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Abstract

In this paper, we propose a translation from normal first-order logic programs
under the stable model semantics to first-order sentences on finite structures.
Specifically, we introduce ordered completions which are modifications of
Clark’s completions with some auxiliary predicates added to keep track of
the derivation order. We show that, on finite structures, classical models of
the ordered completion of a normal logic program correspond exactly to the
stable models of the program. We also extend this result to normal programs
with constraints and choice rules.

From a theoretical viewpoint, this work is an important step to clar-
ify the relationships between normal logic programming under the stable
model semantics and classical first-order logic. It follows that, on finite
structures, every normal program can be defined by a first-order sentence
with auxiliary predicates. Interestingly, such a translation does not exist if
infinite structures are considered or auxiliary predicates are prohibited. Also,
there is no translation from disjunctive programs to first-order logic assuming
NP 6= coNP .

From a practical viewpoint, this work leads to a new type of ASP solver by
grounding on a program’s ordered completion instead of the program itself.
We report on a first implementation of such a solver based on several opti-
mization techniques, which compares favorably to other major ASP solvers
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according to the experimental results, especially on large domains.

Keywords: answer set programming, the ordered completion, knowledge
representation, nonmonotonic reasoning

1. Introduction

This work is about translating logic programs under the stable model
(answer set) semantics [13] to first-order logic. Viewed in the context of
formalizing the semantics of logic programs in classical logic, work in this
direction goes back to that of Clark [5] who gave us what is now called
Clark’s completion semantics, on which our work, like most other work in
this direction, is based.

In terms of the stable model semantics, Clark’s completion semantics is
too weak in the sense that not all models of Clark’s completion are stable
models, unless the programs are “tight” [9]. Various ways to remedy this
have been proposed, particularly in the propositional case given the recent
interest in Answer Set Programming (ASP) and the prospect of using SAT
solvers to compute answer sets [20]. This paper considers first-order logic
programs, and the prospect of capturing the answer sets of these programs
in first-order logic.

A crucial consideration in work of this kind is whether auxiliary symbols
(in the propositional case) or predicates (in the first-order case) can be used.
For propositional logic programs, Ben-Eliyahu and Dechter’s translation [2] is
polynomial in space but uses O(n2) auxiliary variables, while Lin and Zhao’s
translation [20] using loop formulas is exponential in the worst case but does
not use any auxiliary variables. Chen et al. [3] extended loops and loop
formulas to first-order case and showed that for finite domains, the answer
sets of a first-order normal logic program can be captured by its completion
and all its first-order loop formulas. However, in general, a program may
have an infinite number of loops and loop formulas. But this seems to be
the best that one can hope for if no auxiliary predicates are used: it is well-
known that transitive closure, which can be easily written as a first-order
logic program, cannot be captured by any finite first-order theory on finite
structures [6].

The situation is different if we introduce auxiliary predicates. Our main
technical result of this paper is that by using some additional predicates that
keep track of the derivation order from bodies to heads in a program, we
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can modify Clark’s completion into what we call the ordered completion that
captures exactly the answer set semantics on finite structures.

The rest of the paper is organized as follows. We recall some background
knowledge in the next section. In section 3, we define our ordered completions
for first-order normal logic programs, and show that they capture exactly
the stable models of the programs on finite structures. We then show that
this result can be extended to normal programs with constraints and choice
rules. However, it cannot be extended to disjunctive logic programs and
does not hold on arbitrary structures. Specifically, in section 3 we show that,
on arbitrary structures, there exist some normal programs that cannot be
captured by any first-order theories, and on finite structures, there exist some
disjunctive programs that cannot be captured by any first-order sentences
provided NP 6= coNP . We then present some techniques for optimizing the
ordered completion in section 4, based on which, we have implemented a first-
order solver and we report the implementation as well as the experimental
results in section 5. Then, we discuss some related work in section 6. Finally,
we conclude the paper in section 7.

2. Preliminaries

We assume readers are familiar with some basic notions and notations
of classical first-order logic. Here, we consider a finite first-order language
without function symbols but with equality. In particular, an atom is called
an equality atom if it is of the form t1 = t2, and a proper atom otherwise.

Let σ and σ1 be two signatures such that σ ⊆ σ1. Given a structure
A of signature σ1, we say that the reduct of A on σ, denoted by A ↑ σ, is
the σ-structure that agrees with A on all interpretations of predicates and
constants in σ. Conversely, we say that A is an expansion of A ↑ σ to σ1.

A normal logic program (program for short) is a finite set of rules of the
following form

α ← β1, . . . , βk, not γ1, . . . , not γl, (1)

where α is a proper atom, 0 ≤ k ≤ l, and βi (1 ≤ i ≤ k), γj (1 ≤ j ≤ l)
are atoms. Given a rule r of form (1), we call α the head of r, denoted
by Head(r), and {β1, . . . , βk, not γ1, . . . , not γl} the body of r, denoted by
Body(r). In particular, we call {β1, . . . , βk} the positive body of r, denoted
by Pos(r), and {γ1, . . . , γl} the negative body of r, denoted by Neg(r). We
call a variable in a rule a body variable if it occurs in the body but not the
head of the rule.
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Given a program Π, a predicate is called intensional if it occurs in the head
of some rule in Π, and extensional otherwise. The signature of Π contains all
intensional predicates, extensional predicates and constants occurring in Π.

For convenience and without loss of generality, in the following we assume
that programs are normalized in the sense that for each intensional predicate
P , there is a tuple −→x of distinct variables matching the arity of P such that
for each rule, if its head mentions P , then the head must be P (−→x ). So all
the rules with P occurring in the heads in a program can be enumerated as:

P (−→x ) ← Body1, · · · , P (−→x ) ← Bodyk.

2.1. Clark’s completion

Our following definition of Clark’s completion is standard except that we
do not make completions for extensional predicates.

Given a program Π, and a predicate P in it, Clark’s Completion of P in
Π is the following first-order sentence [5]:

∀−→x (P (−→x ) ↔
∨

1≤i≤k

∃−→yi B̂odyi), (2)

where

• P (−→x ) ← Body1, . . . , P (−→x ) ← Bodyk are all the rules whose heads
mention the predicate P ;

• −→yi is the tuple of body variables in P (−→x ) ← Bodyi;

• B̂odyi is the conjunction of elements in Bodyi by simultaneously re-
placing the occurrences of not by ¬.

Clark’s Completion (completion for short if clear from the context) of Π,
denoted by Comp(Π), is then the set of Clark’s completions of all intensional
predicates in Π.

Example 1. [Transitive Closure (TC)] The following normal logic program
TC computes the transitive closure of a given graph:

S(x, y) ← E(x, y)

S(x, y) ← E(x, z), S(z, y),
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where E is the only extensional predicate of TC, representing the edges of a
graph, and S is the only intensional predicate of TC. Ideally, the intensional
predicate computes the transitive closure (i.e. all the paths) of a given graph.
The Clark’s Completion of TC is the following first-order sentence:

∀xy(S(x, y) ↔ (E(x, y) ∨ ∃zE(x, z) ∧ S(z, y))).

2.2. The stable model semantics for propositional programs

In the propositional case, the stable model semantics for normal propo-
sitional programs was proposed by Gelfond and Lifschitz [13], and later
extended to become answer set semantics for propositional programs that
can have classical negation, constraints, disjunctions, and other operators
[7, 12, 14, 18, 22, 23]. Several equivalent characterizations are proposed, in-
cluding the Gelfond-Lifschitz transformation [13], the logic of GK [21], loop
formulas [20], equilibrium logic [27], general reduction [12], and so on. Here,
we briefly review the standard Gelfond-Lifschitz transformation semantics
[13] and the loop formula characterization in the propositional case [20], as
they are needed in the proof of our main theorem.

Let Π be a propositional program and A a set of atoms. We say that A
satisfies a rule r in Π if Head(r) ∈ A whenever Pos(r) ⊆ A and Neg(r)∩A =
∅. Then, A satisfies Π if it satisfies all rules in Π. The reduct of Π relative
to A, denoted by ΠA, is the program obtained from Π by (i) deleting every
rule r in Π whose negative body is not satisfied by A (i.e. not disjoint with
A), and (ii) deleting all negative atoms in other rules. Then, A is said to be
a stable model (or an answer set) of Π iff A satisfies Π and there does not
exist A′ ⊂ A such that A′ satisfies ΠA.

