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Abstract

In this paper, we propose a progression semantics for first-order normal logic pro-
grams, and show that it is equivalent to the well-known stable model (answer
set) semantics. The progressional definition sheds new insights into Answer Set
Programming (ASP), for instance, its relationships to Datalog, First-Order Logic
(FOL) and Satisfiability Modulo Theories (SMT). As an example, we extend the
notion of boundedness in Datalog for ASP, and show that it coincides with the
notions of recursion-freeness and loop-freeness under program equivalence. In
addition, we prove that boundedness precisely captures first-order definability for
normal logic programs on arbitrary structures. Finally, we show that the pro-
gressional definition suggests an alternative translation from ASP to SMT, which
yields a new way of implementing first-order ASP.

1. Introduction

Answer Set Programming (ASP) has emerged as a predominant approach for
nonmonotonic reasoning in the area of knowledge representation and reasoning
due to its simplicity, expressive power and computational advantage [6, 22, 35,
36]. At its beginning, the stable model (answer set) semantics for first-order logic
programs is defined only on Herbrand Structures by grounding into propositional
programs [23, 24]. In recent years, a number of approaches have been devel-
oped to release this restriction by directly defining the stable model semantics on
arbitrary structures [4, 5, 7, 10, 12, 17, 20, 26, 28, 30, 33, 38, 40, 42, 44].

A typical approach along this research line is to use a translation to another
host language, e.g. second-order language [20] or circumscription [33]. For this
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purpose, second-order is inevitable as the class of the stable models of some logic
programs, e.g. transitive closure, cannot be captured in first-order logic [18]. Un-
der this backdrop, a first-order logic program Π is transformed to a corresponding
second-order sentence SM(Π), and the stable models of Π are defined as the
models of SM(Π) [20]. While this definition provides a precise mathematical
representation and also generalizes the traditional propositional ASP, it, however,
does not reveal much information about the expressiveness of first-order answer
set programming. For instance, it is unclear whether we can provide a complete
characterization of first-order definability for first-order ASP.

In this paper, we propose a progressional definition for first-order normal logic
programs. Intuitively, this definition may be viewed as a generalization of the
Gelfond-Lifschitz transformation [6] to the first-order case as well as a general-
ization of the progression semantics for Datalog [1, 34]. Also, it shares some
fundamental ideas with Reiter’s semantics for default logic [39]. Simply enough,
in the progressional definition, a first-order structureM is a stable model of a first-
order normal logic program Π if and only if it is the fixed point of the progression
of Π with respect toM. More precisely,M coincides with the structure obtained
by recursively applying the rules in Π, where the negative parts are fixed byM
itself. We show that, for normal logic programs, this progressional definition is
equivalent to the general stable model semantics defined by SM(Π).

The progressional definition sheds new insights into Answer Set Program-
ming (ASP), for instance, its relationships to Datalog, First-Order Logic (FOL)
and Satisfiability Modulo Theories (SMT). It can be further evident from the pro-
gressional definition that Datalog is exactly the monotonic counterpart of ASP,
and many important Datalog techniques can be applied to ASP as well. Based on
the proposed progressional definition, we are able to define the notion of bound-
edness for first-order answer set programs, which is critical for understanding the
relationship between first-order ASP and classical first-order logic.

With the features of iterative and nonmonotonic reasoning, ASP is a repre-
sentative rule-based formalism that is significantly different from classical log-
ics. Nevertheless, ASP and classical logics are very closely related. Hence,
the relationships between them have attracted a lot of attention in the literature
[4, 5, 12, 13, 14, 15, 16, 19, 27, 28, 41]. Among them, a central topic is first-order
definability, that is, what kind of answer set programs can be captured in classical
first-order logic in the sense that their answer sets/stable models are exactly the
classical models of a first-order sentence. Our notion of boundedness provides a
complete answer for this. We prove that an answer set program is first-order defin-
able if and only if it is bounded. Moreover, the notion of boundedness/first-order
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definability is also equivalent to two important syntactic notions of recursion-
freeness and loop-freeness (tightness) under program equivalence. We believe
that results in this aspect will establish a foundation for the further study of the
expressiveness and related properties of first-order ASP.

The progressional definition is not only of theoretical interest but also of prac-
tical relevance as it directly yields a new translation from first-order ASP to Satis-
fiability Modulo Theories (SMT). Comparing this translation to the one obtained
from ordered completion [4, 5], it is logically stronger as it has less models.

The rest of this paper is organized as follows. Section 2 introduces necessary
backgrounds. Section 3 proposes the progressional definition and shows that it
is equivalent to the translational definition. Then, Section 4 extends the notion
of boundedness in Datalog for ASP and shows that it is equivalent to the notions
of recursion-freeness and loop-freeness under program equivalence. Section 5
further shows that boundedness exactly captures first-order definability of ASP.
Section 6 reports a natural translation from first-order ASP to SMT based on the
progressional definition. Finally, Section 7 discusses some related and ongoing
works and Section 8 concludes the paper respectively.

2. Preliminaries

We start with necessary logical notions and notations. We consider a second-
order language without function symbols but with equality. A vocabulary τ is a
set that consists of relation symbols (or predicates) including the equality symbol
= and constant symbols (or constants). Each predicate is associated with a natural
number, called its arity. Given a vocabulary, term, atom, substitution, (first-order
and second-order) formula and (first-order and second-order) sentence are defined
as usual. In particular, an atom is called an equality atom if it has the form t1 = t2,
where t1 and t2 are terms. Otherwise, it is called a proper atom.

A structureA of vocabulary τ (or a τ -structure) is a tupleA = (A, cA1 , · · · , cAm,
PA1 , · · · , PAn ), whereA is a nonempty set called the domain ofA, cAi (1 ≤ i ≤ m)
is an element in A for every constant ci in τ , and PAj (1 ≤ j ≤ n) is a k-ary rela-
tion over A for every k-ary predicate Pj in τ . PAj is also called the interpretation
of Pj in A. A structure is finite if its domain is a finite set. In this paper, we
consider both finite and infinite structures.

Let A be a structure of τ . An assignment in A is a function η from the set
of variables to A. An assignment can be extended to a corresponding function
from the set of terms to A by mapping η(c) to cA, where c is an arbitrary constant.
Let P (−→x ) be an atom, η an assignment in structure A. For convenience, we also
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write P (−→x )η ∈ A for the fact that η(−→x ) ∈ PA. The satisfaction relation |=
between a structure A and a formula φ associated with an assignment η, denoted
by A |= φ[η], is defined as usual. Let −→x be the set of free variables occurring in a
formula φ. Then, the satisfaction relation is independent from the assignment of
variables not in −→x . In this case, we also write A |= φ(−→x /−→a ) for convenience,
where −→a is a tuple of elements in A. In particular, if φ is a sentence, then the
satisfaction relation is independent of the assignment. In this case, we simply
write A |= φ for short. A ground atom in A is of the form P (−→a ), where P is a
predicate and−→a a tuple of elements that matches the arity of P . For convenience,
we also use P (−→a ) ∈ A, or A |= P (−→a ), to denote −→a ∈ PA.

Given a structure A of τ , Q a predicate in τ and some ground atoms Q(−→a1)
,. . . , Q(−→a n), we use A ∪ {Q(−→a1), . . . , Q(−→an)} to denote a new structure of τ
which is obtained from A by expanding the interpretation of predicate Q in A
(i.e. QA) to QA ∪ {−→a1 , . . . ,

−→an}.
Let A1 and A2 be two structures of τ sharing the same domain, and for each

constant c in τ , cA1 = cA2 . By A1 ⊆ A2, we simply mean that for each predicate
P ∈ τ , PA1 ⊆ PA2 . By A1 ⊂ A2, we mean that A1 ⊆ A2 but not A2 ⊆ A1. We
write A1 ∪ A2 to denote the structure of τ where the domain of A1 ∪ A2 is the
same as A1 and A2’s domain, each constant c is interpreted in the same way as in
A1 and A2, and for each predicate P in τ , PA1∪A2 = PA1 ∪ PA2 .

2.1. First-order normal logic program
A rule r is of the following form:

α← β1, . . . , βm, not γ1, . . . , not γl, (1)

where α is a proper atom, βi (0 ≤ i ≤ m), and γj (0 ≤ j ≤ l) are atoms. We say
that α is the head of r, denoted by Head(r); {β1, . . . , βm} the positive body of
r, denoted by Pos(r); and {not γ1, . . . , not γl} the negative body of r, denoted by
Neg(r). In addition, we use Body(r) to denote Pos(r) ∪Neg(r).

A normal logic program (program for short) is a finite set of rules. Given a
program Π, predicates that occur in the heads of some rules in Π are said to be
intensional; all other predicates are said to be extensional.1 For a given program
Π, we use τ(Π) to denote the vocabulary of Π; τext(Π) to denote all the extensional

1Here, we follow the notions used in Datalog to distinguish between intensional and exten-
sional predicates. According to the definition, predicates defined by sets of facts in the program
are also considered to be intensional.
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predicates in Π together with all the constants in Π; τint(Π) to denote all the
intensional predicates of Π. Clearly, τ(Π) = τext(Π) ∪ τint(Π). In addition,
τint(Π) contains no constant. We also use ΩΠ to denote the set of all intensional
predicates of Π. Although ΩΠ is the same as τint(Π), we use two notations to
make a difference because the former denotes a set of predicates whilst the latter
presents a vocabulary.

Let M be a structure, r a rule of the form (1) and η an assignment. We
say that M satisfies the positive body of r under η, namely Pos(r), written
M |= Pos(r)η, if for all atoms P (

−→
t ) ∈ Pos(r), M |= P (

−→
t )η; M satisfies

the negative body of r under η, namely Neg(r), writtenM |= Neg(r)η, if for all
atoms notP (

−→
t ) ∈ Neg(r), M 6|= P (

−→
t )η; M satisfies the body of r under η,

namely Body(r), writtenM |= Body(r)η ifM |= Pos(r)η andM |= Neg(r)η;
and finally,M satisfies the rule r under η, writtenM |= rη ifM |= Head(r)η
wheneverM |= Body(r)η.

2.2. The translational stable model definition
Let Π be a program and ΩΠ the set of intensional predicates in Π. We introduce

Ω∗Π = {Q∗1, . . . , Q∗n} to be a new set of predicates corresponding to ΩΠ, where
each Q∗i in Ω∗Π has the same arity as predicate Qi in ΩΠ. Let r be a rule in Π of
the form

α← β1, . . . , βm, not γ1, . . . , not γl,

by r̂, we denote the universal closure of the following formula

B̂ody(r)→ α,

where B̂ody(r) is the conjunction of all elements in Body(r) by replacing each
occurrence of not with ¬, i.e.

B̂ody(r) = β1 ∧ · · · ∧ βm ∧ ¬γ1 ∧ · · · ∧ ¬γl.

