∗ = τ
for the formula ∧P∈τ∀x̄(P ∗(x̄) ↔ P (x̄)), write τ∗ ≤ τ for
the formula ∧P∈τ∀x̄(P ∗(x̄) → P (x̄)), and write τ∗ < τ
for the formula τ∗ ≤ τ ∧ ¬(τ∗ = τ). The circumscription
CIRC(ϕ; τ) of ϕ with respect to τ is defined to be the second-
order sentence ϕ ∧ ∀τ∗(τ∗ < τ → ¬ϕ(τ∗)), where ϕ(τ∗) is
the formula obtained from ϕ by substituting the variable P ∗
for each constant P of τ . A structureA is called a τ -minimal
model of ϕ if A is a model of ϕ, and no model B of ϕ satis-
fies B ≺τ A. The following well-known property shows that
translation CIRC captures the minimal model semantics.
Proposition 3. Let ϕ be a first-order sentence. A structureA
is a τ -minimal model of ϕ iff it is a model of CIRC(ϕ; τ).

2.2 General Stable Model Semantics
Similarly, the stable model semantics is also defined by a
second-order translation. Given a first-order sentence ϕ and
a finite set τ of predicate constants, let SM(ϕ; τ) stand for
the second-order sentence ϕ ∧ ∀τ∗(τ∗ < τ → ¬ST(ϕ; τ)),
where the formula ST(ϕ; τ) is defined recursively as follows:

- ST(P (t̄); τ) = P ∗(t̄) if P is a predicate in τ .
- ST(ψ; τ) = ψ if ψ is an atom not in the previous case.
- ST(ψ ◦ χ; τ) = ST(ψ; τ) ◦ ST(χ; τ) if ◦ ∈ {∧,∨}.
- ST(ψ → χ; τ) = (ψ → χ) ∧ (ST(ψ; τ)→ ST(χ; τ)).
- ST(Qxψ; τ) = QxST(ψ; τ) if Q ∈ {∀,∃}.

A structure A is called a τ -stable model of ϕ if it is a model
of SM(ϕ; τ). A predicate constant is said to be intension-
al if it occurs in τ . Otherwise, it is extensional. For more
information about this, please refer to [Ferraris et al., 2011].

2.3 Logic Programs
Every disjunctive logic program is a set of rules of the form

ζ1 ∧ · · · ∧ ζm → ζm+1 ∨ · · · ∨ ζn
where 0 ≤ m ≤ n, and for each integer m < i ≤ n, ζi is an
atom without equality; for each integer 1 ≤ j ≤ m, ζj is a
literal, i.e., an atom or its negation. The disjunctive part of the
rule is called its head, and the conjunctive part called its body.
Let Π be a disjunctive logic program. Then each intensional
predicate of Π is a predicate constant that occurs in the head
of some rule in Π. We say Π is normal if the head of each rule
contains at most one literal, Π is plain if no negative literal
involving an intensional predicate occurs in any of its rules,
Π is propositional if no predicate of positive arity occurs in
any of its rules, and Π is finite if it contains only a finite set
of rules. In particular, unless mentioned otherwise, a logic
program is always assumed to be finite.

For convenience, we regard each disjunctive logic program
as the conjunction of all sentences ∀x̄γ such that γ is a rule in
it and that x̄ consists of all individual variables occurring in
γ. Let Π be a finite disjunctive logic program Π and let τ be
the set of all intensional predicates of Π, we let CIRC(Π) and
SM(Π) denote the formulae CIRC(Π; τ) and SM(Π; τ) re-
spectively. Every τ -minimal (τ -stable) model of Π is simply
called a minimal (stable, respectively) model of Π. It is easy
to see that SM(Π) is equivalent to CIRC(Π) if Π is plain.

LetA be a structure and τ a set of predicates. For every k-
ary predicate P in τ and every k-tuple ā on A, we introduce

Pā as a new proposition constant. Define INS(A, τ) to be the
set of proposition constants Pā such that P (ā) is true inA and
P is in τ . Given a rule γ and an assignment α inA, let γ[α] be
the rule obtained from γ by substituting Pā for all atoms P (t̄)
such that ā = α(t̄), let γ−B be the set of all literals in the body
in which no intensional predicate positively occurs, and let
γ+ be the rule obtained from γ by removing all literals in γ−B .
Given a disjunctive logic program Π, let ΠA be the set of rules
γ+[α] for all assignments α inA and all rules γ in Π such that
α satisfies γ−B in A. The following proposition asserts that
the general stable model semantics for logic programs can be
redefined by the first-order GL-reduction defined above.
Proposition 4. Let Π be a disjunctive logic program with a
set τ of intensional predicates. Then an υ(Π)-structure A is
a stable model of Π iff INS(A, τ) is a minimal model of ΠA.

