Monotonicity in Rule Based Update

Yan Zhang

School of Computing and Information Technology
University of Western Sydney, Nepean
Kingswood, NSW 2747, Australia

E-mail: yan@Qcit.nepean.uws.edu.au
Abstract

An important characteristic for many formulations of knowledge represen-
tation and reasoning is that they are nonmonotonic. It has been, however,
illustrated that under certain conditions, a formulation may satisfy some
restricted monotonicity in its reasoning [2]. In this paper, we investigate
this issue under the context of rule based update. We first present a general
framework of rule based update in which a knowledge base is viewed as a set
of literals and can be updated with a set of update rules which is represented
by an extended logic program (also called update program). We then show
that given a knowledge base B and an update program II, (1) there exist
some facts that can be always added into B such that updating the expan-
sion of B with Il will not destroy any fact obtained from the update of B
with II, and (2) on the other hand, there also exist some update rules that
can be always added into Il such that updating B with the expansion of Il
will not destroy any fact obtained from the update of B with 1I. We illus-
trate how these results can be used to simplify an update evaluation. Our
proofs of restricted monotonicity theorems are based on a generalization of
Lifschitz-Turner’s Splitting Set Theorem on extended logic programs [4].

1 Introduction

An important characteristic for many formulations of knowledge represen-
tation and reasoning is that they are nonmonotonic. It has been, however,
illustrated that under certain conditions, a formulation may satisfy some
restricted monotonicity in its reasoning [2]. The purpose of this paper is to
investigate this issue under the context of rule based update.

Generally, the rule based update addresses the following problem: given
a knowledge base and a set of update rules, what is the resulting knowledge
base after updating this knowledge base with the set of update rules? For
example, consider a domain of specifying user access rights to a computer
system. Given an access policy base including facts that Peter can access
file F" and he is in group G, if the computer system officer wants to update
the policy base in terms of a rule saying that if a user belongs to group G,
then the user is no longer allowed to access file I’, then after updating this
policy base with the rule, we would expect that Peter cannot access file F

any more.

Although some syntactic and semantic aspects of rule based update has
been studied by some researchers [5, 1, 6], the monotonicity property related
to rule based update still remains unclear. In this paper, we first present a
general framework of rule based update in which a knowledge base is viewed
as a set of literals and can be updated with a set of update rules where
an update rule may include both classical negation and negation as failure.
To handle the possible conflict between inertia rules and update rules, a
prioritized logic program is employed to formalize the update specification
in our framework. We then show that given a knowledge base B and an
update program II, (1) there exist some facts that can be always added into
B such that updating the expansion of B with Il will not destroy any fact
obtained from the update of B with II, and (2) on the other hand, there also
exist some update rules that can be always added into Il such that updating
B with the expansion of Il will not destroy any fact obtained from the update
of B with II. We illustrate how these results can be used to simplify an update
evaluation. Our proofs of restricted monotonicity theorems are based on a
generalization of Lifschitz-Turner’s Splitting Set Theorem on extended logic
programs [4], which presents another contribution of this paper.

The paper is organized as follows. Next section presents a general frame-
work of rule based update. Section 3 investigates restricted monotonicity
properties of our rule based update. Section 4 presents a generalization of
Lifschitz-Turner’s splitting theorem on extended logic programs, which pro-
vides a basis of proving our major restricted monotonicity results discussed
in section 3. Section 5 then gives the proofs of two restricted monotonicity
theorems for rule based update. Finally, section 6 concludes the paper with
some remarks.

2 A Framework of Rule Based Update

In this section, we develop a general framework of rule based update. As
we allow an update rule to include both classical negation and negation as
failure, possible conflict between inertia rules and update rules may occur
in the evaluation of an update. To solve this kind of conflict, a prioritized
logic program is then used in our framework.

2.1 PLPs - An Overview

To begin with, we need to briefly review prioritized logic programs (PLPs)
proposed by Zhang and Foo recently [8]. We first introduce the extended
logic program and its answer set semantics defined by Gelfond and Lifschitz
[3]. A language L of extended logic programs is determined by its object
constants, function constants and predicates constants. Terms are built as
in the corresponding first order language; atoms have the form P(ty,---,t,),
where ¢; (1 < ¢ < n) is a term and P is a predicate symbol of arity n; a

literal is either an atom P(tq,---,t,) or a negative atom —P(ty,---,t,). A
rule is an expression of the form:

Lo+ Ly, -+, Ly,notLy 41, ,notL,, (1)

where each L; (0 < i < n)is aliteral. Lg is called the head of the rule, while
Ly, -+, Ly,not Lyyq1,--+ not L, is called the body of the rule. Obviously,
the body of a rule could be empty. A term, atom, literal, or rule is ground if
no variable occurs in it. An extended logic program 11 is a collection of rules.