An equivalent characterization of the stable model semantics is the loop
formula approach [20]. Let Π be a program. The (positive) dependency graph
of Π, denoted by GΠ, is the finite graph (V, E), where V is the set of atoms
occurring in Π, and (x, y) is an edge in E iff there exists a rule r ∈ Π whose
head is x and its positive body contains y. A set of atoms L is said to be a
loop if there exists a cycle in GΠ that goes through only and all the nodes
in L. Let x be a propositional atom. If there exists a rule r ∈ Π such that
its head is x, then we say that the body of r is a support of x in Π. Let L
be a loop, and x an atom in L. We say that a support Body of x in Π is
an external support with respect to L if the positive part of Body contains
no atoms from L. Given a loop L, we use ES(L, Π) to denote the set of all
external supports of some element in L with respect to L in Π. Then, the
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loop formula of L in Π, denoted by LF (L, Π), is the following formula

∨
x∈L

x →
∨

Body∈ES(L,Π)

B̂ody.

Lin and Zhao [20] showed that, in the propositional case, a set of atoms is
an answer set (stable model) of a finite program if and only if it is a model
of the Clark’s completion together with all loop formulas of the program.

2.3. The stable model semantics for first-order programs

In Gelfond and Lifschitz’s seminal work [13], the stable model/answer
set semantics for first-order logic programs (i.e. programs with variables) is
defined via grounding on Hebrand structures. Recently, there has been in-
terest in defining the stable model semantics for first-order programs directly
on a first-order level [3, 4, 11, 21, 26, 28]. Such semantics usually consider
arbitrary structures instead of Herbrand structures. Nevertheless, for nor-
mal logic programs, all of them coincide with Gelfond and Lifschitz’s original
semantics [13] when only considering Herbrand structures [4, 11, 17, 21, 28].

We briefly review the translational semantics [11, 21] by defining the
stable model semantics of logic programs in second-order logic. Under our
context, we only consider normal first-order logic programs.

Given a normal logic program Π, let ΩΠ = {Q1, . . . , Qn} be the set of
all intentional predicates of Π. Let Ω∗

Π = {Q∗
1, . . . , Q

∗
n} be a new set of

predicates corresponding to ΩΠ, where each Q∗
i in Ω∗

Π has the same arity of
predicate Qi in ΩΠ. Given a rule r in Π of the form

α ← β1, . . . , βm, not γ1, . . . , not γl,

by r̂, we denote the universal closure of the following formula

β1 ∧ · · · ∧ βm ∧ ¬γ1 ∧ · · · ∧ ¬γl → α;

by r∗, we denote the universal closure of the following formula

β∗1 ∧ · · · ∧ β∗m ∧ ¬γ1 ∧ · · · ∧ ¬γl → α∗,

where α∗ = Q∗(−→x ) if α = Q(−→x ) and

β∗i , (1 ≤ i ≤ m) =

{
Q∗

j(
−→
tj ) if βi = Qj(

−→
tj ) and Qj ∈ ΩΠ

βi otherwise.
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By Π̂, we denote the first-order sentence
∧

r∈Π r̂; by Π∗, we denote the first-
order sentence

∧
r∈Π r∗. Let Π be a normal logic program. By SM(Π), we

denote the following second-order sentence:

Π̂ ∧ ¬∃Ω∗
Π((Ω∗

Π < ΩΠ) ∧ Π∗),

where Ω∗
Π < ΩΠ is the abbreviation of the formula

∧
1≤i≤n

∀−→x (Q∗
i (
−→x ) → Qi(

−→x )) ∧ ¬
∧

1≤i≤n

∀−→x (Qi(
−→x ) → Q∗

i (
−→x )).

This second-order sentence is used to capture the stable models of Π. We
call this the translational semantics.

Here, for our purposes, we present an alternative characterization of this
semantics by grounding. Similar to Gelfond and Lifschitz’s grounding ap-
proach, we define the stable model semantics by grounding into the proposi-
tional case. However, we consider grounding on arbitrary structures instead
of Hebrand structures. It is worth mentioning that, on arbitrary structures,
the unique name assumption (i.e. distinct constants must be interpreted dif-
ferently) does not necessarily hold. Consequently, we will not assume it in
our grounding procedure.

Given a program Π, and a first-order structure M of the signature used
in Π, we use the interpretations of M on the constants and extensional
predicates to ground Π.

Definition 1. The grounding of a program Π on a structure M, written ΠM
below, is the union of the following three sets:

1. The set of all instances of the rules in Π under M, here an instance of
a rule under M is the result of simultaneously replacing every constant
in the rule by its interpretation in M, and every variable x in the rule
by a domain object d in M;

2. EQM = {u = u | u is a domain object in M}; 1

3. ExtM = {P (−→u ) | P is an extensional predicate and −→u ∈ PM}, here
PM is the interpretation of P in M.

We now have the following definition:

1Note that here u = u is a propositional atom but not an equality atom.
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Definition 2. Let Π be a normal logic program and M a structure. We say
that M is a stable model (or an answer set) of Π if the following set

EQM ∪ ExtM ∪ IntM

is an answer set of ΠM in the propositional case, where IntM is the following
set

{P (−→u ) | P is an intensional predicate, and −→u ∈ PM}.
Example 2. Consider the following program Π0

P (x) ← not Q(x),

P (a1),

Q(a2).

According to Gelfond and Lifschitz’s original stable model semantics [13],
the unique stable model/answer set of Π0 is X = {P (a1), Q(a2)}.

Now, let us reconsider the program Π0 under the new semantics (i.e. De-
finition 2). Notice that both P and Q are intensional predicates. According
to Definition 2, the following structure M0, where

M0 = {d1, d2}, a1
M0 = d1, a2

M0 = d2, P
M0 = {d1}, QM0 = {d2}

is a stable model of Π0. In fact, this structure M0 corresponds to the unique
stable model X of Π0 under the original semantics. Notice that, similar to
classical first-order logic, we distinguish from a1 and d1 here (also a2 and d2)
because the former is a constant in the language while the latter is a domain
element.

However, under the new semantics, M0 is not the only stable model of
Π0. The following structure M1, where

M1 = {d1}, a1
M1 = d1, a2

M1 = d1, P
M1 = QM1 = {d1}

is also a stable model of Π0. Here, both a1 and a2 are mapped to the same
domain element d1. This is allowed as the unique name assumption (i.e.
distinct constants must be interpreted to different domain elements) is not
assumed in the new semantics.

Also, the new semantics may allow new objects in the stable models. For
instance, the following structure M2, where

M2 = {d1, d2, d3}, a1
M2 = d1, a2

M2 = d2, P
M2 = {d1, d3}, QM2 = {d2}
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is a stable model of Π0 as well. Notice that d3 ∈ PM2 although d3 is not
mapped from any constants in the program.

In fact, this definition of stable model (answer set) is nothing new. The
grounding technique in Definition 1 is basically the same as the standard one
in [13] except that here it is done on an arbitrary structure instead of the
Herbrand structure. The only reason we propose this alternative definition
is that it is more suitable for understanding the proof of our main theorem
(see Theorem 2). Also, the following theorem shows that this semantics by
grounding on arbitrary structures actually coincides with the translational
semantics mentioned previously in this section.

Theorem 1. Let Π be a normal logic program whose signature is σ, and A
a finite σ-structure. Then, A is a stable model of Π (under Definition 2) iff
A is a model of SM(Π).

Proof: For convenience, we use Gr(A) to denote EQA∪ExtA∪IntA. First,
Gr(A) satisfies ΠA iff Gr(A) satisfies all instances of the rules in Π under
M iff Gr(A) satisfies every rη, where r ∈ Π and η is an assignment iff A
satisfies r̂ for all r ∈ Π iff A |= Π̂.

