
Tracking and Constraining Authorization Provenance

Jinwei Hu1, Khaled M. Khan1, Yun Bai2, and Yan Zhang2

1 Department of Computer Science and Engineering, Qatar University, Qatar
2 School of Computing and Mathematics University of Western Sydney, Australia

{jinwei, k.khan}@qu.edu.qa {ybai, yan}@scm.uws.edu.au

Abstract. Authorization provenance concerns how an authorization is derived. It
appears important to define authorization provenance to (1) analyze policy bases,
(2) defend against a class of attacks, and (3) audit authorizations. In this paper, we
study a notion of authorization provenance, based on a recently proposed logic
in the literature. By examining a collection of properties, we show this definition
captures the intuitions of authorization provenance. We also present an applica-
tion of our notion of authorization provenance: specifying and enforcing a new
type of security requirements.

1 Introduction

Authorization provenance is information about how an authorization is derived. Mod-
elling authorization provenance is challenging in decentralized environments, as mech-
anisms like delegation make authorization provenance complex. Besides the resource
guard who controls access to resources, other agents (e.g., delegatees) play a role in
authorization decision-making as well.

Suppose for example that Alice is the warden of a building and that the request to
access the building would be allowed only if “Alice believes access” can be proved.
Consider the following cases:

CASE1 Alice believes access

CASE2 Alice trusts Bob on access
Bob trusts Cathy on access
Cathy believes access

Observe that Alice’s belief in access is concluded in different ways. In CASE1, it is
because Alice herself, whereas Bob and Cathy also have an effect in CASE2.

Among others, provenance information helps enforce and analyze security. Putting
restrictions on authorization provenance may prevent insiders’ misuse of their privi-
leges. Suppose that the management board of the building is composed of Alice and
Bob, and that it is required that whether or not to allow access be determined only by
the board members. In this case, in order to enter the building, one has to prove “due
to Alice and Bob, Alice believes access” but not simply “Alice believes access”. In
CASE2, Cathy could not obtain the access, because her statement is indispensable to
the conclusion that “Alice believes access”. Hence, the delegation from Bob to Cathy
is actually ignored, thus preventing Bob’s misuse and neglect. As also pointed out in [6,

13], host security may be compromised if provenance is not taken into account when
making authorization decisions.

In the literature, a logic DBT (Due to, Belief and Trust) is designed to represent
belief, trust, provenance, and their relations [5]. DBT enables explicit representation of
authorization provenance. This work follows the lines of [5].

In this paper, we attempt to track and constrain authorization provenance with re-
spect to logic-based policy bases. Based on DBT, we define two forms of authorization
provenance: simple provenance and nested provenance. We study their properties and
thus show that the definition captures important intuitions of authorization provenance
(Section 3). We present an example application of the definition of provenance: speci-
fication and enforcement of constraints on authorization provenance (Section 4). These
constraints can model novel security requirements.

2 Background

We recall the syntax and the semantics of DBT. Consider a countable set of agents AG.
DBT has three types of modal operators for each agent i: Bi, T

i
j , and Di. Biϕ means

that agent i believes ϕ. Tijϕ reads that agent i trusts agent j on ϕ. Diϕ means that
“due to agent i, ϕ holds”. A subset AE of AG is called an agent expression. Given
an AE ⊆ AG, there is also an operator DAE based on Di for each i ∈ AE. DAEϕ
means that, due to the set AE of agents together, ϕ holds. Let Prop be a set of primitive
propositions. Given p ∈ Prop, DBT formulas are inductively defined:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ⇒ ϕ | Biϕ | Diϕ | DAEϕ | Tijϕ.

The semantics of DBT formulas is defined based on Kripke models. A Kripke model
M is a tuple 〈W,π,Bi,Di, T ij 〉 (i, j ∈ AG; i 6= j), whereW is a set of states, π :W 7→
2Prop is a labeling function which maps each state to a subset P of Prop such that, in
this state, any p ∈ P is true and any p ∈ Prop\P is false, Bi ⊆ W ×W is a serial,
transitive and Euclidean binary relation on W ,Di ⊆W ×W is a binary relation on W ,
and T ij ⊆W × 2W is a binary relation between W and its power set.