To evaluate a extended logic program, Gelfond and Lifschitz proposed
the answer set semantics for extended logic programs. For simplicity, we
treat a rule r in Il with variables as the set of all ground instances of r
formed from the set of ground literals of the language of II. In the rest
of paper, we will not explicitly declare this assumption whenever there is
no ambiguity in our discussion. Let Il be an extended logic program not
containing not and Lit the set of all ground literals in the language of II.
The answer set of 11, denoted as Ans(ll), is the smallest subset S of Lit
such that (i) for any rule Lo < Ly, -+, Ly, from I1,if Ly,---, L, € S, then
Lo € S;and (ii) if S contains a pair of complementary literals, then S = Lit.
Now let II be an extended logic program. For any subset S of Lit, let 1%
be the logic program obtained from Il by deleting (i) each rule that has a
formula not L in its body with L € S, and (ii) all formulas of the form not
L in the bodies of the remaining rules'. We define that S is an answer set
of 11, denoted Ans(Il), iff S is an answer set of 11%, i.e. S = Ans(I1%).

It is easy to see that an extended logic program may have one, more
than one, or no answer set at all. A rule with the form (1) is satisfied in a
set of ground literals S if and only if the fact that Ly,---, L,, are in .S and
L1, and L, are not in S implies the fact that Lg is in S. Clearly, each
rule of an extended logic program II is satisfied in every answer set of II.

The language £F of PLPs is a language £ of extended logic programs [3]
with the following augments:

- Names: N, Ny, Nog,---.

- A strict partial ordering < on names.

- A naming function A/, which maps a rule to a name.

A prioritized logic program (PLP) P is a triple (II, N, <), where IT is an
extended logic program, N is a naming function mapping each rule in II to
a name, and < is a strict partial ordering on names. The partial ordering <
in P plays an essential role in the evaluation of P. Intuitively < represents
a preference of applying rules during the evaluation of the program. In
particular, if A'(r) < A (r') holds in P, rule r would be preferred to apply
over rule r’ during the evaluation of P (i.e. rule r is more preferred than rule
r’). Consider the following classical example represented in our formalism:

7)12
Ny : Fly(z) < Bird(z), not =Fly(z),

'We also call TI° is the Gelfond-Lifschitz transformation of 11 in terms of S.

Ny : =Fly(z) + Penguin(z), not Fly(z),
N3 : Bird(Tweety) +,

Ny : Penguin(Tweety) +,

Ny < Ny.

Obviously, rules Ny and N conflict with each other as their heads are com-
plementary literals, and applying Ny will defeat Ny and vice versa. However,
as Ny < Ny, we would expect that rule N5 is preferred to apply first and then
defeat rule N; after applying N3 so that the desired solution = Fly(Tweety)
can be derived. This idea is formalized by following definitions.

Definition 1 Let Il be an extended logic program and r a rule with the
form Lo < Ly,--+, Ly, not Ly41,- -, not L, (r does not necessarily belong
to I1). Rule r is defeated by Il iff Il has answer set(s) and for every answer
set Ans(I1) of 11, there exists some L; € Ans(Il), where m +1 <1i < n.

Definition 2 Let P = (II, N, <) be a PLP and P(<™) denote the <-closure
of P (i.e. P(<T) is the smallest set containing all preference relations of
P and closed under transitivity). P< is a reduct of P with respect to < iff
there exists a sequence of sets 1l; (i =0,1,---) such that:

1. HO = H,‘

2. M; =Ty —{ry, -, rx | (a) there exists r € T,y such that N(r) <
N(r)) € P(<Y) (i=1,---,k) and ry,---,r; are defeated by 11;_; —
{ri,---,re}, and (b) there does not exist a rule r' € 11,_y such that
N(rj) < N(r') for some j (j =1,--+, k) and r' is defeated by 11,y —
{r'}};

3. P =N, I0;.

Clearly P< is an extended logic program obtained from II by eliminating
some rules from II. In particular, if A'(r) < N(r') and II — {r'} defeats r/,
rule r’ is eliminated from Il if no less preferred rule can be eliminated (i.e.
conditions (a) and (b) in (ii)). This procedure is continued until a fixed point
is reached. Note that due to the transitivity of <, we need to consider each
N(r) < N(r') in the <-closure of P. It should be also noted that the reduct
of a PLP may not be unique generally [8]. Now it is quite straightforward
to define the answer set for a prioritized logic program.