Second, we show that A |= ¬∃Ω∗
Π((Ω∗

Π < ΩΠ) ∧ Π∗) iff there does not
exist X ⊂ Gr(A) such that X satisfies ΠM

Gr(A). We have A |= ∃Ω∗
Π((Ω∗

Π <
ΩΠ) ∧ Π∗) iff there exists a structure A′ such that A′ has the same domain
as A, interprets all constants and extensional predicates the same as A, but

• for all intensional predicates Q of Π, QA′ ⊆ QA, and for some inten-
sional predicates Q, QA′ ⊂ QA;

• for every assignment η and every rule r of form (1) in Π, if for all i
(1 ≤ i ≤ k), βiη ∈ A′ and for all j (1 ≤ j ≤ l), γjη 6∈ A, then αη ∈ A′

iff there exists X ⊂ Gr(A) satisfying (rη)Gr(A) for every pair r, η, where
r ∈ Π and η is an assignment (let X = EQA ∪ExtA ∪ IntA′) iff there exists
X ⊂ Gr(A) satisfying ΠM

Gr(A).
This shows that the original assertion holds.

As a consequence of the above Theorem and Theorem 1 in [11], Definition
2 basically coincides with Gelfond and Lifschitz’s original semantics on Her-
brand structures. The main difference is that we consider not only Herbrand
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structures but also arbitrary ones. For the latter, we do not need the unique
name assumption (see Example 2).

Notice that the above definitions can be applied to infinite structures
as well since the stable model (answer set) semantics for infinite proposi-
tional programs is well defined by using Gelfond-Lifschitz transformation
[13]. However, in this paper, we are mainly concerned with finite structures
unless stated otherwise (particularly in Section 3.5).

3. The Ordered Completion

It is well-known that Clark’s completion does not fully capture the answer
set semantics because of positive cycles. As a simple example, the following
program

p ← q

q ← p

has one answer set ∅, but its Clark’s completion p ↔ q has two models {p, q}
and ∅. Here, we propose a modification of Clark’s completion to address
this issue. The main technical property of our new translation is that for
each finite first-order logic program, our translation yields a finite first-order
theory that captures exactly the finite stable models of the program. The
ideas behind such translation can be best illustrated by simple propositional
programs. Consider the program mentioned above. We introduce four aux-
iliary symbols Tpq, Tpp, Tqq, Tqp (read, e.g. Tpq as from p to q), and translate
this program into the following theory

(p → q) ∧ (q → p),

p → (q ∧ Tqp ∧ ¬Tpq),

q → (p ∧ Tpq ∧ ¬Tqp),

Tpq ∧ Tqp → Tpp,

Tqp ∧ Tpq → Tqq.

The first sentence is the direct encoding of the two rules. The second one is
similar to the other side of Clark’s completion for p except that we add Tqp

and ¬Tpq: for p to be true, q must be true and it must be the case that q is
used to derive p but not the other way around. The third sentence is similar,
and the last two sentences are about the transitivity of the T atoms. It can
be checked that in all models of the above sentences, both p and q must be
false.
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3.1. Definition of the ordered completion

In general, let Π be a first-order normal logic program, and ΩΠ its set of
intensional predicates. For each pair of predicates (P,Q) (P and Q might be
the same) in ΩΠ, we introduce a new predicate ≤PQ, called the comparison
predicate, whose arity is the sum of the arities of P and Q. The intuitive
meaning of ≤PQ (−→x ,−→y ), read as from P (−→x ) to Q(−→y ), is that P (−→x ) is used
for deriving Q(−→y ). In the following, we use infix notation for ≤PQ and write
≤PQ (−→x ,−→y ) as −→x ≤PQ

−→y .

Definition 3 (Ordered Completion). Let Π be a normal logic program.
The ordered completion of Π, denoted by OC(Π), is the set of following
sentences:

• For each intensional predicate P , the following sentences:

∀−→x (
∨

1≤i≤k

∃−→yi B̂odyi → P (−→x )), (3)

∀−→x (P (−→x ) →
∨

1≤i≤k

∃−→yi (B̂odyi ∧
∧

Q(−→z )∈Posi,Q∈ΩΠ

−→z ≤QP
−→x ∧ ¬−→x ≤PQ

−→z )), (4)

where we have borrowed the notations used in the definition of Clark’s
completion, and further assume that Posi is the positive part of Bodyi

and Q(−→z ) ranges over all the intensional atoms in the positive part of
Bodyi;

• For each triple of intensional predicates P , Q, and R (two or all of
them might be the same) the following sentence:

∧
P,Q,R∈ΩΠ

∀−→x−→y −→z (−→x ≤PQ
−→y ∧ −→y ≤QR

−→z → −→x ≤PR
−→z ). (5)

In the following, we use MComp(Π) to denote the set of the formulas (3)
and (4), and TranS(Π) the set of formulas (5). So OC(Π) = MComp(Π)∪
TranS(Π).

11



Clearly, for finite programs, OC(Π) is finite, and the predicates occurring in
OC(Π) are all the predicates occurring in Π together with all the comparison
predicates {≤PQ | P,Q ∈ ΩΠ}.

Notice that the Clark’s completion of a predicate can be rewritten as two
parts:

∀−→x (
∨

1≤i≤k

∃−→yi B̂odyi → P (−→x )),

∀−→x (P (−→x ) →
∨

1≤i≤k

∃−→yi B̂odyi).

Thus, the only difference between MComp(Π) and Comp(Π) is that the
former introduces some assertions on the comparison predicates, which in-
tuitively mean that there exist derivation paths from the intensional atoms
in the body to head but not the other way around (see Equation (4)). In
addition, TranS(Π) simply means that the comparison predicates satisfy
“transitivity.”

Proposition 1. Let Π be a normal logic program. Then, OC(Π) introduces
m2 new predicates whose arities are no more than 2s, and the size of OC(Π)
is O(s×m3 + s× n), where m is the number of intensional predicates of Π,
s the maximal arity of the intensional predicates of Π and n the length of Π.

Example 3. [Transitive Closure continued] Recall the Transitive Closure
program TC presented in Example 1. In this case, since the only intensional
predicate is S, we only need to introduce one additional predicate ≤SS, whose
arity is 4. The ordered completion of TC consists of the following sentences:

∀xy ((E(x, y) ∨ ∃z(E(x, z) ∧ S(z, y))) → S(x, y)), (6)

∀xy (S(x, y) → (E(x, y) ∨ ∃z(E(x, z) ∧ S(z, y)

∧−→zy ≤SS
−→xy ∧ ¬−→xy ≤SS

−→zy))), (7)

∀xyuvzw (−→xy ≤SS
−→uv ∧ −→uv ≤SS

−→zw → −→xy ≤SS
−→zw). (8)

Intuitively, one can understand −→xy ≤SS
−→uv to mean that S(x, y) is used to

establish S(u, v). So the sentence (7) means that for S(x, y) to be true, either
E(x, y) (the base case), or inductively, for some z, E(x, z) is true and S(z, y)
is used to establish S(x, y) but not the other way around.

To see how these axioms work, consider the graph in Figure 1 with
four vertices a, b, c, d, with E representing the edge relation: E(a, b), E(b, a),
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E(c, a), E(c, d). Clearly, if there is a path from x to y, then S(x, y) (by
sentence (6)). We want to show that if there is no path from x to y, then
¬S(x, y). Consider S(d, a). If it is true, then since ¬E(d, a), there must be
an x such that

E(d, x) ∧ S(x, a) ∧ −→xa ≤SS

−→
da ∧ ¬−→da ≤SS

−→xa.

This is false as there is no edge going out of d.
Now consider S(a, c). If it is true, then there must be an z such that

E(a, z) ∧ S(z, c) ∧ −→zc ≤SS
−→ac ∧ ¬−→ac ≤SS

−→zc.
So z must be b, and

S(b, c) ∧ −→bc ≤SS
−→ac ∧ ¬−→ac ≤SS

−→
bc. (9)

Since S(b, c) is true and there is no edge from b to c, there must be a y such
that

E(b, y) ∧ S(y, c) ∧ −→yc ≤SS

−→
bc ∧ ¬−→bc ≤SS

−→yc.

So y must be a, and

S(a, c) ∧ −→ac ≤SS

−→
bc ∧ ¬−→bc ≤SS

−→ac

However, this contradicts with (9).
Notice that the Clark’s completion of TC, i.e. ∀xy(S(x, y) ↔ (E(x, y) ∨

∃zE(x, z) ∧ S(z, y))) (see Example 1), does not assure that S is the transi-
tive closure of the edge relation. For instance, for the above, the following
interpretation on S

S(a, b), S(b, a), S(a, c), S(c, a), S(b, c), S(c, b), S(a, d), S(b, d), S(c, d)

satisfies the Clark’s completion of TC. However, there is no path from, e.g.
a to c, in the graph shown in Figure 1.

a b

c d

Figure 1: An example graph
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3.2. The main theorem

In order to introduce the main theorem, we first consider a notion called
derivation order, which is a reformulation of Fages’ “well-supportedness”
under our context [8]. Roughly speaking, a derivation order is a sequence
of ground atoms, in which the anterior ones are used to derive the posterior
ones.

