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Abstract. Minimal change is a fundamental principle for modeling
system dynamics. In this paper, we study the issue of minimal
change for Computational Tree Logic (CTL) model update. We first
propose five primitive operations which capture the basic update
of the CTL model, and then define the minimal change criteria
for CTL model update based on these primitive operations. We
provide essential semantic and computational characterizations for
our CTL model update approach. We develop a formal algorithm to
implement this update that employs the underlying minimal change
principle. We also present a CTL model update example using the
well known microwave oven scenario.

1 Introduction
Over the past decade, automated formal verification tools, such as
model checkers, have shown their ability to provide a thorough auto-
matic error diagnosis in complex designs, e.g. [10]. The current state
of the art model checkers, such as SMV [4], NuSMV [3] and Cadence
SMV [9], employ SMV specification language for both CTL and Lin-
eal Temporal Logic (LTL) model checking. Other model checkers
such as SPIN [7] use Promela specification language for on the fly
LTL model checking. Also, the MCK [5] model checker was devel-
oped by integrating a knowledge operator to verify the knowledge
related properties in security protocols.

Along with model checking, error repair has begun to employ
a formal methods approach. Buccafurri et al. [2] used abductive
model revision techniques to repair errors in concurrent programs.
They aimed at using techniques and concepts from model checking
by combining them with AI principles. In the paper of Harris and
Ryan [6], model checking is formalized with a belief updating op-
erator to satisfy classical proposition knowledge update KM postu-
lates U1-U8. Baral and Zhang [1] presented a formal approach of
knowledge update based on single agent S5 Kripke structures. As
they argued, their approach of knowledge update could be integrated
with model checking technology towards a more general automatic
system modification. In this paper, we consider the problem of CTL
model update from both theoretical and implementational perspec-
tives. We first consider five primitive CTL model update operations,
and based on these operations, we define a minimal change principle
for CTL model update. We then investigate the essential semantic
and computational properties of CTL model update. Based on these
findings, we develop an algorithm to perform CTL model update. By
presenting a case study, we also show how our system prototype is
applied for system modification.
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2 CTL Syntax and Semantics: An Overview
To begin with, we briefly review the syntax and semantics of CTL.
Readers are referred to [4] and [8] for details.

Definition 1 [4] Let AP be a set of atomic propositions. A Kripke
model M over AP is a three tuple M = (S,R, L) where

1. S is a finite set of states,
2. R ⊆ S × S is a transition relation,
3. L : S → 2AP is a function that assigns each state with a set of

atomic propositions.

Definition 2 [8] Computation tree logic (CTL) has the following
syntax given in Backus naur form:

φ ::= >| ⊥ |p|(¬φ)|(φ ∧ ψ)|(φ ∨ ψ)|φ ⊃ ψ|AXφ|EXφ
|AGφ|EGφ|AFφ|EFφ|A[φ ∪ ψ]|E[φ ∪ ψ]

where p is any propositional atom.

A CTL formula is evaluated on a Kripke model M . A path

in M from a state s is an infinite sequence of states π
def
=

[s0, s1, · · · , si−1, si, si+1, · · ·] such that s0 = s and (si, si+1) ∈ R
holds for all i ≥ 0. We write (si, si+1) ⊆ π and si ∈ π. If we ex-
press a path as π = [s0, s1, · · · , si, · · · , sj , · · ·] and i < j, we say
that si is a state earlier than sj in π as si < sj . For simplicity, we
may use succ(s) to denote state s′ if there is a relation (s, s′) in R.

