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Abstract—In distributed environments, access control deci-
sions depend on statements of multiple agents rather than
only one central trusted party. However, existing policy lan-
guages put few emphasis on authorization provenances. The
capability of managing these provenances is important and
useful in various security areas such as computer auditing and
safeguarding delegations. Based on the newly proposed logic,
we define one type of authorization provenances. We exemplify
the applications of these provenances by a case study.
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I. I

Recently, major research efforts have applied logics into
the design of policy languages to deal with distributed
authorizations [1], [2], [4]. The set of policies written in
a policy language is regarded as a policy base. When a
principal requests resources, the request is translated to a
query of the policy base. Then the access is granted if the
answer to the query is positive and denied otherwise.

Existing access control systems based on previous pol-
icy languages, however, failed to support the management
of authorization provenances. Informally, an authorization
provenance denotes the set of agents whose statements are
referenced in the deduction of an authorization decision. In
traditional centralized authorizations, a central trusted party
makes authorization decisions and takes the responsibility
all by itself. In contrast, no such entity exists in distributed
environments and systems have to employ mechanisms
like delegations to facilitate distributed authorizations. Ac-
cordingly, a set of agents besides the central party (e.g.,
delegatees) may play a role in and be responsible for the
decision-making.

There are several reasons why it is important for one to
manage authorization provenances. First, host security may
be compromised if provenances are not taken into account
when making authorization decisions [6], [8]. Wang et al.,
[8] found that users may abuse delegations to circumvent
security policies; and proposed a defending mechanism,
source-based enforcement, which checks not only if a sub-
ject has a privilege but also who, if any, delegated this
privilege to the subject. Again, In [6], authors pointed out
that, since existing enforcement of Discretionary Access
Control (DAC) models cannot correctly identify the true

origins of a request, they fail to defense against trojan horses
and buggy programs. To trace the identity of requesters and
thus protect against these attacks, the authors then invented
a model based on a notion of a contamination source. It is
worth noting that both the reasons and defense mechanisms
of these security breaches are closely related to authorization
provenances.

On the other hand, auditing is an indispensable part of
a secure system. One objective of auditing is to identify
from where security breaches started. There arises a trend
to include proofs of authorization decisions in system logs
for auditing [7]. Armed with the ability to reason about
authorization provenances, one may make more use of
logs. For example, since provenances record the agents
involved, they can help trace back to the origins of security
compromises.

From the above observations, we attempted to design an
authorization logic, named DBT, which treats provenances
explicitly [3]. DBT builds upon a logic BT [5]. The BT
logic can represent belief and trust (delegation) and their
relations. DBT extends the BT logic by introducing a new
modal operator Di for each agent i into the underlying
distributed authorizations. Diϕ is designed to express the
provenance of ϕ. Based on DBT, we define a notion of
authorization provenances. To the best of our knowledge,
this work is the first to define authorization provenances
in logic. More details (e.g., proofs) are presented in an
accompanying technical report [3].

II. T    DBT

A. Syntax

Consider a set of agents AG = {1, · · · ,N}. We have three
types of modal operators for each agent i: Bi, Ti

j, and Di. Biϕ

means that agent i believes ϕ and Ti
jϕ reads that agent i trusts

agent j on ϕ. Diϕ means that “due to agent i, ϕ holds” or that
i causes that ϕ holds. Given an agent expression AE ⊆ AG,
we also define an operator DAE based on Di for each i ∈ AE.
DAEϕ means that the set AE of agents cause ϕ. Let Prop be
a set of primitive propositions. The set WFF of well-formed
formulas (wff) is defined as follows:
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ϕ F p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ |
Biϕ | Diϕ | DAEϕ | T

i
jϕ

A policy base PB is a finite subset of WFF. We refer
to the agent who enforces access control policies in the
system in question as L. L is the root of trust which
protects the requested resources, assembles the policy base,
and evaluates queries to make access control decisions.

