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ABSTRACT
Role engineering (RE) aims to develop and maintain appropriate
role-based access control (RBAC) configurations. However, RE
with constraints in place is not well-studied. Constraints usually
describe organizations’ security and business requirements. An in-
consistency between configurations and constraints compromises
security and availability, as it may authorize otherwise forbidden
access and deprive users of due privileges. In this paper, we apply
answer set programming (ASP) to discover RBAC configurations
that comply with constraints and meet various optimization objec-
tives. We first formulate the need of supporting constraints as a
problem independent of and complementary to existing RE prob-
lems. We then present a flexible framework for translating the pro-
posed problem to ASP programs. In this way, the problem can be
addressed via ASP solvers. Finally, we demonstrate the effective-
ness and efficiency of our approach through experimental results.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security, Management

Keywords
RBAC, Constraint, Role Engineering, Answer Set Programming

1. INTRODUCTION
It proves challenging to build a secure and manageable access

control system. By introducing “roles” as an intermediate level
between users and permissions, role-based access control (RBAC)
mitigates the difficulty. There, users are assigned to roles; roles
in turn are associated with permissions [9, 24]. RBAC has been
regarded as an effective approach to the access control problem of
medium and large size organizations [23].
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However, RBAC systems are costly to develop and maintain.
Putting aside other problems, the creation of an RBAC configu-
ration, which consists of identifying a set of appropriate roles and
assigning users and permissions to roles, is not easy [14, 21]. As
such, various role engineering (RE) approaches have been pro-
posed to find “good” configurations, e.g., [5, 8, 21, 29]. Provided
with certain information about the organization in question, an RE
tool produces a configuration. Nonetheless, one main limitation of
existing approaches is that, the discovered configuration does not
necessarily meet constraints.

Organizations’ security officers often specify constraints to en-
force high-level security objectives. One typical example is a
separation-of-duty policy, which, for example, prohibits a user
from performing two mutually exclusive permissions (e.g., prepare
a check and authorize a check).1 Moreover, constraints could also
be used to model business requirements. For example, an organi-
zation may place a constraint that a role emergencyManager be
assigned to at least two users, so that at least two managers are
available in an emergency. As an inherent part of the classic RBAC
models [24] and the standards [2, 9], constraints play an important
part in capturing organizations’ requirements [1, 7, 17, 27].

A configuration inconsistent with constraints, if deployed, may
undermine organizations’ interests, by means of authorizing other-
wise forbidden accesses or depriving users of due privileges. This
poses continual challenges. When being deployed, the configura-
tion ought to comply with constraints. Afterwards, this compli-
ance should persist. However, organizations’ security and business
requirements are subject to constant changes. One misleading as-
sumption is that people can establish their requirements once for
all; it obstructs the integration of research efforts with practices
[26]. Hence, a deployed configuration needs updating from time to
time to reflect organizations’ requirements [8, 21].

Unfortunately, so far little effort has been devoted to constraint
support when organizations are adopting RBAC configurations or
undergoing evolution. On the one hand, the state of the art of RE
barely takes constraints into consideration; as a result, it is neces-
sary to adapt discovered configurations for constraints. As pointed
out in [21, 29], a post-processing like this is often unavoidable and,
if done manually, is a large bottleneck. Hence, an effective and
efficient support of constraints for RE is worth investigation. On
the other hand, the research literature on constraints in access con-
trol has focused mainly on checking if there exists a configuration
consistent with constraints (e.g., [27]) or if a change to a configura-
tion is safe with respect to constraints (e.g., [7, 17]). They provide
inadequate help. Although some approaches such as [27] gener-
ate configurations in presence of constraints, they are not tailored

1To increase the cost of an fraud, it is often required that no user
can both prepare and authorize a check.
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Figure 1: The idea of our approach.

for RE. For example, RE aims to discover “good” configurations;
however, the quality of configurations is not a concern there.

We treat constraint support as a modular post-processing of con-
figurations produced by RE tools, as shown in Figure 1. The rea-
sons are many-fold. First, different situations call for different
types of RE tools, depending on available information. If inte-
grating constraint support with existing functions, one may have to
augment each type of RE tools in order to deal with different situa-
tions. In contrast, modular constraint support as a post-processing
provides a uniform approach. Second, this design also enables us
to combine advantages of existing RE algorithms. In view of the
diversity of RE techniques, different tools may discover multiple
configurations for a given input; each of them bears properties an
RE tool specializes in. It is likely to (partially) retain the proper-
ties if we take these configurations into consideration when seeking
a configuration consistent with constraints. Finally, as mentioned
above, constraints are dynamic; a separate module for constraints
is more flexible, manageable, and extensible.

With this choice of design, we are provided with a set of con-
straints, denoted asC, which is specified by organizations’ security
officers, and a set of configurations, denoted as Γ, which contains
the running configuration and/or configurations discovered by RE
tools. The problem of supporting constraints for RE, denoted as
Role Constraint Problem (RCP ), boils down to finding a configu-
ration γ0 that is consistent with C and close to Γ as a whole. The
requirement of closeness attempts to limit the deviation of γ0 from
Γ, as configurations in Γ may fit the organization in question in
one way or another. Also, in this way, γ0 is expected to be of high
quality among those consistent with C.

To formulate RCP , we first define a simple language for speci-
fying constraints. We then take a declarative approach based on An-
swer Set Programming (ASP) [3]. In brief, we encode each RCP
instance as an ASP program, compute an answer set of the result-
ing program, and extract a solution. Although the applications of
ASP follow the general “encode-compute-extract” way [3], they
differ in problem representations in ASP. In our case, there are two
principal factors which render the proposed problem and approach
non-trivial. First, the constraint language should be amendable to
ASP interpretation, but also expressive enough to capture common
idioms of security and business requirements. There is a trade-off
to make. Second, an ASP encoding should capture requirements
on solutions’ quality, including both the closeness to Γ and other
practical needs.

This ASP-based approach provides a declarative representation
of the problem and allows us to adopt mature ASP solvers that have
been proved to work well in practice. Moreover, its rich modeling

language eases the understanding and explanation of the problem
and the approach. The main contributions of this work are:

• We propose and formally define the problem of supporting
constraints in role engineering. RCP is formulated as a
problem independent of and complementary to existing role
engineering problems. Among others, this enables us to add
the support of constraints modularly. We also study the com-
putional complexity of RCP .

• We present a framework for encoding RCP in ASP. RCP
can thus be addressed via existing ASP solvers. The frame-
work is flexible in that various RCP variants can be encoded
in a straightforward manner.

• We undertake experiments to validate the practicality of the
framework.

The rest of the paper is organized as follows. In Section 2, we re-
view the notions of RBAC. In Section 3, we propose the constraint
language, define RCP , and study its computational complexity;
two examples of RCP are also given. In Section 4, we present a
transformation of RCP into ASP. We show the experiment results
in Section 5. In Section 6, we discuss the assumptions and RCP
variants. Finally, related work is discussed in Section 7, followed
by conclusions in Section 8.

2. ROLE-BASED ACCESS CONTROL
An RBAC configuration is a tuple γ = 〈U ,R,P,UA,PA〉,

where U is a set of users , R is a set of roles, and P is a set of
permissions, UA ⊆ R×U is the user-role relation, assigning users
to roles, and PA ⊆ R × P is the role-permission relation, associ-
ating permissions with roles. Based on UA and PA, one derives
γ’s user-permission relation UPA = {(u, p) | ∃r ∈ R : (r, u) ∈
UA∧ (r, p) ∈ PA}. We usually denote an RBAC configuration as
γ, possibly with subscripts; unless otherwise stated, a configuration
γi denotes a tuple 〈Ui,Ri,Pi,UAi,PAi〉.

Example 1. Consider access control of grades in a university: four
representative users alice, bob, carl, and dave,2 may be assigned to
roles stu (student), ta (teaching assistant), fac (faculty), and dean;
roles could be assigned to four permissions: assign, view, receive,
and change grades (denoted as asg, view, rec, and chg, respec-
tively). Figure 2 shows an example configuration of this scenario,
denoted as γuni . For example, alice is assigned to the roles stu and
ta, and the role stu is assigned to rec. Therefore, alice is able to
receive grades with the role stu.

 
view asg rec  chg 

ta 
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Figure 2: An example RBAC configuration γuni . Solid lines rep-
resent the user-role relation, and dashed lines represent the role-
permission relation.

2Since ASP solvers usually take capitalized words as variables and
others as constants, we write names in lowercase.