By r∗, we denote the universal closure of the following formula

β∗1 ∧ · · · ∧ β∗m ∧ ¬γ1 ∧ · · · ∧ ¬γl → α∗,

where α∗ = Q∗(−→x ) if α = Q(−→x ) and

β∗i , (1 ≤ i ≤ m) =

{
Q∗j(
−→
tj ) if βi = Qj(

−→
tj ) and Qj ∈ ΩΠ

βi otherwise.
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By Π̂, we denote the first-order sentence
∧
r∈Π r̂; by Π∗, we denote the first-order

sentence
∧
r∈Π r

∗. Let Π be a normal logic program. By SM(Π), we denote the
following second-order sentence:

Π̂ ∧ ¬∃Ω∗Π((Ω∗Π < ΩΠ) ∧ Π∗),

where Ω∗Π < ΩΠ is the abbreviation of the formula∧
1≤i≤n

∀−→x (Q∗i (
−→x )→ Qi(

−→x )) ∧ ¬
∧

1≤i≤n

∀−→x (Qi(
−→x )→ Q∗i (

−→x )).

Definition 1 (Translational stable model). Let Π be a program and A a τ(Π)-
structure. We say that A is a stable model (an answer set) of Π if A is a model of
SM(Π).

We refer this definition to the translational definition. For convenience, we use
AS(Π) to denote the collection of all stable models of Π. Two programs are said
to be equivalent if they have the same set of stable models.

This definition is originated from Lin and Shoham’s work to translate normal
logic programs under the answer set/stable model semantics into circumscription
- a second order sentence [31]. Later on, a number of approaches have been
proposed to generalize this work for translating richer forms of logic programs
into fragments of second-order logic [8, 20, 30, 33, 38, 44]. Restricted to normal
logic programs, these translations are essentially equivalent.

2.3. Clark’s completion and ordered completion
Answer Set Programming is a rule-based formalism for dealing with iterative

reasoning (recursion) and nonmonotonic reasoning, which is significantly differ-
ent from the classical first-order logic. However, these two types of formalisms are
closely related. The relationships between answer set programming and classical
logics have been one of the central topics in this area since its origin, and have
attracted much attention in the literature [4, 5, 12, 13, 14, 15, 16, 19, 27, 28, 41].

Among them, one influential work is the completion approaches [16], which
intend to use first-order sentences directly to capture the stable model (answer set)
semantics of logic programs.

Definition 2 (Clark’s completion). Let Π be a program. Clark’s Completion
(completion for short if clear from the context) of Π, denoted by Comp(Π), is
the following first-order sentence:∧

P∈τint(Π)

∀−→x (P (−→x )↔
∨

1≤i≤k

∃−→yi B̂odyi), (2)
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where

• P (−→x ) ← Body1, . . . , P (−→x ) ← Bodyk are all the rules whose heads
mention the predicate P ;

• −→yi is the tuple of body variables in P (−→x )← Bodyi;

• B̂odyi is the conjunction of elements in Bodyi by simultaneously replacing
the occurrences of not by ¬.

It was shown that any stable model of a program Π must be a classical model
of its completion, i.e. Comp(Π). However, the converse does not hold in general.
In this sense, Clark’s completion fails to capture the stable model semantics.

The gap has been bridged recently . The loop formula approach [14, 28, 32]
showed that, together with so-called loop formulas, Clark’s completion can ex-
actly capture the stable model semantics. That is, a finite structure is a stable
model of a program if and only if it is a classical model of the program’s Clark’s
completion and all its loop formulas. Nevertheless, in the first-order case, there
could be infinite number of loop formulas. In contrast, the ordered completion
approach [4, 5] introduces some extra comparison predicates to keep track of the
derivation order so that the stable models can exactly be captured by ordered com-
pletion - a modified version of Clark’s completion.

Definition 3 (Ordered completion). Let Π be a program. Ordered completion
of Π, denoted by OC(Π), is the set of following sentences:

• For each intensional predicate P , the following sentences:

∀−→x (
∨

1≤i≤k

∃−→yi B̂odyi → P (−→x )), (3)

∀−→x (P (−→x )→
∨

1≤i≤k

∃−→yi (B̂odyi ∧∧
Q(−→z )∈Posi,Q∈ΩΠ

≤QP (−→z ,−→x ) ∧ ¬ ≤PQ (−→x ,−→z ))), (4)

where

– some basic notations are borrowed from Definition 2;

– Posi is the positive part of Bodyi so that Q(−→z ) ranges over all the
intensional atoms in the positive part of Bodyi;
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– ≤QP (≤PQ) is a new predicate, and ≤QP (−→z ,−→x ) intuitively means
that the evaluation time of Q(−→z ) is less or equal than the one of
P (−→x );

• for each triple of intensional predicates P , Q, and R (two or all of them
might be the same) the following sentence:∧

P,Q,R∈ΩΠ

∀−→x−→y −→z (≤PQ (−→x ,−→y )∧ ≤QR (−→y ,−→z )→≤PR (−→x ,−→z )). (5)

The following theorem states that the stable models of a normal program cor-
respond to the classical models of its ordered completion on finite structures.

Proposition 1 (Theorem 1, [4]). Let Π be a program. Then, a finite τ(Π)-structure
is a stable model of Π if and only if it can be expanded to a model of OC(Π).

One can further eliminate the transitive formulas (i.e., formula (5)) by using
Satisfiability Modulo Theories (SMT), more precisely, first-order logic augmented
with a background theory about the comparison operator < of integers. For every
predicate P , we introduce an integer predicate nP with the same arity. Then,
the SMT version of ordered completion, written OC ′(Π), is the conjunction of
formula (3) and formula (4), where the second the line of formula (4), i.e.,∧

Q(−→z )∈Posi,Q∈ΩΠ

≤QP (−→z ,−→x ) ∧ ¬ ≤PQ (−→x ,−→z )

is replaced by ∧
Q(−→z )∈Posi,Q∈Ω(Π)

nQ(−→z ) < nP (−→x ).

In the SMT version of ordered completion, there is no need for formula (5) as it
is implied by the nature of the built-in comparison operator <.

2.4. The progression semantics for Datalog
A program is called a Datalog program if every predicate occurred in the neg-

ative part of some rule in the program is extensional. That is, the negative parts of
rules in the program mention no intensional predicate, thus their values are fixed.

The semantics for Datalog programs is usually defined in a progressional style
as follows.
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Definition 4 (Datalog evaluation stage). Let Π be a Datalog program and D a
structure of τext(Π) (called the extensional database). Let ΩΠ = {Q1, . . . , Qn} be
the set of all intensional predicates of Π. The t-th simultaneous evaluation stage
of Π, denoted as {Qt

1, . . . , Q
t
n}, is defined inductively as follows:

• for any i, 1 ≤ i ≤ n, Q0
i = ∅;

• for any i, 1 ≤ i ≤ n, Qk+1
i = Qk

i ∪ {Head(r)η | there exists a rule
r = Qi(

−→x )← Body ∈ Π and an assignment η such that
D ∪Qk

1 ∪ · · · ∪Qk
n |= B̂ody[η]}.

The underlying intuition behind Definition 4 is quite clear. The evaluation
stage for a Datalog program is defined step-by-step. At the beginning, all inter-
pretations of intensional predicates are set to be empty. At each stage k, the value
of an intensional predicate Qi (i.e. Qk+1

i ) is expanded from the previous one (i.e.
Qk
i ) with all values computed at this stage by the Datalog program Π. More pre-

cisely, Qk+1
i is expanded from Qk

i by the heads of all applicable rules associated
with Qi at stage k, where a rule in Π is associated with Qi if its head mentions Qi,
and is applicable at stage k if its body is satisfied by the current evaluation, i.e.,
D ∪Qk

1 ∪ · · · ∪Qk
n.

Clearly, for any Qi, the sequence Q0
i , Q

1
i , . . . , Q

k
i , . . . is monotonic in the

sense that Qk
i ⊆ Qk+1

i for any k. Hence, a convergence always exists on finite
structures.

Definition 5 (Intended value). Let Π be a Datalog program andD a structure of
τext(Π). Let Q ∈ ΩΠ be an intensional predicate. The intended value of Q on D
for Π, denoted by Q∞(Π,D), is ⋃

0≤j

Qj.

Notice that Definition 5 can be extended for structures D with arbitrary cardi-
nality by using transfinite iteration. For an arbitrary cardinal number ε, we define

• Qε
i =

⋃
ξ<εQ

ξ
i ∪ {Head(r)η | there exists a rule r = Qi(

−→x ) ← Body ∈
Π and an assignment η such that D ∪Qξ

1 ∪ · · · ∪Qξ
n |= B̂ody[η]}.

Again, a least fixed point always exists, which is called the intended value. Nev-
ertheless, for simplicity and clarity, we mainly use the notion of evaluation stage
proposed in Definition 5 unless stated otherwise. This should not affect the major
conclusions drawn in this paper.
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3. A Progression Definition for Normal Logic Programs

In this section, we propose a progressional definition for first-order normal
logic programs and show that it is equivalent to the translational stable model
definition.

3.1. The progressional definition
First of all, we define the evaluation stage for normal logic programs with

respect to a structure.

Definition 6 (Evaluation stage). Let Π be a (normal) program and ΩΠ = {Q1,
. . . , Qn} the set of all the intensional predicates of Π. Consider a structureM of
τ(Π). The t-th simultaneous evaluation stage of Π with respect toM, denoted by
Mt(Π), is a structure of τ(Π) defined inductively as follows:

• M0(Π) = M|τext(Π) ∪ Eτint(Π), whereM|τext(Π) is the restriction2 ofM
on τext(Π), and Eτint(Π) is the structure defined on τint(Π) such that all
interpretations of predicates are empty;

• Mk+1(Π) = Mk(Π) ∪ {Head(r)η | there exists a ruler = Q(−→x ) ←
β1, . . . , βm, not γ1, . . . , not γl ∈ Π and an assignment η such that for all i (1 ≤
i ≤ m), βiη ∈Mk(Π), and for all j (1 ≤ j ≤ l), γjη 6∈ M}.

Although Definition 6 looks a little complicated, the underlying idea is quite
simple. At each step, we expand the structure by adding those heads of rules
that are applicable. Here, a rule r is applicable at step k if Pos(r) is satisfied by
Mk(Π) and Neg(r) is satisfied byM.

Let us take a closer look at Definition 6. Clearly,M0(Π) just takes all exten-
sional relations as the initial input, while all relations corresponding to intensional
predicates in τint(Π) are set to be empty. Then,Mt+1(Π) is obtained fromMt(Π)
by adding all derivable intensional values fromMt(Π) by fixingM. Here, an in-
tensional value is derivable fromMt(Π) by fixingM if there exists a rule apply-
ing on an assignment whose head is exactly the intensional value, whose positive
body can be derived fromMt(Π) and whose negative body is consistent withM.

2Let σ and σ1 be two signatures such that σ ⊆ σ1, andM a structure of σ1. The restriction
ofM on σ, denoted byM|σ, is a σ-structure such that for every constant c ∈ σ (every predicate
P ∈ σ), cM|σ = cM (PM|σ = PM).
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It is important to emphasize that, in Definition 6, the negative part is fixed byM
(i.e. the original structure) but notMt(Π) (i.e. the t-th evaluation stage).