Definition 3 Let P = (II, N, <) be a PLP and Lit the set of all ground
literals in the language of P. For any subset S of Lit, S is an answer set of
P, denoted as Ans® (P), iff S = Ans(P<), where Ans(P<) is an answer set
of extended logic program P<. A ground literal L is derivable from a PLP
P, denoted as P = L, iff P has answer set(s) and L belongs to every answer
set of P.

Example 1 Using Definition 1 and 2, it is not difficult to conclude that
P has a unique reduct: Py = {=Fly(z) + Penguin(z), not Fly(z),
Bird(Tweety) <, Penguin(Tweety) <}, and then from Definition 3, it
has a unique answer set Ans”(P;) = {Bird(Tweety), Penguin(Tweety),
- Fly(Tweety)}. m

2.2 Generalized Rule Based Update

Consider a language L of extended logic programs as described in section 2.
We specify that a knowledge base B is a consistent set of ground literals of £
and an update program Il is a set of rules of £ with form (1) that are called
update rules. Note that we allow a knowledge base to be incomplete. That
is, a literal not in a knowledge base is treated as unknown.

We will use a prioritized logic program to specify an update of B by II,
where 11 is an extended logic program. For this purpose, we first need to
extend language L by the following way. We specify £ to be a language
of PLPs based on £F with one more augment: For each predicate symbol P
in £F, there is a corresponding predicate symbol New-P in £~ with the
same arity of P.

To simplifying our presentation, in £
note the corresponding literal L in £. For instance, if a literal L in L is
—P(z), then notation New-L simply means ~New-P(z). We use Lit,,,, to
denote the set of all ground literals of £F . Clearly, Lit,,, = LitU{New-1L |
L € Lit}. Now we are ready to formalize our generalized rule-based update.

P

ey We use notation New-L to de-

Definition 4 Let B, 11, £, £ and LT, be defined as above. The spec-

ification of updating B with Il is defined as a PLP of LF ., denoted as
Update(B,11) = (IT*, N, <), as follows:

1. 11* consists of following rules:
Initial knowledge rules: for each L in B, there is a
rule L «;
Inertia rules: for each predicate symbol P in L,
there are two rules:
New-P(z) + P(z), not ~New-P(z)?, and
- New-P(z) < —P(z), not New-P(z),
Update rules: for each rule
Lo Ly,-++, Ly, not Lyyyq,-++, not L, inll,
there is a rule
New-Lg ¢ New-Lq,--+, New-L,,,
not New-L, 41, ++, not New-L,;

2. Naming function N assigns a unique name N for each rule in I1*;

3. For any inertia rule with name N and update rule with name N', we
specify N < N'.

2z might be a tuple of variables.

An update specification Update(B,11) is well defined if it has answer set(s)
and all its answer sets are consistent.

It should be noted that in the above definition, we specify inertia rules
to be more preferred than update rules in Update(B,11). The intuitive idea
behind this is that a preference ordering between an inertia rule and an
update rule in Update(B,11) will affect the evaluation of Update(B, I1) only
if these two rules conflict with each other, eg. applying one rule causes the
other inapplicable. On the other hand, a fact in the initial knowledge base B
is always preferred to persist during an update whenever there is no violation
of update rules®. Therefore, when conflicts occur between inertia and update
rules, inertia rules should defeat the corresponding update rules. without
conflicts between inertia and update rules, the preference ordering does not
play any role in the evaluation of Update(B,11). Also note that there will be
at most 2k -1 <-relations in Update(B,I1), where k is the number of predicate
symbols of Lp and [is the number of update rules in II.

Finally, on the basis of Definition 4, we can formally define a knowledge
base B’ resulting from updating B with IT in a straightforward way.
Definition 5 Let B, P, L, LT and LY, be specified as before, and Update(B,11)
the specification of updating B with 11 as defined in Definition 4. A set of
ground literals of L, B, is called a possible resulting knowledge base with
respect to the update specification Update(B, 1), iff B’ satisfies the following
conditions:

1. if Update(B,11) has a consistent answer set, say Ans” (Update(B,11)),
then B' = {L | New-I € Ans® (Update(B,11))}.

2. if Update(B,11) is not well defined, then B' = B.

Example 2 Let B = {-A,B,C} and [l = {=B « not B, A «+ C}. From
Definition 4, the specification of updating B by II, Update(B, 11), is as follows:

Initial knowledge rules:

N12—|A(—,
NQZBF,
Ng:C(-,

Inertia rules:
Ny : New-A + A,not ~“New-A,
N5 : New-B < B,not -New-B,
Ng : New-C' + C,not ~New-C,
N7 :=New-A < —A,not New-A,
Ng : =" New-B + —B,not New-B,
Ny : =" New-C + -C',not New-C,

®Note that an update rule in Update(B, 1) is defeasible if it contains a weak negation
not in the body.