Proof. Similar to Theorem 1 in [Ferraris et al., 2011].

3 First-Order Expressibility
As mentioned in the first section, there are three kinds of first-
order expressibility having been studied. In this section, we
study the relationship among them over arbitrary structures.
Definition 1. Given a second-order formula ϕ, we say ϕ is
first-order expressible if it is equivalent to a first-order for-
mula, ϕ is pseudo-first-order expressible if it is equivalent to
an existential second-order formula, and ϕ is weak-first-order
expressible if it is equivalent to a first-order theory.

Intuitively, the last two kinds of expressibility are strictly
stronger than the first one. But surprisingly, the following
result shows this is not true for a large family of semantics.
Proposition 5. Let ϕ be a universal second-order formula.
Then the following statements are equivalent:

1. ϕ is first-order expressible;
2. ϕ is weak-first-order expressible;
3. ϕ is pseudo-first-order expressible.

Proof. Clearly, both “1=⇒2” and “1=⇒3” are trivial, and
“3=⇒1” follows from the fact that every universal second-
order formula whose negation is equivalent to a universal
second-order formula should be first-order expressible. This
fact is an immediate consequence of Craig’s interpolation the-
orem for first-order logic. Please refer to Subsection 2.5.2
of [van Benthem and Doets, 1983] for a statement. Now, it
remains to show “2=⇒1”. Assume there is a first-order the-
ory Σ that is equivalent to ϕ, and suppose ϕ is of the form
∀τϑ where ϑ is quantifier-free and τ a finite set of predicates.
From Σ � ϕ we have Σ � ϑ. By the compactness, there ex-
ists a finite subset Σ0 of Σ such that Σ0 � ϑ, which implies
Σ0 � ϕ. On the other hand, by the assumption, it is clearly
true that ϕ � Σ0. Let ψ be the conjunction of all formulae in
Σ0. Then ψ is a first-order formula equivalent to ϕ.

Remark 1. By the above proposition, the three kinds of first-
order expressibility then coincide for both circumscription
and the general stable model semantics (so also for disjunc-
tive logic programming) since their syntax-translation defini-
tions are universal second-order. In the rest of this paper, we
will only consider the standard first-order expressibility.

4 Progression and Boundedness
Firstly, we generalize the fixed point semantics in [Lobo et
al., 1992] to non-Herbrand disjunctive logic programs with
default negation, and show the new semantics coinciding with
the general stable model semantics.

In order to simplify the presentation, each clause and claus-
es obtained from it by applying the laws of commutation, as-
sociation and identity for ∨ are regarded as the same.

Definition 2. Given a propositional, possibly infinite and
plain disjunctive logic program Π, and given a subset Σ of
PC(υ(Π)), let ΓΠ(Σ) be the set of all clausesH∨C1∨· · ·∨Ck
such that k ≥ 0 and there are a rule p1 ∧ · · · ∧ pk → H in Π
and a sequence of positive clauses C1∨p1, . . . , Ck ∨pk in Σ.

From the definition, ΓΠ is clearly a function on the subsets
of PC(υ(Π)). Now by the first-order GL-reduction, a progres-
sional operator for first-order logic programs is then defined.

Definition 3. Let Π be a disjunctive logic program and letA
be a structure of υ(Π). We define ΓAΠ as the function ΓΠA .

Assume Γ is a unary function on a set. For convenience, we
let Γ ↑ 0 denote the empty set ∅, and let Γ ↑ n be the union of
Γ ↑ n− 1 and Γ(Γ ↑ n− 1) for all integers n > 0. Moreover,
we define Γ ↑ ω as the union of Γ ↑ n for all integers n ≥ 0.
Example 1. Let Π be the logic program consisting of rules

P (x)→ P (y) ∨ P (z) and P (c),

and let A be a {c}-structure. Then ΓAΠ ↑ 1 = {Pa} where
a = cA, and for 1 < k ≤ |A|, ΓAΠ ↑ k is the set of all clauses
of the form Pa1 ∨ · · · ∨ Pak such that a1, . . . , ak ∈ A. �

Given a propositional theory Σ, let Λ(Σ) denote the set of
clauses {γ ∈ PC(υ(Σ)) : Σ � γ}. The following proposition
can be regarded as a simulation of Theorem 3.14 in [Lobo et
al., 1992] which asserts the soundness and completeness of
their fixed point semantics over Herbrand structures.