For each intensional predicate Q ∈ ΩΠ, we use Qi(Π,M) to denote QMi(Π)

for simplicity. Then, it is easy to see that the sequence Q0(Π,M), Q1(Π,M),
Q2(Π,M), · · · , always increases, that is, Qj(Π,M) ⊆ Qi(Π,M) for j < i. So a
convergence for the sequence of Q0(Π,M), Q1(Π,M), Q2(Π,M), · · · , always
exists. We call Q∞(Π,M) =

⋃
1≤j≤∞Q

j(Π,M) the intended value of Q onM
for Π. Consequently, the convergence of the sequenceM0(Π),M1(Π),M2(Π),
· · · , also exists:

M∞(Π) =
⋃
0≤j

Mj(Π).

If Q(a1, . . . , an) ∈ M∞(Π), then we say that Q(a1, . . . , an) is a link ofM with
respect to Π. In addition, the evaluation time of Q(a1, . . . , an) onM with respect
to Π is the least number t such that Q(a1, . . . , an) ∈ Mt(Π). In particular, if
Q(a1, . . . , an) is not a link ofM, we treat the evaluation time of Q(a1, . . . , an) as
∞.

Similarly to Datalog, Definition 6 can be extended for structures with arbitrary
cardinality by using transfinite iteration. For simplicity and clarity, we mainly use
the notion and notations in Definition 6. Again, this should not affect the major
conclusions drawn in this paper.

Based on the definition of evaluation stage, we are able to characterize the
stable model semantics for first-order normal logic programs by using a progres-
sional definition, similar to the one for Datalog.

Definition 7 (Progressional stable model). Let Π be a normal program andM
a structure of τ(Π).M is called a progressional stable model of Π iffM∞(Π) =
M.

We call this definition the progressional definition. Intuitively, a structureM is
a progressional stable model of a program Π iff it is the fixed point of the pro-
gression of Π with respect toM. More precisely,M coincides with the structure
obtained by recursively applying the rules in Π, where the negative parts are fixed
byM itself.

Example 1. Consider the following program ΠG:

GoShopping(x, y)← Friends(x, y),

GoShopping(x, y)← GoShopping(x, z), Likes(z, y), notHate(x, y).
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Note that GoShopping is the only intensional predicate in program ΠG. We con-
sider a finite structureM, where

Dom(M) = {alice, carol, jane, sue},
F riendsM = {(alice, carol), (jane, sue)},
LikesM = {(carol, sue)},
HateM = {(alice, jane), (jane, alice)},
GoShoppingM = {(alice, carol), (jane, sue), (alice, sue)}.

Then, from Definition 6, we obtain the following sequence:

GoShopping0(ΠG,M) = ∅,
GoShopping1(ΠG,M) = {(alice, carol), (jane, sue)},
GoShopping2(ΠG,M) = {(alice, carol), (jane, sue), (alice, sue)},
GoShopping3(ΠG,M) = GoShopping2(ΠG,M).

So GoShopping∞(ΠG,M) = {(alice, carol), (jane, sue), (alice, sue)}. From
Definition 7, we can see thatM is a progressional stable model of ΠG. �

The progressional definition for answer set programs may be viewed as a gen-
eralization of the Gelfond-Lifschitz transformation [23, 24] to the first-order case.
First, we guess a first-order structureM. Then, we evaluate the intended values of
all intensional predicates with respect to the candidate structure. Finally, if all the
intended values are the same as the ones specified in the candidate structureM,
thenM is a progressional stable model (answer set) of the underlying program.

On the other hand, the progressional definition for normal programs can be
viewed as an extension of the progressional definition for Datalog [1]. From a
syntactic point of view, a Datalog program is a special case of normal program,
where the negative bodies mention no intensional predicate. To address this differ-
ence semantically, one needs to handle the occurrences of intensional predicates
in the negative bodies. For this purpose, we use several techniques. First, we
guess a candidate structure on the signature of the program instead of just using a
structure on the extensional signature (i.e., the extensional database) to start with
the progression. Second, we fix the negative parts of the program by the guessed
structure. In this sense, the evaluation process (i.e., the progression) follows simi-
larly to Datalog. Finally, the guessed structure is considered to be a progressional
stable model if it coincides with the structure obtained from the progression.
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Our progressional definition also shares some fundamental ideas with Reiter’s
semantics for default logic [39]. Recall Reiter’s definition of extensions. First,
a candidate theory T is guessed; then an iterative process is applied to compute
the result Γ(T ) of applying default rules with respect to this guessed theory T , in
which the negative parts of default rules are fixed by T ; finally, T is an extension
if it coincides with Γ(T ). Nevertheless, there are two differences. First of all, in
Reiter’s default logic, what we guess is a theory, but in our progress definition,
what we guess is a first-order structure. Also, Reiter’s semantics is essentially
propositional (or can only be applied to closed first-order logic) as it requires the
closure property.

3.2. Progressional stable models = translational stable models
We show that the progressional definition (i.e. Definition 7) is indeed equiva-

lent to the translational definition (i.e. Definition 1).

Theorem 1. Let Π be a program andM a structure of τ(Π). Then,M is a model
of SM(Π) iffM∞(Π) =M.

Proof: In order to prove this theorem, we introduce an alternative equivalent def-
inition, and show that it is equivalent to both the progressional definition and the
translational definition described above.

Let Π be a program andM a structure of τ(Π). We say thatM is a justified
stable model of Π iff

1. for every assignment η and every rule r of form (1) in Π, if for all i (1 ≤
i ≤ m), βiη ∈M and for all j (1 ≤ j ≤ l), γjη 6∈ M, then αη ∈M.

2. there does not exist a structureM′ of τ(Π) such that
(a) Dom(M′) = Dom(M),
(b) for each constant c in τ(Π), cM′ = cM,
(c) for each P ∈ τext(Π), PM′ = PM,
(d) for all Q ∈ τint(Π), QM′ ⊆ QM, and for some Q ∈ τint(Π), QM′ ⊂

QM,
(e) for every assignment η and every rule r of form (1) in Π, if for all i

(1 ≤ i ≤ m), βiη ∈ M′ and for all j (1 ≤ j ≤ l), γjη 6∈ M, then
αη ∈M′.

We first show that this definition is equivalent to the translational definition.
It is not difficult to verify that Condition 1 holds iff M |= Π̂. Now we prove
that Condition 2 does not hold iffM |= ∃Ω∗Π((Ω∗Π < ΩΠ) ∧ Π∗). Suppose that
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there exists such anM′, we construct n new relations inM on predicates Ω∗Π =
{Q∗1, . . . , Q∗n} corresponding to ΩΠ = {Q1, . . . , Qn} such that each Q∗ ∈ Ω∗Π and
its corresponding Q ∈ ΩΠ, Q∗M = QM

′ . Therefore,M |= Ω∗ < Ω according to
Condition 2(d). In addition, from Condition 2(e), it is easy to see thatM satisfies
Π∗ where for each Q∗ ∈ Ω∗Π, Q∗M = QM

′ as specified above, here Q is Q∗’s
corresponding predicate in ΩΠ. Hence, M |= ∃Ω∗Π((Ω∗Π < ΩΠ) ∧ Π∗). On the
other hand, suppose thatM |= ∃Ω∗Π((Ω∗Π < ΩΠ) ∧ Π∗). We can always construct
M′ in such a way: (1) Dom(M′) = Dom(M); (2) for each constant c in τ(Π),
cM

′
= cM; (3) for each P ∈ τext(Π), PM′ = PM; and (4) for each Q ∈ ΩΠ and

its corresponding Q∗ ∈ Ω∗Π, QM′ = Q∗M. Then it is not difficult to observe that
M′ satisfies Conditions 2(c)-(e).

Now we show that this definition is also equivalent to the progressional defi-
nition. Suppose thatM∞(Π) = M. Then, Condition 1 holds. Otherwise, there
exists an assignment η and a rule r such that, for all i (1 ≤ i ≤ m), βiη ∈ M
and for all j (1 ≤ j ≤ l), γjη 6∈ M but αη 6∈ M. Since βiη ∈ M∞(Π),
there exists a bound k such that for all i (1 ≤ i ≤ m), βiη ∈ Mk(Π). Then,
αη ∈ Mk+1(Π) by the definition. This means that αη ∈ M∞(Π). Therefore,
αη ∈ M, a contradiction. In addition, Condition 2 must hold as well. Otherwise,
let us assume that there exists such anM′. By induction on the evaluation stage t,
it can be shown that for all t,Mt(Π) ⊆ M′. Therefore,M∞(Π) ⊆ M′. Hence,
M∞(Π) ⊆M′ ⊂M, a contradiction. On the other hand, suppose that a structure
M satisfies both Conditions 1 and 2. Then, it can be shown thatMt(Π) ⊆M by
induction on the evaluation stage t by Condition 1. Hence,M∞(Π) ⊆ M. Now
we show thatM ⊆ M∞(Π). Otherwise,M∞(Π) ⊂ M. We construct a struc-
tureM′ of τ(Π) in the following way: Dom(M′) = Dom(M), for each constant
c ∈ τ(Π), cM′ = cM, for each extensional predicate P ∈ τext(Π), PM′ = PM,
and for each intensional predicate Q ∈ ΩΠ, QM′ = QM

∞(Π). So M′ satisfies
Conditions 2(a)-(e) as well, a contradiction. Hence,M∞(Π) =M. �

4. Boundedness, Recursion-freeness and Loop-freeness

The progressional definition for normal logic programs is a natural extension
of that for Datalog programs. As discussed in the previous section, it is impor-
tant for understanding the deep and long neglected connections between ASP and
Datalog. More interestingly, with this definition, we are able to consider some
important notions and techniques originated from Datalog for first-order answer
set programming.
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Among them, one fundamental notion is boundedness. Roughly speaking, a
Datalog program is bounded if there exists a natural number k such that every
evaluation stage of this program must be ended within k steps. Boundedness is
one of the key notions in Datalog, e.g., to study the expressive power of Datalog
and classical first-order logic [2].

With our progressional definition, we are able to define the boundedness no-
tion for first-order ASP. Certainly, the basic idea is similar, i.e., we may require
that every evaluation of a normal program is bounded by some fixed number as
well. However, as we shall see in this section, the definition is not that straightfor-
ward as the progression of a normal program is relative to a candidate structure.

Boundedness also plays an important role in first-order ASP. In this section,
we shall show that it is actually equivalent to the syntactic notions of recursion-
freeness and loop-freeness under program equivalence. Roughly speaking, recursion-
free programs are those programs without recursions, that is, the positive bodies
of any rules in the program contain no intensional predicate, while loop-free pro-
grams, also called tight program in the literature [19], are those programs without
loops [14, 32]. In the next section, we will use boundedness as a key tool to study
the expressive power of first-order ASP, in particular, its relationships to classical
first-order logic.

4.1. Boundedness for normal logic programs
We first review the notion of boundedness in Datalog, which had attracted

much attention in the area of deductive databases [1, 34].

Definition 8 (Datalog boundedness). A Datalog program Π is bounded if there
exists a natural number k, such that for every extensional database D, the evalu-
ation stage of Π onD is bounded within k steps, i.e., Q∞ = Qk for all intensional
predicates Q in Π.

The boundedness notion can be extended for first-order answer set program-
ming based on our progressional definition for normal logic programs (i.e. Defi-
nition 7).