Table 1: Functions of RBAC configurations.

userγ [x] =

{
{u ∈ U | (x, u) ∈ UA} if x ∈ R⋃
r∈roleγ [x] userγ [r] if x ∈ P

roleγ [x] =

{
{r ∈ R | (r, x) ∈ UA} if x ∈ U
{r ∈ P | (r, x) ∈ PA} if x ∈ P

permγ [x] =

{ ⋃
r∈roleγ [x] permγ [r] if x ∈ U
{p ∈ P | (x, p) ∈ PA} if x ∈ R

Given a configuration γ, we define three functions as shown in
Table 1. Function userγ [·] : R ∪ P 7→ 2U gives the set of users
that a role or a permission is associated with in γ. Take γuni for in-
stance; we have userγuni [fac] = {carl, dave} and userγuni [chg] =
{dave}. Function roleγ [·] : U ∪ P 7→ 2R returns the set of
roles that are assigned to a user or a permission in γ. For in-
stance roleγuni [bob] = {stu} and roleγuni [asg] = {ta, fac}. Fi-
nally, function permγ [·] : U ∪ R 7→ 2P maps the users and
roles to their permissions in γ. For example, permγuni

[dave] =
{asg, view, chg} and permγuni

[dean] = {chg}.

3. PROBLEM DEFINITION

3.1 Constraint Specification
A configuration γ decides on which permissions a user may per-

form. The set permγ [u] contains all the permissions available to
u, whereas userγ [p] returns the set of users capable of executing p.
Also, in a sense, a role is identified by the set of users and/or the set
of permissions that are associated with it. Hence, a configuration
is mostly characterized by the set relationships among users, roles,
and permissions. Accordingly, constraints should concern these set
relationships.

Definition 2. A set expression is obtained by applying the two rules
finitely many times: (1) Each of user[x], role[x], and perm[x] is a
set expression, where x ∈ U ∪ R ∪ P . (2) If s1 and s2 are set
expressions, then so are s1 ∩ s2 and s1 ∪ s2.

Set expressions are evaluated against configurations. The eval-
uation of s against a configuration γ, denoted as s/γ, is ob-
tained by replacing every appearance of user with userγ , role
with roleγ , and perm with permγ . Formally, it is defined in-
ductively: (s1 ∩ s2)/γ = (s1/γ) ∩ (s2/γ), (s1 ∪ s2)/γ =
(s1/γ) ∪ (s2/γ), user[x]/γ = userγ [x], role[x]/γ = roleγ [x],
and perm[x]/γ = permγ [x]. For example, user[p1] ∩ user[p2]
is evaluated as userγ [p1] ∩ userγ [p2]. Notice that user[u] evalu-
ates to {u} if u ∈ U , regardless of γ. For simplicity we write set
{u1, · · · , un} ⊆ U as an abbreviation for

⋃n
i=1 user[ui]; similar

abbreviations apply to role[x] and perm[x].

Definition 3. A structural constraint has the form s1 ⊆ s2, where
s1 and s2 are set expressions. A configuration γ satisfies a con-
straint s1 ⊆ s2 if s1/γ ⊆ s2/γ.

Structural constraints are inspired by the property language in
[18]. They state subset-relationships between sets. Since the sets
are derived from a configuration’s relations, constraints actually
put requirements on the structure of those relations. For example,
user[r1] ⊆ user[p1]∩ user[p2] stipulates that role r1’s user set be a
subset of the intersection of permission p1’s user set and p2’s user
set; in terms of access control, it says that any user in role r1 should
possess the permissions p1 and p2.

Definition 4. A quantity constraint has the form |s|θn, where θ
is an operator from the set {=, 6=,≤,≥} and n is an integer. A

configuration γ satisfies a constraint |s|θn if |s/γ|θn, where where
| · | denotes the size of a set or a relation.

Quantity constraints concern the size of a set. For example,
|user[p1] ∩ user[p2]| ≥ 1 says that at least one user is able to exer-
cise both p1 and p2. Suppose, for instance, that p1 and p2 are the
two steps of an emergency procedure; this constraint ensures that
proper measures could be taken in an emergency by at least one
user.

Given a set C of constraints, we say γ satisfies C if it satisfies
all constraints in C.

Example 5. We give more examples to show how this language can
express a wide range of constraint idioms in the context of Example
1.

con1 Students can receive grades: {rec} ⊆ perm[stu]. This ex-
emplifies a constraint on roles’ permission range.

con2 If allowed to change grades, a role can also view grades:
role[chg] ⊆ role[view]. Anyone with such a role can view
grades before s/he changes them. Constraints of this type are
often meant to guarantee roles’ job functions.

con3 The capabilities to change grades are confined to carl and
dave: user[chg] ⊆ {carl, dave}. This is an example
of the assignment range policy [19]. Its general form,
user[p1] ∪ · · · ∪ user[pm] ⊆ {u1, · · · , un}, requires that
the permissions {p1, · · · , pm} be possessed only by users
in {u1, · · · , un}. A similar constraint user[p1] ∩ · · · ∩
user[pm] ⊆ {u1 · · · , un} enforces bounded safety [18], i.e.,
the users that can have all permissions {p1, · · · , pm} are lim-
ited to users {u1 · · · , un}.

con4 No students can assign grades: |user[stu] ∩ user[asg]| = 0.
Note that the constraint |perm[stu] ∩ {asg}| = 0 does not
capture this requirement.

con4 is an instance of safety policy [18], as it denies the
students the permission asg. More generally, a safety pol-
icy prohibits a set of users from certain roles or permissions.
Correspondingly, the constraint |user[p] ∩ set| = 0 (respec-
tively, |user[r] ∩ set| = 0) specifies that users in set ought
not to acquire the permission p (respectively, to take the role
r).

con5 All faculty members can both assign and view grades:
user[fac] ⊆ user[asg] ∩ user[view]. Note that this constraint
is different from {view, asg} ⊆ perm[fac], which is a suffi-
cient condition for con5 though.

con5 is an example of availability containment policy [18],
for it assures users of permissions. A general form of this
policy, user[r] ⊆ user[p1] ∩ · · · user[pn], says that a set of
permissions {p1, · · · , pn} is available to members of a role
r. On the other hand, a safety containment policy, user[p] ⊆
user[r1]∩ · · · ∩user[rm], states that every user having a per-
mission p is assigned to a set of roles {r1, · · · , rm}. For
example, the constraint user[chg] ⊆ user[dean] requires that
the permission to change grades be available to the dean.

con6 No user can both receive and assign grades. This is an in-
stance of a simple but widely used form of separation-of-
duty (sod) policy. It can be interpreted either statically or
dynamically, corresponding to static sod (ssod) and dynamic
sod (dsod). In line with the ssod policy, a user can not have
both permissions (via any combination of roles). By contrast,



the dsod policy allows users to obtain both permissions; but
it forbids users from activating them both [9].
Consider a constraint con6 d : |role[rec] ∩ role[asg]| = 0;
it demands that any role be assigned to at most one of rec
and asg. This constraint sets the basis for the dsod policy en-
forcement. With con6 d in effect, what remains is to prevent
a user from activating both a role assigned to rec and a role
assigned to asg; this is beyond the scope of this paper.
Another constraint con6 s : |user[rec] ∩ user[asg]| = 0 is
needed to enforce the ssod policy. It states that no user has
both rec and asg, as required by the ssod policy exactly.

It can be verified that γuni satisfies con1 , con3 , con5 , and
con6 d , but not con2 , con4 , or con6 s .

3.2 The Problem
RCP is to, given a set C of constraints and a set Γ of configu-

rations, find a configuration that satisfies C and is also close to Γ.
First of all, we list and explain the assumptions.

AS1 We assume that U1 = U2 and P1 = P2 for any γ1, γ2 ∈ Γ.
As configurations in Γ are usually made for the same system,
it is safe to assume that the system has fixed sets of users and
of permissions during problem solving stage. Hence, this
assumption is commonly met.

AS2 We assume thatR1 = R2 for any γ1, γ2 ∈ Γ. This assump-
tion simplifies the presentation of our approach. We lift this
assumption in Section 6.2.

Therefore, we may simply assume that configurations in Γ build
atop the fixed sets U , R, and P . Let space(U ,R,P) be the set
of all configurations that may be formed based on them; formally,
space(U ,R,P) = {〈U ,R,P,UA,PA〉 | UA ⊆ R× U ∧ PA ⊆
R×P}.
AS3 We assume that if a configuration γ0 is a solution then it

belongs to space(U ,R,P).

With AS3, we only search in space(U ,R,P) for a solution γ0.
Note that, despite AS3, γ0 may contain dangling roles, those not
associated with any user or permission; one can remove these roles
from γ0. In other words, AS3 only requires R0 ⊆ R but not
R0 = R. AS3 will also be discussed in Section 6.2.