Proposition 6. Let Π be a propositional, possibly infinite and
plain disjunctive logic program. Then ΓΠ ↑ ω ≡ Λ(Π).

This proposition can be proved in a way similar to Theorem
3.14 in [Lobo et al., 1992]. The only thing should be careful
is: logic programs in this paper may involve an uncountable
number of proposition constants. But it is not a real obstacle
since many properties of the propositional logic, including the
completeness and compactness, still hold for the uncountable
language (see Section 1.2 of [Chang and Keisler, 1990]).

The above proposition implies that our semantics is indeed
a generalization of the fixed point semantics in [Lobo et al.,
1992]. To achieve our goal, however, more results are needed.

Proposition 7. Let Π be a propositional, possibly infinite and
plain disjunctive logic program without extensional proposi-
tions. Then Π and Λ(Π) have the same set of minimal models.

Proof. “Subset”: Suppose M is a minimal model of Π. As
M is clearly a model of Π, by the definition of Λ, M should
satisfy each clause in Λ(Π). To obtain a contradiction, we
assume M is not a minimal model of Λ(Π). This means that
there must be a model N of Λ(Π) such that N (M. Let Σ
be the set {¬C : C ∈ PC(υ(Π)) ∧N |= ¬C}. We claim that
Π ∪ Σ is satisfiable. Let us first assume the claim is true. Let

N′ be a model of Π∪Σ. For every clause C ∈ PC(υ(Π)), it is
clear that, if N satisfies ¬C, then ¬C ∈ Σ, which implies N′
satisfies ¬C too. By Proposition 2, it implies N′ ⊆ N (M.
But this is impossible sinceM is a minimal model of Π.

Now we prove the claim. To obtain a contradiction, assume
that Π ∪Σ is unsatisfiable. By the compactness, there is then
a finite subset Σ0 of Σ such that Π∪Σ0 is unsatisfiable. Sup-
pose Σ0 = {¬C1, . . . ,¬Ck} for some integer k. It must hold
that Π � C1∨· · ·∨Ck. Let C0 = C1∨· · ·∨Ck. It is obvious
that C0 ∈ PC(υ(Π)). By the definition of Λ and the previ-
ous conclusion, we then have that C0 ∈ Λ(Π). Since N is a
model of Λ(Π), C0 should be satisfied by N. Consequently,
there should be an integer 1 ≤ i ≤ k such thatN satisfies Ci,
which leads to a contradiction since Ci ∈ Σ.

“Superset”: Suppose M is a minimal model of Λ(Π). Let
N be any proper subset ofM. By the assumption,N does not
satisfy Λ(Π). By the definition of Λ, we can then conclude
that N does not satisfy Π too. Therefore, it remains to show
that M is a model of Π. Let Σ = {¬C : C ∈ PC(υ(Π)) ∧
M |= ¬C}. By a similar argument using in the proof of the
above claim, we can show that Π ∪ Σ is satisfiable. Let N′
be a model of Π ∪ Σ. For every clause C ∈ PC(υ(Π)), if
M |= ¬C, we have C ∈ Σ by the definition, which implies
thatN′ satisfies ¬C. By Proposition 2, we can then conclude
N′ ⊆M. As we just proved, any proper subset of M is not a
model of Π. So, it must be true that N′ = M, which implies
thatM is a model of Π. This then completes the proof.

Now we show that the stable model semantics for disjunc-
tive logic programs has a progression characterization.
Theorem 1. Let Π be a disjunctive logic program and let τ
be the set of all intensional predicates of Π. Let A be an
arbitrary structure of υ(Π). Then A is a stable model of Π if
and only if INS(A, τ) is a minimal model of ΓAΠ ↑ ω.

Proof. Simply by the equivalence of following statements:
1. A is a stable model of Π;
2. INS(A, τ) is a minimal model of ΠA;
3. INS(A, τ) is a minimal model of Λ(ΠA);
4. INS(A, τ) is a minimal model of ΓΠA ↑ ω;
5. INS(A, τ) is a minimal model of ΓAΠ ↑ ω.

Herein, the equivalence of statements 1 and 2 is immediate
by Proposition 4; 2 and 3 by Proposition 7; 3 and 4 by Propo-
sition 6; and 4 and 5 by the definition.

Next, we show that the progression can be defined in a first-
order way. This will play an important role in the proof of our
main result. Some definitions and notations are given firstly.

Every individual variable that will be used in logic pro-
grams is supposed to be among v0, v1, v2, For each vari-
able vi, i is called its index. Let V be any set of individual
variables. A renaming function of V is an injective mapping
that maps each variable in V to an individual variable. Giv-
en a renaming function λ of V and an expression (including
a term or a formula) $, let λ($) be the expression obtained
from $ by substituting λ(x) for all variables x in V .