Update rules:
Nig: " New-B < not New-B,
Ny1: New-A < New-C,
<:
N4 < Nig, N5 < Nig, N < Ny,
N7 < Nig, Ng < Nio, Ng < Nyp,
N4 < N1, N5 < Ny, Ng < Niy,

Now from Definitions 2 and 3, it is not difficult to see that Update(B, II)
has a unique answer set: {=A, B,C, New-A, New-B, New-C'}. Note that
in Update(B,11), only N5 < Nyg is used in Update(B,11)’s evaluation, while
other <-relations are useless (see Definition 2). Hence, from Definition 5,
the only resulting knowledge base B’ after updating B with 11 is: {A, B,C'}
|

It is worth to mention that the major difference between our approach
and other formulations of rule based update is that our approach can deal
with a more general case by allowing the set of update rules to have both
classical negation and negation as failure, while in previous methods, an
update rule can only have classical negation, e.g. [1]. It is also observed that
by allowing an update rule to have two types of negations, previous methods
may result in some unintuitive solution. For instance, in the case of Example
2 described above, Przymusinski and Turner’s method will imply a solution
that literal B may or may not be changed after updating {—A, B,(C'} with
{=B « not B, A « C'}.

3 Restricted Monotonicity Properties

In this section, we examine basic properties, specifically, monotonicity prop-
erties related to the generalized rule based update described above. Firstly
we show that the update specification Update(B, 1) in language £LF defined
in Definition 4 can be simplified to a PLP in language £F.

Lemma 1 Let Update(B,11) be a well defined update specification as defined
in Definition 4. B' is a resulting knowledge base after updating B with 11 if
and only if B' is an answer set of prioritized logic program P = (MU {L +
notlL | L € B}, N, <), where for each rule r : L + notL with L € B, and
each rule v’ in 11, N'(r) < N'(r')*.

Consider a knowledge base B and a rule r with the form (1). Recall
that B satisfies r iff if facts Ly,---,L,, are in B and facts L,,41,---, and
L, are not in B, then fact Lg is in B. Let II be a set of rules with the
form (1). B satisfies Il if B satisfies each rule in II. We show that after

*T stands for the complement of literal L.

updating knowledge base B with I, every possible resulting knowledge base
B’ satisfies Il as stated in the following proposition.

Proposition 1 Given a knowledge base B and an update program T1. Sup-
pose the update specification Update(B,11) is well defined. Let B' be a re-
sulting knowledge base with respect to Update(B,11). Then B' satisfies I1.

Let B and B’ be two knowledge bases. We use Dif f(B, B') to denote the

symmetric set difference on ground atoms between B and B, i.e.
Diff(B,B)=A{|L||Le (B-B)uU (B -B)},

where notation |L| indicates the corresponding ground atom of ground lit-
eral L, and Min(B,1I) to denote the set of all consistent knowledge bases
satisfying Il but with minimal differences from B, i.e.

Min(B,11) = {B' | B’ satisfies [l and Dif f(B,B’) is minimal

with respect to set inclusion}.

Then we have the following minimal change theorem for update, which guar-
antees that our generalized rule based update satisfies the principle of min-
imal change.

Theorem 1 (Minimal Change) Let B be a knowledge base, 11 an update
program, and Update(B,11) the well defined update specification as defined in
Definition 4. If B' is a resulting knowledge base with respect to Update(B,11),
then B' € Min(B,1I).

The above theorem guarantees that our generalized rule based update
satisfies the principle of minimal change. However, it should be noted that
not every element of Min(B,11) could be a resulting knowledge base of up-
dating B by P.

It is not surprising that in general our rule based update is nonmonotonic
in the sense that adding more facts into a knowledge base B or more update
rules into an update program Il may destroy some facts obtained from the
update of B with II. Therefore, instead of obtaining a general monotonicity
result, our goal here is to investigate some kinds of restricted monotonicity
properties related to our rule based update. In particular, we are interested
in two forms of restricted monotonicity properties: (1) under what conditions
will the result of updating a knowledge base B with Il be preserved in the
result of updating an expanded knowledge base B U B’ with II1? (2) under
what conditions will the result of updating a knowledge base B with Il be
preserved in the result of updating B with an expanded update program
mul?

Before we present our restricted monotonicity theorems, we first intro-
duce some useful notations. Let r be a rule in II:

Lo Ly,-++, Ly, not Ly, -, not L.