Definition 9 (Boundedness). A program Π is bounded if there exists a natural
number k, such that for all intensional predicates Q of Π and all stable models
M of Π, Q∞(Π,M) = Qk(Π,M); or equivalently,M∞(Π) = Mk(Π). In this
case, k is called a bound of Π, and Π is called a k-bounded program.
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Definition 9 is not the same as saying that for all stable models M, there
exists a natural number k such that M∞(Π) = Mk(Π). It is important to note
that, similar to the boundedness notion for Datalog (see Definition 8), the fixed
constant k applies on all stable models, i.e., such k is independent from specific
structures (stable models). However, the difference between boundedness for ASP
and that for Datalog is that the former only takes the stable models but not all
τ(Π)-structures into account. Hence, for a k-bounded program Π, there may exist
a τ(Π)-structureM such thatM∞(Π) 6=Mk(Π), whereM is not a stable model
of Π.

Boundedness is a semantic notion in the sense that its definition is only de-
pending on the progressional definition. It intends to capture a certain subclass of
all programs, for which their progressions are very restricted.

Example 2. Consider the following program ΠV :

V isits(x, y)← Interested(x, y), not Busy(x),

V isits(x, y)← V isits(z, y), Attraction(y), notBusy(x). (6)

In program ΠV , V isits is the only intensional predicate. According to Definition
6, it is easy to verify that for any stable modelM of ΠV , the evaluation time for
all intended values of V isits is not more than 2. In other words, program ΠV is a
2-bounded program. �

Nevertheless, let ΠV ′ be the program obtained from ΠV by replacing the rule
(6) with the following one:

V isits(x, y)← V isits(z, y), Interested(x, z), notBusy(x).

Then, ΠV ′ is unbounded. One can construct a structure M with an infinite do-
main a0, a1, . . . , an, . . . , BusyM = ∅, InterestedM = {(ai, ai+1) | i ≥ 0} and
V isitsM = {(ai, aj) | i < j}. It can be verified thatM is a stable model of ΠV ′

but there does not exist a number k such thatM∞(ΠV ′) =Mk(ΠV ′).

Clearly, the boundedness notion for normal programs is an extension of that
for Datalog programs.

Proposition 2. Let Π be a Datalog program. Then, Π is bounded under Definition
9 iff it is bounded under Definition 8.

As a consequence, some results in the Datalog literature can be directly ap-
plied under the context of ASP.
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Corollary 3. Checking boundedness for normal logic programs is undecidable.

Proof: This assertion follows directly from Proposition 2 and the result that
checking boundedness for Datalog programs is undecidable (see Theorem 2.5 in
[21]). �

4.2. Recursion-freeness and loop-freeness
Now we introduce two syntactic notions for first-order normal programs, namely

recursion-freeness and loop-freeness, which are used to characterize the expres-
siveness of first-order answer set programs from a syntactic point of view.

Recursion-freeness is an important notion in Datalog and it is well-studied in
the Datalog community [1, 2, 34]. It can be lifted for first-order normal programs
as follows.

Definition 10 (Recursion-freeness). A program is said to be recursion-free if no
intensional predicate occurs in the positive body of any rule in the program.

Note that it is possible that the intensional predicates may occur negatively in
a recursion-free program.

Example 3. Consider the following program ΠV P :

V isits(x, y)← Interested(x, y),

PossVisit(x, y)← Attraction(y), notV isits(x, y).

There are two intensional predicates V isits and PossVisit in program ΠV P . Since
none of them positively occurs in the bodies of the two rules, ΠV P is a recursion-
free program. �

It is generally considered that recursion is one of the most important features
for Datalog and normal logic programs. Hence, recursion-free programs can be
considered as “trivial” programs to some extent.

According to the definitions, it is easy to see that the following result holds.

Proposition 4. If Π is a recursion-free program, thenM∞(Π) =M1(Π) for any
structureM of τ(Π).
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Proposition 4 states that for recursion-free programs, the stable models of the
program can be verified within one step. It immediately follows that all recursion-
free programs are bounded.

Corollary 5. Recursion-free programs are bounded.

A closely related notion is loop-freeness.3 For this purpose, we first review
the concepts of loops for first-order normal programs [14]. Let Π be a program.
The positive dependency graph of Π, denoted by GΠ, is a graph (maybe infinite)
(V,E), where V is the set of atoms of τint(Π), and (α, β) is an edge in E if (a)
there exists a rule r ∈ Π, and α′ and β′ in r such that α′ is the head of r and β′ is
one of the positive atoms of intensional predicate in the body of r, and (b) there
exists a substitution θ such that α′θ = α and β′θ = β. A finite non-empty subset
L of V is said to be a loop of Π if there exists a cycle in GΠ that goes through only
and all the nodes in L.

Loops and their corresponding loop formulas are critical concepts in answer
set programming. As shown in [14], under the stable model semantics, a logic
program can be captured by its completion together with all its loop formulas on
finite structures. Also, it initiates an alternative way to compute the stable models
of a program by transforming it to propositional formulas [32].

Definition 11 (Loop-freeness). A program is said to be loop-free if it has no loop.

The stable models of a loop-free program can be exactly captured by its Clark’s
completion [14, 19].

Proposition 6 ([14]). Let Π be a loop-free program. Then, a τ(Π)-structureM
is a stable model of Π iff it is a model of Comp(Π).

Example 4. Consider programs ΠV and ΠV P once again in Examples 2 and 3
respectively. It is easy to see that ΠV has a loop L = {V isits(x, y), V isits(z, y)}.
So ΠV is not loop-free. On the other hand, program ΠV P in Example 3 is loop-free
obviously. �

Clearly, recursion-free programs are loop-free as their positive dependency
graphs have no edge at all.

3Loop-free is also called tight in the literature [19], particularly in the propositional case. We
call it loop-free here in order to compare it with the notion of recursion-free.
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Proposition 7. A recursion-free program must be loop-free.

However, the converse of Proposition 7 does not hold in general. For example,
the following program

V isits(x, y)← Friends(x, y),

F riends(x, y)← Likes(x, y), notHate(x, y).

is loop-free but not recursion-free.

4.3. On the relationships among boundedness, recursion-freeness and loop-freeness
In this subsection, we shall show that the syntactic notions of recursion-freeness

and loop-freeness are closely related with the semantic notion of boundedness.
More precisely, these three notions coincide under program equivalence, that is,
a program is bounded if and only if it is equivalent to a recursion-free program if
and only if it is equivalent to a loop-free program.

Some straightforward observations are presented earlier, e.g., Corollary 5 and
Proposition 7. Corollary 5 states that all recursion-free programs must be bounded.
We can extend this into the following result.

Proposition 8. A loop-free program must be bounded.

We leave the proof to the Appendix. Proposition 8 is an extension of Corollary
5 since all recursion-free programs are loop-free by Proposition 7.

Now we consider the other way around, that is, whether or not a bounded
program can be converted to a recursion-free/loop-free program. First of all,
the following example shows that there exists a bounded program that is neither
recursion-free nor loop-free.

Example 5. Let Πflag be the following program:

Reach(a)

Reach(x) ← Reach(y), Edge(x, y), f lag (7)
Reach(x) ← notReach(x)

flag ← flag

Clearly, Πflag is not a recursion-free program as the positive body of rule (7) men-
tions the intensional predicate Reach. It is not a loop-free program either since
rule (7) forms some loops. However, Πflag is a bounded program. The reason
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is that the only recursion rule, i.e., rule (7), is guarded by the 0-ary intensional
predicate flag. As flag will never be generated in the progression, this rule will
never be triggered. Thus, the syntactic recursion in rule (7) is actually blocked
semantically.

It is easy to see that the above program Πflag can be equivalently transformed
to a recursion-free one by simply deleting rule (7) and the rule flag ← flag. In
this sense, Πflag is “semantically” recursion-free to some extent. The following
proposition confirms that this kind of semantical recursion-freeness indeed can be
implied by boundedness.

Proposition 9. If a program is bounded, then it is equivalent to a recursion-free
program.

As the proof of Proposition 9 is a little tedious, although a similar result for
Datalog programs holds straightforwardly. We leave it to the appendix.

It immediately follows from Proposition 9 and Proposition 7 that any bounded
program can be equivalently transformed to a loop-free program.

Corollary 10. If a program is bounded, then it is equivalent to a loop-free pro-
gram.

From Corollary 5, Proposition 7, Proposition 8, Proposition 9 and Corollary
10, we can see that the notions of boundedness, recursion-freeness and loop-
freeness are highly connected. However, these results are not enough to justify
the claim made in the beginning of this subsection that boundedness, recursion-
freeness and loop-freeness coincide under program equivalence. The missing as-
sertion is: if a program is equivalent to a recursion-free or loop-free program (but
not necessarily is recursion-free or loop-free itself), must it be bounded? The
answer is again yes, and we shall prove it in Section 5. Nevertheless, for this
purpose, more tools and techniques are needed.

Notice that the proofs provided in this section are independent of the cardinal-
ity of a particular structure. Hence, the main results proved in this section hold
both on arbitrary structures and on finite structures.

5. First-Order Definability of Answer Set Programs and Boundedness

The relationship between first-order ASP and FOL is one of the most impor-
tant topics in this area, and it has been well-studied in the literature [4, 5, 12, 13,
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14, 15, 16, 19, 27, 28, 41]. Researches in this direction are mainly focused on
translating (some subclasses of) first-order ASP into classical FOL. This is be-
cause FOL is a well-established formalism so that translations from ASP to FOL
would be helpful to understand some essential properties of the former. Also,
normal logic programming is only a fragment of first-order logic programming.
For instance, it lacks the support of disjunctive heads and existential quantifiers.
Hence, it makes little sense to translate the full version of classical logic into a
fragment of logic programming. Interestingly, some recent works are proposed
to translate fragments of FOL (e.g., various description logics) into fragments
of ASP (e.g., normal logic programs enhanced with existential quantifiers in the
heads), largely driven by the need of rule-based reasoning and defeasible reason-
ing in ontology engineering [25].

For the problem of translating first-order normal logic programs under the sta-
ble model semantics into classical first-order logic, a rather complete answer has
been provided by Asuncion et al. [4] based on previous results in the literature
(see Table 2 in [4]). Interestingly and surprisingly, the answer is depending on
three factors, considering arbitrary structures or only finite structures, introduc-
ing auxiliary predicates or not, and allowing the results to be infinite or not. To
conclude, there is no translation from normal ASP to FOL when considering ar-
bitrary structures. For finite structures, if no new predicates are introduced and
the results are restricted to be finite, again, such translation does not exist. How-
ever, there exist translations from normal ASP to FOL when relaxing any of the
above two conditions. Loop formulas provide a translation from normal ASP to
FOL on finite structures without introducing any new predicates but the translated
results could be infinite [14]. Ordered completion is an alternative translation that
guarantees the result to be finite but a polynomial number of extra predicates are
needed [4].

Although normal ASP cannot be translated into FOL on arbitrary structures
in general, this can be done for some subclasses. A well known subclass is the
class of loop-free programs (also called tight programs) [19]. It was shown that
the stable models of a loop-free program can be captured by its Clark’s comple-
tion, which is a first-order sentence. This result is extended to the so-called loop-
separable programs [15]. In fact, work in this direction is not only theoretically
important but also practically relevant. For instance, some modern ASP solvers
are built based on the loop-formula approaches, e.g. ASSAT [32] and CMODELS
[29].