Formally, a derivation order of a finite structure A on a program Π is a se-
quence of ground atoms P1(

−→a1), . . . , Pk(
−→ak) such that {P1(

−→a1), . . . , Pk(
−→ak)} =

IntA (see Definition 2), and for all i (1 ≤ i ≤ k), there exists a rule r ∈ Π
and an assignment η such that

• Head(r)η = Pi(
−→ai ),

• for all intensional atoms Q(
−→
t ) in Pos(r), Q(

−→
t )η ∈ {P1(

−→a1), . . . ,
Pi−1(

−−→ai−1)},

• for all intensional atoms Q(
−→
t ) in Neg(r), Q(

−→
t )η 6∈ IntA,

• for all extensional atoms Q(
−→
t ) in Pos(r) (Neg(r) resp.), Q(

−→
t )η ∈

ExtA (Q(
−→
t )η 6∈ ExtA resp.).

Example 4. Consider the following program Π1

p1 ← p2,

p2 ← p1,

p1 ← not p3.

Clearly, X = {p1, p2} is an answer set of Π1. According to the definition,
p1, p2 is a derivation order of X on Π1 but p2, p1 is not. This is because p1 is
used to derive p2 but not the other way around.

We show that derivation orders and answer sets are corresponded.

Lemma 2. Let Π be a normal logic program whose signature is σ, and A a
finite σ-structure. Then, A is an answer set of Π iff

(i) A |= Π̂;

(ii) there exists a (possibly many) derivation order of A on Π.
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Proof: According to the grounding definition (see Definition 1), it suffices
to prove this assertion in the propositional case.

On one hand, consider a finite propositional program Π and a set A of
atoms. IfA is an answer set of Π, thenA satisfies Π according to the Gelfond-
Lifschitz transformation semantics. In addition, we construct a sequence of
atoms {p1, p2, . . . , pk} ⊆ A as follows:

• for any i (1 ≤ i ≤ k), there exists a rule r in Π such that Head(r) = pi,
Pos(r) ⊆ {p1, . . . , pi−1} and Neg(r) ∩ A = ∅,

• there does not exist r in Π such that Pos(r) ⊆ {p1, . . . , pk}, Neg(r) ∩
A = ∅ and Head(r) 6∈ {p1, . . . , pk}.

Then, {p1, p2, . . . , pk} = A. Otherwise, {p1, p2, . . . , pk} |= ΠA but {p1, p2, . . . ,
pk} ⊂ A, a contradiction. Hence, {p1, p2, . . . , pk} is a derivation order of A
on Π.

On the other hand, suppose that A |= Π̂ and there exists a derivation or-
der of A on Π. To prove that A is an answer set of Π, it suffices to show that
there does not exist A′ ⊂ A such that A′ satisfies ΠA. Otherwise, let p be the
atom in A\A′ with the least ordinal in the derivation order. Then, according
to the definition, there exists a rule r such that Head(r) = p, Pos(r) ⊆ A′

(since p has the least ordinal in the derivation order) and Neg(r) ∩ A = ∅.
Therefore, Neg(r)∩A′ = ∅. It follows that A′ |= Pos(r) but A′ 6|= Head(r).
Hence, A′ does not satisfy rA, a contradiction.

Now we are able to present the following main theorem.

Theorem 2. Let Π be a normal logic program whose signature is σ, and A
a finite σ-structure. Then, A is an answer set of Π if and only if there exists
a model M of OC(Π) such that A is the reduct of M on σ.

Proof: On one hand, we show that every finite answer set A of Π can be
expanded to a model of OC(Π). By Lemma 2, there exists a derivation
order of A on Π. Then, based on it, we construct a finite structure M by
expanding A with the following interpretations on ≤PQ for each pair (P,Q)
of intensional predicates in Π:

−→a ≤PQ

−→
b iff there exists a path from Q(

−→
b ) to P (−→a ) in the

dependency graph of the ground program ΠA and the position of

P (−→a ) is before the position of Q(
−→
b ) in the derivation order,
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where −→a and
−→
b are two tuples of elements in the domain of A that match the

arities of P and Q respectively. In this case, we say that there is a derivation

path from P (−→a ) to Q(
−→
b ) (with respect to the derivation order).

We need to prove that M is a model of both TranS(Π) and MComp(Π).
Firstly, it is easy to see that M is a model of TranS(Π) by contradiction.
Secondly, we show that M is a model of MComp(Π) as well. Clearly, M is a
model of the first part of MComp(Π), i.e. Equation (3) since M is expanded
from A, a model of the Clark’s completion of Π. For the second part of
MComp(Π), i.e. Equation (4), we prove it by contradiction. Suppose that
M is not a model of Equation (4). Then,

M |=
∨

P∈ΩΠ

∃−→x (P (−→x ) ∧
∧

1≤i≤k

∀−→yi (B̂odyi →
∨

Q(−→z )∈Posi∩ΩΠ

¬−→z ≤QP
−→x ∨ −→x ≤PQ

−→z )).

Therefore, there exists P (−→a ) ∈ M such that for all assignments η and all

rules r whose head mentions P , if M |= B̂ody(r)η, then there exists an
intensional atom Q(−→z ) in the positive body of r such that M |= ¬−→z ≤QP−→x η or M |= −→x ≤PQ

−→z η.
Now, consider the position of P (−→a ) in the derivation order. There exists a

rule r and an assignment η satisfying the conditions mentioned above. Hence,
according to the conditions, for all intensional atom Q(

−→
t ) in the positive

body of r, we have that the ordinal of Q(
−→
t )η in the derivation order is less

than the ordinal of P (−→a ) in the derivation order. Hence, M |= −→
t ≤QP

−→x η

and M 6|= −→x ≤PQ
−→
t η, a contradiction.

This shows that M, expanded from A, is a model of OC(Π).
On the other hand, we prove that the reduct of any finite model M

of OC(Π) on σ must be an answer set of Π. Clearly, M ↑ σ is a model
of Comp(Π) since MComp(Π) |= Comp(Π). Hence, according to the loop
formula characterization of answer set semantics in the propositional case
[20], it suffices to show that for all loops L of the ground program ΠM↑σ,
the set of ground atoms EQM↑σ ∪ ExtM↑σ ∪ IntM↑σ is a model of its loop
formula.

We prove this by contradiction. Suppose that there exists a loop L of
the ground program ΠM↑σ such that the above set of ground atoms is not a
model of LF (L, ΠM↑σ). Then, there exists a ground atom P0(

−→a0) ∈ L and
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P0(
−→a0) ∈ IntM↑σ, and for every Q(

−→
b ) ∈ L, Q(

−→
b ) has no external support

with respect to L in the ground program ΠM↑σ.
SinceM is a model of MComp(Π), there exists a support Body0 of P0(

−→a0)

in the ground program ΠM↑σ such that for all ground atoms Q(
−→
b ) in the

positive body of Body0,
−→
b ≤QP0

−→a0 ∧ ¬−→a0 ≤P0Q

−→
b holds, where Q is an

intensional predicate of Π and
−→
b a tuple of elements in M that matches the

arity of Q. If every Q(
−→
b ) is not in L, then Body0 is an external support

of P0(
−→a0) with respect to L, a contradiction. Hence, there exists P1(

−→a1) in
the positive body of Body0 such that P1(

−→a1) ∈ IntM↑σ, P1(
−→a1) ∈ L and−→a1 ≤P1P0

−→a0 ∧ ¬−→a0 ≤P0P1

−→a1 holds.
Again, following the same procedure described above, there exists a sup-

port Body1 of P1(
−→a1), and a ground atom P2(

−→a2) in the positive body of Body1

such that P2(
−→a2) ∈ IntM↑σ, P2(

−→a2) ∈ L and −→a2 ≤P2P1

−→a1 ∧ ¬−→a1 ≤P1P2

−→a2

holds. Hence, we can get a sequence of ground atoms P0(
−→a0), P1(

−→a1), . . . ,
Pi(
−→ai ), . . . such that for all i, Pi(

−→ai ) ∈ IntM↑σ, Pi(
−→ai ) ∈ L. In addition,

both −−→ai+1 ≤Pi+1Pi

−→ai and ¬−→ai ≤PiPi+1

−−→ai+1 hold.
Next, we show that this sequence cannot be infinite due to the finiteness

of the structure M and the fact that the new comparison predicates satisfy
transitivity. Since M is finite, there exists k < l such that Pk(

−→ak) = Pl(
−→al )

in the above sequence. However, since for all i, −−→ai+1 ≤Pi+1Pi

−→ai holds, we
have that −→al ≤PlPk+1

−−→ak+1 holds as well according to the transitivity axioms.
Hence, −→ak ≤PkPk+1

−−→ak+1 holds since Pk(
−→ak) = Pl(

−→al ). This contradicts to the
fact that ¬−−→ak+1 ≤Pk+1Pk

−→ak holds.
This shows that M ↑ σ is an answer set of Π.