In many cases, what variables are used in a logic program
is not important, and different renaming functions may play
the same role. Therefore, a method is then needed to make

choices among such kinds of renaming functions. A natural
way to do this is by arming with a linear order on renaming
functions and then choosing the least one satisfying a certain
condition. We define a linear order on renaming functions as
follows. Let λ1 and λ2 be two renaming function of V . Given
k = 1 or 2, let Sk be the sequence of all indices of λk(x) for
all x ∈ V which is ordered by the index of x, i.e., if i < j and
vi, vj ∈ V , then the position of index of λk(vi) in Sk should
be in front of that of λk(vj). We say λ1 is less than λ2 iff the
sequence S1 is less than S2 in the lexicographic order.

Definition 4. Let Π be a disjunctive logic program. We let
∆0(Π) = ∅, and for each integer n > 0, let ∆n(Π) be the
union of ∆n−1(Π) and the set of all rules

η ∧ η�1 ∧ · · · ∧ η�k → ϑ ∨ λ1(ϑ1) ∨ · · · ∨ λk(ϑk)

that satisfy all the following conditions:

1. there is a rule γ = P1(t̄1) ∧ · · · ∧ Pk(t̄k) ∧ η → ϑ in Π
such that no intensional predicate positively occurs in η,

2. for each integer 1 ≤ i ≤ k, there is a rule γi = ηi →
ϑi ∨ Pi(s̄i) in ∆n−1(Π), and

3. for each integer 1 ≤ i ≤ k, λi is the least renaming
function of V such that no individual variable occurring
in the formulae λ1(γ1), . . . , λi(γi) occurs in γ, and η�i
is the formula λi(ηi)∧ (λi(s̄i) = t̄i), where V is the set
of all individual variables occurring in γ, γ1, . . . , γk.

Moreover, let ∆(Π) denote the union of ∆n(Π) for all n ≥ 0.

Example 2. (Example 1 continued) Let Π be the same as Ex-
ample 1 and suppose x, y, z are v0, v1, v2 respectively. Then

∆1(Π) = {P (c)} ,
∆2(Π) = {P (c), c = v0 → P (v1) ∨ P (v2)} ,

∆3(Π) =


P (c), c = v0 → P (v1) ∨ P (v2),

c = v3 ∧ v5 = v0 → P (v1) ∨ P (v2) ∨ P (v4),

c = v3 ∧ v4 = v0 → P (v1) ∨ P (v2) ∨ P (v5)


and so on. Clearly, ∆n(Π) is a finite set for each n ≥ 0. �

Intuitively, ∆n(Π) is the set of formulae derivable in n
steps by some rules. The following property is not surprise.

Proposition 8. Let Π be a disjunctive logic program. Let A
be an υ(Π)-structure. Then ΓAΠ ↑n = ∆n(Π)A for all n ≥ 0.

The proof of this proposition is slightly tedious, but its in-
tuitive meaning is very clear. Due to the limit of space, we
omit the proof here. A complete proof through an induction
on n will be available in the full version of this paper.

Now, we define the boundedness of a logic program.

Definition 5. Let Π be a plain disjunctive logic program and
τ the set of all intensional predicates of Π. Let C be a class
of τ -structures. Given an integer k ≥ 0, Π is k-bounded on C
if for every structure A in C, ΓAΠ ↑ ω is equivalent to ΓAΠ ↑ k.
Π is bounded on C if it is k-bounded on C for some integer
k ≥ 0. If C is the class of all τ -structures and Π is bounded
(k-bounded) on C, we simply say Π is bounded (k-bounded).

In this definition, please notice that ΓAΠ ↑ ω and ΓAΠ ↑ n
are required to be equivalent. It seems more natural to define
boundedness by the set-identity relation. But the following

example shows that this is not enough to capture the first-
order expressibility of plain disjunctive logic programs.
Example 3. (Example 1 continued) Let Π be the program in
Example 1. It is clear that CIRC(Π) is equivalent to the first-
order sentence ∀xP (x). Let A be any {c}-structure. Then
ΓAΠ ↑ n is a proper subset of ΓAΠ ↑ ω for each integer n < |A|.
On the other hand, ΓAΠ ↑ 2 is equivalent to ΓAΠ ↑ ω since the
clause Pa ∈ ΓAΠ ↑ 2 for each a in A. Hence, Π is bounded.�

Definition 6. Let Π be a plain disjunctive logic program.
Given an integer k ≥ 0, we say Π is k-finitary with respect to
derivation if ∆(Π) is equivalent to ∆k(Π). We say Π is fini-
tary with respect to derivation if it is k-finitary with respect
to derivation for some integer k ≥ 0.