B. Semantics

We describe a semantics of DBT based on Krpike struc-
tures. A Kripke structure M is a tuple 〈W, π,Bi,Di,T

i
j〉

(i, j ∈ AG; i , j), where
• W is a set of possible worlds,
• π : W 7→ 2Prop is a labeling function which maps each

world to a subset P of Prop such that any p ∈ P is true
in this world and any p ∈ Prop\P is false in this world,

• Bi ⊆ W ×W is a serial, transitive and Euclidean binary
relation on W,

• Di ⊆ W ×W is a binary relation on W, and
• T i

j ⊆ W × 2W is a binary relation between W and its
power set.

Definition 1 (|=): Given a structure M =

〈W, π,Bi,Di,T
i
j〉, w ∈ W, and a formula ϕ, let

DAE =
⋂

i∈AEDi. We define the satisfaction relation
|= as follows.

1) 〈M,w〉 |= p if and only if p ∈ π(w),
2) 〈M,w〉 |= ¬ϕ if and only if 〈M,w〉 6|= ϕ,
3) 〈M,w〉 |= ϕ1 ∧ ϕ2 if and only if 〈M,w〉 |=

ϕ1 and 〈M,w〉 |= ϕ2,
4) 〈M,w〉 |= ϕ1 ∨ ϕ2 if and only if 〈M,w〉 |=

ϕ1 or 〈M,w〉 |= ϕ2,
5) 〈M,w〉 |= ϕ1 ⇒ ϕ2 if and only if 〈M,w〉 |=

ϕ2, whenever we have 〈M,w〉 |= ϕ1,
6) 〈M,w〉 |= Biϕ if and only if 〈M, v〉 |=

ϕ for all v such that (w, v) ∈ Bi,
7) 〈M,w〉 |= Diϕ if and only if 〈M, v〉 |=

ϕ for all v such that (w, v) ∈ Di,
8) 〈M,w〉 |= DAEϕ if and only if 〈M, v〉 |=

ϕ for all v such that (w, v) ∈ DAE , and
9) 〈M,w〉 |= Ti

jϕ if and only if (w, dϕe) ∈ T i
j , where

dϕe = {v ∈ W | 〈M, v〉 |= ϕ}.

C. The axiomatic system of DBT

To capture the properties of distributed access control, we
make the following constraints on the models, and call the
class of models satisfying these constraints as models for
access control, written MAC.

C1 for all S ∈ T i
j(w), if B j(w) ⊆ S , then D j ◦Bi(w) ⊆

S , 1

1Suppose that R ⊆ X × Y is a binary relation between X and Y. Let
R(x) be the set {y ∈ Y | (x, y) ∈ R}. Assuming Q ⊆ Y × Z, let R ◦ Q be a
binary relation between X and Z such that R ◦ Q = {(x, z) | ∃y ∈ Y : y ∈
R(x) ∧ z ∈ Q(y)}.

A
P: all tautologies of the propositional calculus;
B1: (Biϕ ∧ Bi(ϕ⇒ ψ))⇒ Biψ
B2: ¬Bi⊥

B3: Biϕ⇒ BiBiϕ
B4: ¬Biϕ⇒ Bi¬Biϕ
D1: (Diϕ ∧ Di(ϕ⇒ ψ))⇒ Diψ
D2: (DAEϕ ∧ DAE(ϕ⇒ ψ))⇒ DAEψ
D3: DAE1ϕ⇒ DAE2ϕ, if AE1 ⊆ AE2
D4: DAEϕ⇔ Diϕ, if AE = {i}, i ∈ AG
DBT1 (delegation): Ti