Definition 1. (|=) Given a modelM = 〈W,π,Bi,Di, T ij 〉, w ∈ W , and a formula ϕ,
let DAE =

⋂
i∈AE Di. We define the satisfaction relation |= as follows: (1) 〈M, w〉 |=

p iff p ∈ π(w), (2) 〈M, w〉 |= ¬ϕ iff 〈M, w〉 6|= ϕ, (3) 〈M, w〉 |= ϕ1∧ϕ2 iff 〈M, w〉 |=
ϕ1 and 〈M, w〉 |= ϕ2, (4) 〈M, w〉 |= ϕ1 ⇒ ϕ2 iff 〈M, w〉 6|= ϕ1, or 〈M, w〉 |= ϕ2,
(5) 〈M, w〉 |= Biϕ iff 〈M, v〉 |= ϕ for all v such that (w, v) ∈ Bi, (6) 〈M, w〉 |= Diϕ
iff 〈M, v〉 |= ϕ for all v such that (w, v) ∈ Di, (7) 〈M, w〉 |= DAEϕ iff 〈M, v〉 |= ϕ
for all v such that (w, v) ∈ DAE , and (8) 〈M, w〉 |= Tijϕ iff (w, dϕe) ∈ T ij , where
dϕe = {v ∈W | 〈M, v〉 |= ϕ}.

We define a decentralized authorization system as a tuple 〈AG,LPB,L,Q,M〉.
AG is the set of agents involved in the system. For example, an agent could be a
resource-requester, a process running one behalf of a user, and an organization (e.g.,
a university). We assume that AG includes a member agent called resource guard, de-
noted as G. The guard, as the root of trust, makes authorization decisions.

Credentials are stored in a decentralized way. Each agent maintains a local policy
base, which may store credentials that the agent signed and credentials that concern
the agent. LPB maps each agent in AG to a set of credentials. We refer to the set of
credentials that an agent i maintains as i’s local policy base. For instance; Alice’s local
policy base includes a credential that Alice trusts Bob on access .

L is the authorization logic used to represent the credentials. In this paper L is
DBT. We assume that credentials only encode agents’ beliefs and trust. For example,
we write TAliceBob access for the above-mentioned credential. Q is a set of queries of the
form DAEn · · ·DAE1

Bip. A query usually asks whether an access is allowed. A query
for the building-access example is D{Alice,Bob}BAliceaccess .

M is a mechanism searching for proofs of queries. We assume M is the proof-
carrying authorization mechanism [1]. In this case, the resource guard would not permit
access unless it is provided with a valid proof which concludes the access is entailed
by the policy. The proof is usually submitted by the agent who requests the access. We
assume that M is able to access local policy bases to compose proofs. In this case,
the union of local policy bases could be treated as one monolithic policy base, thus
eliminating the needs of LPB and M . In other words, we abstract the decentralized
authorization system as 〈AG,DBT, Q,PB〉, where PB is the monolithic policy base.
Formally, a policy base PB is a finite set of WFFpa formulas defined as below.

φ ::= Bip | Tijp

3 Defining Authorization Provenance

In this section, we examine a simple form of authorization provenance, which is ab-
stracted as the set of agents whose statements are referenced in the deduction of the
authorization. The intended function of DAE is to record the agents who affect agents’
beliefs. It appears plausible to define provenance in terms of DAE .

Definition 2 (Authorization Provenance). Given PB and a query q = DAEn · · ·DAE1
Bip

such that PB |= q, we say 〈AEn, · · · , AE1〉 is the provenance of Bip in PB, denoted as
provPB[Bip]. We say provPB[Bip] is a simple provenance if provPB[Bip] = 〈AE〉, and a
nested provenance if provPB[Bip] = 〈AEn, · · · , AE1〉, where n > 1.