The following theorem follows from Proposition 8.

Theorem 2. A plain disjunctive logic program is k-bounded
if and only if it is k-finitary with respect to derivation.

Now, let us consider non-plain disjunctive logic programs.
Let Π be such a program and let τ be the set of all inten-
sional predicates of Π. Lin’s transformation translates Π to
a plain disjunctive logic program Π∗ which is obtained from
Π by, for each P of τ , substituting P ∗ for all positive occur-
rences of P in the head or the body of rules [Lin, 1991]. By
the second-order translation, it is easy to see that SM(Π) is
equivalent to ∃τ∗(CIRC(Π∗) ∧ τ∗ = τ). So, a natural defi-
nition of boundedness for non-plain programs can be defined
by this transformation. Unfortunately, the following example
shows that it does not capture the first-order expressibility.
Example 4. Let Π be the following logic program:

E(x, y) → R(x, y), E(x, y) → P (x, y),
E(x, y) ∧R(y, z) → R(x, z), ¬P (x, y) → P (x, y).

It is easy to verify that SM(Π) is equivalent to the first-order
sentence ∀xy(E(x, y)∧P (x, y)∧R(x, y)). Let n > 0 be an
integer, and letAn be a structure encoding the linear order of
length n. Then n is the least integer k such that ΓAn

Π∗ ↑ k is
equivalent to ΓAn

Π∗ ↑ ω, which implies Π∗ is unbounded. �

Therefore, we have to choose a weaker definition for the
boundedness of non-plain disjunctive logic programs. By the
next proposition, it can assure the first-order expressibility.

Definition 7. Let Π be a non-plain disjunctive logic program
and let τ be the set of all intensional predicates of Π. Let
S(Π) be the union of the class of stable models of Π and
classes of stable models of ∆k(Π) for all integers k ≥ 1. We
then say Π is bounded iff Π∗ is bounded on S(Π).

Proposition 9. Let Π be a bounded and plain (non-plain)
disjunctive logic program. Then Π and ∆k(Π) have the same
class of minimal (stable, respectively) models for some k ≥ 0.

Proof. We only consider the case that Π is a non-plain dis-
junctive logic program. For the plain case, a similar proof
can be easily obtained. By the definition, there must be some
integer k ≥ 0 such that Π∗ is k-bounded over S(Π). Now, it
suffices to prove the equivalence of following statements:

1. A is a stable model of Π;
2. INS(A, τ) is a minimal model of ΓAΠ ↑ ω;

3. INS(A, τ) is a minimal model of ΓAΠ ↑ k;
4. INS(A, τ) is a minimal model of ∆k(Π)A;
5. A is a stable model of ∆k(Π).

Herein, the equivalence of statements 1 and 2 follows from
Theorem 1; 2 and 3 from the assumption that Π is k-bounded;
3 and 4 from Proposition 8; 4 and 5 from Proposition 4.

5 A Preservation Theorem
Let Π be a disjunctive logic program. The dependency graph
of Π is the directed graph whose vertices are predicates in
υ(Π) and that consists of all edges from P to Q such that P
andQ positively occur in the head and the body of a rule in Π
respectively. We say Π is recursion-free if every intensional
predicate has no positive occurrence in the body of any rule in
Π, and say Π is loop-free if its dependency graph is acyclic.

Now we give the statement of our main theorem. The rest
of this section is then devoted to prove the main theorem.
Main Theorem. Let Π be a disjunctive logic program. If Π
is plain, the following statements are then equivalent:

1. Π is bounded;
2. Π is finitary with respect to derivation;
3. There is a recursion-free disjunctive logic program Π0

such that SM(Π) ≡ SM(Π0);
4. There is a loop-free disjunctive logic program Π0 such

that SM(Π) ≡ SM(Π0);
5. SM(Π) is first-order expressible;
6. SM(Π) is weak-first-order expressible;
7. SM(Π) is pseudo-first-order expressible.

Otherwise, the statements 5–7 are equivalent, and the state-
ment 1 implies all statements among 3–7.

Before proving the theorem, we introduce a tool from clas-
sical model theory - the ultraproduct. Let I be a nonempty
set and D a set of subsets of I . Then D is a filter over I if:

1. if both X and Y are in D then X ∩ Y is in D, and
2. if X is in D and X ⊆ Y ⊆ I then Y is also in D.