From the proof of the main theorem, we see that the basic idea of the
ordered completion is really that each atom in an answer set of a finite
program must be justified step-by-step. In this sense, a finite structure A is
an answer set of a program Π iff it is a model of Π and satisfies the following
conditions:

downgrading every ground atom P (−→a ) in A has some supports from ear-
lier stages. The “support” part is ensured by Clark’s completion, and
the “earlier stages” part is ensured by adding some assertions on the
comparison predicates (see Equation (4));

loop-free the above downgrading procedure does not contain a loop. This
is ensured by TranS(Π), which states that the comparison predicates
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satisfy transitivity;

well-foundedness the downgrading procedure will end at some step. This
is ensured by finiteness, i.e., only finite structures are taken into ac-
count.

Together with the above three conditions, each ground atom P (−→a ) in a finite
answer set A can be justified step-by-step, in which the track of justifying
this atom is captured by the comparison predicates.

3.3. Normal logic program with constraints

Recall that we have required the head of a rule to be a proper atom. If
we allow the head to be empty, then we have so-called constraints:

← β1, . . . , βk, not γ1, . . . , not γl, (10)

where βi (1 ≤ i ≤ k) and γj (1 ≤ j ≤ l) are atoms. A model is said to satisfy
the above constraint if it satisfies the corresponding sentence:

∀−→y ¬(β1 ∧ · · · ∧ βk ∧ ¬γ1 ∧ · · · ∧ ¬γl),

where −→y is the tuple of all variables occurring in (10). In the following, if c is
a constraint of form (10), then we use ĉ to denote its corresponding formula
above.

A normal logic program with constraints is then a finite set of rules and
constraints. The stable model (answer set) semantics can be extended to
normal logic programs with constraints: a model is an answer set of a pro-
gram with constraints if it is an answer set of the set of the program and
satisfies all the constraints.

Both Clark’s completion and our ordered completion can be extended
to normal logic programs with constraints: one simply adds the sentences
corresponding to the constraints to the respective completions.

Proposition 3. Let Π be a normal logic program whose signature is σ, C a
set of constraints, and A a finite σ-structure. Then, A is an answer set of
Π∪C iff there exists a model M of OC(Π)∪{ĉ | c ∈ C}, such that A is the
reduct of M on σ.
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Proof: A is an answer set of Π ∪ C iff A is an answer set of Π and A is a
model of {ĉ | c ∈ C} iff there exists M, which is a model of both OC(Π)
and {ĉ | c ∈ C} and whose reduct on σ is A iff there exists M, which is a
model of OC(Π) ∪ {ĉ | c ∈ C} such that A is the reduct of M on σ.

Example 5. The following program checks whether all the nodes of a given
graph can be reached from a given initial node.

R(a)

R(x) ← R(y), E(y, x)

← not R(x),

where E is the only extensional predicate representing the edges of the graph;
a is a constant representing the initial node; and R is the only intensional
predicate representing whether a node can be reached from a. The program
has a stable model iff all the nodes in the graph can be reached from a.
According to Proposition 3, this program can be captured by the following
sentence:

R(a) ∧ ∀xy(E(y, x) ∧R(y) → R(x))

∧ ∀x(R(x) → x = a ∨ ∃y(R(y) ∧ E(y, x) ∧ y ≤RR x ∧ ¬x ≤RR y))

∧ ∀xyz(x ≤RR y ∧ y ≤RR z → x ≤RR z)

∧ ∀xR(x).

3.4. Adding choice rules

Another widely used extension of normal logic program is to allow choice
rules of the following form:

{P (−→x )}, (11)

where P is a predicate and −→x is the tuple of variables associated with P .
Intuitively, this choice rule of P means that the intensional predicate P can
be interpreted arbitrarily in the stable models.

The stable model (answer set) semantics of normal logic programs with
choice rules (possibly with constraints as well) can be defined similarly by
grounding. More precisely, the set of ground rules of a choice rule of form
(11) on a structure M contains all rules of the form:

{P (−→u )},
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where −→u is a tuple of domain elements in M that matches the arity of P .
The set of ground constraints of a constraint of form (10) on a structure M
contains all the instances of the constraint under M.

The answer set semantics for propositional programs with choice rules
and constraints can be defined by Gelfond-Lifschitz transformation as well
[23]. Let p be a propositional atom and A a set of atoms. The reduct of
the choice rule {p} relative to A is p itself if p ∈ A, and empty (i.e. >)
otherwise. Again, a set A of propositional atoms is said to be an answer set
of a propositional program Π with choice rules and constraints if A |= Π 2

and A is the minimal model of ΠA.
Then, a structure A is said to be a stable model of a first-order normal

program Π with choice rules and constraints if EQA ∪ ExtA ∪ IntA is an
answer set of the ground program ΠA in the propositional case.

The following proposition shows that programs with choice rules can also
be captured by their ordered completions.

Proposition 4. Let Π be a normal logic program whose signature is σ, Ω ⊆
σ a set of predicates in σ, C a set of constraints, Choice(Ω) the set of choice
rules for every predicate in Ω, and A a finite σ-structure. Then, A is an
answer set of Π ∪C ∪Choice(Ω) iff there exists a model M of the following
set of sentences such that A is the reduct of M on σ:

• For each intensional predicate P , the following sentence:

∀−→x (
∨

1≤i≤k

∃−→yi B̂odyi → P (−→x )).

• For each intensional predicate P not in Ω, the following sentence

∀−→x (P (−→x ) →
∨

1≤i≤k

∃−→yi (B̂odyi

∧
∧

Q(−→z )∈Posi,Q∈ΩΠ\Ω
(−→z ≤QP

−→x ∧ ¬−→x ≤PQ
−→z ))).

2Firstly, this means that A satisfies all constraints. Secondly, A is regarded as a model
of every choice rule.
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• For each triple of intensional predicates P , Q, and R not in Ω, the
following sentence:

∧

P,Q,R∈ΩΠ\Ω
∀−→x−→y −→z (−→x ≤PQ

−→y ∧ −→y ≤QR
−→z → −→x ≤PR

−→z ).

• Finally, for each c ∈ C, the sentence ĉ.

Proof: This assertion follows directly from Proposition 3 and the following
fact: the answer sets of Π∪C∪Choice(Ω) are exactly the same as the answer
sets of Π∗ ∪ C, where Π∗ is the program obtained from Π by rewriting each
rule of form (1), whose head mentions predicates from Ω, to the following
constraint

← β1, . . . , βk, not γ1, . . . , not γl, not α.

Example 6. Consider the following normal program with constraints and
choice rules for computing all Hamiltonian circuits of a graph:

{hc(x, y)}
← hc(x, y), not E(x, y)

← hc(x, y), hc(x, z), y 6= z

← hc(y, x), hc(z, x), y 6= z

R(x) ← hc(a, x)

R(x) ← R(y), hc(y, x)

← not R(x),

where E is the only extensional predicate representing the edges of the graph;
a is a constant representing a particular node in the Hamiltonian circuit;
hc(x, y) is an intensional predicate representing the Hamiltonian circuit; and
R(x) is an intensional predicate to check that all vertices are in the Hamil-
tonian circuit. In particular, the first rule of the program is a choice rule to
guess a possible Hamiltonian circuit.