Simple provenance is useful when defending against attacks that utilize systems’
neglect of privilege source [6, 13]. It has been shown that simply tracking provenance
as a set of agents is the key to defend against trojan horses in discretionary access
control [6]. Also, the security problem of delegation can be resolved by monitoring
delegation’s provenance [13]. We now show some properties of simple provenance;
nested provenance will be discussed in Section 4.

Distinguishability Suppose that there is more than one way to conclude ϕ: in addition to
AE,AE′ could be the provenance of ϕ. One should be able to express and query ϕwith
these two provenance (i.e., DAEϕ and DAE′ϕ) separately. Provenance distinguishability
is the basic motivation and design objective of DBT. With the operator DAE , one is able
to express and query provenance.

Traceability Any agent contributing to the derivation of ϕ, should be included in the
simple provenance of ϕ. Re-delegations and attribute-based delegations can easily re-
sult in nested provenance of a belief. With this property, we are able to collapse the
accumulated provenance into a simple one - a set of agents, no matter how complicated
the derivation is. Proposition 1 implies that we can keep provenance concise and simple.

Proposition 1. |= DAEn · · ·DAE1
ϕ⇒ DAE1∪···∪AEnϕ.

With simple provenance, the following property shows that provenance is correctly
recorded during the applications of delegations.

Proposition 2. 1. |= DAE1
Tijϕ ∧ DAE2

Bjϕ⇒ DAE1∪AE2∪{j}Biϕ.

2. |= DAE1
Tijϕ ∧ DAE2

Tjkϕ⇒ DAE1∪AE2∪{j}T
i
kϕ.

Proposition 2 shows that, even though delegations and beliefs come along with their
own provenance, these provenance would be recorded and merged with new ones in the
event of delegations taking effect.

Cooperation Agents may cooperate to finish a task. If a task ψ is divided into n sub-
tasks ϕ1, · · · , ϕn, then the union of agent sets, each of which finishes one sub-task, are
responsible for the original task.

Proposition 3. |= (ϕ1∧· · ·∧ϕn ⇒ ψ)∧(DAE1
ϕ1∧· · ·∧DAEnϕn)⇒ DAE1∪···∪AEnψ.

Example 1. Suppose a warehouse task is composed of four steps: prepare, payment ,
issue , and invoice. That is, we have (prepare ∧ payment ∧ issue ∧ invoice)⇒ task .
Suppose further that each of the agents A, B, C, and D accomplish each of the steps,
respectively. That is, we also have DAprepare ∧ DBpayment ∧ DC issue ∧ DDinvoice .
According to Proposition 3, it holds that D{A,B,C,D}task ; namely, we know it is because
{A,B,C,D} that the task is done.

Transferability Provenance has a flavor of responsibility in certain cases. Responsibility
may be transferred from one agent to another.

Proposition 4. If |= DAE1∪AE2
ϕ and |= DAE2

ϕ⇒ DAE3
ϕ, then |= DAE1∪AE3

ϕ.

Suppose that a software manufacturer Mf releases a software called Sw, and that A
installs Sw on her computer. For some reasons, Sw automatically executes some ma-
licious script downloaded from a web-site Wb and the script did some damages to her
computer (e.g., files being destroyed). Naturally, the responsibility of Sw could be trans-
ferred to Mf, as Mf is the producer of Sw. Then, besides Wb, A may complain about
Mf. Put formally, from |= D{Wb,Sw}damage and |= DSwdamage ⇒ DMfdamage , we
have |= D{Wb,Mf}damage by the transferability.

Proposition 4 implies that the responsibility on the set AE2 of agents can be trans-
ferred to the agent set AE3. This kind of transferability often happens between agents
who are related with each other, like “be a supervisor of”.