Second, given the set C of constraints, it is likely that many con-
figurations satisfy C. There has to be a measurement of configura-
tions’ quality in order to select among them. Suppose that γ0 is one
of the configurations satisfying C. The evaluation of γ0’s quality
ought to take Γ into account, as the configurations in Γ go through
changes to make γ0. Intuitively, the fewer changes are made, the
less perturbation is caused and the more cost-effective the whole
process is.

We use a measurement of closeness between Γ and γ0 to as-
sess its quality. Observe that configurations differ in their user-
role relations, role-permission, and user-permission relations. For
γ1 ∈ Γ, define the difference between γ0 and γ1 as diff(γ1, γ0) =
(γ0 − γ1) ∪ (γ1 − γ0), where3

γ0 − γ1 = (UA0\UA1) ∪ (PA0\PA1) ∪ (UPA0\UPA1)

γ1 − γ0 = (UA1\UA0) ∪ (PA1\PA0) ∪ (UPA1\UPA0).

Hence, γ0 differs from γ1 in |diff(γ1, γ0)| many places. We define
the distance between Γ and γ0 as

dist(Γ, γ0) =
∑
γi∈Γ

|diff(γi, γ0)|

3Given two sets A and B, A\B = {a ∈ A | a 6∈ B}.

Finally, we are able to define the problem.

Definition 6. Given a constraint set C and a configuration set Γ,
find a configuration γ0 such that γ0 satisfies C and dist(Γ, γ0) is
minimized. Denote this problem as RCP〈C,Γ〉.

Example 7. Suppose that an RE tool discovers the configuration
γuni in Example 1 for the university. Suppose further that secu-
rity officers of the university require the constraints in Cuni =
{con1 , con2 , con3 , con4 , con5 , con6 s}, among which γuni sat-
isfies only con1 , con3 , and con5 . In this case, one may resolve
RCP〈Cuni , {γuni}〉 to reach a qualified configuration, if any.

Example 8. For another example, suppose that γuni is the running
configuration in the university. But an RE tool suggests that the
university migrate to another configuration γ′uni , whose user-role
and role-permission relations are shown below.

UA′uni = {(ta, alice), (stu, bob), (fac, carl), (dean, dave)}
PA′uni = {(stu, rec), (ta, asg), (fac, asg),

(dean, asg), (dean, view), (dean, chg)}

Suppose again that security officers need to enforce all constraints
in Cuni (see Example 7). Neither γuni nor γ′uni meets the require-
ments (as γ′uni does not satisfy con5 ). However, they may some-
how capture the access control policy of the university. Rather than
working out a configuration from scratch, we could try to resolve
RCP〈Cuni , {γuni , γ′uni}〉.

3.3 Computational Complexity
RCP is NP-hard. To show this, we will prove the NP-

completeness of its corresponding decision problem. Given a pos-
itive integer K, the decision problem of RCP〈C,Γ〉, denoted as
D-RCP〈C,Γ,K〉, decides whether there is a configuration γ0

such that γ0 satisfies C and dist(Γ, γ0) ≤ K. We first consider
a subclass where constraints in C are all quantity ones, then a sub-
class with constraints being structural, and finally a special subclass
in light of [27].

Theorem 9. D-RCP〈C,Γ,K〉 is NP-complete, where constraints
in C are quantity constraints.

See Appendix A for the proof. To show its NP-harness,
we reduce the NP-complete problem satisfiability (SAT) to
D-RCP〈C,Γ,K〉. The idea is to use user-role assignments to
model truth assignments of Boolean variables, and quantity con-
straints to model clauses of SAT.

Theorem 10. D-RCP〈C,Γ,K〉 is NP-complete, where con-
straints in C are structural constraints.

The proof is omitted due to space limits. When constraints only
take the form perm[u] = {p1, · · · , pn}, the complexity result re-
mains. This implies that the problem is hard, even when set expres-
sions are limited to simple ones, which do not use ∩ or ∪ and are
semi-static.4 These constraints actually model the user-permission
relation of the role mining problem [28].

Sun et al. [27] prove NP-hardness results of several subclasses of
the Assignment Feasibility Problem (AFP); the most of them have
a counterpart of RCP with the same complexity. However, while a
subclass of AFP ([27, Lemma 11]) is in P, its counterpart subclass
of RCP is NP-hard.

Theorem 11. D-RCP〈C,Γ,K〉 is NP-complete, where con-
straints in C have one of the forms: (1) |role[u] ∩ {r}| = 0, (2)
4A structural constraint s1 ⊆ s2 is semi-static if either s1 or s2

evaluates to a set of constants.



|user[r′]| > 0, (3) user[r] ⊆ user[r′], and (4) user[r] = U , where
{r, r′} ⊆ R, u ∈ U , and U ⊆ U .

The theorem can be proved by adapting the proof of [27, Lemma
19]. This implies that RCP is a different problem than AFP. Fur-
ther comparison will be discussed in Section 7.

Faced with such a problem as RCP〈C,Γ〉, we choose to encode
it in answer set programming (ASP). The main reasons are two-
fold. First, modern ASP solvers provide us with highly efficient
inference engines, which work well in practice. Second, ASP has
a rich modeling language, including programming constructs such
as variables and aggregate operations. Consequently, the encod-
ing is easy to understand and to explain to security officers how a
configuration is selected. Moreover, it is straightforward to extend
the encoding of RCP to handle its variants, as will be discussed in
Section 6.1. We present such an encoding in Section 4.

4. REPRESENTATION IN ASP

4.1 ASP Preliminaries
ASP is a recent form of declarative programming approach to

search problems. The idea is to first represent a search problem in a
logic program, then employ ASP solvers to compute stable models
(i.e., answer sets) of the program, and finally extract solutions of the
search problem from the answer sets. Compared with other declar-
ative approaches like SAT (SATisfiability problem), ASP features
in its expressive modeling language. This advantage often leads to
concise representation of problems. We review the main concepts
of ASP. Readers are referred to [3, 13] for details.

An answer set program (or program for short) is a finite set of
rules of the form

a ← b1, · · · , bm, not c1, · · · , not cn. (1)

where a is either an atom or ⊥, bi and cj are atoms, and not

denotes (default) negation. Besides, a is called the head of the rule
and {b1, · · · , bm, not c1, · · · , not cn} the body of the rule. We
say that a rule is a fact if m = 0 and n = 0. For simplicity, we
omit← when writing facts.

In programs, variables are used to abbreviate rules of the same
pattern. The ground instantiation of a program Π, denoted as
G(Π), is a program obtained by replacing the variables with terms
from the underlying Herbrand universe of the program. An in-
terpretation A is a subset of the Herbrand base of Π. We say
that A satisfies a rule of the form (1) if A satisfies its head (i.e.,
a ∈ A) whenever A satisfies its body (i.e., {b1, · · · , bm} ⊆ A and
{c1, · · · , cn} ∩ A = ∅), and that A is an answer set of Π if A is
the minimal set (in the sense of set inclusion) that satisfies all rules
in G(Π)A, which is obtained from G(Π) by

• first deleting all rules of form (1) where cj ∈ A for some
j ∈ [1, n], and

• then deleting not cj in the bodies of the remaining rules.

We use two statements of the ASP solver Clingo [13]. One is an
aggregate of the form l #count{l1, · · · , ln} u. This aggregate is
true if the number of true literals in the set {l1, · · · , ln} is between
l and u, inclusively. The other is an optimization statement of the
form #minimize [l1, · · · , ln]. It requires that the number of true
literals in the multiset [l1, · · · , ln] be minimal.