Definition 3 [8] Let M = (S,R, L) be a Kripke model for CTL.
Given any s in S, we define whether a CTL formula φ holds in state s.
We denote this by (M, s) |= φ. The satisfaction relation |= is defined
by structural induction on all CTL formulas:

1. (M, s) |= > and M, s 6|=⊥ for all s ∈ S.
2. (M, s) |= p iff p ∈ L(s).
3. (M, s) |= ¬φ iff (M, s) 6|= φ.
4. (M, s) |= φ1 ∧ φ2 iff (M, s) |= φ1 and (M, s) |= φ2.
5. (M, s) |= φ1 ∨ φ2 iff (M, s) |= φ1 and (M, s) |= φ2.
6. (M, s) |= φ1 → φ2 iff (M, s) 6|= φ1, or (M, s) |= φ2.
7. (M, s) |= AXφ iff for all s1 such that (s, s1) ∈ R, (M, s1) |= φ.
8. (M, s) |= EXφ iff for some s1 such that s→ s1, (M, s1) |= φ.
9. (M, s) |= AGφ holds iff for all paths [s0, s1, s2, · · ·], where s0 =
s, and all si along the path, (M, si) |= φ.

10. (M, s) |= EGφ holds iff there is a path [s0, s1, s2, · · ·], where
s0 = s, and for all si along the path, (M, si) |= φ.

11. (M, s) |= AFφ holds iff for all paths [s0, s1, s2, · · ·], where s0 =
s, there is some si in the path such that (M, si) |= φ.

12. (M, s) |= EFφ holds iff there is a path [s0,1 , s2, · · ·], where
s0 = s, and for some si along the path, (M, si) |= φ.



13. (M, s) |= A[φ1∪φ2] holds iff for all paths [s0, s1, s2, · · ·], where
s0 = s, the path satisfies φ1 ∪ φ2, i.e. there is some si along the
path, such that (M, si) |= φ2, and, for each j < i, (M, sj) |= φ1.

14. (M, s) |= E[φ1 ∪ φ2] holds iff there is a path [s0, s1, s2, · · ·],
where s0 = s, the path satisfies φ1 ∪ φ2, i.e. there is some si

along the path, such that (M, si) |= φ2, and, for each j < i,
(M, sj) |= φ1.

In the rest of this paper, without explicit declaration, we will as-
sume that all CTL formulas occurring in our context will be satisfa-
ble. For instance, when we consider to update a Kripke model with a
CTL formula φ, we already assume that φ is satisfiable.

3 Minimal Change for CTL Model Update
Given a CTL kripke model and a (satisfiable) CTL formula, we con-
sider how this model can be updated in order to satisfy the given for-
mula. We first give the following general definition on CTL model
update.

Definition 4 (CTL Model Update) Given a CTL Kripke model
M = (S,R, L) and a CTL formula φ. An update of M = (M, s0)
where s0 ∈ S with φ is a CTL Kripke model M ′ = (S′, R′, L′) such
that M′ = (M ′, s′0) |= φ where s′0 ∈ S′. We use Update(M, φ) to
denote the result M′ and Update(M, φ) = M if M |= φ.

Definition 4 only presents an essential requirement for a CTL
model update and does not tell how such update should be conducted.
Basically, as in traditional knowledge base update [11], we would ex-
pect that a CTL model update obeys an underlying minimal change
principle. Furthermore, this minimal change should be defined based
on some operational process so that a concrete algorithm for CTL
model update can be implemented. To this end, we first consider five
primitive operations on the CTL model that provide a basis for all
complex CTL model updates.

3.1 Primitive Operations
The operations to update the CTL model can be decomposed into five
types identified as PU1, PU2, PU3, PU4 and PU5. These primitive
updates are defined in their simplest forms as follows.

PU1: Adding a relation only
Given M = (S,R, L), its updated model M ′ = (S′, R′, L′) is the
result of M having only added one new relation. That is S′ = S,
L′ = L, and R′ = R∪{(sar, sar2)} where (sar, sar2) 6∈ R for one
pair of sar, sar2 ∈ S.

PU2: Removing a relation only
Given M = (S,R, L), its updated model M ′ = (S′, R′, L′) is the
result ofM having only removed one existing relation. That is, S′ =
S; L′ = L, and R′ = R − {(srr, srr2)} where (srr, srr2) ∈ R for
one pair of srr, srr2 ∈ S.