We use pos(r) to denote the set of literals in the body of r without negation
as failure {Lq,-- -,

Ly} in r, and neg(r) the set of literals in the body of r with negation
as failure {L,,41, -+, L} in 7. We specify body(r) to be pos(r) U neg(r).
We also use head(r) to denote the head of r: {Lo}. Then we use lit(r)
to denote head(r) U body(r). By extending these notations, we use pos(Il),
neg(I1), body(11), head(Il), and lit(I1) to denote the unions of corresponding
components of all rules in II, e.g. body(Il) = U, body(r). Given a set of
literals B, we also use B to denote the set of complement literals of B with
respect to classical negation sign —.

Theorem 2 (Restricted Monotonicity Theorem 1) Given two knowl-
edge bases By and By where By C By and an update program 11. Suppose both
update specifications Update(B,111) and Update(B,113) are well defined. Let
B'y be a resulting knowledge base with respect to Update(By,11). Then there
exists a resulting knowledge base B'y with respect to Update(Bg, 11) such that
B'y C B’y if body(IT) N (By — By) = 0. In this case, B'y = B'yU{L | L €
(82 - Bl) and f ¢ Bll}.

Theorem 3 (Restricted Monotonicity Theorem 2) Given a knowledge
base B and two update programs 11y and 11y where 11y C Ily. Suppose both
update specifications Update(By,11) and Update(Bz, 1) are well defined. Let
B’ be a resulting knowledge base with respect to Update(B,111). Then there
exists a resulting knowledge base B" with respect to Update(B, 1) such that
B' C B" if head(Ily —11;) N (BUbody(11,)) = 0. In this case, B" is an answer
set of program {L «| L € B'} U (I1; — I1).

The intuitive idea behind Theorem 2 is described as follows. If a knowl-
edge base B; is expanded to By by adding some facts and all these added
facts do not occur in the body of any rule in II, then the result of updating
By with II is preserved in the result of updating By with II. Furthermore, the
latter can be simply computed from the result of updating B; with II. On
the other hand, Theorem 3 says that if an update program Il; is expanded
to Il by adding some rules and the head of each added rule does not occur
in the bodies of rules in update specification Update(B,11;), then the result
of updating B with II; is preserved in the result of updating B with Il,,
and the latter is reduced to an answer set of a corresponding extended logic
program.

Given a knowledge base B and an update program II, we can apply
the restricted monotonicity theorems above to simplify the computation of
Update(B,11) when B or I can be split into parts. The following example
illustrates such application.

Example 3 Let B={A,B,C,D},and [l ={-A + B,—~C + B,—=B ¢+ not
B}. We consider the update of B with TI. Since body(IT) N {A,C, D} = 0,

from Theorem 2, we can actually reduce the update of B with II into the

update of {B} with II. It is clear that the unique result of Update({B}, 1)
is {=A, B,~C}. So according to Theorem 2, the unique resulting knowledge
base with respect to Update(B,11) is {—A, B,—~C, D}.

Let us consider another situation. Let B = {A, B}, and Il = {-B «
not C,=C + A}. Consider a rule r : =C' + A in II. Since head(r) N (B U
body(=B + not C)) = {=-C} N {=A,-B,C} = 0, according to Theorem 3,
the update of B with II can be reduced to the update of B with {=B « not
C'}, which has the unique result {A,~B}. So the result of Update(B,11) is
an answer set of program {A <, =B «,~(C « A}, which has the unique
answer set {A,-B,-C}. m

4 A Generalization of Splitting Theorem

Our proofs of Theorems 2 and 3 described previously are based on a non-
trivial generalization of Lifschitz-Turner’s Splitting Set Theorem on extended
logic programs [4]. To describe Lifschitz-Turner’s Splitting Theorem , we
first define the following transformation. Let X be a set of literals and II
an extended logic program. The e-reduct of 11 with respect to set X is an
extended logic program, denoted as e(Il, X'), obtained from Il by deleting

1. each rule in II that has a formula not L in its body with L € X; and
2. all formulas of form L in the bodies of the remaining rules with L € X.
Consider an example with X = {C'} and Il is a set of the following rules:

A« B, not C,
B + (', not A.

Then it is clear that e(I1,{C}) = {B < not A}. Intuitively, e-reduct of II
with respect to X can be viewed as a simplied program of Il given the fact
that every literal in X is true. Now Lifschitz-Turner’s Splitting Set Theorem
on extended logic program can be presented as follows®.

Lifschitz and Turner’s Splitting Set Theorem [4]

Let 1 = 1y U Ty be an extended logic program and lit(11y) N head(T1z) = 0.
Then a set of literals B is a consistent answer set of 11 if and only if B =
By UB', where By is an answer set of 11y, B' is an answer set of e(Ily, By),
and By U B’ is consistent.