jϕ ∧ B jϕ⇒ D jBiϕ

DBT2 (reduction): DiDiϕ⇒ Diϕ
DBT3 (self aware delegation): BiT

i
jϕ⇔ Ti

jϕ

DBT4 (self responsible delegation): DiTi
jϕ⇔ Ti

jϕ

DBT5 (self responsible belief): DiBiϕ⇔ Biϕ

DBT6 (i-centric delegation): Ti
jϕ ∧ T j

kϕ⇒ D jT
i
kϕ

DBT7 (AE-reduction): DAEDAEϕ⇒ DAEϕ

R  I
R1 (Modus ponens, MP): from ` ϕ and ` ϕ⇒ ψ infer ` ψ
R2 (Generalization, Gen): from ` ϕ infer ` Biϕ and ` Diϕ
R3: from ` ϕ⇔ ψ infer ` Ti

jϕ⇔ Ti
jψ

Figure 1. The axiomatic system AC

C2 Di(w) ⊆ Di ◦ Di(w),
C3 T i

j(w) =
⋂

u∈Bi(w) T
i
j(u),

C4 T i
j(w) =

⋂
u∈Di(w) T

i
j(u),

C5 Bi(w) = Di ◦ Bi(w),
C6 T i

j(w) ∩ T j
k (w) ⊆

⋂
u∈D j(w) T

i
k(u), and,

C7 DAE(w) ⊆ DAE ◦ DAE(w).
We proposed an axiomatic system AC in Figure 1. Con-

straints C1 to C7 correspond to axioms DBT1 to DBT7,
respectively.

Theorem 1: The axiomatic system AC is sound and com-
plete with respect to MAC. [3]

A query is a WFF formula. We say a policy base PB
entails a query q, written PB |=MAC q, if and only if, for all
M ∈MAC and states w inM, if for all ψ ∈ PB 〈M,w〉 |= ψ
then 〈M,w〉 |= q.

III. A P

The basic requirement for managing authorization prove-
nances is to prevent provenance loss and forging. However,
policy bases constructed by DBT as a whole do not come
up to this standard. Because one is free to write policies
like DAEϕ1 ⇒ ψ1 and ϕ2 ⇒ DAEψ2. In the first case the
provenance information is lost when ψ1 is derived, whereas
unreal provenances may be forged in the second case when
DAEψ2 is concluded.

Now we identify a subset of DBT which is provenance-
aware in the sense that a class of queries which incorporate
the provenance information in themselves can be evaluated
against this subset correctly.
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A. Definitions of WFFAP

We denote the set of η formulas satisfying the following
syntax as WFFAP. Given p ∈ Prop,

φ F Ti
j p | Bi p | DAEφ

η F φ | φ1 ∧ · · · ∧ φn ⇒ φ (n ≥ 0)

Since policy languages in the literature [2], [4] have taken
similar forms as WFFAP, policy bases written in WFFAP
is expressive enough for typical authorization situations.
Unless otherwise stated, when referring to a policy base we
mean a policy base specified using WFFAP.

We say that an η ∈ WFFAP is a B-formula if η is of the
form Biϕ, a T-formula if η is of the form Ti

jϕ, and a D-
formula if η is of the form DAEϕ, where i and j (i , j)
are any agents and AE is an agent expression. We say that
a formula is a DBT-formula if it is either a B-formula, a
T-formula, or a D-formula.

Since provenances concern the agents whose statements
contribute to the derivation of conclusions, we abstract
agents from each formula in policy bases. On the other hand,
we also need to extract the authorization-related contents
from each formula. Thus, we define two mappings, U and
CC, on the structures of η ∈ WFFAP.
• The mapping U : WFFAP 7→ AG is defined as:

1) U(Biϕ) = U(Ti
jϕ) = i,

2) U(DAEφ) = U(φ), and
3) U(φ1 ∧ · · · ∧ φn ⇒ φ) = U(φ).

• The mapping CC : WFFAP 7→ WFFAP is defined as:
1) if η is a B-formula or a T-formula, then CC(η) = η,
2) if η is a D-formula of the form DAEφ, then

CC(η) = CC(φ), and
3) otherwise, CC(η) = η.