4.2 Overview
RCP〈C,Γ〉 can be encoded in at least two ways. With the as-

sumptions in Section 3.2, we only search in space(U ,R,P) for a

Π(Γ) = {config(γ) | γ ∈ Γ} ∪ {config(γ0)}
∪ {hold(asg(r, u, ua), γ) | (r, u) ∈ UA ∧ γ ∈ Γ}
∪ {hold(asg(r, p, pa), γ) | (r, p) ∈ PA ∧ γ ∈ Γ}
∪ {urp(x) | x ∈ U ∪R ∪ P} ∪ {role(r) | r ∈ R}
∪ {type(ua), type(pa)}

Figure 3: Definition of Π(Γ).

solution. Since each configuration therein can be seen as a subset
of R× U ∪ R × P , we can use ASP rules to guess such a subset
and thus obtain a configuration denoted as γ0. Next, we define ASP
rules to check if γ0 satisfies C. Finally we calculate the distance
between γ0 and Γ. We use an alternative definition of distance: it
is now calculated on the basis of assignments. Denote the set of all
possible assignments R × U ∪ R × P ∪ U × P as A. For each
a ∈ A, if a holds in γ0 (i.e., a ∈ UA0 ∪ PA0 ∪ UPA0), then the
distance with respect to a is the number of configurations in Γ in
which a does not hold; otherwise, it is the number of configurations
in which a holds. For instance, suppose that Γ = {γ1, γ2, γ3} and
that a holds in γ1 and γ2, but not γ3. If a holds in γ0, then the dis-
tance with respect to a is 1 as only γ3 does not contain a; otherwise
it is 2, as both γ1 and γ2 contain a. Then, dist(Γ, γ0) is the sum of
this number for all a ∈ A. In other words, the set Γ actually puts
a price at γ0 including an assignment and at its lacking the assign-
ment. The distance is then the sum of γ0’s cost for each a ∈ A.
This encoding is concise; it uses two ASP rules for guessing and
minimizing distance. Also, it is irrelevant to |Γ|. However, it may
contain |A|many facts (before grounding), which is overwhelming
for large deployments.

Another encoding is done by modeling changes to one configu-
ration of Γ. We first select a configuration γ1 from Γ and guess a
set of changes to it; the changes would take γ1 to another configura-
tion, say γ0. We then test if γ0 satisfies C. Recall that the distance
between Γ and γ0 is the sum of the distance between γ and γ0 for
γ ∈ Γ. Here, the latter distance is calculated by counting the as-
signments that hold in exactly one of γ0 and γ. We minimize the
sum of this counting. In comparison with the first encoding, it does
not represent A, but only the assignments held in configurations in
Γ. We observe from the configurations in Section 5 that the number
of held assignments is much less than |A|. Hence, we prefer and
present this encoding.

4.3 Transformation
We now transform RCP〈C,Γ〉 to an ASP program, denoted as

Π(RCP〈C,Γ〉). It consists of four parts: the first part Π(Γ) lays
the basis, the second one Π(γ0) guesses a potential solution γ0, the
third one Π(quality) ensures closeness, and the fourth one Π(C)
enforces constraints in C.

As shown in Figure 3, Π(Γ) contains facts for further reason-
ing. First, a fact config(γ) declares a configuration γ. Second,
we use terms asg(r, u, ua) and asg(r, p, pa) to denote possi-
ble user-role and role-permission assignments, respectively; a fact
hold(asg(r, u, ua), γ) means that an assignment (r, u) holds in γ.
For each role r, Π(Γ) contains a fact role(r). A fact urp(x) means
x is either a user, a role, or a permission. Finally, facts type(ua)
and type(pa) denote the user-role relation and the role-permission
relation, respectively.

Next we present Π(γ0) in Figure 4. Suppose that γ1 ∈ Γ is se-
lected; a solution γ0 is regarded as reached by making changes to
γ1. Rules (2) and (3) define applicable changes to γ1, which are
either adding non-existing assignments or deleting existing ones.



change(add(asg(R,X, T ))) ← not hold(asg(R,X, T ), γ1), type(T ), role(R), urp(X), not role(X). (2)
change(del(asg(R,X, T ))) ← hold(asg(R,X, T ), γ1). (3)

applied(G) ← change(G), not not_applied(G). (4)
not_applied(G) ← change(G), not applied(G). (5)

hold(Asg, γ0) ← applied(add(Asg)). (6)
hold(Asg, γ0) ← not applied(del(Asg)), hold(Asg, γ1). (7)

hold(asg(U,P, upa), Y ) ← hold(asg(R,U, ua), Y ), hold(asg(R,P, pa), Y ). (8)
dif (Asg, Y ) ← hold(Asg, γ0), not hold(Asg, Y ), config(Y ). (9)
dif (Asg, Y ) ← not hold(Asg, γ0), hold(Asg, Y ). (10)

Figure 4: Rules in Π(γ0).

In rule (2), when urp(x) holds but role(x) does not, x is either a
user or a permission. Rules (4) and (5) guess a subset of changes
that are applied to γ1. Rules (6) and (7) further construct γ0 from
the changes and γ1: an assignment holds in γ0 if and only if the
corresponding addition is applied (when the assignment does not
hold in γ1) or the corresponding deletion is not applied (when
the assignment holds in γ1). For each configuration in Γ and γ0,
rule (8) derives the user-permission relation from the user-role and
role-permission relations; a term asg(u, p, upa) denotes a possible
user-permission assignment. Finally, for each γ ∈ Γ, rules (9) and
(10) mark the assignments appearing in exactly one of γ0 and γ.

Π(quality) contains statement (11), which minimizes the
marked assignments. As will be discussed in Section 6.1,
Π(quality) may include other statements to optimize solutions in
ways other than closeness.

#minimize [dif (Asg, Y ) : config(Y )] . (11)

Finally, we encode constraints. Each constraint c has an ASP
program Π(c); we let Π(C) =

⋃
c∈C Π(c). Consider a structural

constraint s ⊆ s′. Let s(x) denotes the fact that x is a member
of s (evaluated against γ0). Rule (12) captures this constraint; it
says a conflict arises if an answer set contains s(x) but not s ′(x).
Therefore, an answer set of Π(RCP〈C,Γ〉) includes s ′(x) when-
ever it includes s(x). That means, in configurations extracted from
the answer sets, a member of s also belongs to s′.

⊥ ← s(X), not s ′(X). (12)

Now the question is how to define s(X) (and s ′(X)). Observe
that a set expression s can be rewritten (in polynomial time) as
below:

s =

m⋂
i=1

si si =

ki⋃
j=1

si,j (13)

where m, k1, . . . , km are positive integers, and si,j is of the form
user[x], role[x], or perm[x].

To define such a set expression, rule (14) models the intersection;
it says that a ground instance of s(X) holds if so do the correspond-
ing ground instances of {s_1 (X), · · · , s_m(X)}.

s(X)← s_1 (X), · · · , s_m(X). (14)

In turn, rule (15) models the union; it states that a ground instance
of s_i(X ) holds whenever so does at least one of the corresponding
instances of {s_i1 (X ), · · · , s_iki(X )}

s_i(X)← 1 {s_i1 (X), · · · , s_iki(X)}, urp(X). (15)

Note that s may evaluate to be a mixed set of users, roles, and/or
permissions; so rule (15) contains urp(X) in its body.

Since we want to know if γ0 satisfies C, set expressions are
evaluated against γ0. Accordingly, in the rules for s we replace
s_ij (X) with hold(Asg, γ0), depending on si,j’s type. For ex-
ample, si,j = user[stu] evaluates to the set of users who take
the role stu; in this case, hold(asg(stu, X, ua), γ0) takes place
of s_ij (X).

For a quantity constraint |s|θn, the translation is similar. We first
encode s, and then count the number of members in s. Rules (16)-
(19) represent the constraint when θ takes each one of {=, 6=,≤,≥
}.

⊥ ← not n #count{s(X)} n . (16)
⊥ ← n #count{s(X)} n . (17)
⊥ ← n + 1 #count{s(X)}. (18)
⊥ ← #count{s(X)} n− 1 . (19)

Rule (16) says an exact number n of ground instances of s(X)
hold; otherwise there arise a conflict. On the contrary, rule (17)
forbids the case where exactly n many such instances hold. The
remaining two rules work likewise.

Optimization.
The above translation is the most general approach; every RCP

instance can be handled in this way. However, the resulting pro-
gram is not necessarily optimal. With domain knowledge of the
problem, further optimization to the encoding is possible. For ex-
ample, domain knowledge enables us to characterize those con-
straints most likely to be used in practice, and hence to identify a
number of strategies for optimizing the transformation. See Ap-
pendix C for discussions.

Example 12. Take constraint con5 : user[fac] ⊆ user[asg] ∩
user[view] for example; the following program encodes it.

con5 _s(X)← hold(asg(fac, X, ua), γ0).

con5 _s ′(X)← hold(asg(X, asg, upa), γ0),

hold(asg(X, view, upa), γ0).

⊥ ← con5 _s(X), not con5 _s ′(X).


The first two rules corresponds to the set expressions user[fac] and
user[asg] ∩ user[view], respectively. The last rule relates the two
sets, in light of rule (12). Note that this program already uses the
optimization in Appendix C.

Theorem 13. Π(RCP〈C,Γ〉) has an answer set if and only if
RCP〈C,Γ〉 has a solution.

See Appendix B for a sketch of the proof.



Table 2: The configurations used in experiments. VUA is the av-
erage number of roles that users are assigned to, VPA the average
number of permissions roles are assigned to, and VUPA the average
number of permissions users obtain.