Moreover, D is an ultrafilter over I if D is a filter over I and
for every subset X of I , X is in D iff I \X is not in D.

Assume D is an ultrafilter over I . Let υ be a vocabulary,
and let Ai(i ∈ I) be a family of υ-structures. Let

∏
i∈IAi be

the set of all functions π with domain I such that π(i) ∈ Ai
for all i ∈ I . For all π1, π2 ∈

∏
i∈IAi, we write π1 ∼D π2 if

the set {i ∈ I : π1(i) = π2(i)} is in D. It is clear that ∼D is
an equivalence relation. If π ∈ ∏

i∈IAi then let πD be the e-
quivalence class π with respect to ∼D. Let

∏
DAi denote the

set of equivalence classes πD for all π ∈∏
i∈IAi. The ultra-

product of Ai(i ∈ I) module D, written as
∏

DAi, is defined
to be the υ-structure satisfying the following conditions:

1. the domain of
∏

DAi is
∏

DAi;
2. for each k-ary predicate P in υ, P

∏
D Ai consists of all

the tuples (πD1 , . . . , π
D
k) such that πD1 , . . . , π

D
k ∈

∏
DAi

and {i ∈ I : (π1(i), . . . , πk(i)) ∈ PAi} ∈ D;
3. for each k-ary function f in υ and for all πD1 , . . . , π

D
k in∏

DAi, f
∏

D Ai(πD1 , . . . , π
D
k) = πD where π is defined

by π(i) = fAi(π1(i), . . . , πk(i)) for all i ∈ I .

Let C be an arbitrary class of structures. We say C is closed
under ultraproducts if

∏
DAi is in C whenever D is an ul-

trafilter over some nonempty set I and Ai is in C for every
index i in I . We say C is definable by a first-order sentence ϕ
(a first-order theory Σ) if C is exactly the class of all models
of ϕ (of Σ). The following proposition immediately follows
from Theorem 4.1.12 in [Chang and Keisler, 1990].
Proposition 10. A class of structures is definable by a first-
order sentence if and only if it is definable by a first-order
theory and its complement is closed under ultraproducts.

The following property, which says that every consistent
universal first-order theory has a minimal model, is an imme-
diate corollary of Property 1.3.2 in [Bossu and Siegel, 1985].
Proposition 11. Let Σ be a possibly infinite set of universal
first-order sentences, and let A be a model of Σ. Then there
is a minimal model B of Σ such that B 4τ A.

For the notation ∆(·) defined in the previous section, the
following property immediately follows from the definition.
Lemma 1. Let Π be a plain disjunctive logic program. Then
for every rule γ in ∆(Π), Π entails γ in classical logic.

With these properties, we can then prove the following re-
sult, which plays a critical role in the proof of Main Theorem.
Proposition 12. Let Π be a plain disjunctive logic program.
If CIRC(Π) is equivalent to a first-order sentence, then Π is
finitary with respect to derivation.

Proof. We first prove the statement that there is a finite sub-
set of ∆(Π) which is equivalent to a first-order sentence. To
obtain a contradiction, we assume it is not true. By Proposi-
tion 10, there should be an index set I , an ultrafilter D over
I and a family of structures Ai(i ∈ I) of υ(Π) such that Ai
does not satisfy ∆(Π) for any index i ∈ I , but

∏
DAi sat-

isfies ∆(Π). Let τ be the set of all intensional predicates of
Π. By Proposition 11, there must be a τ -minimal model B
of ∆(Π) such that B 4τ

∏
DAi (∗). For each index i ∈ I ,

let Bi be a structure obtained from Ai by removing tuples
(π1(i), . . . , πk(i)) from PAi if k ≥ 0, P is a k-ary predicate
in τ and the tuple (πD1 , . . . , π

D
k) is in P

∏
D Ai but not in PB.

Then it is clear that, for all indices i ∈ I , we have Bi 4τ Ai.
By Proposition 1, we conclude that, for each i ∈ I , Bi does
not satisfy ∆(Π). According to Lemma 1, this implies that
Bi does not satisfy Π. Consequently, B cannot be any mod-
el of CIRC(Π). According to the assumption, CIRC(Π) is
equivalent to a first-order sentence. So, by Proposition 10 a-
gain,

∏
DBi is not a model of CIRC(Π) too. On the other

hand, by the definition of ultraproduct, it is easy to check that∏
DBi = B, which contradicts with the conclusion (∗).
With this statement, there is then a first-order sentence ϕ

that is equivalent to ∆(Π). And by the compactness, there
must be a finite subset Φ of ∆(Π) such that Φ � φ, which
immediately implies that Φ ≡ φ. Let n be the smallest integer
such that Φ ⊆ ∆n(Π), then ∆n(Π) should be equivalent to
∆(Π). Hence, Π is finitary with respect to derivation.