PU3: Substituting a state and its associated relation(s) only
Given M = (S,R, L), its updated model M ′ = (S′, R′, L′)
is the result of M having only substituted one existing state and
its associated relation(s). That is, S′ = S[s/sss] (i.e. S′ is the
set of states where one state s in S is substituted by sss), R′ =
R ∪ {(si, sss), (sss, sj) | (si, s), (s, sj) ∈ R} − {(si, s), (s, sj) |
(si, s), (s, sj) ∈ R}, and L′(s) = L(s) for all s ∈ S ∩ S′ and
L′(sss) = τ (sss), where τ is a truth assignment on sss.

PU4: Adding a state and its associated relation(s) only
Given M = (S,R, L), its updated model M ′ = (S′, R′, L′) is the

result of M having only added one new state and its associated rela-
tion(s). That is, S′ = S ∪ {sas}, R′ = R ∪ {(si, sas), (sas, sj) |
for some si, sj ∈ S ∩ S′}, and L′(s) = L(s) for all s ∈ S ∩ S′ and
L′(sas) = τ (sas), where τ is the truth assignment on sas.

PU5: Removing a state and its associated relation(s) only
Given M = (S,R, L), its updated model M ′ = (S′, R′, L′) is
the result of M having only removed one existing state and its as-
sociated relation(s). That is, S′ = S − {srs | srs ∈ S}, R′ =
R − {(si, srs), (srs, sj) | for some si, sj ∈ S}, and L′(s) = L(s)
for all s ∈ S ∩ S′ (note S′ ⊂ S).

We call the above five operations atomic since all changes on a
CTL model can be expressed by these five operations. It may be ar-
gued that PU3 can be expressed by PU4 and PU5. However, we will
treat state substitution differently from a combination of state ad-
dition and state deletion. That is, in our context, whenever a state
substitution is needed, we will apply PU3 directly rather than PU4
followed by PU5. This will simplify our definition on CTL model
minimal change (see next).

3.2 Defining Minimal Change
In order to define the minimal change criteria for CTL model update,
we need to consider changes on both states and relations for the un-
derlying CTL models. We achieve this by specifying the differences
of states and relations on CTL models through primitive operations.
First we introduce some useful notions.

Given any two sets X and Y , the symmetric difference between
X and Y is denoted as Diff(X, Y ) = (X − Y ) ∪ (Y − X).
Given two CTL models M = (S,R, L) and M ′ = (S′, R′, L′),
for each primitive operation PUi (i = 1, · · · , 5), DiffPUi(M,M ′)
denotes the differences between two CTL models where M ′ is a re-
sulting model from M , that make clear that several operations of
this type may occur. Since PU1 and PU2 only change relations, we
define DiffPUi(M,M ′) = (R − R′) ∪ (R′ − R) (i = 1, 2).
For operations PU3, PU4 and PU5, on the other hand, we define
DiffPUi(M,M ′) = (S−S′)∪(S′−S) (i = 3, 4, 5). Although any
changes on states caused by PU3-PU5 will also imply corresponding
changes on relations, we only count changes on states and take state
changes as the primitive factor to measure the difference between M
and M ′2. For operation PU3, we should also consider the case that
when a state is substituted by a new state, we require the difference
between these two states to be minimal under the condition of satis-
fying the updated formula. Finally, we specify

Diff (M,M ′) = (DiffPU1(M,M ′), · · · ,DiffPU5(M,M ′)).

Let M , M1 and M2 be three CTL models. We denote
Diff (M,M1) � Diff (M,M2) iff (1) for each i (i =
1, · · · , 5), DiffPUi(M,M1) ⊆ DiffPUi(M,M2); or (2)
DiffPUi(M,M1) ⊆ DiffPUi(M,M2) for i = 1, 2, 4, 5, and
|DiffPU3(M,M1)| = |DiffPU3(M,M2)| implies for each state
s in M substituted by s1 and s2 in M1 and M2 respectively,
Diff (s, s1) ⊆ Diff (s, s2).