Datasets |U| |R| |P| VUA VPA VUPA

Dom 79 20 231 1.39 30.15 9.24
EMEA 35 34 3046 1.00 212.09 206.29
FW1 365 66 709 2.39 16.35 87.53
FW2 325 10 590 1.34 67.60 112.08
HCare 46 15 46 2.31 6.87 32.30
MelbS 51 48 185 1.41 9.71 10.59
USA 10021 276 277 4.44 1.88 4.53
APJ 2044 454 1164 1.19 3.70 3.35
AmSm 3477 192 1587 1.37 26.29 30.26
AmLa 3485 404 10127 1.14 211.65 53.17

5. EXPERIMENTS

Cases where |Γ| = 1.
Table 2 shows a collection of configurations [8].5 These configu-

rations have been widely tested in role engineering community. For
each such configuration γ, we construct an experimental instance
RCP〈C, {γ}〉. The set C comprises Cran and Cman . Constraints
in Cran are generated based on γ as follows.

1. For each u ∈ U , create a pair of constraints roleγ [u]\R1 ⊆
role[u] ⊆ roleγ [u] ∪ R2; R1 and R2 are randomly cho-
sen from roleγ [u] and R\roleγ [u], respectively, such that
|R1| = α− × |roleγ [u]| and |R2| = α+ × |roleγ [u]|, where
α− and α+ are positive numbers.

2. For each r ∈ R, create a pair of constraints permγ [r]\P1 ⊆
perm[r] ⊆ permγ [r] ∪ P2; P1 and P2 are randomly cho-
sen from permγ [r] and P\permγ [r], respectively, such that
|P1| = α− × |permγ [r]| and |P2| = α+ × |permγ [r]|.

3. For each u ∈ U , create a pair of constraints permγ [u]\P1 ⊆
perm[u] ⊆ permγ [u] ∪ P2; P1 and P2 are randomly cho-
sen from permγ [u] and P\permγ [u], respectively, such that
|P1| = α− × |permγ [u]| and |P2| = α+ × |permγ [u]|.

We now explain the constraints in Cran . First, it is easy to see
that γ satisfies Cran . Second, Cran is parameterized by (α+, α−).
Consider permγ [r]\P1 ⊆ perm[r] ⊆ permγ [r] ∪ P2 for example
and suppose |permγ [r]| = 10, α+ = 1.5, and α− = 0.9. This pair
of constraints states that r must have one permission (which is ran-
domly chosen from permγ [r]), and are allowed to have another 15
permissions (which are randomly chosen from P\permγ [r]) in ad-
dition to those in permγ [r]. In this sense, each pair of constraints
in Cran models a range of, for example, permissions that a role
could obtain. When α− ≥ 1, the pair of constraints is reduced to
perm[r] ⊆ permγ [r] ∪ P2. Finally, we believe these range con-
straints arise in practice; see Appendix C for discussions.

As for Cman , we manually create a number β of constraints of
the following patterns:

• role[p1] ∪ role[p2] ⊆ role[p3] ∩ role[p4] to let any role as-
signed to p1 or p2 have both p3 and p4 as well,

• |user[p1] ∩ user[p2]| = 0 to support sod policy regarding p1

and p2, and

5Ene et al. [8] applied their RE algorithms to real-world ac-
cess control rules and obtained these RBAC configurations, which
are available at: http://www.hpl.hp.com/personal/
Robert_Schreiber/.

• user[r1] ⊆ user[r2] and perm[r2] ⊆ perm[r1] so that any
user of r1 is a member of r2 and any permission of r2 is also
assigned to r1.

It is guaranteed that at least two thirds of the constraints in Cman

are not satisfied by γ.
Experiments were performed on a Windows 7 laptop with Intel

Core 2.66GHz i5-560M processor and 4GB RAM. ASP programs
were executed with the grounder gringo 3.0.3 and the solver clasp
2.0.0.6 Our concerns lie in the efficiency and the scalability of the
approach. Each test was limited to 600 seconds and forced to termi-
nate otherwise. Table 3 shows the experiment results, with varying
(α+, α−) but fixed β = 40. For each setting of (α+, α−) in each
data-set, the result was averaged over 3 runs with constraints gener-
ated separately. Each run includes both the transformation process
and ASP solving process.

Table 3: The computing time in seconds when γ0 does not exist
and when it does. t/o denotes “timeout”.

α− 0.9 1.0

α+ 1.0 1.5 1.8 2.0 1.0 1.5

γ0 does not exist
Dom 0.32 0.29 0.28 0.32 1.71 1.80
EMEA 1.73 1.99 2.21 2.47 2.58 2.61
FW1 2.01 2.79 3.23 3.32 5.23 5.18
FW2 2.54 2.87 3.11 3.51 4.51 5.60
HCare 0.12 0.12 0.14 0.13 1.27 1.30
MelbS 0.20 0.18 0.22 0.22 0.36 0.42
USA 12.33 14.91 15.11 16.92 16.15 18.31
APJ 1.51 1.99 2.26 2.22 2.02 2.34
AmSm 15.20 21.28 25.05 27.31 16.28 24.32
AmLa 42.57 132.65 401.22 t/o 79.88 t/o

γ0 exists
Dom 0.82 2.62 6.17 6.29 3.53 7.83
EMEA 3.13 4.18 5.93 5.88 6.12 7.21
FW1 5.10 6.53 8.13 8.58 12.17 22.19
FW2 12.92 34.17 53.29 87.15 56.31 95.28
HCare 1.03 3.77 5.29 5.83 4.60 8.18
MelbS 1.32 2.92 4.03 6.29 2.01 6.89
USA 25.82 36.18 51.55 52.17 32.01 58.09
APJ 4.74 4.12 5.64 6.13 3.54 5.11
AmSm 18.23 30.03 38.85 56.93 35.17 43.25
AmLa 219.16 426.83 t/o t/o 193.27 t/o

When no solution existed for tested RCP instances, all tests ter-
minated within the time limit, except for AmLa. The results were
encouraging; even for large-size data-set AmSm, the tests returned
within 30 seconds. When a solution γ0 was found, the computing
time was more demanding, but still acceptable; for example, so-
lutions were returned within 60 seconds for AmSm. The tests for
AmLa timed out as (α+, α−) increases.

It is interesting that the tests for AmSm were about 4 to 10 times
less efficient than those for APJ, while they are well-matched in
terms of |U| and |P|. However, we notice that APJ has twice as
many role as AmSm; as a result, VPA and VUPA of AmSm are
much larger than those of APJ. It seems plausible to say that the
time is sensitive to VPA and VUPA. This is further confirmed by
FW2. Medium-size as FW2 is, VPA is 67.6 and VUPA is 112.08;
the tests of FW2 were much slower than those of FW1. However,
one exception is EMEA. Despite the large VPA and VUPA, the tests
were efficient, perhaps because of the small |U|. The number of
users also played a dominate role in the USA cases.

In Figure 5, we compare the performance when β takes 20, 40,
and 60, respectively, with α+ = 1.5 and α− = 0.9. It can be seen
that the value of β has an impact, especially on large data-sets.
When β = 60, the tests of AmLa timed out. Except for AmLa,
the approach scaled well with respect to β. We are interested in the
6http://sourceforge.net/projects/potassco/.
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Figure 5: The comparison of computing time with a solution re-
turned when varying β = 20, β = 40, and β = 60.

number of constraints in Cman rather than Cran for two reasons:
(1) the encoding for Cman is more complex, which may result in
considerable overhead; (2) γ satisfies Cran but not Cman .

Cases where |Γ| > 1.
For each data-set, we already have one configuration. To acquire

more configurations, we ran the role mining function of IBM Role
Modeling Assistant [15] with the user-permission assignments of
each data-set.

However, Γ did not necessarily meet the assumption that R1 =
R2 for any γ1, γ2 ∈ Γ. As will be discussed in Section 6.2, we pre-
processed Γ to meet the assumption. First, we composed a tuple of
roles, each of which is from a configuration of Γ, compared the sim-
ilarity between roles in the tuple, and regarded them as counterpart
roles if they were similar enough (by some similarity threshold).
We used the similarity measure of [29, Definition 3]. In this way,
we actually named the roles of each configuration and picked the
same name for counterpart roles. Second, if there exists γ1, γ2 ∈ Γ
such that |R1| 6= |R2|, we assume, without loss of generality, that
γ1 has the maximum number of roles in Γ. Then we create dummy
roles to fill the vacancies of missing roles in each configuration ex-
cept γ1. In this way, we made the configuration set of the tested
instances meet the assumption. We only tested the instances where
|Γ| = 2 and |Γ| = 3.