However, it still remains an open problem whether there is an exact characteri-
zation of the first-order definability of first-order normal answer set programs, that
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is, whether we can exactly capture what kind of normal programs are first-order
definable. In this paper, we bridge this gap and show that the concept of bound-
edness exactly captures first-order definability for first-order normal programs on
arbitrary structures. That is, a program is first-order definable if and only if it is
bounded. Moreover, we show that these two notions coincide with the syntactic
notions of recursion-freeness and loop-freeness under program equivalence.

5.1. First-order definability of answer set programs
We start our discussions with a formal definition of first-order definability of

normal logic programs.

Definition 12 (First-order definability). Let Π be a program and φ a first-order
sentence of the signature τ(Π). Let C be a class of first-order structures. We say
that φ defines Π on C if the models of φ in C are exactly the stable models of Π in
C.

A program Π is said to be first-order definable on C if there exists such a first-
order sentence that defines Π.

In this paper, we normally consider C to be the class of all structures or the
class of finite structures.

Example 6. Let us consider ΠV again in Example 2. It can be verified that ΠV

is defined by the following sentence:
∀xy(V isits(x, y)↔ (Interested(x, y) ∧ ¬Busy(x) ∨

∃z(z 6= x ∧ V isits(z, y) ∧ Attraction(y) ∧ ¬Busy(x)))). �

It was shown in the literature that the stable models of a loop-free program can
be exactly captured by its Clark’s completion.

Proposition 11. [15] If Π is a loop-free program, then Comp(Π) defines Π on
both arbitrary structures and finite structures.

Consequently, by Proposition 7, a recursion-free program is defined by its
Clark’s completion as well.
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5.2. Boundedness = first-order definability
Now we prove that the semantic notion of first-order definability can be ex-

actly captured by the semantic notion of boundedness presented in Section 4 on
arbitrary structures, which further correspond to the syntactic notions of recursion-
freeness and loop-freeness under program equivalence.

Theorem 2. Let Π be a program. The following four statements are equivalent
on arbitrary structures.

1. Π is bounded.
2. Π is equivalent to a recursion-free program.
3. Π is equivalent to a loop-free program.
4. Π is first-order definable.

Notice that 1 ⇒ 2 is Proposition 9; 2 ⇒ 3 follows straightforwardly from
Proposition 7 and 3⇒ 4 follows straightforwardly from Proposition 11. We only
need to prove 4 ⇒ 1 for Theorem 2. Nevertheless, the proof of this is rather
technical and tedious. Hence, we leave it to the appendix.

Corollary 12. Boundedness is closed under program equivalence. That is, if two
programs Π1 and Π2 are equivalent, then Π1 is bounded iff Π2 is bounded.

Proof: Since Π1 is bounded, then it is first-order definable. Therefore, Π2 is first-
order definable by the same sentence as Π2 is equivalent to Π1. It follows that Π2

is bounded as well. �

6. Yet Another Translation from ASP to SMT

The progressional definition sheds new insights on first-order ASP from a the-
oretical point of view. For instance, Theorem 2 states that first-order definability
of normal programs can be exactly captured by the notion of boundedness, which
is defined based on the progressional definition. In this section, we show that the
progressional definition sheds new insights into first-order ASP from a practical
point of view. More precisely, the progressional definition suggests a natural way
to encode first-order normal ASP into Satisfiability Modulo Theories (SMT) [37],
which are classical first-order theories enhanced with some modular theories to
represent some components that cannot be easily handled in a logical setting, for
instance, arithmetical formulas such as 2x− y ≤ 10.
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This work follows the ordered completion approach, which translates a nor-
mal program to a first-order (SMT) sentence. The ordered completion approach
initiates a new way of computing stable models by grounding on ordered comple-
tion (a first-order sentence) of programs instead of the first-order program itself,
as most of the modern ASP solvers do.

Inspired from the progressional definition (see Definition 7), we can define
an alternative translation from normal ASP to first-order logic/first-order SMT. In
fact, the progressional definition directly specifies a derivation order. Let us take a
closer look at Definition 7 again. At the k-th stage of the progression, the accumu-
lating structureMk(Π) will be extended by some ground atoms, which are heads
of some rules applicable at the k-th stage. Notice that the intensional part of the
initial structure M0(Π) is empty and the final structure M∞(Π) coincides with
M itself ifM is a stable model of the program. This means that for any ground
atom α to be true in the stable modelM, it must be generated at a particular stage
t in the progression, that is, there exists a rule r in the program that generates the
atom α at the stage t in the progression. This is equivalent to

• the negative body of r is satisfied by the intended structureM;

• the positive body of r is satisfied by the t-th evaluation stageMt(Π);

• and the positive body of r is not satisfied by the (t − 1)-th evaluation stage
Mt−1(Π) (otherwise the rule r must be applied before),

which is further equivalent to (sinceMk(Π) is monotonic)

• the negative body of r is satisfied by the intended structureM;

• the positive body of r is satisfied by the intended structureM;

• there exists at least one ground atom in the positive body of r, which is
generated at the t − 1-th stage, and all other ground atoms in the positive
body of r must be generated even earlier.

Having explained our intuitions, we are now able to define the new translation
from normal ASP to SMT. Again, for every intensional predicate P , we introduce
an integer function nP with the same arity.
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Definition 13 (Progression based completion). Let Π be a program. The pro-
gression based completion of Π, written as PC(Π), is the following sentence

Π̂∧
∧

P∈τint(Π)

∀−→x [P (−→x )→
∨

1≤i≤k

∃−→yi B̂odyi ∧nP (−→x ) = succ(max({nQ(−→z )}))],

(8)
where

• some notations, including yi, Bodyi and B̂odyi, are borrowed from Defini-
tions 2 and 3. Once again, Q(−→z ) ranges over all intensional atoms in the
positive part of Bodyi;

• succ and max stand for the successor function and the maximum function
in arithmetic respectively.

Similar to Clark’s completion and ordered completion, progression based com-
pletion has to satisfy the program itself, namely Π̂. The main difference is the jus-
tification part, which states that if a ground atom is in the stable model, then it has
to be justified. There are different understandings of justification. In Clark’s com-
pletion, it simply states that there is a rule in the program to support this ground
atom, i.e., whose head is the ground atom and whose body is also satisfied by
the structure. It turns out that this kind of justification is not powerful enough to
capture the stable model semantics. In ordered completion, justification is a bit
stronger in the sense that not only that there exists a rule to support the ground
atom but also that all ground atoms of that rule have to be justified earlier. As
shown by Asunction et al. [4], this is enough to capture the stable model seman-
tics. In progression based completion, justification is even stronger as it enforces
a particular derivation order, which actually coincides with the derivation order
obtained in the progression. Intuitively, for a ground atom P (−→a ), nP (−→a ) exactly
represents its evaluation time in the progression of Π with respect to M. Here,
the arithmetical formula nP (−→x ) = succ(max({nQ(−→z )})) means that the stage
of the head atom P (−→x ) is exactly the maximal stage of the positive body atoms
plus 1. That is, the rule is exactly triggered at this stage in the max({nQ(−→z )})-th
evaluation stage.

Example 7. Let ΠR be the following program to check the reachability of a graph,
whose edges are represented by the extensional predicate Edge.

Reach(a)

Reach(x) ← Reach(y), Edge(x, y),

Reach(x) ← notReach(x).
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Then, OC ′(Π) is

Π̂R ∧ ∀x(R(x)→ x = a ∨ ∃y[R(y) ∧ E(y, x) ∧ nR(x) < nR(y)],

while PC(Π) is

Π̂R ∧ ∀x(R(x)→ x = a ∨ ∃y[R(y) ∧ E(y, x) ∧ nR(x) = succ(nR(y))].

Progression based completion and ordered completion share something in
common. Both of them modify the justification part of Clark’s completion into
a logically stronger formula by adding some extra statements about the derivation
order of ground atoms. Nevertheless, ordered completion only requires that the
ground atoms are justified in some order, i.e., bodies should be justified earlier
than heads, while progression based completion strictly enforces one particular
derivation order on ground atoms, which coincides with the one obtained in the
progressional definition. Thus, progression based completion yields a stronger
version.

Proposition 13. Let Π be a program. Then, PC(Π) |= OC ′(Π).

Proof: This follows from the definitions since if nP (−→x ) = succ(max({nQ(−→z )})),
then for all nQ(−→z ), nQ(−→z ) < nP (−→x ). �

Another difference between these two translations is the host SMT language.
Ordered completion needs to use the built-in comparison operators <, while pro-
gression based completion needs to use two built-in functions, namely the maxi-
mum function and the successor function. Note that, for linear programs (in which
all bodies of rules contain at most one intensional predicate) such as reachability,
the maximum function is not needed in progression based completion.

We end up this section by showing that, on finite structures, progression based
completion, namely PC(Π), exactly captures the stable model semantics as well.

Theorem 3. Let Π be an extended program. Then, a finite τ(Π)-structure is a
stable model of Π if and only if it can be expanded to a model of PC(Π).

Proof: The “if” part follows from Proposition 1 and Proposition 13. We show
the “only if” part. LetM be a stable model of Π. For a ground atom P (−→a ), we
define nP (−→a ) as its evaluation time in the progression. Now we show thatM+,
the structure obtained from M by expanding the interpretations on the integer
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predicates nP as mentioned above, is a model of PC(Π). First,M+ is a model of
Π̂ sinceM is a model of Π̂. For any ground atom P (−→a ) ∈M, it must be justified
by a rule r together with an assignment η at step nP (−→a ) in the progression. Then,
for any intensional ground atom Q(

−→
b ) in the positive body of rη, Q(

−→
b ) has to

be justified before in the progression since Q(
−→
b ) ∈ MnP (−→a )(Π). In addition,

there exists some Q(
−→
b ) in the positive body of rη whose evaluation time is ex-

actly nP (−→a )− 1. Otherwise, P (−→a ) should be justified earlier in the progression.
Hence, nP (−→a ) = succ(max({Q(

−→
b ) | Q(

−→
b ) ∈ Pos(rη), Q ∈ ΩΠ})). This

shows thatM+ is a model of PC(Π). �

7. Ongoing and Related Work

In this paper, we have restricted our discussions to first-order normal logic
programs with rules of the form (1) — the most important and fundamental frag-
ment of first-order answer set programming. Driven by needs, normal logic pro-
grams are extended with some useful building blocks, including disjunctive heads,
constraints and choice rules, existentially quantified heads, functions, nested ex-
pressions and so on. A problem arises when extending the progressional defini-
tion for programs with those building blocks. Unfortunately, this seems to be a
challenging task as the underlying principles of some building blocks are essen-
tially different from the nature of the progressional definition. In the progressional
definition, all intensional ground atoms in a stable model of a program must be
justified at some step in the evaluation stage. Starting from the empty intensional
database, each step justifies a set of ground atoms, which are the heads of all rules
applicable at the current stage. Here, a ground rule is applicable if its positive
body is satisfied by the current progression stage and its negative body is satisfied
by the candidate structure itself.