As illustrated by Lifschitz and Turner, with the splitting theorem, com-
puting the answer set of an extended logic program can be simplified when
the program is split into parts. In the above example, if we expand II
as [T U {C <}, we can rewrite I as II; U I3, where II; = {C <«} and
Iy = {A « B, not C, B+ C, not A}. Clearly, lit(ITy) N head(Il3) = 0. So

5For our purpose, we slightly reformulate this theorem according to Lifschitz and
Turner’s original form.

it is easy to see that {C, B} is an answer set of [1 U {C' «}. This splitting
theorem, however, can be further generalized. Let us consider the following
example.

Example 4 Let Il be a program consisting of following rules:

A not C,
A < not B,
B + not A.

It is not difficult to see that Il can not be split into two parts I1; and Il
such that [it(I1y) N head(Il3) = @ if we do not consider the trivial case by
setting IT; = () or I, = (. Therefore, the above splitting theorem cannot be
used to compute the answer set of II. However, Il can be split into II; and
I15 as follows:

Hll HQ:
A+ not C, A not B,
B+ not A,

such that body(Ily) N head(Il3) = (. It is observed that {A} is the unique
answer set of [, and the unique answer set of Il is then obtained from II;’s
answer set {A} and the answer set of e(Il3,{A}), which is also {A}. So we
get the unique answer set of 1T {A}. m

From the above observation, we can see that since the head of each rule
in Iy does not occur in the body of each rule in IIy, Il actually does not
play any role in affecting rules in II; when we compute the answer set of 1.
Therefore, IT can be still split into two parts to evaluate its answer set. In
general, we have the following generalized splitting theorem.

Theorem 4 (Generalized Splitting Theorem) Let I1 = [1; U Il; be an
extended logic program and body(I1y) N head(Ily) = 0. Then a set of literals
B is a consistent answer set of 11 if and only if B = B; U B’, where By is an
answer set of 1y, B' is an answer set of e(1lz, B1), and By UB' is consistent.

Proof: (<) Let B = By UB" and Il = II; Ully, where By is an answer
set of TI; and B’ is an answer set of e(Il, B1) and By U B’ is consistent.
Consider the Gelfond-Lifschitz transformation of II in terms of B, I15. 118
is obtained from Il by deleting (i) each rule in IIy U Il; that has a formula
not L in its body with L € B; and (ii) all formulas of the form not L in
the bodies of the remaining rules. Since body(Il;) N head(Ily) = (0, during
the step (i) in the above transformation, for each literal I € By, only rules
with the form L’ + ---, not L in II; or Il will be deleted. On the other
hand, for each literal I € B’, only rules with the form L’ + --- not L in
IT, will be deleted and no rules in Il; can be deleted. Therefore, we can
denote 115 as Iy U IT}, where IT} is obtained from I1; in terms of literals in

Bi, and 11} is obtained from Il in terms of literals in By U B’ during the
above transformation procedure. Then it is easy to see that 1} = Hfl. So
By is an answer set of II.

On the other hand, from the construction of e(Ilg, By), it is observed that
there exists the following correspondence between 11} and e(Ilg, B;): for each
rule Lo < Ly,--+, Ly, Lgy1,- -+, Ly, in I1,, there is a rule with the form Ly +
Li,--+,Lg, not Ly, -+, not L, in e(lly, By) such that Lyyy, -+, Ly, € By
and L,,41,--- or L, € By; on the other hand, for each rule Lo « Ly,---, Ly,
not Ly41, -+, not L, in e(Ily, By), if none of Ly, 41, -+, Ly isin B’, then there
exists a rule Lo = Ly, -+, Lg, Lgg1,- -+, Ly in 1} such that Lgyq, -+, Ly, €
Bi. From this observation, it can be seen that there exists a subset A of By
such that A U B’ is an answer set of [15. This follows that By U B’ is the
smallest set such that for each rule Lo < Ly,--+, L, € 153, Ly,---, L, € B
implies Lo € B. That is, B is an answer set of 115 and also an answer set of
IT.

(=) Let I1 =1I; U, and B be a consistent answer set of II. It is clear
that for each literal L € B, there must be some rule with the form L + ---
in I1. So we can write B as a form of B’y UB’y such that B’y C head(ll;) and
B’y C head(Ilz). Note that By N B’y may not be empty. Now we transfer
set B’y into By by the following step: if B’y N B’y = (), then By = B'y; other-
wise, let By = B'1— {L | L € B’y N B’y, and for each rule L « Ly, -+, L,,,
notL,, 41, -+, notL, in Iy, there exists some L; (1 < j < m) ¢ B’y or L;
(m+1 < j<mn)€ B'1}. Inabove translation, since every L deleted from By
is also in B’y, the answer set B of II can then be expressed as B = B; U B'5.
An important fact is observed from the construction of B;:

Fact 1. L ¢ B; iff there exists some rule in II; with the form L <«
Ly,--, Ly, notl,4q,- -+, notl,, such that Ly,---, L, € By and L,41,---,
or L, & By.