Here, C also consists of two parts. One is similar to Cran of
previous tests. Take the constraints on user-role relation for exam-
ple. We first obtain two sets: leastR[u] =

⋂
γi∈Γ roleγi [u] and

mostR[u] =
⋃
γi∈Γ roleγi [u]; and then create a pair of constraints

leastR[u]\R1 ⊆ role[u] ⊆ mostR[u] ∪ R2; R1 and R2 are ran-
domly chosen from leastR[u] andR\mostR[u], respectively, such
that |R1| = α− × |leastR[u]| and |R2| = α+ × |mostR[u]|. The
other part is exactly Cman .

When transforming RCP〈C,Γ〉, the selected configuration γ1 is
chosen randomly from Γ. Table 4 reports the results, when α+ =
1.5, α− = 0.9, and β = 40. Here we set the timeout limit as 1800
seconds. The reported time was averaged over 3 runs. First, the
time was much more demanding than the instances where |Γ| =
1. Second, the performance seemed sensitive to |Γ|; the tests for
|Γ| = 3 were almost 3 times slower than those for |Γ| = 2. When
|Γ| = 3, the programs for AmLa ran out of memory within time
limit.

6. DISCUSSIONS

6.1 The Quality of Solutions

Optimization Objectives.

In order to discover “good” configurations, RE usually has cer-
tain optimization objectives, such as minimizing the number of
roles or the number of edges (i.e., |UA| + |PA|). ASP provides
strong support in this regard. We first define the roles that are as-
sociated with any user or permission by rule (20); statement (21)
minimizes the role set. Statement (22) minimizes the edge set.

not_dangling(R)← hold(asg(R, _, _), γ0), role(R). (20)
#minimize{not_dangling(R)}. (21)

#minimize{hold(asg(X1, X2, T ), γ0) : type(T )}. (22)

Roles’ Semantic Meanings.
There is a possibility that a solution fails to retain roles’ seman-

tic meanings. Structural constraints can be put to exclude such so-
lutions. A role’s meaning is essentially captured by a real-world
concept, which can expressed as a set of attributes; a role is said to
match its meaning if the set of its users is exactly the set of users
who have all the attributes in the corresponding set [21]. There-
fore, for a semantically meaningful role r, a constraint of the form
user[r] = {u1, · · · , un} protects its meaning.

Bounded Changes.
Previously, an arbitrary number of changes could be applied to

the selected configuration γ1. However, since γ1 is either the run-
ning one or discovered by an RE tool, it makes more sense to seek a
solution γ0 in proximity to γ1. In this case, the number of changes
applied to γ1 should be bounded. Suppose B is the bound.

We encode the requirement of bounded changes in an ASP pro-
gram Π(B). No doubt that Π(B) contains the following statement

0 #count {applied(G)} B.

which is a direct encoding of this requirement. We could have one
more restriction. Let N be the number of assignments in γ1 (i.e.
N = |UA1|+ |PA1|). Π(B) contains the following statement

(N−B) #count{hold(asg(X1, X2, T ), γ0) : type(T )} (N+B).

It says that one can make γ0 from γ1 by deleting at most B many
assignments or by adding at most B many assignments.

Weights.
One may associate weights with configurations in Γ. For exam-

ple, consider a migration process where an organization is running
under a configuration γcur and may migrate into γmig suggested
by RE tools. In this case, Γ = {γcur, γmig}. Considering that
γmig is optimized in various ways, one may associate γmig with
a weight of 3 and γcur with a weight of 1 so that the closeness to
γmig takes priority. Let weight(γ,w) denotes a fact that γ has a
weight of w. To support weights, statement (23) is substituted for
(11) in Π(quality)

#minimize [dif (Asg, Y ) : weight(Y,W ) = W ] . (23)

Multiple Solutions.
It is likely that more than one solution exists for an RCP in-

stance. Although these solutions are deemed equally good with re-
spect to closeness to Γ, they may differ in other prospects, such as
the above-mentioned optimization objectives. Since these metrics
can vary from case to case and may be subjective, it is debatable
to hard-code them in programs. ASP solvers are good enough to
return all or a given number of solutions. Thus one may choose an
appropriate configuration from them, either manually or by some
evaluation algorithms. When closeness is not a major concern, one



Table 4: The computing time in seconds when a solution was found for RCP〈C,Γ〉. o/m denotes “out-of-memory”.
Dom EMEA FW1 FW2 HCare MelbS USA APJ AmSm AmLa

|Γ| = 1 2.62 4.18 6.53 34.17 3.77 2.92 36.18 4.12 30.03 426.83
|Γ| = 2 3.17 5.84 9.44 41.18 5.37 6.75 43.94 8.61 50.62 812.75
|Γ| = 3 10.39 14.53 30.10 132.97 10.13 15.62 87.63 28.22 213.65 o/m

replaces Π(closeness) with the following statement to search for
solutions in specified proximity to Γ.

K #count {dif (Asg, Y ) : config(Y )} K + ∆ .

Solutions thereof may exhibit certain properties that one is after.

6.2 Assumptions
Recall that we made the assumption that R1 = R2 for any

γ1, γ2 ∈ Γ (i.e., AS2) in Section 3.2. That is, all configurations
in Γ have the same role set. This sometimes appears unreasonable.
We now lift it by pre-processing configurations in Γ. AS2 entails
two requirements: (1) for each γi ∈ Γ there is a 1-1 mapping Mi

from Ri to a set RNames of role names, and (2) |R1| = |R2|
for any γ1, γ2 ∈ Γ. For configurations that are designed in guide
of business information analysis or mined in view of role seman-
tics [5, 11, 21], these mappings could be established along with
the setup of configurations. For configurations lacking this infor-
mation, we may apply some similarity measurement to roles, such
as the one used in [29, Definition 3], so that counterpart roles are
mapped to the same name.

Assume that mappings are established for the requirement (1).
For the requirement (2), we assume, without loss of generality,
that γ1 has the largest number of roles. We create dummy roles
for other configurations to equalize the sizes of their role sets.
Take γ2 for example. We need to add a number |R1| − |R2| of
roles to R2 and extend M2 by mapping dummy roles to names in
RNames\{M2(r) | r ∈ R2}. We may further assume that the
dummy roles are not assigned to any users or permissions.

One drawback of this pre-processing is that a solution γ0 always
has the same number of roles as γ1. From γ2’s viewpoint, it has
to add all its dummy roles. However, the addition of such roles is
not counted in dist(Γ, γ0), thus having no effect on the selection of
solutions.

To mitigate this side-effect, we define additional rules. Suppose
that a dummy role r of γ2 remains not assigned to any users or
permissions in γ0; then r could be neglected. From γ2’s perspec-
tive, r can be removed as if it were never added. For each con-
figuration γ ∈ Γ, denote the set of γ’s dummy roles as Dγ ; let
D =

⋃
γ∈Γ Dγ . Define a mapping d : D 7→ {1, · · · , N − 1} such

that for each r ∈ D, d(r) = |{γ ∈ Γ | r ∈ Dγ}|, where N = |Γ|;
namely, d(r) is the number of configurations where r is a dummy
role, whereas N − d(r) is the number of configurations where it
is not. If r remains not assigned to any user or permission in γ0,
it goes against N − d(r) many configurations; otherwise, it is not
dummy in γ0, and goes against d(r) many configurations. We min-
imize the number of configurations that dummy roles go against
in total by the following rules, where dummy(r, v) are facts for
r ∈ D and v = d(r).

assigned(R)← hold(asg(R, _, _), γ0), dummy(R, _).

#minimize[assigned(R) : dummy(R, V ) = V

not assigned(R) : dummy(R, V ) = N − V ].

Another assumption (AS3) makes R0 ⊆ R. The number of
roles is an important metric of configurations’ quality. Briefly, the
fewer roles, the better a configuration is [28, 21]. Since configura-
tions in Γ are either the running one or recommended by RE tools,
they should contain a reasonable number of roles. Therefore, it

is worthwhile to investigate whether a solution is reachable under
this assumption. In contrast, if a solution is allowed to contain new
roles, various other implications remain to be clarified; for exam-
ple, a natural question is how many new roles are enough. Finally,
if no solution exists for an RCP instance, security officers may set-
tle for a configuration that violates constraints to a limited extend,
or allow a certain number of new roles. However, this deserves
detailed study and is left for future work.