Limited Responsibility As mentioned before, provenance can be used to trace responsi-
bility: If i delegates the judgement of ϕ to j, then when j utters her belief in ϕ, j is the
provenance of, and is also responsible for, i’s belief in ϕ. Note that the responsibility
is assigned from i’s viewpoint. However, j may not speak of ϕ directly. Suppose that i
delegates only the judgement of ϕ to j, but that j utters her belief in ψ, which is more
informative than ϕ. In this case, j is only responsible for i’s belief in ϕ. In other words,
j’s responsibility is limited to Biϕ.

Proposition 5. If |= ψ ⇒ ϕ, then |= Tijϕ ∧ Bjψ ⇒ DjBiϕ.

4 Constraints on Authorization Provenance

While simple provenance suffices in some cases, more informative provenance comes
in handy. [5] presents a class of provenance-aware queries with nested provenance; one
can syntactically extract useful information about the delegation in PB from a query’s
provenance, if the query is entailed by the PB. A query q = DAEn · · ·DAE1

Bip is
provenance-aware, if AEn = {in, · · · , i1}, AEt = AEn\{in, · · · , it+1} (n − 1 ≤
t ≤ 1), and i 6∈ AEn, where {in, · · · , i1} ⊆ AG. We utilize the following theorem to
enforce constraints on authorization provenance.

Theorem 1 ([5]). If PB |= D{il,··· ,il}· · ·D{i2,i1}Di1Bip, there is a delegation of p from
i to il, from il to il−1, · · · , and finally from i2 to i1.

4.1 Definition

Several attacks are found related to authorization provenance. For example, Wang et al.
[13] point out users may abuse delegations to circumvent security policies (in particular,
separation of duty policies).

Example 2. Consider a task of issuing checks [13]: In a company, the task of issuing
checks is modeled by two authorizations pre and app, which stand for “prepare check”
and “approve check”, respectively. In order to prevent fraudulent transactions, a separa-
tion of duty policy sod〈pre, app〉 that pre and app must be performed by two different
treasurers is required. Also, for the sake of resiliency, the company allows a treasurer to
delegate her authority to a clerk in case she is not able to work.

Suppose that a treasurer, A, and a clerk of the company, B, decide to collude to issue
checks for themselves. They can accomplish in three steps: A delegates the authority
pre to B; B performs pre to prepare a check for A; and A performs app to approve the
check prepared by B.

The observation is that both requests to pre and app are (in part) from A. Similarly,
A can create dummy agents (e.g., processes) or manipulate behind the scene (e.g., tro-
jan horses) [6]. Unfortunately, systems that employ logic-based policy bases are also
vulnerable to these attacks. The defense mechanism proposed in [13] addresses the
problem in work-flow systems; it is unclear how to adapt that approach in face of logic-
based policies. Moreover, in spite of the importance of separation of duty policies, other
compromises involving provenance deserve investigation in their own right.

A

AG

BGaccess(files,A)

Fig. 1. The BP-NFA γA.

The attacks are mainly caused by the ignorance of how an authorization is derived.
This implies that we may resolve them by putting constraints on authorization prove-
nance. We follow the convention to model constraints as finite state automata [9]. We
work on non-deterministic finite automata (NFA). Let the alphabet of the automaton be
Σ = AG ∪ WFFpa ∪ {ε}. An NFA γ is a tuple (V,Σ, δ, v0, F), where V is a finite set
of states, Σ is an alphabet, δ : V × Σ 7→ 2V is a transition function, v0 ∈ V is a start
state, and F ⊆ V is a set of accept states [10].

Definition 3 (Basic Provenance NFA (BP-NFA)). A basic provenance NFA is an NFA
(V,Σ, δ, v0, F) that meets the two conditions: (1) |F | = 1, and (2) for any state v ∈ V
and any σ ∈ Σ, δ(v, σ) ⊆ F if and only if σ is of the form Bip. Suppose that F =
δ(v, φ); we say that γ ends with φ, denoted as endγ [φ].