Now we are in the position to prove Main Theorem.

Proof of Main Theorem. The equivalence of statements 5–
7 immediately follows from Proposition 5 and Remark 1. The

direction of “3=⇒4” is trivially true, “1=⇒3” follows from
Proposition 9, “4=⇒5” follows from Theorem 11 of [Ferraris
et al., 2011] and the fact that every loop-free program is tight.
In particular, for the case that Π is plain, the equivalence of
statements 1 and 2 is immediately obtained by Theorem 2,
and the direction of “5=⇒2” is by Proposition 12.
Remark 2. For the non-plain programs, Main Theorem shows
that the boundedness is a sufficient condition for the first-
order expressibility. However, it is not clear whether or not it
is also a necessary condition. The main difficulty of general-
izing our preservation theorem to non-plain case is: it seems
hard to find a replacement for Proposition 11. Therefore, it
is a challenge to find a boundedness-like characterization for
the first-order expressibility of non-plain logic programs.
Remark 3. Over finite structures, the boundedness of plain
logic programs is not enough to capture the standard first-
order expressibility. A counterexample, which does not in-
volve any default negations and disjunctions, could be found
in the proof of Theorem 11.1 in [Ajtai and Gurevich, 1994].

6 Related Works and Conclusion
The boundedness characterization of the first-order express-
ibility for function-free definite logic programs was indepen-
dently discovered by [Kolaitis and Papadimitriou, 1990] and
[Ajtai and Gurevich, 1994]. Our preservation theorem ex-
tends theirs in two directions: allowing disjunctions in the
head of rules, and allowing functions in terms. It seems that
their approaches cannot be applied to either extension.

Minker et al. developed a fixed point semantics for plain
disjunctive logic programs over Herbrand structures [1990;
1992]; Zhang and Zhou proposed a progression semantics for
normal logic programs [2010], and proved their boundedness
defined on this semantics is a necessary condition for the first-
order expressibility. Both works are limited to certain classes
of logic programs and even a certain class of structures. Our
semantics is in fact a natural generalization of both.

There are two kinds of progression semantics which were
proposed for disjunctive logic programs with default nega-
tion [Leone et al., 1997; Zhou and Zhang, 2011]. The first
is based on a technique of unfounded sets and works on Her-
brand structures, and the second progresses disjunctive logic
programs in a parallel way. Both semantics are significantly
different from ours. It is not clear whether or not their seman-
tics can be used to capture the first-order expressibility.

The preservation theorem presented in this paper is an in-
teresting model-theoretic property for disjunctive logic pro-
grams, and gives us a precise picture on the relationship be-
tween disjunctive logic programs and classical logic. It also
provides us a manageable condition for identifying first-order
expressible fragments. Moreover, the progression semantics
and boundedness proposed here may shed light on the static
analysis and optimization of disjunctive logic programs.

Acknowledgement
This publication was made possible by the support of an N-
PRP grant (NPRP 09-079-1-013) from the Qatar National Re-
search Fund (QNRF). The statements made herein are solely
the responsibility of the authors.

References
[Abiteboul et al., 1995] S. Abiteboul, R. Hull, and V. Vianu.

Foundations of Databases. Addison-Wesley Publishing
Company, New York, 1995.

[Ajtai and Gurevich, 1994] M. Ajtai and Y. Gurevich. Data-
log vs first-order logic. Journal of Computer and System
Sciences, 49:562–588, 1994.

[Asuncion et al., 2012a] V. Asuncion, F. Lin, Y. Zhang, and
Y. Zhou. Ordered completion for first-order logic pro-
grams on finite structures. Artificial Intelligence, 177–
179:1–24, 2012.

[Asuncion et al., 2012b] V. Asuncion, Y. Zhang, and
Y. Zhou. Ordered completion for logic programs with
aggregates. In Proc. AAAI, pages 691–697, 2012.

[Baral, 2003] C. Baral. Knowledge Representation, Reason-
ing and Declarative Problem Solving. Cambridge Univer-
sity Press, Cambridge, 2003.

[Bartholomew and Lee, 2010] M. Bartholomew and J. Lee.
A decidable class of groundable formulas in the general
theory of stable models. In Proc. KR, 2010.

[Barwise and Moschovakis, 1978] J. Barwise and
Y. Moschovakis. Global inductive definability. The
Journal of Symbolic Logic, 43(3):521–534, 1978.