Role hierarchy.
For simplicity, we omitted role hierarchy in RBAC configura-

tions. It is not hard to extend the approach to handle it. We need
to augment Π(Γ) with facts about role hierarchy, and Π(γ0) with
rules defining applicable changes to role hierarchy and rules mod-
eling its inheritance and transitivity. However, this encoding of role
hierarchy may result in blowup of problem size. A two-stage ap-
proach is of interest: first flatten configurations and solve RCP ,
and then construct role hierarchy. We leave this for future work.

6.3 Expressiveness of Constraints
We concern ourselves mainly with static constraints, instead of

dynamic or historical constraints [1, 7]. We believe this suffices
for RCP . First, RCP instances arise prior to the deployment of
configurations or when the running configuration fails to meet new
constraints; constraints should capture properties of configurations’
relations, rather than their run-time behaviors. Second, it has been
argued that certain security policies may be modeled as static con-
straints but not as dynamic ones [17]. This shows the more funda-
mental position of static constraints.

A general sod policy 〈P, k〉 states that no k − 1 or fewer users
together have all permissions in P , where P ⊆ P and 1 < k ≤ |P |
is an integer [17]. When k = 2, the sod policy can be expressed
by a single constraint |

⋃
p∈P user[p]| = 0. When k > 2, we need

to put
( |U|
k−1

)
many constraints of the form |(

⋃k−1
j=1 perm[uj ]) ∩

P | < n to model the sod policy. In this case, C has an exponential
blowup in size. Instead, one may consider encoding the sod policy
in ASP directly; we leave this for future work. However, we believe
sod policies with k = 2 are more common.

7. RELATED WORK
A close related work is [16], which guarantees that no role con-

tains more than a given number of permissions in the discovered
configurations. For one thing, [16] deals with a special class of the
constraints considered in this work. For another, we support con-
straints in a modular way. In [16], the proposed algorithm accepts
〈U ,P,UPA〉 and constraints as input, and produces a configura-
tion satisfying the constraints. Rather, our approach is fed with
configuration candidates and constraints.

In general, our approach can be considered as a complement for
existing RE methodologies. It fine-tunes the given set of configu-
rations in the hope of reaching a configuration in compliance with
constraints. There exists a wealth of literature on RE. The problem
has been approached from different perspectives, e.g., business in-
formation analysis [5, 25], data mining [21, 30], and machine learn-
ing [11]. While these tools work out a configuration optimized in
various ways, there is no guarantee of its consistency with con-
straints. Though Coyne [6] and Shin et al. [25] mention constraints



in passing; their approaches lack technical details of handling con-
straints.

Vaidya et al. [29] study the problem of discovering a optimal
configuration that is similar to a deployed one. First, the similar-
ity measurement only evaluates role-permission assignments. This
measurement is not suitable for RCP , because differences in user-
role and user-permission relations have equal, if not more, impacts
on the acceptability of configurations. Second, RCP may taken
into account configurations besides the deployed one. Finally, con-
straint support is not the focus of [29].

Lu et al. [20] propose an approach to constraint-aware role min-
ing problem, which is essentially the original role mining problem
[28] augmented with possible negative authorizations. The neg-
ative authorizations can help identify underlying constraints. An
assumption is made that the user-permission assignments (the in-
put of the problem) imply the information of constraints. This
assumption appears less reasonable in two cases. First, when the
user-permission assignments contain noisy data or errors [10, 22],
the implied constraints may not suit the organization in question.
Second, some constraints may not be embodied by the input. More
specifically, [20] works with sod policy and exceptions, overlook-
ing constraints of other types. In contrast, our work avoids the
noisy data issue by relying on other RE tools such as [22] to pro-
duce configuration candidates. Further, we deal with constraints
provided by the organization in question. Since constraints are usu-
ally high-level security and business requirements, we believe that
the organization’s security officers are able to propose constraints,
especially when they can inspect the running configuration and/or
the configurations suggested by RE tools.

Molloy et al. [21] present a roadmap for RE research. Among
others, they mention one valuable problem—to update a deployed
configuration in some optimal and “localized” way. This work
could be viewed as a response to this problem. The closeness re-
quirement limits the deviation of discovered configurations from
the deployed one. Due to ASP’s richness in modeling, other opti-
mization objectives may be encoded as well.

Sun et al. [27] investigate the problem of assigning permission-
s/roles to users under a variety of constraints, mostly from a compu-
tational complexity perspective. Our language can express all types
of constraints there, except that [27] considers a user-role qualifica-
tion relation. Sun et al. further consider the problem of generating
user-role assignments that are consistent with given constraints and
propose an algorithm. As implied by Theorem 11, [27] differs from
this work in several aspects. First of all, constraints in place are dif-
ferent. Second, [27] puts more emphasis on authorization, and thus
generates user-role assignments. By contrast, this work aims to find
an appropriate configuration and consequently considers user-role
relation, role-permission relation, and user-permission relation. To
ensure solutions’ quality, RCP also requires the configuration be
close to the provided ones. There is no such requirement in [27].
Finally, we employ ASP to encode RCP , whereas Sun et al. reduce
the problem to SAT. Though ASP and SAT are closely related, ASP
programs tend to be more understandable.

Constraints in RBAC context are well-studied from different per-
spectives. Some works propose expressive languages for specify-
ing various constraints [1, 7], whereas others put forward effective
enforcement mechanisms for constraints [4, 7]. Neither do we pro-
pose a new language for expressing constraints nor a mechanism to
enforce them. Li et al. [17] study the constraint generation prob-
lem, which is to derive constraints from high-level security poli-
cies and configurations. In contrast, RCP assumes the existence of
constraints and wants to generate configurations. An access control
system may face these two problems at different stages.

8. CONCLUSIONS
Constraints, an inherent component of RBAC models, capture

important security and business requirements. In this paper, we
have formulated the problem of enhancing role engineering with
constraint support (i.e., RCP ) and provided an ASP-based solu-
tion framework. The definition of RCP enables to utilize the huge
body of role engineering tools and to add constraint support in a
modular way. The framework harnesses ASP’s rich modeling lan-
guage to present a concise, declarative representation of RCP . We
have also performed experiments to validate the framework. As for
future work, we plan to consider RCP variants with more expres-
sive constraints such as the resiliency policies [19].
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APPENDIX
A. PROOF OF THEOREM 9

A non-deterministic Turing machine can guess a configuration
in space(U ,R,P), compute its distance from Γ, and verify if it
satisfiesC; all can be done in polynomial time. Hence, the problem
is in NP.

To show its NP-hardness, we reduce the NP-complete problem
satisfiability (SAT) to problems of this sub-class. An SAT problem
asks, given a set X of Boolean variables and a collection H of
clauses over X , whether there is a satisfying truth assignment for
H [12].

The idea is to use user-role assignments to model truth assign-
ments of variables, and quantity constraints to model clauses in H .
First, we let Γ = {γ} and construct γ as follows: let U = {u},
R = {rx, rx | x ∈ X , and P = {p}; further let UA =
{(rx, u), (rx, u) | x ∈ X} and PA = {(rx, p), (rx, p) | x ∈ X}.
The assignments (rx, u) and (rx, u) are meant to represent the
truth-assignment and false-assignment to x, respectively. Second,
we construct the set C of constraints. For each x ∈ X , we put con-
straint (24). This constrain requires that u take either rx or rx but
not both, thus modeling the fact that x is either true or false. For
each clause {l1, · · · , ln} where li is either xi or xi, we put con-
straint (25). This constraint requires that u have at least one role
which corresponds to li. Finally, we let K = |X|.

|role[u] ∩ {rx, rx}| = 1 (24)∣∣∣∣∣
n⋃
i=1

(role[u] ∩ {rli})

∣∣∣∣∣ ≥ 1 (25)

Suppose that τ : X 7→ {T, F} is a solution to the SAT problem.
We define γ0 as (rx, u) ∈ UA0 and (rx, u) 6∈ UA0 if τ(x) = T
and (rx, u) 6∈ UA0 and (rx, u) ∈ UA0 if τ(x) = F . It can be
verified that dist(Γ, γ0) ≤ K. We now show constraints are also
satisfied by γ0. Since only one of x and x is true, constraints of the
form (24) are satisfied. For a clause {l1, · · · , ln}, at least one literal
li is true. Hence the assignment (rli , u) holds in γ0; it follows that
constraints of the form (25) are satisfied.

On the other hand, suppose γ0 is a solution. Then we let
τ(x) = T if (rx, u) ∈ UA0 and τ(x) = F otherwise. For any
clause {l1, · · · , ln}, there is a constraint of the form (25), which is
satisfied by γ0. Hence, roleγ0 [u] ∩ {rli} 6= ∅ for at least one li;
that is, li is true under τ . Therefore the clause is also true.