The intuition of the two conditions is that each BP-NFA recognizes only one query
at a time. Given a provenance aware query q = DAEn · · ·DAE1

Bip, we define a string
over Σ as snsn−1 · · · s1s0, where, for 1 ≤ t ≤ n, st = AEt\AEt−1 and s0 = Bip;
denote the string as str[q]. We say a BP-NFA γ recognizes q if γ accepts str[q].

Take the BP-NFA γA in Fig. 1 for example. Consider the access to A’s files, which is
authorized if one can prove DAGBGaccess(files,A). γA ends at BGaccess(files,A). γA
recognizes D{A,C}DCBGaccess(files,A) but not D{B,A,C}D{A,C}DCBGaccess(files,A),
for the string of the latter does not start with A.

Some constraints are put on a combination of authorization provenance but not a
single one. For example, the separation of duty policy sod〈pre, app〉 forbids any user
from executing both pre and app.

Definition 4 (Concatenated Provenance NFA (CP-NFA)). Given two BP-NFA, γ1 =
(V1, Σ, δ1, v0,1, F1) and γ2 = (V2, Σ, δ2, v0,2, F2), define the concatenation of γ1 and
γ2 as γ1 ◦ γ2 = (V,Σ, δ, v0, F) such that V = V1 ∪ V2, v0 = v0,1, F = F2, and

δ(v, σ) =

δ1(v, σ) if v ∈ V1 and v 6∈ F1

δ1(v, σ) if v ∈ F1 and σ 6= ε

δ1(v, σ) ∪ {v0,2} if v ∈ F1 and σ = ε

δ2(v, σ) if v ∈ F2.

CP-NFA are used to recognize a set of queries. Denote the concatenation of two
strings str1 and str2 as str1 � str2. Given a set Q of provenance aware queries and a
CP-NFA γ, we say γ recognizes Q if Q = {q1, · · · , qn} and there exists a sequence
〈q1, · · · , qn〉 such that γ accepts the string str[q1] � · · · � str[qn].

Suppose that the request to pre (respectively, app) is accompanied with a proof
whose conclusion is DAEn · · ·DAE1

BGpre (respectively, DAE′
n
· · ·DAE′

1
BGapp). Let X

γpre :

AG

X BGpre γapp :

AG

X BGapp

γpre ◦ γapp :

AG

X BGpre ε

AG

X BGapp

Fig. 2. γsod = γpre ◦ γapp.

be a meta-variable over AG. The CP-NFA γsod in Fig. 2 recognizes a combination of
requests of pre and app which are both issued by X , regardless of intermediate delega-
tion. For instance, γsod recognizes {D{A,X}DXBGpre,D{B,C,X}D{C,X}DXBGapp}.

Definition 5 (Constraints on Authorization Provenance). A constraint on authoriza-
tion provenance is a tuple 〈γ, sign〉, where γ is either a BP-NFA or a CP-NFA and
sign ∈ {+,−}. Given a setQ of provenance aware queries, we sayQ satisfies 〈γ, sign〉
if γ recognizes Q when sign = +, and γ does not recognize Q when sign = −. Given
a set C of constraints on provenance, we say Q satisfies C if for all c ∈ C, Q satisfies
c.

A constraint 〈γ,+〉 requires that the provenance of the involved authorizations
matches the pattern specified by γ, whereas 〈γ,−〉 means that the provenance must
not be recognized by γ.

4.2 Example Constraints

Discretionary access control safety We can express discretionary access control safety
by a machine which accepts the provenance starting with the owner of the object. Con-
sider again the BP-NFA γA in Fig. 1. Then the constraint 〈γA,+〉 requires the prove-
nance of BGaccess(files,A) starts with A; that is, every access to A’s files originates
from A or her delegation.

Group-related constraints We restrict an authorization to a group of users by 〈γgroup,+〉,
where γgroup is shown in Fig. 3. The BP-NFA γgroup specifies that only if the access
is directly requested by group members (in the sense that a member is at the end of the
provenance) would it be allowed.