Now we prove By is an answer set of II;. We do Gelfond-Lifschitz trans-
formation on II in terms of set B = By U B’y. After such transformation,
we can write 115 as form I U [T}, where [1) C II; and I} C TI. As
body(Ily) N head(Ily) = @, any literal in B’y will not cause a deletion of a
rule from I1; in the Gelfond-Lifschitz transformation. Then it is easy to see
that 1T} = H?l. From Fact 1, it concludes that literal L € By iff there is a
rule L « Ly,---L,, in Hfl and Lq,---, L, € By. This follows that B; is an
answer set of Hfl, and then an answer set of I1;.

Now we transfer B’y into By by the following step: if By N By = 0,
then By = B’y; otherwise, let By, = B’y — {L | L € By N By, and for
each rule L < Ly,--+, Ly, not Lyyq,--+, not L, in Ily, there exists some
Li(1<j<m)gBUBy orLi(m+1<j<n)e B UBy}. After this
translation, B can be expressed as B = By U By. An important fact is also
observed from the translation of By:

Fact 2. L € B iff there exists some rule in Il with the form L <«
Ly, -+, Ly, Lgy1, -+, Ly such that Ly,---, Ly € By and Lgyq,---, Ly € By,

Now we prove By is an answer set of e(lly,B1). Recall that 8 =
I, U Il = P UIT,. From Fact 2, it is clear that there exists a subset A
of By such that By is an answer set of e(I15, A) and e(IT}, A)52 = ¢(T1}, A).
On the other hand, from the construction of e(Ilg, By), it is easy to see
that e(Ily, B1)P2 = e(I1y, A) = e(I1y, A)B2. So By is also an answer set of
E(HQ,Bl). |

5 Proofs of Restricted Monotonicity Theorems

From the Generalized Splitting Theorem (Theorem 4), we can prove the
following Lemma 2 which will be needed in the proof of Restricted Mono-
tonicity Theorem 1 (Theorem 2), and from Lemma 3 we can prove Restricted
Monotonicity Theorem 2 (Theorem 3). Due to a space limit, details of the
proofs for these lemmas are referred to our full paper [9]. Here we only give
proofs of Theorems 2 and 3.

Lemma 2 Let 1l and Ily be two extended logic programs, where each rule in
Iy has form L < notL, head(I13)Nbody(I1z) = O and body(I1;)Nhead(113) =
0. Suppose both I1; and I1; U1ly have consistent answer sets. Then B is a
consistent answer set of I1y UIly if and only if B= B'U{L | L < notL € I,
and I ¢ B'}, where B is a consistent answer set of 11;.

Lemma 3 Let P = (I, NV, <) be a PLP which has consistent answer set(s).
Then each answer set of P is also an answer set of 11.

Proof of Restricted Monotonicity Theorem 1
From Lemma 1, Update(By, 1) and Update(Bs, I1) are equivalent to following
two PLPs respectively: Py = (ITU {L « notL | L € B1},N,<) and P,
= (MU{L + notL | L € By}, N, <), where < relations in P; are specified
as stated in Lemma 1 respectively. Let B’y be a consistent answer set of P;.
We assume By = {Lq, -+, Ly}, and By = By U{Lgy1, -+, Ly}. Observing
the construction of Py, besides rules in Py, Ps also contains following rules:
Phat : Ligy = notLyyq, o P 2 Ly = notL,,. Let I’ UTI” be a reduct of
Py, where each rule in II’ is also in Py, and 11" = {rg4y,---,7n}. Note that
since for each rule r € 1”7, there is no other rule r* such that NV (r*) < NV (r),
all rules rg4q,---,ry will be included in each reduct of P;. Now we show
B’y is an answer set of I[I’ UII”. If II' is a reduct of Py, then B’y is an answer
set of II’ and the result is true from Lemma 2.