21



According to Proposition 4, this program can be captured by the following
sentence:

∀x(hc(a, x) → R(x)) ∧ ∀xy(hc(y, x) ∧R(y) → R(x))

∧ ∀x(R(x) → hc(a, x) ∨ ∃y(R(y) ∧ hc(y, x) ∧ y ≤RR x ∧ ¬x ≤RR y))

∧ ∀xyz(x ≤RR y ∧ y ≤RR z → x ≤RR z)

∧ ∀xy¬(hc(x, y) ∧ ¬E(x, y))

∧ ∀xyz¬(hc(x, y) ∧ hc(x, z) ∧ y 6= z)

∧ ∀xyz¬(hc(y, x) ∧ hc(z, x) ∧ y 6= z)

∧ ∀xR(x).

3.5. Arbitrary structures

It is worth mentioning that the correspondence between classical first-
order models of ordered completions and stable models of a logic program
holds only on finite structures. In general, the result does not hold if infinite
structures are allowed. For instance, the ordered completion of Transitive
Closure (TC) in Example 3 on finite structures does not capture TC on
some infinite structures.

Example 7. [Transitive Closure continued] Consider the graph that con-
tains an infinite chain and an individual vertex. Let a1, a2, . . . be an infinite
chain such that E(aiai+1) for all i, and b a node different from all ai. Consider
the structure M of the signature {E, S,≤SS} such that

• S(ai, aj) for all i < j;

• S(ai, b) for all i;

• −−→aiaj ≤SS
−−→akal for all j − i ≤ l − k, where i < j and k < l;

• −→aib ≤SS

−→
ajb for all i < j.

It can be checked that M is a model of the ordered completion of TC (see
Example 3). However, clearly, S is not the transitive closure of the graph
given in this example.

It still remains the question whether or not Transitive Closure can be
captured by other first-order theories (even infinite) with auxiliary predicates.
Unfortunately, the answer is negative either.
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Proposition 5. There does not exist a first-order theory whose signature
contains the signature of TC, and the reducts of all its models are exactly
corresponding to the stable models of TC on arbitrary structures.

Proof: We prove this assertion by contradiction. Let σ be the signature of
TC. We assume that φ is a first-order theory, whose vocabulary is σ1 such
that σ ⊆ σ1, and the reducts of the models of φ on σ are exactly the sta-
ble models of TC. It is well known that TC can be defined by a universal
second-order theory [6]. Therefore, the complement of TC can be defined
by an existential second-order theory. Hence, there exist a first-order theory
whose signature contains σ, and the reducts of all its models on σ are exactly
the complement of the class of stable models of TC on arbitrary structures.
Let ψ be such as a theory of signature σ2. Without loss of generality, we can
assume that σ1 ∩ σ2 = σ. Then, φ |= ¬ψ in the first-order language σ1 ∪ σ2.
Thus, according to Craig’s Interpolation Theorem, there exists a theory φ0

of the signature σ1 ∩ σ2 (namely σ) such that φ |= φ0 and φ0 |= ¬ψ. This
shows that TC is exactly captured by the theory φ0, whose signature is σ.
This contradicts to the well-known result that TC is not first-order definable
on arbitrary structures [6].

3.6. Disjunctive logic programs

Disjunctive logic programs is a very important extension of normal pro-
grams for dealing with incomplete information [7, 14]. A disjunctive logic
program is a finite set of disjunctive rules of the following form

α1; . . . ; αn ← β1, . . . , βk, not γ1, . . . , not γl. (12)

Similar to normal programs, we can distinguish intensional and extensional
predicates here. The answer set semantics for disjunctive logic programs can
be defined similarly by grounding [7, 14].

A natural question arises as whether the ordered completion can be ex-
tended to first-order disjunctive programs. Unfortunately, the answer is neg-
ative provided some well-recognized assumptions in the computational com-
plexity theory are true. Actually, our following proposition shows a stronger
result that there exist disjunctive programs that cannot be captured by any
first-order sentences with a larger signature.
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Proposition 6. There exist a disjunctive program Π such that it cannot be
captured by any first-order sentence with the same or a larger signature unless
NP = coNP . That is, there is no first-order sentence φ whose signature
contains the signature of Π, and the reducts of all its finite models are exactly
the finite stable models of Π.

Proof: We show that the following program 3-UNCOLOR (originated from
Example 2 in [7]) cannot be captured by any first-order sentences on finite
structures if NP 6= coNP :

R(x); G(x); B(x) ← ,

NC ← E(x, y), R(x), R(y),

NC ← E(x, y), G(x), G(y),

NC ← E(x, y), B(x), B(y),

R(x) ← NC,

G(x) ← NC,

B(x) ← NC,

NC ← not NC,

where E is the only extensional predicate to represent a graph; R, G and
B are three different colors respectively, and NC is a 0-ary predicate to
claim that this graph cannot be colored. It is not difficult to check that the
program has answer sets iff the graph, represented by E, cannot be colored
by the three colors. In addition, in this case, there is a unique answer set
that contains the given graph, NC and the full interpretation for R, G and
B.

Assuming that NP 6= coNP , no coNP complete problem is in NP .
Hence, the problem of 3-uncolorability (a well-known coNP complete prob-
lem) is not in NP . By Fagin’s theorem [10], the Boolean query of 3-
uncolorability for a given graph cannot be defined by an existential second-
order sentence. On the other hand, assume that there exists a first-order
sentence φ whose signature contains the signature of 3-UNCOLOR, and the
reducts of all its finite models are exactly corresponding to the finite stable
models of 3-UNCOLOR. Then, the Boolean query of 3-uncolorability can be
defined by the following existential second-order sentence

∃Pφ,
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where P is a set of predicates including NC, R, G, B and all the other pred-
icates in φ but not in 3-UNCOLOR, a contradiction. This shows that 3-
UNCOLOR cannot be captured by any first-order sentences with a larger
signature.

Following from the proof of Proposition 6 and Theorem 2, another nega-
tive result is that, most likely, first-order disjunctive logic programs cannot be
reduced to normal programs on finite structures, even with new predicates.

Corollary 7. Unless NP 6= coNP , there is no normal program whose sig-
nature contains the signature of 3-UNCOLOR, and the reducts of all its fi-
nite stable models are exactly corresponding to the finite stable models of
3-UNCOLOR.

Proof: Otherwise, according to Theorem 2, the program 3-UNCOLOR can
be captured by a first-order sentence with a larger signature.

In fact, the above two results coincide with the result presented in [7],
stating that in terms of brave reasoning, disjunctive logic programs with
the stable model semantics exactly capture the complexity class ΣP

2 , while
normal programs only capture NP .

4. Optimizations

In this section, we present several techniques to optimize ordered comple-
tion introduced in Section 3. The goal of these techniques is for simplifying
the translation, including reducing the number of new predicates, the arities
of new predicates and the overall length of the ordered completion. As we
will see, the techniques presented below can be combined together. For the
sake of clarity, we will introduce them step-by-step.

4.1. Exploiting maximal predicate loops

In the definition of our ordered completion, we introduce a comparison
predicate between each pair of predicates. This is not necessary. We only
need to do so for pairs of predicates that belong to a same strongly connected
component in the predicate dependency graph of the program.

Formally, the predicate dependency graph of a first-order program Π is a
finite graph PGΠ = 〈V, E〉, where V is the set of all intensional predicates
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of Π and (P,Q) ∈ E iff there is a rule whose head mentions P and whose
positive body contains Q. Maximal predicate loops of the program Π are
then strongly connected components of PGΠ. Since PGΠ can be constructed
easily, all the maximal predicate loops of Π can be identified in polynomial
time with respect to the size of Π.

The ordered completions on maximal predicate loops are the same as the
ordered completions except that the comparison predicates ≤PQ are defined
only when P and Q belong to a same maximal predicate loop. More precisely,
the ordered completion of Π on maximal predicate loops, denoted by OC1(Π),
is of the similar form as the ordered completion of Π (see Definition 3), except
that

• Q(−→z ) in Equation (4) ranges over all the intensional atoms in the
positive part of Bodyi such that Q and P are in the same maximal
predicate loop of Π;

• P , Q and R in Equation (5) are intensional predicates that belong to
the same maximal predicate loop of Π.