Definition 5 (Closeness Ordering) Given three CTL Kripke mod-
els M , M1 and M2, where M1 and M2 are obtained from M
by applying PU1-PU5 operations. We say that M1 is closer or as
close to M as M2, denoted as M1 ≤M M2, iff Diff(M,M1) �

2 In our full paper, we justify this principle by showing that as long as a state
change is fixed, associated relation changes do not play a crucial role to
influence the resulting CTL model.



Diff(M,M2). We denote M1 <M M2 if M1 ≤M M2 and
M2 6≤M M1.

Definition 6 (Admissible Update) Given a CTL Kripke model
M = (S,R, L), M = (M, s0) where s0 ∈ S, and a CTL formula φ,
Update(M, φ) is called admissible if the following conditions hold:
(1) Update(M, φ) = (M ′, s′0) |= φ where M ′ = (S′, R′, L′)
and s′0 ∈ S′; and (2) there does not exist another resulting model
M ′′ = (S′′, R′′, L′′) and s′′0 ∈ S′′ such that (M ′′, s′′0 ) |= φ and
M ′′ <M M ′.

4 Semantic Characterizations
From Definition 6, we observe that for a given CTL Kripke model
M and a formula φ, there may be many admissible updates to sat-
isfy φ, where some updates are simpler than others. In this section,
we provide various semantic characterizations on CTL model update
that present possible solutions to achieve admissible updates under
certain conditions. In general, in order to achieve admissible update
results, we may have to combine various primitive operations during
an update process. Nevertheless, as will be shown in the following,
for many situations, a single type primitive operation will be enough
to achieve an admissible updated model. These characterizations also
play an essential role to simplify CTL model update implementa-
tions.

Theorem 1 Let M = (S,R, L) be a Kripke model and s0 be an
initial state in S and M = (M, s0) 6|= EXφ, where φ is a
propositional formula. Then an admissible updated model M′ =
U pdate(M, EXφ) can be obtained by doing one of the following
operations:

1. PU3 is applied to any succ(s0) once to substitute it with a new
state s∗ |= φ and Diff(succ(s0), s

∗) to be minimal, or PU4
is applied one time after adding a new state s∗ |= φ and a new
relation (s0, s

∗);
2. if there exists some si ∈ S such that si |= φ and si 6= succ(s0),

PU1 is applied one time to add a new relation (s0, si).

Theorem 1 provides two cases where admissible CTL model up-
date results can be achieved for formula EXφ. The first case says
that we can either select one of s0’s successor states and substitute
it with a new state satisfying φ (i.e. applying PU3 one time), or sim-
ply add a new state that satisfies φ as a successor of s0 (i.e. applying
PU4 one time). The second case indicates that if there is some state
si in S that already satisfies φ, then it is enough to simply add a new
relation (s0, si) to make it as a successor of s0. It is easy to see that
both cases will yield new CTL models that satisfy EXφ. The theo-
rem shows that such new models are also minimal with respect to the
original CTL model.

Theorem 2 Let M = (S,R, L) be a Kripke model and M =
(M, s0) 6|= AGφ, where s0 ∈ S and φ is a propositional for-
mula. Then an admissible updated model M′ = U pdate(M, AGφ)
can be obtained by the following: for each path starting from s0:
π = [s0, · · · , si, · · ·]:

1. if for all s < si in π, s |= φ but si 6|= φ, PU2 is applied to
remove relation (si−1, si), or PU5 is applied to remove si and its
associated relations;

2. PU3 is applied to all states s in π not satisfying φ to substitute s
with s∗ |= φ and Diff(s, s∗) to be minimal.

In Theorem 2, Case 1 considers a special form of path π where the
first i states starting from s0 already satisfy formula φ. Under this
situation, we can simply cut off the path (i.e. applying PU2 or PU5
one time) to disconnect all other states not satisfying φ. Case 2 is
straightforward.