Disjunctive logic programming is a natural extension of normal logic pro-
gramming [24]. The head of a disjunctive rule is a disjunction of atoms, which
represents a non-deterministic choice if the body is satisfied. The key point for
extending the progressional definition for disjunctive programs is how to add the
ground atoms when a ground rule is satisfied at a progression stage. There are two
existing solutions. The first is to select a minimal hitting set of all heads of appli-
cable rules (a collection of sets of ground atoms) as the justified ground atoms at
this stage [44]. In this sense, there could be many different progression sequences
with respect to a given disjunctive program and a candidate structure. The sec-
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ond approach is to collect the disjunctions of atoms (i.e., clauses) derivable at
the current stage, and finally compute the minimal model of all collected clauses
[41]. Both extensions are equivalent to the translational stable models definition.
Again, some interesting consequences follow from the progressional definition
for disjunctive programs, e.g., a translation to SMT [44] and a characterization of
first-order definability via boundedness [41].

Constraints, choice rules and aggregates are essential building blocks for an-
swer set programming, which are extensively used in most benchmark programs.
Again, extending the progressional definition for them seems not easy as the un-
derlying principles of the progressional definition and these building blocks are
incompatible. For instance, while the progressional definition justifies the stable
models step-by-step, the aggregate atoms are interpreted globally.

It remains an open problem to further extend the progressional definition for
incorporating other building blocks, for instance, functions, existentially quanti-
fied heads and nested expressions. We expect that such a progression definition,
if defined, should be equivalent to the stale model semantics on these richer for-
malisms [5, 20, 26, 40]. Nevertheless, this seems to be a challenging task as the
progression definition needs to be defined step-by-step. Work in this direction is
worth pursuing as the progressional definition has some important theoretical and
practical consequences. Incorporating extensional functions in the progressional
definition is straightforward as their interpretations are fixed in the extensional
database. However, this task seems not easy for intensional functions [8, 9, 30].
Existentially quantified heads are of special interests as Datalog (ASP) enhanced
with existentially quantified heads is able to capture some interesting fragments
in description logics [25]. For incorporating existentially quantified heads in the
progressional definition, again, the key point is how to add the ground atoms when
a ground rule is satisfied at a progression stage. We leave these to our future in-
vestigations.

Naive extensions to richer syntactic classes do not work. New notions and
techniques have to be developed. For instance, only boundedness itself cannot
make a difference between first-order disjunctive logic programs and classical
first-order logic. Recently, we coined a new term called “choice-boundedness”
for this purpose [43]. Also, we found that the progression definition may work
for certain aggregates such as convex aggregates [3]. We consider this to be one
of the most important future directions as the progression definition can help us
understanding first-order answer set programming much more deeply, from not
only a theoretical but also a practical point of view.

The notion of boundedness (see Definition 9) presents an exact characteriza-
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tion of the first-order definability for normal logic programs on arbitrary structures
(see Theorem 2). Hence, it covers the notion of loop separability [15], a sufficient
condition for first-order definability based on loop formulas. Roughly speaking,
a first-order program is loop-separable iff all its loop patterns can be separated in
some sense so that all its loop formulas can be finitely characterized. As a con-
sequence, the stable models of a loop separable program can be defined by the
classical models of its Clark’s completion together with a finite set of loop formu-
las. Since boundedness is equivalent to the condition of first-order definability, all
loop-separable programs are bounded. In fact, this can also be observed from the
proof (see Section 5 in [15]), which essentially shows that if a program is loop-
separable, then we only need to take some loops with a bounded size into account.
However, the converse does not hold. That is, there exists a bounded program that
is not loop separable, e.g., the program Πflag in Example 5. Nevertheless, loop
separability is a syntactic condition, while boundedness is semantic. In addition,
it is decidable to check whether a program is loop separable (see Theorem 3 in
[15]), but checking boundedness is undecidable. Nevertheless, given a fixed num-
ber k, checking k-boundedness should be decidable. This might help us to rewrite
some logic programs into loop-free ones so that they can be solved more easily.

Another important future direction is to apply our theoretical results into prac-
tices, for instance, to develop a new ASP solver based on the translation into SMT
proposed in Section 6. Alternatively, we may utilize some notions and techniques
developed in this paper, e.g., boundedness and k-boundedness, for solving certain
subclasses of answer set programs more easily.

8. Conclusions

The main contributions of this paper are summarized as follows.

• We extended the progression semantics for Datalog into a progression defi-
nition for first-order normal logic programming and showed that it is equiv-
alent to the well-known stable model semantics. As a consequence, many
important and useful notions and techniques in Datalog can be lifted for
first-order ASP.

• We introduced a notion of boundedness for first-order ASP and showed that
it coincides with the notions of recursion-freeness and loop-freeness un-
der program equivalence. More interestingly, we showed that these notions
exactly capture first-order definability of ASP for normal programs. This
clearly clarifies the expressive power of the intersection between first-order
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ASP and classical First-Order Logic (FOL), both from a syntactic and a se-
mantic point of view. Syntactically, it is well known that recursion-free and
loop-free logic programs are first-order definable [14, 19, 32]. Our result
proved a long standing conjecture that this assertion holds the other way
around. That is, a first-order definable logic program is essentially equiv-
alent to a recursion-free (loop-free) one. Semantically, our result showed
that boundedness draws a clear boundary between first-order definable and
indefinable normal logic programs.

• The progression definition naturally suggests a new translation from first-
order ASP to Satisfiability Modulo Theories (SMT) by introducing new
predicates. This translation is of practical relevance since it is has less mod-
els than so-called ordered completion [4].

To conclude, the progression definition sheds new insights into first-order An-
swer Set Programming (ASP), including its deep connections and relationships to
Datalog, FOL and SMT.

Appendix: Proofs of Proposition 9 and Theorem 2

Without loss of generality, we may assume that all rules are presented in a
normalized form. That is, each intensional predicate Q is associated with a tuple
of distinguishable variables −→xQ so that the head of each rule is of the form Q(−→xQ).
For instance, if for some rule with an intensional predicate Q of its head, there
is a constant c occurring in Q, i.e. Q(x1, · · · , xi−1, c, xi+1, · · · , xn), we simply
introduce a new variable xi to replace c: Q(x1, · · · , xi−1, xi, xi+1, · · · , xn), and
add atom xi = c in the body of this rule. We say that a variable x is a local
variable of a rule r if it does not occur in the head of r. For convenience in our
proofs, we assume that the sets of local variables in rules are pairwise disjoint.

Proposition 8. A loop-free program must be bounded.

Proof: We prove this assertion by contradiction. Assume that Π is not bounded.
Then for an arbitrary k, there exists some stable model M of Π, such that for
some intensional predicate Q in ΩΠ, Q(−→a ) ∈ Mk+1(Π) but Q(−→a ) 6∈ Mk(Π).
Then from Definition 6, there must exist a rule r in Π:

Q(−→x )← β1, . . . , βm, not γ1, . . . , not γl, (9)

30



and an assignment η such that (1) Q(−→a ) = Q(−→x )η, and (2) for all i (1 ≤ i ≤ m),
βiη ∈Mk(Π), and for all j (1 ≤ j ≤ l), γjη 6∈ M.

Based on this observation, for the given stable modelM of Π, we define the
intensional dependency tree T (Q(−→a ),M) for Q(−→a ) as follows:

(a) the root of T (Q(−→a ,M) is Q(−→a ),
(b) in (9), for each βi (1 ≤ i ≤ m), if βi is an intensional atom, then βiη is a

child of Q(−→a ),
(c) for each child βiη of Q(−→a ), we build the subtree T (βiη,M) as in (a) and

(b), and repeat the process until no more subtree can be built.

It is clear that T (Q(−→a ),M) has depth k + 1. Now from T (Q(−→a ),M), we
construct an atom based intensional dependency tree T (Q(−→x )) for atom Q(−→x )
as follows.

(i) let θ0 = −→a /−→x be a substitution, replaceQ(−→a ) in T (Q(−→a ,M) byQ(−→a )θ =
Q(−→x ) as the root of T (Q(−→x ));

(ii) let θ1 =
−→
b /−→y , where

−→
b is the tuple of elements occurring in β1η, · · · , βlη

but not occurring in Q(−→a ), and −→y be the tuple of variables not occurring
in θ0, then for each child βiη in T (Q(−→a ,M), replace βiη by ((βiη)θ0)θ1

accordingly;
(iii) this process continues until all ground atoms in T (Q(−→a ),M) have been

replaced by the corresponding atoms.

Then T (Q(−→x )) is a tree with depth k+1 where only variables occur in each atom
node.

From the construction of T (Q(−→x )), we observe that for each parent-child pair
(Qi(
−→x ), Qj(

−→y )) in tree T (Q(−→x )), there is a corresponding edge (Qi(
−→x ), Qj(

−→y ))
in Π’s positive dependency graph GΠ.

On the other hand, since Π is not bounded, for any arbitrary k, there exists
some stable modelM and Q(−→a ) ∈M, we can construct the tree T (Q(−→x )) with
depth k + 1. Let N be the number of intensional predicates in Π, and we choose
some M > N . Then it is clear that for some intensional predicate Q, we can
construct a tree T (Q(−→x )) which has a depth (M + 1) > N . Consequently, there
must exist a path from the root to some leaf such that an intensional predicate Q′

occurs two or more than two times, i.e. atoms Q′(−→x ) and Q′(−→y ) are in the path.
Therefore, a loop must exist in the corresponding positive dependency graph GΠ.
This concludes that Π is not loop-free. �
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Proposition 9. If a program is bounded, then it is equivalent to a recursion-free
program.

We prove it by constructions and we decompose the constructions into several
steps. First, we show that every k-bounded program is equivalent to a 1-bounded
program. Then, we show that a 1-bounded program can be equivalently trans-
formed to a recursion-free program.

Let Π be a normalized program and t a number. We define a program Πt

inductively as follows. Firstly, set Π1 = Π. We now specify Πt+1 by giving Πt,
which is expanded from Πt by adding some new rules. Suppose that there exists
a rule r in Π of the form

α← β1, . . . , βm, not γ1, . . . , not γl,

and for all i (1 ≤ i ≤ m), if βi = Qi(
−→
t ) is an intensional atomic formula, then

there exists a rule ri in Πt such that Head(ri)θi = βi, where θi is the substitution
−→xQi

/
−→
t . We add a new rule r∗ into Πt+1 such that:

Head(r∗) = Head(r),
Pos(r∗) = Pos(r)\{βi1 , . . . , βin} ∪ Pos(r1)θ1 ∪ . . .

∪Pos(rn)θn,
Neg(r∗) = Neg(r) ∪Neg(r1)θ1 ∪ · · · ∪Neg(rn)θn,

where {βi1 , . . . , βin} is the set of all intensional atomic formulas in {β1, . . . , βm},
r1, . . . , rn are the corresponding rules in Πt as discussed above, and θi are defined
accordingly. In addition, we apply necessary substitutions such that the sets of
local variables in rules in Πt+1 are pairwise disjoint. It is easy to see that Πt+1 is
a normalized program as well. Such process is similar to the unfolding in propo-
sitional logic programs. Clearly, Πt is normalized if Π is normalized.

Lemma 1. Let Π be a program and k an integer. Then,Mk(Π) = M1(Πk) for
any structureM of τ(Π).

Proof: We prove this assertion by induction on k. Clearly, this assertion holds
when k = 1. Suppose that for all k < t, this assertion holds. Now we prove that
it holds when k = t as well.