B. PROOF SKETCH OF THEOREM 13
We first prove the soundness. Denote Π(RCP〈C,Γ〉) as Π and

suppose that A is an answer set of Π. Then, from the definition of
answer sets, A is a ⊆-minimal model of G(Π)A. We define γ0 as
follows.

UA0 = {(r, u) | hold(asg(r, u, ua), γ0) ∈ A}
PA0 = {(r, p) | hold(asg(r, p, pa), γ0) ∈ A}

We need to show γ0 is a solution of RCP〈C,Γ〉. According to
Definition 6, this suffices to prove that γ0 satisfies C and that
dist(Γ, γ0) is minimized. The latter is guaranteed by the statement
(11). We prove the former below.

Consider a structural constraint s ⊆ s′ and suppose that x ∈
s/γ0. We show that x ∈ s′/γ0 also holds. First, from (13) and
rules (14) and (15), it follows that s(x) ∈ A. Second, by rule (12),
we have s ′(x) ∈ A as well; because otherwise there arises a con-
flict and thus A is not a model of G(Π)A. Further, notice that facts
like s ′(x) ∈ A can only be derived via rules (14) and (15). SinceA



A = {hold(asg(r, u, ua), γ0) | (r, u) ∈ UA0} ∪ {hold(asg(r, p, pa), γ0) | (r, p) ∈ PA0} ∪ {hold(asg(u, p, upa), γ0) | (u, p) ∈ UPA0}
∪ {change(add(asg(r, u, ua))), change(add(asg(r, p, pa))) | (r, u) 6∈ UA1, (r, p) 6∈ PA1}
∪ {change(del(asg(r, u, ua))), change(del(asg(r, p, pa))) | (r, u) ∈ UA1, | (r, p) ∈ PA1}
∪ {dif (asg(r, u, ua), γi) | (r, u) ∈ (UAi\UA0) ∪ (UA0\UAi), γi ∈ Γ} ∪ {dif (asg(r, p, pa), γi) | (r, p) ∈ (PAi\PA0) ∪ (PA0\PAi), γi ∈ Γ}
∪ {dif (asg(u, p, upa), γi) | (u, p) ∈ (UPAi\UPA0) ∪ (UPA0\UPAi), γi ∈ Γ}
∪ {applied(change(add(r, u, ua))), applied(change(add(r, p, pa))) | (r, u) ∈ UA0\UA1, (r, p) ∈ PA0\PA1}
∪ {applied(change(del(r, u, ua))), applied(change(del(r, p, pa))) | (r, u) ∈ UA1\UA0, (r, p) ∈ PA1\PA0}
∪ {not_applied(change(add(r, u, ua))),not_applied(change(add(r, p, pa))) | (r, u) 6∈ UA0 ∪ UA1, (r, p) 6∈ PA0 ∪ PA1}
∪ {not_applied(change(del(r, u, ua))),not_applied(change(del(r, p, pa))) | (r, u) ∈ UA1 ∩ UA0, (r, p) ∈ PA1 ∩ PA0}
∪ {s(x) | x ∈ s/γ0, s is a set expression in C}

Figure 6: The set A of facts constructed from γ0.

is a⊆-minimal model ofG(Π)A, Amust contain a combination of
facts of the form hold(asg(r, u, ua), γ0), hold(asg(r, p, pa), γ0),
and hold(asg(u, p, upa), γ0), which derives s ′(x) by rules (14)
and (15). Suppose otherwise that this combination does not exist
but s ′(x) ∈ A. In this case, A is not ⊆-minimal among the mod-
els of G(Π)A, because, informally, no evidence supports s ′(x).
Therefore, A contains such facts and γ0 contains the correspond-
ing assignments; these assignments together lead to x ∈ s′/γ0.
Similarly, we can prove the case for a quantity constraint.

We now prove the completeness. Suppose that γ0 is a solution of
RCP〈C,Γ〉. Consider the set A of facts in Figure 6. To show that
A is an answer set of Π, we need to prove that A is a ⊆-minimal
model of G(Π)A. To this end, we need to (1) enumerate each rule
in G(Π)A and verify that A satisfies the rule, and to (2) assure that
any proper subset of A is not a model of G(Π)A. It is not hard to
verify (1); we now show (2).

First, suppose that a proper subset of A excludes a fact
of the form hold(asg(r, u, ua), γ0) or hold(asg(r, p, pa), γ0);
denote the subset as B. Note that only rules (6) and (7)
take hold(asg(r, u, ua), γ0) or hold(asg(r, p, pa), γ0) as the
heads. If B contains all A’s facts of the form applied(G) and
not_applied(G), then B does not satisfy the ground instances of
one of these two rules. On the other hand, if B lacks facts of the
form applied(G) and not_applied(G), it is likely that B satisfies
the ground instances of rules (6) and (7). However, a proper subset
of A lacking at least one of the ground instances of applied(G)
and not_applied(G) does not satisfy one of the ground instances
of rules (4) and (5).

Second, for the rules with change(add(asg(r, u, ua))),
change(del(asg(r, u, ua))), hold(asg(u, p, upa), γi), and
dif (asg(r, u, ua), γi), their bodies contain facts from Π(Γ)
and/or facts hold(asg(r, u, ua), γ0) or hold(asg(r, p, pa), γ0).
Therefore, a proper subset of A not containing any of these facts
does not satisfy ground instances of the rules (3), (4), or (8)-(10).

Finally, for rules in Π(C), consider a constraint c : s ⊆ s′;
notice that x ∈ s/γ0 (respectively, x ∈ s′/γ0) if and only if
s(x) ∈ A (respectively, s ′(x) ∈ A). Further, since γ0 satis-
fies c, A satisfies the rules in G(Π)A which originally belong to
Π(c). Suppose that B is a proper subset of A excluding at least
s(x). Since the rule with s(x) as the head includes only pos-
itive atoms in the body, B does not contain si(x) either, if we
assume the rule takes the form (14) for some i. From rule (15),
we know that some sij (x) 6∈ B. Recall that sij (x) is a fact
of the form hold(asg(r, u, ua), γ0), hold(asg(r, u, pa), γ0), or
hold(asg(u, p, upa), γ0). Lacking one of them, B fails to satisfy
some rule in G(Π)A, as shown above.

C. TRANSFORMATION IN PRACTICE

Domain knowledge may be used to simplify the program
Π(RCP〈C,Γ〉). For example, if alice is a student (according to
her profile), she can neither be a faculty nor a dean. In this case,
we may exclude these assignments from γ0; thus the facts for these
assignments are not needed. For another example, it appears un-
likely for the role stu to acquire the permission of changing grades.
Put formally, configurations often comply with constraints of the
following form:

• R1 ⊆ role[u] ⊆ R2 for u ∈ U ,
• P1 ⊆ perm[r] ⊆ P2 for r ∈ R, and
• P3 ⊆ perm[u] ⊆ P4 for u ∈ U .

In other words, there are ranges in which proper assignments
should reside. A configuration determines exactly what a user/-
role can and cannot do. In contrast, these ranges are bounds, corre-
sponding to what a user/role must be able to do and what a user/role
is forbidden from, respectively. It is relatively easy and practical to
define ranges.

With these constraints, we can define rules which hopefully ac-
celerate ASP solving. TakeR1 ⊆ role[u] ⊆ R2 for instance. Rules
like (26) and (27) interpret this pair of constraints, where r1 ∈ R1

and r3 6∈ R2; ASP solvers can use them to reduce search space.

⊥ ← not hold(asg(r1, u, ua), γ0). (26)
⊥ ← hold(asg(r3, u, ua), γ0). (27)

One may notice that these ranges depend on extra information
beyond C and Γ. This information is arguably available. For ex-
ample, from users’ positions, titles, and jobs, one can infer their
role ranges. To estimate permission ranges for users and roles, sev-
eral sources can be exploited, including access logs, project spec-
ifications, and organizational information (e.g., departments and
groups) [21]. For example, if access logs show that u never used or
even requested a permission p, p should be out of u’s reach; on the
other hand, if u performs p regularly, u shall obtain p. Although
it is difficult to make an accurate estimate, a rough one would be
practical and helpful.

Moreover, domain knowledge enables us to characterize those
constraints most likely to be used in practice, and hence to identify
a number of strategies for optimizing the transformation. For ex-
ample, among the constraints we examined, most set expressions
take the following forms

s = s1 ,1 ∩ · · · ∩ sm,1 s = s1 ,1 ∪ · · · ∪ s1 ,k1 .

We have a more concise representation of s as follows.

s(X) ← s_11 (X), · · · , s_m1 (X).

s(X) ← 1 {s_11 (X), · · · , s_1 k1 (X)}, urp(X).