γgroup :

AG

group BGp γblacklist :
blacklist

AG

BGp

Fig. 3. Example BP-NFA related to groups.

Also, blacklist can be enforced via a constraint 〈γblacklist,−〉. By this constraint,
any authorization with provenance beginning with a blacklisted user would be declined.

Traditional approaches to blacklisting may fall short in face of delegations, for they do
not take authorization provenance into account.

Separation of duty With γsod in Fig. 2, 〈γsod,−〉 enforces sod〈pre, app〉 in the tradi-
tional sense. However, it fails to enforce sod〈pre, app〉 in the presence of delegation.
For example, {D{A,B}DBBGpre,DABGapp} satisfies 〈γsod,−〉, but does not complies
with sod〈pre, app〉. With the BP-NFA γgen−pre and γgen−app in Fig. 4, the CP-NFA
γgen−sod = γgen−pre ◦ γgen−app checks if the requests of pre and app are both from
X , either directly or indirectly via delegation. The constraint 〈γgen−sod,−〉 prevents
users from circumventing sod〈pre, app〉 with the help of delegation.

γgen−pre :

AG

X

AG

BGpre γgen−app :

AG

X

AG

BGapp

Fig. 4. γgen−sod = γgen−pre ◦ γgen−app.

Consumable resources. Some resources are consumable in the sense that the times of
usage are limited. For example, a member of board can invite at most two agents to a
conference by means of delegation; that is, her usage of invitation is limited. LetX be a
meta-variable over the members of board; the BP-NFA γconsume in Figure 5 recognizes
one consumption ofX’s invitation. Hence, 〈γconsume◦γconsume◦γconsume,−〉 forbids
X from inviting more than two users.

X AG BGpconsume

Fig. 5. γconsume.

4.3 Enforcement

Suppose that the resource guard G needs to enforce a set C of constraints. We assume
G maintains a history H of provenance aware queries that correspond to previous au-
thorizations. Each time an authorization is granted, the associated query is added toH.
When a new access request arrives, G checks if the policy base entails the corresponding
query q; since proof-carrying authorization is used, this amounts to checking the proof.
If so, G proceeds to verify if C is satisfied by Algorithm 1. The request is allowed if
an answer “true” is returned; andH is updated toH ∪ {q}. Otherwise, the requested is
denied.

The algorithm can be optimized in several ways. First, when only constraints in-
volving BP-NFA are required, the history is not needed. Each time a request comes,

Algorithm 1: Algorithm for enforcing constraints on authorization provenance.
begin

foreach 〈γ, sign〉 ∈ C do
if γ is a BP-NFA then

if γ recognizes q then
if sign = − then return false;

else
if sign = + then return false;

if γ is a CP-NFA of the form γ1 ◦ · · · ◦ γm then
if endγ1 [BGp] ∨ · · · ∨ endγm [BGp] then

for each 1 ≤ t ≤ m, letH(γt) = {DAEn · · · DAE1
BGp ∈ H ∪ {q} | endγt [BGp]};

foreach sequence 〈q1, · · · , qm〉 such that, for 1 ≤ t ≤ m, qt ∈ H(γt) do
if γ recognizes 〈q1, · · · , qm〉 then

if sign = − then return false;
else

if sign = + then return false;

return true;

we check the corresponding query against BP-NFA. BP-NFA concerns a single agent’s
authorizations. On the other hand, CP-NFA often involves collusion among multiple
agents, which is more costly. Violations against BP-NFA seem more common. Second,
one may index historical queries with respect to CP-NFA; this is likely to avoid search-
ing through the history. Finally, constraints based on CP-NFA are usually temporary.
For example, the constraint 〈γconsume ◦ γconsume ◦ γconsume,−〉 is only effective dur-
ing the conference; related queries can be discarded after the conference. This helps
reduceH’s size. We leave it to future work to investigate the optimization in detail.