The following proposition is a refinement of the main theorem.

Proposition 8. Let Π be a normal logic program whose signature is σ, and
A a finite σ-structure. Then, A is an answer set of Π if and only if there
exists a model M of OC1(Π) such that A is the reduct of M on σ.

Proof: The “only if” part can be proved by using a similar construction
except that the comparison predicates ≤PQ are only defined over those pairs
of (P,Q) in a same maximal predicate loop. For the “if” part, we can prove
it by contradiction again. Similarly, we can get a same sequence of ground
atoms P0(

−→a0), P1(
−→a1), . . . , Pi(

−→ai ), . . . such that for all i, Pi(
−→ai ) ∈ IntM↑σ,

Pi(
−→ai ) ∈ L, and both −−→ai+1 ≤Pi+1Pi

−→ai and ¬−→ai ≤PiPi+1

−−→ai+1 hold. Notice that
for all i (i ≥ 0), there exists an edge from Pi to Pi+1 in PGΠ. Again, there
exists k < l such that Pk(

−→ak) = Pl(
−→al ). Hence, Pk, Pk+1, . . . , Pl must be in

a maximal predicate loop of Π, say L. Hence, according to the transitivity
axioms with respect to L, −→al ≤PlPk+1

−−→ak+1 holds. This contradicts to the
facts that Pk(

−→ak) = Pl(
−→al ) and ¬−→ak ≤PkPk+1

−−→ak+1 holds.

In many cases, restricting comparison predicates on maximal predicate
loops results in a much smaller ordered completion. As many benchmark
logic programs have no predicate loops, in these cases, OC1(Π) is exactly the

26



Clark’s completion of Π. Even for those programs with predicate loops, this
optimization technique will also significantly simplify the ordered completion
since, in many cases, not all predicates are in a same predicate loop. Let us
consider the following program for computing all Hamiltonian circuits.

Example 8. The following program HC is another encoding for computing
all Hamiltonian circuits of a given graph [23]:

hc(x, y) ← arc(x, y), not otherroute(x, y),
otherroute(x, y) ← arc(x, y), arc(x, z), hc(x, z), y 6= z,
otherroute(x, y) ← arc(x, y), arc(z, y), hc(z, y), x 6= z,
reached(y) ← arc(x, y), hc(x, y), reached(x), not init(x),
reached(y) ← arc(x, y), hc(x, y), init(x),
← vertex(x), not reached(x).

This program has three intensional predicates: hc, otherroute and reached.
According to the original version of the ordered completion (see Definition
3), we need to introduce 9 comparison predicates, and the maximal arity is
4.

However, by using maximal predicate loops, only one auxiliary predicate
is needed since HC has only one maximal predicate loop, namely {reached}.
The only comparison predicate needed is ≤RR (x, y), which is binary. Hence,
OC1(HC) is the following set of sentences:

∀xy(hc(x, y) ↔ arc(x, y) ∧ ¬otherroute(x, y)),

∀xy(otherroute(x, y) ↔ ∃z(arc(x, y) ∧ arc(x, z) ∧ hc(x, z) ∧ y 6= z) ∨
∃z(arc(x, y) ∧ arc(z, y) ∧ hc(z, y) ∧ x 6= z)),

∀y((∃x(arc(x, y) ∧ hc(x, y) ∧ reached(x) ∧ ¬init(x)) ∨
∃x(arc(x, y) ∧ hc(x, y) ∧ init(x))) → reached(y)),

∀y(reached(y) → (∃x(arc(x, y) ∧ hc(x, y) ∧ init(x)) ∨
∃x(arc(x, y) ∧ hc(x, y) ∧ reached(x) ∧ ¬init(x) ∧ x ≤RR y ∧ ¬y ≤RR x))),

∀x¬(vertex(x) ∧ ¬reached(x)),

∀xyz(x ≤RR y ∧ y ≤RR z → x ≤RR z).

4.2. Folding reverse comparison predicates

In the definition of the ordered completion, for a pair of intensional pred-
icates (P,Q), we introduce two new comparison predicates ≤PQ and ≤QP .
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This can be simplified by just introducing one of them because if there is a
derivation path from one ground atom to another, then there is none from
the other way around.

Formally, we abbreviate −→x ≤PQ
−→y ∧¬−→y ≤QP

−→x as −→x <PQ
−→y , meaning

that there is a derivation path from P (−→x ) to Q(−→y ) but not the other way
around. We rank all the intensional predicates occurring in Π as {P1, . . . , Pn},
and define Rank(Pi) = i (1 ≤ i ≤ n). For every maximal predicate loop L of
Π, and for every two predicates Pi, Pj ∈ L, we introduce a new comparison
predicate <PiPj

if Rank(Pi) ≤ Rank(Pj). This method reduces almost half
of the comparison predicates introduced.

The new version of the ordered completion by folding reverse comparison
predicates, denoted by OC2(Π), is defined based on OC1(Π) except that

• −→z ≤QP
−→x ∧ ¬−→x ≤PQ

−→z in Equation (4) is replaced by −→z <QP
−→x if

Rank(Q) ≤ Rank(P ), and ¬−→x <PQ
−→z if Rank(Q) > Rank(P );

• the transitivity axioms, i.e. Equation (5) with respect to a predicate
loop L are replaced as follows:

– for any P ∈ L, the sentence ∀−→x ¬−→x <PP
−→x , and

– for any Pi, Pj, Pk ∈ L such that Rank(Pi) ≤ Rank(Pj) ≤ Rank(Pk),
the following two sentences:

∀−→x−→y −→z (−→x <PiPj

−→y ∨ −→y <PjPk

−→z ∨ ¬−→x <PiPk

−→z ),

∀−→x−→y −→z (¬−→x <PiPj

−→y ∨ ¬−→y <PjPk

−→z ∨ −→x <PiPk

−→z ).

Proposition 9. Let Π be a normal logic program whose signature is σ, and
A a finite σ-structure. Then, A is an answer set of Π if and only if there
exists a model M of OC2(Π) such that A is the reduct of M on σ.

Proof: Again, the “only if” part is easy. Now we prove the “if” part by con-
tradiction. Similarly, we can get a sequence of ground atoms P0(

−→a0), P1(
−→a1),

. . . , Pi(
−→ai ), . . . such that for all i, Pi(

−→ai ) ∈ IntM↑σ, all Pi(
−→ai ) are in a ground

loop L. In addition, −−→ai+1 <Pi+1Pi

−→ai holds if Rank(Pi+1) ≤ Rank(Pi), and
¬−→ai <PiPi+1

−−→ai+1 holds if Rank(Pi+1) > Rank(Pi) (Note that here i is not
the rank of Pi). Since all the <PQ, where Rank(P ) ≤ Rank(Q), satisfy the
new transitivity axioms, by induction, it can be proved that for all i ≤ j,−→aj <PjPi

−→ai holds if Rank(Pj) ≤ Rank(Pi), and ¬−→ai <PiPj

−→aj holds if
Rank(Pj) > Rank(Pi). Again, we can find k < l such that Pk(

−→ak) = Pl(
−→al )
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in the sequence. Hence, −→al <PlPk+1

−−→ak+1 holds if Rank(Pl) ≤ Rank(Pk+1),
and ¬−−→ak+1 <Pk+1Pl

−→al holds if Rank(Pl) > Rank(Pk+1). There are three
cases:

Case 1: Rank(Pk) = Rank(Pl) < Rank(Pk+1). Then, −→al <PlPk+1

−−→ak+1

holds. Therefore −→ak <PkPk+1

−−→ak+1 holds since Pk(
−→ak) = Pl(

−→al ), a con-
tradiction.

Case 2: Rank(Pk) = Rank(Pl) > Rank(Pk+1). Then, ¬−−→ak+1 <Pk+1Pl

−→al

holds. Therefore ¬−−→ak+1 <Pk+1Pk

−→ak holds since Pk(
−→ak) = Pl(

−→al ), a
contradiction.

Case 3: Rank(Pk) = Rank(Pl) = Rank(Pk+1). Then, −→al <PlPk+1

−−→ak+1

holds. Therefore −→ak <PkPk+1

−−→ak+1 holds. Also, −−→ak+1 <Pk+1Pk

−→ak holds.
Then, according to the transitivity axioms, −→ak <PkPk

−→ak holds, a con-
tradiction.