We first prove thatMt(Π) ⊆ M1(Πt). Let (a1, . . . , an) ∈ Qt(M), where Q
is an intensional predicate of Π. If the evaluation time of Q(a1, . . . , an) is less
than t, then Q(a1, . . . , an) ∈ M1(Πt) by induction assumption. If the evaluation
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time of Q(a1, . . . , an) is exactly t, then according to the definition, there exists a
rule r ∈ Π of form (1) and an assignment η such that (a) −→xQη = (a1, . . . , an), (b)
for all i (1 ≤ i ≤ m), βiη ∈ Mt−1(Π), and (c) for all j (1 ≤ j ≤ l), γjη 6∈ M.
By induction assumption, for all i (1 ≤ i ≤ m), βiη ∈ M1(Πt−1). If βi is of the
form Q(

−→
t ), where Q is an intensional predicate, then according to Definition 6,

there exists a rule ri ∈ Πt−1 such that βiη can be computed by ri within one step
by assumingM. Therefore, αη can be computed by the following rule r∗ within
one step (note that Πk is normalized for all k).

Head(r∗) = Head(r),
Pos(r∗) = Pos(r)\{βi1 , . . . , βin} ∪ Pos(r1)θ1 ∪ . . .

∪Pos(rn)θn,
Neg(r∗) = Neg(r) ∪Neg(r1)θ1 ∪ · · · ∪Neg(rn)θn,

where βi1 , . . . , βin are the atoms discussed above, and ri and θi are defined ac-
cordingly. This shows that Q(a1, . . . , an) ∈M1

t (Πt).
We now proveM1(Πt) ⊆ Mt(Π). Suppose that Q(a1, . . . , an) can be com-

puted from Πt within one step by assumingM, where Q is an intensional pred-
icate of Π. Then there exists a rule r∗ ∈ Πt, and an assignment η such that
Head(r∗)η = Q(a1, . . . , an). Suppose that r∗ has the form

Head(r∗) = Head(r),
Pos(r∗) = Pos(r)\{βi1 , . . . , βin} ∪ Pos(r1)θ1 ∪ . . .

∪Pos(rn)θn,
Neg(r∗) = Neg(r) ∪Neg(r1)θ1 ∪ · · · ∪Neg(rn)θn,

where r ∈ Π, ri ∈ Πt−1, and the others are defined accordingly. Then, βijη can be
computed from ri within one step by assumingM. So βijη ∈Mt−1(Π) by induc-
tion assumption. Consequently, αη ∈ Mt(Π) since it can be computed through
rule r. �

Now we show that every k-bounded program Π is equivalent to a 1-bounded
program, more precisely, Πk.

Lemma 2. If Π is a k-bounded program, then Π is equivalent to Πk, which is a
1-bounded program.

Proof: We first show that Π is equivalent to Πk by proving that for any structure
M,M∞(Π) = M∞(Πk). Clearly,M∞(Π) ⊆ M∞(Πk) since Π ⊆ Πk. It suf-
fices to show thatM∞(Πk) ⊆ M∞(Π). We prove this by induction that for any
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natural number t,Mt(Πk) ⊆M∞(Π). The induction basis follows from Lemma
1. Suppose that it holds for all natural numbers less than t, now we prove the case
for t. Let Q(a1, . . . , an) be a ground atom inMt(Πk) but not inMt−1(Πk). If it
is obtained from a rule in Π itself together with an assignment, then the inductive
step holds obviously. Otherwise, there exists a rule r∗ ∈ Πk, and an assignment η
such that Head(r∗)η = Q(a1, . . . , an) and its body can be applied at the current
evaluation stage. Suppose that r∗ has the form

Head(r∗) = Head(r),
Pos(r∗) = Pos(r)\{βi1 , . . . , βin} ∪ Pos(r1)θ1 ∪ . . .

∪Pos(rn)θn,
Neg(r∗) = Neg(r) ∪Neg(r1)θ1 ∪ · · · ∪Neg(rn)θn,

where r ∈ Π, ri ∈ Πt−1, and the others are defined accordingly. Notice that the
negative parts are irrelevant here as they are fixed byM. Considering the positive
parts, for all i, 1 ≤ i ≤ n, Pos(ri)θi ⊆ Mt−1(Πk). By the induction hypothesis,
Pos(ri)θi ⊆ M∞(Π). This shows that, for all i, 1 ≤ i ≤ n, βiη ∈ M∞(Π).
It follows that for the rule rη, Pos(r)η ⊆ M∞(Π). Therefore, Head(r)η ∈
M∞(Π). Hence, Q(a1, . . . , an) ∈M∞(Π).

We now show that Πk is a 1-bounded program. IfM is a stable model of Πk,
thenM is a stable model of Π as well. In addition,M∞(Πk) =M =M∞(Π) =
Mk(Π) =M1(Πk)(by Lemma 1). This shows that Πk is 1-bounded. �

We now show that every 1-bounded program is equivalent to a recursion-free
program. For this purpose, we decompose this task into two steps. We first show
that a 1-bounded program is equivalent to a program with only non-recursive
rules and constraints, and then show that constraints can be eliminated into non-
recursive rules as well.

Constraints are of the same as normal rules of the form (1) except that the head
is empty instead of an atom. More precisely, a constraint is of the form

← β1, . . . , βm, not γ1, . . . , not γl. (10)

Let r be a constraint of the form (10). By r̂, we denote the first-order formula

¬(β1 ∧ · · · ∧ βm ∧ ¬γ1 ∧ · · · ∧ ¬γl).

Let Π be a program and C a set of constraints. A first-order structure M is a
stable model of Π ∪ C if it is a stable model of Π and for all c ∈ C,M |= ĉ.
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Here, we use constraints to help us to prove that any 1-bounded program can
be equivalently transformed into a recursion-free program. First, we show that any
1-bounded program can be equivalently transformed into a recursion-free program
with constraints. Let r be a rule of the form (1), by rC , we denote the constraint

← β1, . . . , βm, not γ1, . . . , not γl, notα.

Let Π be a program. By ΠC , we denote the program obtained from Π by replacing
every recursive rule r with rC .

Lemma 3. If Π is a 1-bounded program, then Π is equivalent to ΠC .

Proof: First of all, we split the program ΠC into two parts, namely ΠNR that
contains all non-recursive rules in Π and ΠRC that contains all constraints obtained
from recursive rules in Π. Then, a stable model of ΠC is a stable model of ΠNR

that satisfies all constraints in ΠRC , which is a stable model of ΠNR that satisfies
Π̂. In addition, a structureM is a stable model of ΠNR iff

• for all ground atoms Q(−→a ) ∈ M, there exist a non-recursive rule r ∈ Π
and an assignment η such that Head(r)η = Q(−→a ) andM |= Body(r)η;

• for all ground atomsQ(−→a ) 6∈ M, there do not exist a non-recursive rule r ∈
Π and an assignment η such that Head(r)η = Q(−→a ) andM |= Body(r)η.

On one side, suppose thatM is a stable model of Π. Since Π is 1-bounded,
we haveM = M1(Π). Hence,M is a stable model of ΠNR asM1(Π) satisfies
the two conditions mentioned above (according to the definition of the evaluation
stage). In addition,M |= Π̂ sinceM is a stable model of Π. Hence,M is a stable
model of ΠC .

On the other side, suppose that M is a stable model of ΠC . Since M is a
stable model of ΠC thus ΠNR, M1(Π) = M. Now assume that M is not a
stable model of Π. Then, M ⊂ M∞(Π). There exists a ground atom Q(−→a )
in M∞(Π) but not in M. In fact, there exists such a Q(−→a ) in M2(Π) but not
in M1(Π) (which is the same as M). Otherwise, if M2(Π) = M1(Π), then
M = M1(Π) = M2(Π) = M3(Π) = · · · = M∞(Π), a contradiction. Now
suppose thatQ(−→a ) is derived by a rule r together with an assignment η in the sec-
ond step of the evaluation stage and Q(−→a ) = Head(r)η. Then,M |= Neg(r)η,
and M1(Π) |= Pos(r)η. Therefore, M |= Body(r)η since M = M1(Π). It
follows thatM |= Head(r)η. This shows that Q(−→a ) ∈M, a contradiction. �
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Next, we show that recursion-free programs with constraints can always be
equivalently transformed into recursion-free programs. Let Π be a recursion-free
program and c a constraint of the form (10). Suppose that all the rules in Π whose
head is βi, 1 ≤ i ≤ m are

βi ← Bodyi1,

. . . ,

βi ← Bodyibi ,

and all the rules in Π whose head is γj, 1 ≤ j ≤ l are

γj ← Bodyj1,

. . . ,

γj ← Bodyjcj .

Here, Bodyik, 1 ≤ k ≤ bi (Bodyjl, 1 ≤ l ≤ cj) is a body without positive
intensional atoms since Π is a recursion-free program.

By Π ⊕ c, we denote the program obtained from Π by replacing each βi ←
Bodyk, i1 ≤ k ≤ ibi with the following set (*) of rules

βi ← not β1, Bodyk,

. . . ,

βi ← not βm, Bodyk,

βi ← Body11, Bodyk,

. . . ,

βi ← Body1c1 , Bodyk,

βi ← Body21, Bodyk,

. . . ,

βi ← Body2c2 , Bodyk,

. . . ,

βi ← Bodyl1, Bodyk,

. . . ,

βi ← Bodylcl , Bodyk.

Lemma 4. If Π is a recursion-free program and c a constraint with at least one
positive atom, then Π ∪ {c} is equivalent to Π⊕ c.
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Proof: Suppose thatM is a stable model of Π∪{c}. Then,M is stable model of
Π andM |= ĉ. Then, for any assignment η, there are two cases.

Case 1: There exists βi, 1 ≤ i ≤ m such thatM 6|= βiη. In this case, consider any
βjη, 1 ≤ j 6= i ≤ m. Clearly, if βjη 6∈ M, then βjη 6∈ M1(Π⊕c) according
to the construction of the rule set (*). On the other side, if βjη ∈ M, then
there exists a rule in Π of the form βj ← Bodyjk, 1 ≤ jk ≤ jbj such that
M |= Bodyjkη. Then,M |= [Bodyjk∪{¬βi}]η. Then, βjη is inM1(Π⊕c)
since it is justified by the rule βj ← not βi, Bodyjk in the rule set (*).

Case 2: There exists γj, 1 ≤ j ≤ l such thatM |= γjη. In this case, there exists
a rule of the form γj ← Bodyjk, 1 ≤ k ≤ cj such that M |= Bodyjkη.
Similarly, consider any βiη, 1 ≤ i ≤ m. Again, if βiη 6∈ M, then βiη 6∈
M1(Π ⊕ c). If βiη ∈ M, then there exists a rule in Π of the form βi ←
Bodyis, 1 ≤ is ≤ ibi such thatM |= Bodyisη. Then, βiη is inM1(Π⊕ c)
since it is justified by the rule βi ← Bodyjk, Bodyis in the rule set (*).

In addition, for all other atoms α not in the positive body of c, Π and Π ⊕ c have
the same set of rules whose head is α. This shows that for all ground atoms, it is
inM iff it is inM1(Π⊕ c). It follows thatM is a stable model of Π⊕ c as Π⊕ c
is a recursion-free program.