Example 1: TAlice
Bob goodPeer(David) is from the agent

Alice, namely U(TAlice
Bob goodPeer(David)) = Alice;

and Bob issues the statement BBobgoodPeer(David),
thus U(BBobgoodPeer(David)) = Bob. Though
DBobBAlicegoodPeer(David) means that Bob causes
Alice to believe goodPeer(David), Alice is still responsible
for, if any, conclusions derived from this formula.
Therefore, U(DBobBAlicegoodPeer(David)) = Alice.
And for this formula, the authorization-related content
is that Alice believes goodPeer(David); namely,
CC(DBobBAlicegoodPeer(David)) = BAlicegoodPeer(David).

Definition 2 (Trace): Given a formula η, we define the
trace of η, written Tr(η), on the structure of η:

1) if η is a D-formula of the form DAE1
· · ·DAEn

ϕ where
ϕ is not a D-formula, Tr(η) = AE1 ‖ · · · ‖ AEn,

2) otherwise, Tr(η) = ∅.
Basically, traces capture the agents whose statements are
used in the reasoning process of a formula. If curious about
from where a belief is concluded, one can query q with
CC(q) being the belief but with variable Tr(q).

Example 2: Consider q1 = DBobBAlicegoodPeer(David),
Tr(q1) = Bob; if querying q1 against the policy base, one
is asking if it is Bob who causes BAlicegoodPeer(David)
to be concluded. One can also ask if Alice has the
belief that goodPeer(David) because of Cathy by the
query DCathyBAlicegoodPeer(David). For any B-formula or
T-formula, say q2 = BAlicegoodPeer(David), Tr(q2) = ∅
because q2 denotes that BAlicegoodPeer(David) holds just
because of U(q2) = Alice herself but no agent else.

Supposing a trace Tr(q) = AE1 ‖ · · · ‖ AEn, we define the
set of agents that appear in Tr(q) as AgentsIn(Tr(q)) = {i ∈
AG | there exists 1 ≤ l ≤ n such that i ∈ AEl}. When AE
is a singleton set, say {i}, we write i to denote AE.

B. Authorization-provenance-aware (AP) policy bases and
queries

Given a policy base PB, we say PB is an AP policy base
if, for each η ∈ PB, SR1, SR2, and SR3 are satisfied.
SR1: When η is of the form φ1 ∧ · · · ∧ φn ⇒ φ0, if φl is
DAEBi p or DAETi

j p for any 0 ≤ l ≤ n, then i ≡ L.
SR1 points out that AP policy bases are L-centric in

the sense that all conclusions from delegations are related
to L. In other words, authorization provenances are
managed by the agent L. This is intuitive because L
is the security guard and resources are granted only if
somehow L believes this authorization is legal.
SR2: η is not a D-formula.

SR2 simply prevents traces from being forged. If an agent
Alice can issue that η′ = DAEBAliceϕ, Alice is able to forge
arbitrary traces AE for BAliceϕ; then traces of conclusions,
which are derived from η′, are unreal as a result.
SR3: If η is of the form φ1 ∧ · · · ∧ φn ⇒ φ, then

A U(φ) = U(φl), for 1 ≤ l ≤ n.
B for any 1 ≤ l ≤ n if i ∈ AgentsIn(Tr(φl)) then

i ∈ AgentsIn(Tr(φ)).
In SR3, item A is met by many policy languages in liter-

ature such as [2], [4]; so it does not restrict expressiveness
as to security policy specifications. Item B simply records
provenances.

Definition 3 (AP queries): An AP query q is a formula
such that (1) q ∈ WFFAP, (2) taking form of Biφ, DAEφ, or
Ti

jφ, (3) U(q) = L and (4) Tr(q) ⊆ AG.
For example, q1 = BLϕ1 and q2 = D

{Alice,Bob}BLϕ2
are AP queries, whereas q3 = DAliceBCathyϕ3 and q4 =

DAliceDBobBLϕ2 are not.
Proposition 2: Given an AP PB and an AP query q,

PB |=MAC q if and only if PB′ |=MAC q,

where PB′ is a subset of PB such that for all η ∈ PB, U(η) ∈
AgentsIn(Tr(q)) ∪ {U(q)} if and only if η ∈ PB′.