[Bossu and Siegel, 1985] G. Bossu and P. Siegel. Satura-
tion, nonmonotonic reasoning and the closed-world as-
sumption. Artificial Intelligence, 25(1):13–63, 1985.

[Cabalar et al., 2009] P. Cabalar, D. Pearce, and A. Valverde.
A revised concept of safety for general answer set pro-
grams. In Proc. LPNMR, pages 58–70, 2009.

[Chang and Keisler, 1990] C. C. Chang and H. J. Keisler.
Model Theory. North Holland, New York, 3 edition, 1990.

[Chen et al., 2006] Y. Chen, F. Lin, Y. Wang, and M. Zhang.
First-order loop formulas for normal logic programs. In
Proc. KR, pages 298–307, 2006.

[Chen et al., 2010] Y. Chen, Y. Zhang, and Y. Zhou. First-
order indefinability of answer set programs on finite struc-
tures. In Proc. AAAI, pages 285–290, 2010.

[Chen et al., 2011] Y. Chen, F. Lin, Y. Zhang, and Y. Zhou.
Loop-separable programs and their first-order definability.
Artificial Intelligence, 175:890–913, 2011.

[Chomicki and Subrahmanian, 1990] J. Chomicki and V. S.
Subrahmanian. Generalized closed world assumption is
Π0

2-complete. Information Processing Letters, 35:289–
291, 1990.

[Eiter and Gottlob, 1997] T. Eiter and G. Gottlob. Expres-
siveness of stable model semantics for disjunctive logic
programs with functions. The Journal of Logic Program-
ming, 33:167–178, 1997.

[Eiter et al., 1997] T. Eiter, G. Gottlob, and H. Mannila. Dis-
junctive datalog. ACM Transactions on Database Systems,
22:364–418, 1997.

[Ferraris et al., 2011] P. Ferraris, J. Lee, and V. Lifschitz.
Stable models and circumscription. Artificial Intelligence,
175:236–263, 2011.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. In
Proc. ICLP/SLP, pages 1070–1080, 1988.

[Kolaitis and Papadimitriou, 1990] P. G. Kolaitis and C. H.
Papadimitriou. Some computational aspects of circum-
scription. Journal of the ACM, 37:1–14, 1990.

[Lee and Meng, 2011] J. Lee and Y. Meng. First-order stable
model semantics and first-order loop formulas. Journal of
Artificial Intelligence Research, 42:125–180, 2011.

[Leone et al., 1997] N. Leone, P. Rullo, and F. Scarcello.
Disjunctive stable models: Unfounded sets, fixpoint se-
mantics and computation. Information and Computation,
135(2):69–112, 1997.

[Lifschitz and Yang, 2012] V. Lifschitz and F. Yang. Lloyd-
topor completion and general stable models. In 5th Work-
shop on Answer Set Programming and Other Computing
Paradigms (ASPOCP), 2012.

[Lifschitz, 1985] V. Lifschitz. Computing circumscription.
In Proc. IJCAI, pages 121–127, 1985.

[Lin and Zhou, 2011] F. Lin and Y. Zhou. From answer set
logic programming to circumscription via logic of GK. Ar-
tificial Intelligence, 175(1):264–277, 2011.

[Lin, 1991] F. Lin. A Study of Nonmonotonic Reasoning.
PhD thesis, Stanford University, USA, 1991.

[Lobo et al., 1992] J. Lobo, J. Minker, and A. Rajasekar.
Foundations of Disjunctive Logic Programming. The MIT
Press, Cambridge, 1992.

[Minker and Rajasekar, 1990] J. Minker and A. Rajasekar. A
fixpoint semantics for disjunctive logic programs. Journal
of Logic Programming, 9(1):45–74, 1990.

[Moschovakis, 1974] Y. Moschovakis. Elementary Induc-
tion on Abstract Structures. North Holland, Amsterdam,
1974.

[vanBenthem and Doets, 1983] J. vanBenthem and K. Doet-
s. Higher-order logic. In D. Gabbay and F. Guenthner, ed-
itors, Handbook of Philosophical Logic, volume 1, pages
275–329. Reidel, Dordrecht, 1983.

[Zhang and Ying, 2010] H. Zhang and M. Ying. Decidable
fragments of first-order language under stable model se-
mantics and circumscription. In Proc. AAAI, 2010.

[Zhang and Zhou, 2010] Y. Zhang and Y. Zhou. On the pro-
gression semantics and boundedness of answer set pro-
grams. In Proc. KR, 2010.

[Zhou and Zhang, 2011] Y. Zhou and Y. Zhang. Progression
semantics for disjunctive logic programs. In Proc. AAAI,
2011.