Theorem 3 Let M = (S,R, L) be a Kripke model, M =
(M, s0) 6|= EGφ, where s0 ∈ S and φ is a propositional formula.
Then an admissible updated model M′ = U pdate(M, EGφ) can
be obtained by the following: Select a path π = [s0, s1, · · ·] from M
which contains minimal number of states not satisfying φ, and then

1. if for all s′ ∈ π such that s′ 6|= φ, there exist si, sj ∈ π satisfying
si < s′ < sj and si |= φ and sj |= φ, then PU1 is applied to add
a relation (si, sj), or PU4 is applied to add a state s∗ |= φ and
new relations (si, s

∗) and (s∗, sj);
2. if there exists some si ∈ π (i > 1) such that for all s′ < si,
s′ |= φ and si 6|= φ, then PU2 is applied to remove relation
(si−1, si), or PU5 is applied to remove state si and its associated
relations;

3. for all s′ ∈ π, s′ 6|= φ, then PU3 is applied to substitute all s′

with new state s∗ |= φ and Diff(s, s∗) to be minimal.

Proof: We prove case 1 here while proofs for the other two cases
are presented in our full paper. Without loss of generality, we as-
sume for the selected path π, there exists one state s′ that does
not satisfy φ, and all other states in π satisfy φ. We also assume
that such s′ is in the middle of path π. Therefore, there are two
other states si, sj in π such that si < s′ < sj . That is, π =
[s0, · · · , si−1, si, · · · , s

′, · · · , sj , sj+1, · · ·]. We first consider to ap-
ply PU1. It is clear that by applying PU1 to add a new relation
(si, sj), a new path is formed: π′ = [s0, · · · , si−1, si, sj , sj+1, · · ·].
Note that each state in π′ is also in path π and s′ 6∈ π′. According,
we know EGφ is held in the new model M ′ = (S,R∪{(si, sj}, L)
at state s0. On the other hand, we consider Diff(M,M ′). Clearly,
Diff(M,M ′) = ({(si, sj)}, ∅, ∅, ∅, ∅), which impliesM ′ must be
a minimal model with respect to ≤M that satisfies EGφ.

Now we consider to apply PU4. In this case, we will have a new
model M ′ = (S ∪ {s∗}, R ∪ {(si, s

∗), (s∗, sj)}, L
′) where L′ is

an extension of L on new state s∗ that satisfies φ. We can see that
π′ = [s0, · · · , si, s

∗, sj , · · ·] is a path in M ′ which shares all states
with path π except the state s∗ in π′ and those states between si+1

and sj−1 including s′ in π. So we also have (M ′, s0) |= EGφ.
On the other hand, we have Diff (M,M ′) = (∅, ∅, ∅, {s∗}, ∅).
Obviously, M ′ is a minimal model with respect to ≤M that satisfies
EGφ. 2

Theorem 3 characterizes three typical situations for the update
with formulaEGφ. Basically, this theorem says that in order to make
formula EGφ be true, we first select a path, then we can either make
a new path based on this path so that all states in the new path satisfy
φ (i.e. Case 1), trim the path from the state where all previous states
satisfy φ (i.e. Case 2); or simply substitute all states not satisfying φ
in the path with new states satisfying φ (i.e. Case 3). Our proof shows
that resulting models from these operations are admissible.

In our full paper, we also provide semantic characterizations for
updates with other CTL formulas such as EFφ,AXφ,AFφ,E[φ∪
ψ] and A[φ ∪ ψ]. All these results have been proved to be useful in
simplifying the implementation and improving the efficiency of the
CTL model update performance.



5 Computational Properties
In this section, we study the computational complexity of our ap-
proach for CTL model update. We first present the following general
result.