Proposition 2 shows the basic motivation of AP policy
bases and queries. Accordingly, for an AP query q, Tr(q)
includes the agents whose statement are referenced in the
deduction of q.
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C. A Case Study

We use an example from [8] to illustrate the motivations
of AP policy bases.

In a company, the task of issuing checks is mod-
eled by two authorizations pre and app, which
stand for “check preparation” and “approval”, re-
spectively. In order to prevent fraudulent trans-
actions, pre and app must be performed by two
different members of the role Treasurer (Tr for
short). Also, for the sake of resiliency, the com-
pany allows a Treasurer to delegate his/her role
to a Clerk (Cl for short) in case he/she is not able
to work due to sickness or some other reasons.
Alice is a Treasurer and Bob is a Clerk of the
company. They decided to collude to issue checks
for themselves.

As noted in [8], Alice and Bob are able to issue checks
for themselves, through the following actions: (A1) Alice
delegates the role Treasurer to Bob; (A2) Bob performs pre
to prepare a check for Alice; and (A3) Alice performs app
to approve the check prepared by Bob.

One may formally represent the scenario as follows.

BL(InRole(Bob,Cl) ∧ InRole(Alice,Tr)) (1)
⇒ TL

Alice InRole(Bob,Tr)
DAliceBLInRole(Bob,Tr)⇒ DAliceTL

Bob pre(check) (2)
BLInRole(Alice,Tr)⇒ TL

Alice app(check) (3)

From the assumption that Alice is a Treasurer and Bob
is a Clerk and that (1), (4) holds. With action (A1), Bob
brings a credential (5) which, together with (4), derives
(6) by the axiom DBT1. From the implication (2), we
have (7). With action (A2), it holds that BBobpre(check).
Then by (self responsible belief) axiom DBT5, we have
DBobBBobpre(check); further by axiom D3 it follows that
(8). Again, by the axiom D3 it follows from (7) that (9)
holds. Then, from (8) and (9), it follows that (10) by
applying the axioms D2, DBT1, D3, and DBT7 in sequence.
With action (A3), it holds that BAliceapp(check). Likewise,
from (3), one can reach that (11).

TL
Alice InRole(Bob,Tr) (4)

BAliceInRole(Bob,Tr) (5)
DAliceBLInRole(Bob,Tr) (6)

DAliceTL
Bob pre(check) (7)

D{Alice,Bob}BBobpre(check) (8)

D{Alice,Bob}T
L
Bob pre(check) (9)

D{Alice,Bob}BLpre(check) (10)
DAliceBLapp(check) (11)

Then one may query q5 = DAliceBLpre(check), q6 =

DBobBLpre(check), q7 = D
{Alice,Bob}BLpre(check),

and q8 = DAliceBLapp(check). From above reasonings,
we have PB 6|=MAC q5, PB 6|=MAC q6, but PB |=MAC q7 and
PB |=MAC q8. Hence, one is informed that BLpre(check)
(i.e., check is authorized to be prepared) is the result of
statements of Alice and Bob together, but not any individual
one, and that, in contrast, BLapp(check) (i.e., check is
authorized to be approved) can be ascribed to merely Alice.

IV. C R
We define the notion of authorization provenances in

DBT logic, and show its usefulness through a case study.
However, authorization provenances can be more complex
when, for example, attribute-based delegations are allowed.
We have defined a notion of strong authorization provenance
(SAP) accordingly to capture those situations. Space limita-
tions preclude the presentation of SAP; readers are referred
to [3].

As future work, we are in the process of formalizing the
transformation from a policy base to an SAP one and related
properties. In addition, we are working on a type of SAP
queries whose traces encode their provenances.
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