5 Related Work and Conclusions

Various mechanisms have been devised to track, store, and query provenance in database
and file systems [7, 11]. While one may borrow ideas from these techniques, it is not
clear how to adapt them into distributed authorization arena. Actually, authorization
provenance deserves investigation in its own right. For example, of importance to au-
thorization provenance are agents who affect the authorization, instead of the data in-
puts and the processes that the inputs undergo. Meanwhile, the security of provenance
attracts considerable efforts [2, 4, 8]; the aim is to protect the confidentiality and in-
tegrity of provenance information itself and to provide access control to provenance.
This paper, however, focuses on exploring provenance of authorization and its poten-
tial usage in access control area, but not on the security of provenance. Provenance is
related to the notion of causality. van der Meyden [12] discusses the relation between
causality and distributed knowledge. He argues that only a predefined set of agents may
cause an agent to know a proposition (i.e., certain information), otherwise the system is
considered insecure. Our work differs from [12] in two aspects. First, in distributed au-
thorization, the set of agents who may affect the knowledge of an agent can not always
be predefined; this uncertainty is a sacrifice for the flexibility via delegation. Second,
the emphasis of [12] is on defining secure systems in terms of information flow policies,

which defines the causal relation allowed among agents. It is hard to conceive of how
to define authorization provenance using the framework in [12]. The following on work
by Chong and van der Meyden [3] studies information flow properties using epistemic
logic under the similar framework. They put no emphasis on authorization provenance.

In this paper, we defined a notion of authorization provenance, based on the logic
DBT. We showed that this notion possesses a collection of interesting properties and
thus captures the intuitions of authorization provenance. As an application of autho-
rization provenance, we also illustrated the specification and enforcement of a new type
of security requirements. There are several avenues for future work. On the one hand,
more efficient algorithms for enforcing constraints are worth pursuing; on the other
hand, we will consider the notion of roles when tracking provenance.

Acknowledgment

This publication was made possible by the support of an NPRP grant (NPRP 09-079-1-
013) from the Qatar National Research Fund (QNRF). The statements made herein are
solely the responsibility of the authors.

References
1. A. W. Appel and E. W. Felten. Proof-carrying authentication. In ACM Conference on Com-

puter and Communications Security, pages 52–62, 1999.
2. U. Braun, A. Shinnar, and M. Seltzer. Securing provenance. In Proc. of the 3rd USENIX

Workshop on Hot Topics in Security (HotSec), July 2008.
3. S. Chong and R. van der Meyden. Deriving epistemic conclusions from agent architecture.

In TARK, July 2009.
4. R. Hasan, R. Sion, and M. Winslett. The case of the fake picasso: Preventing history forgery

with secure provenance. In Proceedings of the 7th USENIX Conference on File and Storage
Technologies (FAST), 2009.

5. J. Hu, Y. Zhang, R. Li, and Z. Lu. A logic for authorization provenance. In Proceedings
of the 5th ACM Symposium on Information, Computer and Communications Security, pages
238–249. 2010.

6. Z. Mao, N. Li, H. Chen, and X. Jiang. Trojan horse resistant discretionary access control. In
ACM symposium on access control models and technologies, 2009.

7. K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer. Provenance-aware
storage systems. In Proc. of the USENIX Annual Technical Conference, pages 43–56, 2006.

8. Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han. An access control language for a general
provenance model. In Proceedings of the 6th VLDB Workshop on Secure Data Management,
2009.

9. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,
2000.

10. M. Sipser. Introduction to the Theory of Computation. 2005.
11. W. C. Tan. Provenance in databases: Past, current, and future. IEEE Data Eng. Bull., 30(4):3–

12, 2007.
12. R. van der Meyden. On notions of causality and distributed knowledge. In International Con-

ference on Principles of Knowledge Representation and Reasoning, pages 209–219, 2008.
13. Q. Wang, N. Li, and H. Chen. On the security of delegation in access control systems. In

European Symposium on Research in Computer Security, pages 317–332, 2008.