Theorem 4 Given two CTL Kripke models M = (S,R,L) and
M ′ = (S′, R′, L′), where s0 ∈ S and s′0 ∈ S′, and a CTL
formula φ. Deciding whether (M ′, s′0) is an admissible result of
U pdate((M, s0), φ) is co-NP-complete. The hardness holds even if
φ is of the form EXψ where ψ is a propositional formula.
Proof: Membership proof. First from [4], we know that checking
whether (M ′, s′0) |= φ can be done in time O(|φ| · (|S| + |R|)).
In order to check whether (M ′, s′0) is an admissible update result,
we need to check whether M ′ is minimal with respect to ordering
≤M . To do so, we consider the complement of the problem. That
is to check whether M ′ is not a minimal model. Therefore, we do
two things: (1) guessing a CTL model M ′′ = (S′′, R′′, L′′) sat-
isfying φ for some s′′ ∈ S′′; and (2) testing whether M ′′ <M

M ′. Step (1) can be done in polynomial time. To check M ′′ <M

M ′, we first compute Diff(S, S′), Diff(S, S′′), Diff(R,R′)
and Diff(R,R′′). All these can be computed in polynomial time.
Then according to these sets, we identify, through PU1 to PU5,
DiffPUi(M,M ′) and DiffPUi(M,M ′′) (i = 1, · · · , 5). Again,
these can also be done in polynomial time. Finally, by checking
DiffPUi(M,M ′′) ⊆ DiffPUi(M,M ′) (i = 1, · · · , 5) we can de-
cide whetherM ′′ <M M ′. So both steps (1) and (2) can be achieved
in polynomial time with a non-deterministic Turing machine.

Hardness proof. It is well known that the validity problem for
a propositional formula is co-NP-complete. Given a propositional
formula φ, we construct in polynomial time a transformation from
the problem of deciding φ’s validity to a CTL model update. Let
X be the set of all variables occurring in φ, and a, b two new
variables not occurring in X . We denote ¬X =

∧
xi∈X

¬xi. We
specify a CTL Kripke model based on the variable set X ∪ {a, b}:
M = ({s0, s1}, {(s0, s1), (s1, s1)}, L), where L(s0) = ∅ (i.e.
all variables are assigned false), L(s1) = X (i.e. variables in X
are assigned true, while a, b are assigned false). Now we define
a new formula µ = EX(((φ ⊃ a) ∧ (¬X ∧ b)) ∨ (¬φ ∧ a)).
Clearly, formula ((φ ⊃ a) ∧ (¬X ∧ b)) ∨ (¬φ ∧ a) is sat-
isfiable and s1 6|= ((φ ⊃ a) ∧ (¬X ∧ b)) ∨ (¬φ ∧ a). So
(M, s0) 6|= µ. Consider the update Update((M,s0), µ). We define
M ′ = ({s′0, s

′

1}, {(s
′

0, s
′

1), (s
′

1, s
′

1)}, L
′), where L′(s′0) = L(s0)

and L′(s′1) = {a, b}. Now we show that φ is valid iff (M ′, s′0) is an
admissible update result from Update((M,s0), µ).
Case 1. We show that if φ is valid, then (M ′, s′0) is an admissible
update result from Update((M,s0), µ). Since φ is valid, we have
¬X |= φ. So we have s′1 |= (φ ⊃ a) ∧ (¬X ⊃ b)). This follows
(M ′, s′0) |= µ. Also note that M ′ is obtained by applying PU3 to
substitute s1 with s′1. Diff(s1, s

′

1) = X ∪ {a, b} which presents a
minimal change from s1 in order to satisfy (φ ⊃ a) ∧ (¬X ∧ b).
Case 2. Suppose that φ is not valid. Then there exists
X1 ⊆ X such that X1 |= ¬φ. We construct M ′′ =
({s′′0 , s