Now suppose II’ is a proper subset of some reduct IT* of Py, where I’ =
m* —{r,,---,ry}. Clearly, all rules r,,---,r, are eliminated from IT* due to
additional rules rg4q,---, 7, are added into P; to form Py. Therefore, we
can assume that in the evaluation of reduct II' UII” of Py, there exists some
integer h such that

HOZHU{L(—HOtI|LEBQ},

3

M, = I* U TI”,

Mp4q =1y — {ry, -+, r; | there exists some r € II” such that
N(r) <N(ri), - N(r) < N(rj) and rj, -+, 7;
are defeated by Il — {r;,---,7;}},

BN

where r;,---,r; are the first set of rules eliminated from the reduct IT* of
P1 due to preferences N (r) < N(r;), -++, N(r) < N(r;) for some r € I".
Note that since I1* is a reduct of Py, no any other rules in IT* can be further
eliminated from preferences between rules in {L < not—L | L € By} and
rules in II. On the other hand, since for any rule ' € {L < not L | L € B;},
Ny < N(ri), -+, N(r') < N(r;), Hp4q can be also specified as

Mpqq =1y — {rs, -+, r; | there exists some r’ € {L + notlL |
L € By} such that N(r') < N(r), - -+,
N(r') < N(r;) and r;, -+, r; are defeated by
M~ {ri o)),

But this contradicts the fact that IT* is a reduct of P; where no any other
rules can be further eliminated from preferences between rule ' and rules
iy, . So I must be a reduct of P;. m

Proof of Restricted Monotonicity Theorem 2

From Lemma 1, we know that Update(B,113) is equivalent to a PLP P =
({L < notL | L € B}UIly, N, <), where for each tule r € {L + notL | L €
B} and each rule and each rule r’ in Iy, N(r) < N(r’). Then from Lemma
3, we know that each answer set of P is also an answer set of extended logic
program {L < notL | L. € B}UIl,. Again from Lemmas 1 and 3, a resulting
knowledge base with respect to Update(B,111) can be viewed as an answer set
of program {L ¢ notL | L € B}UII;. Therefore, it is sufficient to prove that
each consistent answer set B” of I, where [’ = {L + notL | L € B}UIly, is
also an answer set of {L | L € B'}U(II; —11;), where B is an answer set of
{L + notL | L € B}UIl;. From condition head(I13—1I1;)N(BUbody(I1;)) = 0,
this is simply followed from the Generalized Splitting Theorem (Theorem 4).
|

6 Conclusion

In this paper we analyized restricted monotonicity properties for rule based
update. In particular, we provided two forms of restricted monotonicity
theorems. Example 3 presented in section 3 illustrated an application of
how these results are used to simplify update evaluations. In general, given
an update specification Update(B, I1), two restricted monotonicity theorems
can be applied alternatively and sequentially to split both B and II into
smaller and smaller parts such that the evaluation of Update(B,IT) can be
significantly simplified (details have been shown in [9]).

Another contribution of this paper is that we proved a generalization
of Lifschitz-Turner’s Splitting Set Theorem. As Lifschitz-Turner’s Splitting
Set Theorem has illustrated its broad applications in exploring declarative
semantics of logic programs, logic program based knowledge representation,
and reasoning about action, e.g. [7], it is clear that our generalized splitting
theorem will enhance these applications under an even weaker condition.

Acknowledgement

The author thanks Vladimir Lifschitz for examining the author’s early ver-
sion of the proof of the generalized splitting theorem. Thanks are also due
to four anonymous referees for their criticisms and useful comments.

References

[1] C. Baral, Rule based updates on simple knowledge bases. In Proceedings
of the FEleventh National Conference on Artificial Intelligence (AAAI-
94), pp 136-141. AAAI Press, 1994.

[2] J. Engelfriet, Monotonicity and persistence in preferential logics. Journal
of Artificial Intelligence Research, 8: 1-12, 1998.

[3] M. Gelfond and V. Lifschitz, Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9 (1991) 365-386.

[4] V. Lifschitz and H. Turner, Splitting a logic program. In Proceedings
of Eleventh International Conference on Logic Programming, pp 23-37.
MIT Press, 1994.

[6] V.W. Marek and M. Truszczynski, Update by means of inference rules. In
Proceedings of JELIA’94, Lecture Notes in Artificial Intelligence, 1994.

[6] T.C. Przymusinski and H. Turner, Update by means of inference rules.
In Proceedings of LPNMR’95, Lecture Notes in Artificial Intelligence, pp
156-174. Springer-Verlag, 1995.

[7] H. Turner, Representing actions in logic programs and default theories:
A situation calculus approach. Journal of Logic Programming, 31, 1997.

[8] Y. Zhang and N.Y. Foo, Answer sets for prioritized logic programs. In
Proceedings of the 1997 International Logic Programming Symposium
(ILPS’97), pp 69-83. MIT Press, 1997

[9] Y. Zhang, A framework of rule based update. Manuscript, April, 1999.