Suppose that M is a stable model of Π but does not satisfy c. Then, there
exists an assignment η such that for all βi, 1 ≤ i ≤ m, βiη ∈ M and for all
γj, 1 ≤ j ≤ l, γjη 6∈ M. We use contradiction to prove thatM is not a stable
model of Π⊕c. Otherwise, β1η ∈M1(Π⊕c), there exists a rule in (*) that justifies
β1η when i = 1. It cannot be of the form β1 ← not βj, Bodyk since βjη ∈ M.
Suppose that it is of the form β1 ← Bodyij, Bodyk. Then, M |= Bodyijη. It
follows thatM |= γiη because of the rule γi ← Bodyij is in Π, a contradiction.
This shows thatM is not a stable model of Π⊕ c.

Finally suppose thatM is not a stable model of Π. Then there are two cases.

Case 1: There exists a ground atom that is inM but not inM1(Π). In this case,
this ground atom is not inM1(Π ⊕ c) either according to the construction
of the rule set (*).

Case 2: There exists a ground atom that is inM1(Π) but not inM. If this atom
is not in the positive body of c, then it is inM1(Π⊕ c) as well. Hence,M
is not a stable model of Π⊕c. Suppose that it is of the form βiη, 1 ≤ i ≤ m.
Since it is inM1(Π), there exists a rule of the form βi ← Bodyk such that
M |= Bodykη. Hence,M |= [Bodyk ∪ {¬βi}]η as βiη 6∈ M. Therefore,
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βiη ∈M1(Π⊕c) as it is justified by the rule βi ← not βi, Bodyk. It follows
thatM is not a stable model of Π⊕ c.

No matter which case is,M is not a stable model of Π⊕ c.
This shows that Π ∪ {c} is equivalent to Π⊕ c. �

Corollary 10. If Π is a recursion-free program and C a set of constraints, then
Π ∪ C is equivalent to a recursion-free program.

Proof: Note that for eliminating constraints← not γ1, . . . , not γl without positive
body, one only needs to convert it to a non-recursive rule γ1 ← not γ1, . . . , not γl.
The assertion follows from Lemma 4 and this fact since constraints can be elim-
inated one-by-one. That is, for a constraint c and a set of constraints C, M is a
stable model of Π ∪ C ∪ {c} iffM is a stable model of Π ∪ {c} andM satisfies
C iffM is a stable model of Π⊕ c andM satisfies C. �

Finally, we are able to prove Proposition 9.
Proof of Proposition 9: Proposition 9 follows from Lemmas 2 and 3 and Corol-
lary 10. �

Theorem 2. Let Π be a program. The following four statements are equivalent
on arbitrary structures.

1. Π is bounded.
2. Π is equivalent to a recursion-free program.
3. Π is equivalent to a loop-free program.
4. Π is first-order definable.

Here, we prove 4⇒ 1 for Theorem 2.
For this purpose, we need to introduce some background knowledge and re-

sults on least fixed-point logic. Let τ be a vocabulary and P a new predicate not
in τ with the arity n. Let φ(−→x , P ) be a first-order formula, where −→x is the tuple
of all free variables in φ with length n, and P only occurs positively in φ (i.e.
every occurrence of P in φ is in the scope of even numbers of negations4). Given

4Here we assume that φ is constructed only from connectives of ¬, ∧ and ∨, while→ and↔
are defined in terms of ¬, ∧ and ∨.
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a structure A of τ , the formula φ(−→x , P ) defines an operator Φ(T ) from an n-ary
relation to an n-ary relation on Dom(A):

Φ(T ) = {−→a ∈ Dom(A)n : A |= φ(−→x /−→a , T )}.

Starting from the empty set, Φ gives rise to a sequence of n-ary relations as
follows:

Φ0(−→x , P ) = ∅;
Φt(−→x , P ) = Φ(

⋃
r<t Φr(−→x , P )).

Since P only occurs positively in φ, the sequence Φ1(−→x , P ), . . . ,Φt(−→x , P ), . . .
always increases. Thus, there exists a least ordinal k such that Φk(−→x , P ) =
Φt(−→x , P ) = Φ∞(−→x , P ), where t > k. Since P occurs positively in φ, the opera-
tor Φ has a least fixed-point T0 in the sense that Φ(T0) = T0 and for every T such
that Φ(T ) = T , T0 ⊆ T . We use Φ∞(−→x , P ) to denote the least fixed point of Φ

This defines a corresponding iterative formula φt(−→x , P ) in the sense that for
any −→a ∈ Dom(A)n, A |= φt(−→x /−→a , P ) iff −→a ∈ Φt(−→x , P ); A |= φ∞(−→x /−→a , P )
iff −→a ∈ φ∞(−→x , P ). We write φ∞(−→x , P ) (φ∞ for short) to denote the the least
fixed-point formula obtained from φ(−→x , P ).

A fixed-point query is a formula in fixed-point logic that defines a global rela-
tion. More precisely, let φ(x1, . . . , xn) be a formula in fixed-point logic of vocab-
ulary τ , where x1, . . . , xn are all the free variables in φ. We say that φ(x1, . . . , xn)
expresses an n-ary global relation of τ if for every structureA of τ , φ(x1, . . . , xn)
yields the following n-ary relation on Dom(A):

{(a1, . . . , an) | A |= φ(a1, . . . , an)}.

The notion of definability and boundedness can be defined for least fixed-point
logic as well. LetK be a class of τ -structures. We say that a formula ψ(−→y ), where
−→y is the tuple of all free variables in ψ with length n, of τ defines the fixed-point
φ∞(−→x , P ) on K iff for every A ∈ K and every −→a ∈ Dom(A)n,

A |= φ∞(−→x /−→a , P ) iff A |= ψ(−→y /−→a ).

We say that the least-fixed point formula φ∞(−→x , P ) is bounded on K if there
exists a fixed natural number k such that for allA ∈ K and every −→a ∈ Dom(A)n,
A |= φ∞(−→x /−→a , P ) iff A |= φk(−→x /−→a , P ).

Barwise and Moschovakis [11] revealed the important correspondence be-
tween definability and boundedness on arbitrary structures in least fixed-point
logic.
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Lemma 5. [11] Let K be a class of τ -structures which is first-order finitely ax-
iomatizable5. A least fixed-point formula is bounded on K iff it is defined by a
first-order formula on K.

We shall prove 4 ⇒ 1 based on Lemma 5. The basic ideas are divided into
two steps. First, we show that for each program, we can construct a program with
a single intensional predicate to simulate the original program. Then we show that
each program with a single intensional predicate can be translated to an equivalent
fixed-point formula.

Let Π be a program. Let {P1, . . . , Pn} be the set of intensional predicates of
Π. Suppose that k is the maximal arity among all Pi, (1 ≤ i ≤ n). Let 0, 1, . . . , n
be n+ 1 distinguishable new constants. Construct a new predicate P whose arity
is k + 1. Let ΠS be the program obtained from Π by simultaneously replacing
each atom Pi(

−→
ti ) in Π with P (

−→
ti , 0, . . . , 0, i), where the number of occurrences

of 0 is equal to k − |−→ti |. We show that ΠS simulates Π.

Lemma 6. Let Π be a program and ΠS be the program constructed above. Let
M be a structure of τ(Π). We construct a structureMS on τext(Π) ∪ {P} such
that

• the domain ofMS is M ∪ {0, 1, . . . , n};

• for all extensional predicates Q of Π, QM
S

= QM;

• for all constants c in Π, cM
S

= cM;

• for all intensional predicates Pi, Pi(−→a ) ∈M iff P (−→a , 0, . . . , 0, i) ∈MS .

Then, for any integer k, Pi, and −→a that matches the arity of Pi, Pi(−→a ) ∈Mk(Π)
iff P (−→a , 0, . . . , 0, i) ∈ (MS)k(ΠS).

Proof: This assertion follows from the constructions and definitions by induction
on k. �

Lemma 6 shows that ΠS can simulate Π in the sense that every intensional
atom Pi(

−→
ti ) in Π is associated with the intensional atom P (

−→
ti , 0, . . . , 0, i) in ΠS .

Now we show that each program with a single intensional predicate can be
equivalently transferred into a fixed-point formula on a class of axiomatizable

5That is, there exists a first-order sentence φ on τ whose models are exactly captured by K.
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structures. Let Π be a program that only contains a single intensional predicate,
say P . Then, all the heads of rules in Π are of the form P (−→x ) since Π is normal-
ized. Let P ∗ be a new predicate that has the same arity as P . Let ψ(Π, P ∗) be the
first-order formula obtained from Π and P ∗ by two steps: (1) construct a program
Π∗ by replacing every occurrence of P (

−→
t ) in the negative bodies of any rules in

Π with P ∗(
−→
t ), (2) let ψ(Π, P ∗) be the formula

∨
r∈Π∗ ∃

−→y B̂ody(r), where −→y is
the set of local variables in rule r. Clearly, ψ(Π, P ∗) is a first-order formula of the
vocabulary τ(Π) ∪ {P ∗}, where P only occurs positively and −→x are all the free
variables.

LetM be a τ(Π)-structure. ByM∗, we denote the structure of the vocabulary
τ(Π) ∪ {P ∗} such that

• Dom(M∗) = Dom(M);

• for all −→a , P ∗(−→a ) ∈M∗ iff P (−→a ) ∈M;

• the interpretations of all constants and other predicates are the same as those
inM.

Proof: If Π is defined by the first-order sentence φ, then K is axiomatized by the
first-order sentence φ ∧ ∀−→x (P (−→x )↔ P ∗(−→x )). �

The fixed-point formula ψ(Π, P ∗)∞(−→x , P ) simulates the program Π on all
stable models of Π. By induction on k, the following lemma holds.

Lemma 7. Let Π be a program that has a single intensional predicate P , andM
a stable model of τ(Π). Suppose that ψ(Π, P ∗) andM∗ are constructed as above.
Then, for any integer k and any −→a , P (−→a ) ∈Mk(Π) iff −→a ∈ ψ(Π, P ∗)k(−→x , P ).

Lemma 7 shows that Π∗ can simulate Π on the class of structures K. Conse-
quently, the answer set program Π can be simulated by the fixed-point formula Π̂∗

on K. Together with Lemma 5, we can finally prove Theorem 2 in this paper.
We finish the proof of Theorem 2 as follows.

Proof of Theorem 2: We only need to prove 4⇒ 1. From Lemma 6, it suffices to
prove the case in which the program only contains a single intensional predicate.
Let Π be such a program, which has a single intensional predicate P and is defined
by a first-order sentence φ. Let K = {M∗ | M ∈ AS(Π)}. Then, K is first-
order axiomatized by φ ∧ ∀−→x (P (−→x ) ↔ P ∗(−→x )). By Lemma 7, the fixed-point
formula ψ(Π, P ∗)∞(−→x , P ) on K is defined by the formula φ∗ ∧ P ∗(x), where φ∗
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is obtained from φ by simultaneously replacing each occurrence of P (
−→
t ) with

P ∗(
−→
t ). Then, by Lemma 5, ψ(Π, P ∗)∞(−→x , P ) is bounded on K. Again, by

Lemma 7, Π is bounded. �
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