′′

1}, {(s
′′

0 , s
′′

1 ), (s′′1 , s
′′

1 )}, L′′), where L′′(s′′0 ) = L(s0)
and L′′(s′′1 ) = X1 ∪ {a}. It is easy to see that s′′1 |= (¬φ ∧ a), and
hence (M ′′, s′′0 ) |= µ. Now we show that (M ′, s′0) |= µ implies
M ′′ <M M ′. Suppose (M ′, s′0) |= µ. Clearly, both M ′ and M ′′

are obtained from M by applying PU3 one time on s1 respectively.
But we have Diff(s1, s

′′

1 ) = (X − X1) ∪ {a} ⊂ X ∪ {a, b} =
Diff(s, s′1). This concludes that (M ′, s′0) is not an admissible
update model. 2

Theorem 4 implies that it is probably not feasible to develop a
polynomial time algorithm to implement our CTL model update. In-
deed, our algorithm described in the next section, generally runs in
exponential time. Nevertheless, we can identify certain typical up-
date cases that may be achieved in polynomial time.

Theorem 5 Let M = (S,R, L) be a CTL Kripke model and φ a
CTL formula. If an admissible update result Update((M,s0), φ)
(s0 ∈ S) can be obtained by only applying PU1, PU2, PU4 and PU5
without path selection in M (i.e. φ does not involve EGψ, EFψ or
E[ψ1 ∪ ψ2]), then this result can be computed in polynomial time.

6 The Algorithm and a Case Study
A prototype for the CTL model update addressed in previous sections
has been implemented recently. The algorithm is designed following
a similar style of CTL model checking algorithm SAT [8], where an
updated formula is parsed through its structure and recursive calls to
proper functions are made to its sub-formulas.
CTLUpdate(M,φ) / M = (M, s0) 6|= φ. Update M to satisfy φ. /

Input: M = (S,R, L), M= (M, s0), where s0 ∈ S and M6|= φ;
Output: M ′ = (S′, R′, L′), M′= (M ′, s′0), s′0 ∈ S′, M′|= φ′;
{ case

φ is ⊥ : return {M};
φ is atomic p : return {Updatep(M, p)};
φ is ¬φ1 : return {Update¬(M, φ1)};
φ is φ1 ∨ φ2 :

return{CTLUpdate(M, φ1) or CTLUpdate(M, φ2)};
φ is φ1 ∧ φ2: return {Update∧(M,φ1, φ2)};
φ is EXφ1: return {UpdateEX (M, φ1)};
φ is AXφ1: return {UpdateAX (M, φ1)};
φ is EFφ1: return {UpdateEF (M, φ1)};
φ is AFφ1: return {UpdateAF (M, φ1)};
φ is EGφ1: return {UpdateEG(M, φ1)};
φ is AGφ1: return {UpdateAG(M, φ1)};
φ is E(φ1 ∪ φ2): return {UpdateEU (M, φ1, φ2)};
φ is A(φ1 ∪ φ2): return {UpdateAU (M, φ1, φ2)};

}

Due to a space limit, here we only outline the main idea of imple-
menting functions Update¬ and UpdateAG.

Update¬(M,φ) / M 6|= φ. Update M to satisfy φ. /
{ case

φ is ¬p: return {Update¬p(M,p)};
φ is ¬(φ1 ∧ φ2) = ¬φ1 ∨ ¬φ2:

return {Update¬(M,φ1)} or {Update¬(M,φ2)};
φ is ¬EF (φ1) = AG(¬φ1): return {UpdateAG(M,¬φ1)};

}

UpdateAG(M,φ) /M6|= AGφ. Update M to satisfy AGφ./
{ if M0 = (M, s0) 6|= φ, then PU3 is applied to s0

such that M′ = CTLUpdate(M0, φ);
else select a path π = [s0, s1, · · ·], where ∃s ∈ π such that

Mi = (M, s) 6|= φ;
select the earlist state si ∈ π such that (M, si) 6|= φ;
perform one of the following three operations:

(1) applying PU2 to remove relation (si−1, si),
obtain result M′;

(2) applying PU5 to remove state si and
its associated relations, obtain result M′;

(3) applying PU3: M′ = CTLUpdate(Mi, φ);



if M′ |= AGφ, return M′;
else return {UpdateAG(M′, φ)};

}

Theorem 6 Given a Kripke model M = (S,R,L) and a satis-
fiable CTL formula φ such that (M, s) 6|= φ for some s ∈ S.
Then CTLUpdate((M, s), φ)) will return a resulting Kripke model
M ′ = (S′, R′, L′) such that (M ′, s′) |= φ for some s′ ∈ S′ and it
is admissible.

In the rest of this section, we will describe some details of our
algorithm implementation by applying the model modification to
the well known microwave oven scenario [4]. The microwave oven
model is described as in Figure 1.
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Figure 1. The CTL Kripke structure of a microwave oven.

The Kripke model has 7 states and propositional variables are from
the set {Start, Close,Heat,Error}. It is observed that this model
does not satisfy a desirable property φ = ¬EF (Start∧EG¬Heat)
[4]. What we would like to do is to apply our CTL model update
program to minimally modify this kripke model to satisfy property
φ. First, we parse φ into AG(¬(Start ∧ EG¬Heat)) to remove
the front ¬. The translation is done by function Update¬. Then we
check for each state whether it satisfies ¬(Start∧EG¬Heat). This
string is parsed before it is checked. We pick out EG¬Heat to feed
through the model checking function forEG. In this model, any path
that has any state with ¬Heat is picked out. Here we find paths
[s1, s2, s5, s3, s1, · · ·] and [s1, s3, s1, · · ·] which are strongly con-
nected component loops [4] satisfying EG¬Heat. Then we identify
all states with Start, they are {s2, s5, s6, s7}. Now we select those
states with both Start and ¬Heat, they are {s2, s5}. Since formula
AG(¬(Start ∧ EG¬Heat)) identifies that the model should not
have any states with both Start and ¬Heat, we should perform
model update related to states s2 and s5.

Now function UpdateAG starts to perform update as described in
the above pseudo code and Theorem 2 (see section 3). It turns out
that there are three possible minimal updates: (1) applying PU2 to
remove relation (s1, s2); (2) applying PU5 to remove state s2 and
its associated relations (s1, s2), (s2, s5) and (s5, s2); and (3) ap-
plying PU3 on s2 and s5. To perform option (3), our program first
converts ¬(Start∧EG¬Heat) to ¬Start∨¬EG¬Heat, then s2
and s5 are updated with either ¬Start or ¬EG¬Heat by the main
function CTLUpdate to deal with ∨ and function Update¬. In our
program, updating ¬Start is chosen since formula ¬Start is sim-
pler than ¬EG¬Heat. After the update, we will obtain a resulting
model (M, s1) |= φ. For instance, by choosing update (1) opera-
tion above, we will obtain a new Kripke model as shown in Figure 2,
which simply states that no state transition from s1 to s2 is allowed.

Our algorithm will generate one of the three resulting models with-
out specific indication, because under our criteria they are all mini-
mally changed from the original model. However, in our prototype
implementation, we have considered the computational cost of an
update upon users’ request, which may affect the system efficiency.
For instance, in the above example, with three possible updates, if
the user requires a low computational cost, our system will select the
simplest operation (1) to achieve the goal.
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Figure 2. An updated CTL Kripke structure for the microwave oven.

7 Conclusion
In this paper, we presented a formal approach to update CTL mod-
els. By specifying five primitive operations on CTL Kripke models,
we defined the minimal change criteria for CTL model update. We
also investigated the semantic and computational properties of our
approach in detail. Based on our formalization, we developed a CTL
model update algorithm and implemented a system prototype to per-
form CTL model updating. Our case study showed an application of
this work.
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