Example 9. Recall the program Π1 in Example 4

p1 ← p2,

p2 ← p1,

p1 ← not p3.

Then, according to the definition, OC2(Π1) is

(p2 ∨ ¬p3 → p1) ∧ (p1 → p2)

∧ (p1 → p2 ∧ ¬ <p1p2 ∨¬p3)

∧ (p2 → p1∧ <p1p2)

∧ (<p1p1 ∨ <p1p1 ∨¬ <p1p1) ∧ (¬ <p1p1 ∨¬ <p1p1 ∨ <p1p1)

∧ (<p1p1 ∨ <p1p2 ∨¬ <p1p2) ∧ (¬ <p1p1 ∨¬ <p1p2 ∨ <p1p2)

∧ (<p1p2 ∨ <p2p2 ∨¬ <p1p2) ∧ (¬ <p1p2 ∨¬ <p2p2 ∨ <p1p2)

∧ (<p2p2 ∨ <p2p2 ∨¬ <p2p2) ∧ (¬ <p2p2 ∨¬ <p2p2 ∨ <p2p2)

∧ ¬ <p1p1 ∧¬ <p2p2 ,

which is equivalent to

(p2 ∨ ¬p3 → p1) ∧ (p1 → p2) ∧ (p1 → p2 ∧ ¬ <p1p2 ∨¬p3)

∧ (p2 → p1∧ <p1p2) ∧ ¬ <p1p1 ∧¬ <p2p2 .
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Then, OC2(Π1) has three models, namely {p3, <p1p2}, {p3}, and {p1, p2, <p1p2}.
Hence, Π1 has two answer sets: {p3} and {p1, p2}.

4.3. Simplifying transitivity axioms

Now we consider to simplify the transitivity axioms. In the definition of
the ordered completion and its variations presented previously, we need to
introduce the transitivity axioms for every three intensional predicates P ,
Q and R in a maximal predicate loop such that Rank(P ) ≤ Rank(Q) ≤
Rank(R). In other words, we expand the maximal predicate loop to a com-
plete graph and introduce the transitivity axioms for every three vertices. In
fact, this can be reduced by expanding the maximal predicate loop conserv-
atively.

Let Π be a program and L = {P1, . . . , Pn} be a maximal predicate loop
in PGΠ. The following procedure generates a set of triples among (the undi-
rected version of) L:

1. pick up the vertex P in the undirected version of L which has the least
number of edges;

2. for every two predicates Q and R connected to P in the undirected
version of the graph, add an edge between Q and R, and then select
the triples related to the three predicates P , Q and R;

3. delete the vertex P in L;

4. go to step 1 and repeat this procedure till all triples generated.

Example 10. Consider the following program Π2

P1(
−→x1) ← P2(

−→x2),

P2(
−→x2) ← P3(

−→x3),

P3(
−→x3) ← P4(

−→x4),

P4(
−→x4) ← P1(

−→x1),

P1(
−→x1) ← not P5(

−→x5).

The predicate dependency graph of Π2 contains four nodes, i.e. P1, P2, P3, P4.
In OC2(Π), for the transitivity axioms, we need to consider every combination
of three predicates, which counts 43 groups.

According to the procedure above, we can reduce the number to 2 × 33

groups. First, we pick up a vertex, which had the least number of edges, say
P1. Then, we need to connect P2 and P4 as they are connected to P1 in the
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predicate dependency graph. Now, one triple is selected, namely P1, P2, P4.
Then, we can delete the node P1 from the dependency graph. The rest is a
triple now, namely P2, P3, P4. Hence, we need 2× 33 groups as there are two
triples generated.

It can be expected that the bigger the predicate dependency graph is, the
more transitivity axioms can be reduced.

Then, the ordered completion by simplifying transitivity axioms, denoted
by OC3(Π), is defined based upon OC2(Π) by replacing the transitivity ax-
ioms only for the triples of intensional predicates generated according to the
above procedure.

Proposition 10. Let Π be a normal logic program whose signature is σ, and
A a finite σ-structure. Then, A is an answer set of Π if and only if there
exists a model M of OC3(Π) such that A is the reduct of M on σ.

Proof: The “only if” can be proved similarly. For the “if” part, we prove
it by contradiction. Otherwise, following again the same proof techniques
in Proposition 9, we can get a sequence of ground atoms Pk(

−→ak), Pk+1(
−−→ak+1),

. . . , Pl(
−→al ) such that

• for all i (k ≤ i ≤ l), Pi(
−→ai ) ∈ IntM↑σ;

• for all i (k ≤ i ≤ l), Pi(
−→ai ) are in a ground loop of ΠM↑σ;

• for all i (k ≤ i ≤ l−1), −−→ai+1 <Pi+1Pi

−→ai holds if Rank(Pi+1) ≤ Rank(Pi),
and ¬−→ai <PiPi+1

−−→ai+1 <PiPi+1
(−→ai ,

−−→ai+1) holds if Rank(Pi+1) > Rank(Pi);

• Pk(
−→ak) = Pl(

−→al ).

Assume that L is a sequence of ground atoms that satisfies the above con-
ditions and has the least number of ground atoms. Select the ground atom
Pi(
−→ai ) (k ≤ i ≤ l) in L such that Pi is the first predicate calculated according

to the procedure, among all predicates occurred in the ground loop L. Now
we consider Pi−1(

−−→ai−1) and Pi+1(
−−→ai+1). According to the procedure, the triple

〈Pi−1, Pi, Pi+1〉 must be selected. Then, there are several cases about the or-
der of ranks among the three predicates Pi−1, Pi and Pi+1. It can be checked
that, no matter the order of rank is, −−→ai+1 <Pi+1Pi−1

−−→ai−1 holds if Rank(Pi+1) ≤
Rank(Pi−1), and ¬−−→ai−1 <Pi−1Pi+1

−−→ai+1 holds if Rank(Pi+1) > Rank(Pi−1)
since 〈Pi−1, Pi, Pi+1〉 satisfy the new transitivity axioms. Hence, L\{Pi(

−→ai )}
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also satisfies the above conditions. This contradicts to our assumption that
L has the least number of ground atoms satisfying the conditions.

5. Implementation and Experimental Results

To the best of our knowledge, ordered completion provides for the first
time a translation from first-order normal logic programs under the stable
model semantics to classical first-order logic. Significantly, this translation
enables us to develop a new direction of ASP solvers by grounding on a
program’s ordered completion instead of the program itself.

5.1. Implementation

In this section, we report on a first implementation of such a solver. In
order to be consistent with existing ASP solvers, we consider Hebrand struc-
tures but not arbitrary structures at this stage. As stated in Section 2.3,
under this context, our proposed semantics coincides with Gelfond and Lif-
schitz’s original semantics [13]. Following the same as the existing approaches
of answer set solving, the input is divided into two parts:

1. a first-order normal logic program, and

2. an interpretation of all extensional predicates of the program, which is
usually called the set of ground facts3 in existing approaches. We also
call this an extensional database.

Our goal is to compute one answer set of the program based on the ground
facts, i.e. an answer set in which the interpretations of the extensional pred-
icates coincide with the extensional database. It is worth mentioning that
while the program remains the same, the extensional database could be vary.

For instance, for the transitivity closure program TC (see Example 1),
the extensional database can be any graph, whose edges are represented by
E (e.g. the graph in Figure 1). Our goal is to computer one answer set of the
program TC based on the given graph. What we need to do is to compute
the interpretation of the intensional predicates, namely S in this example,
which represents the transitive closure of the graph. Again, while the TC

3Notice that the set of ground facts contains no information about the intensional
predicates.
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program is always the same, the extensional database can be any graph, and
the purpose of TC is to compute the transitive closure of it.

It would be useful to review briefly how an answer set is computed in
existing ASP solvers. Usually, this contains two steps (see Figure 2).

1. A grounder, such as lparse4 and gringo5, transforms a first-order logic
program together with a set of ground facts into a propositional pro-
gram.

2. A propositional ASP solver, such as clasp6, cmodels7 and lp2diff8, com-
putes the answer sets of the propositional program, which correspond
to the answer sets of the original first-order program based on those
ground facts.

A n s w e r s e t sG r o u n d F a c t sF i r s t � o r d e r p r o g r a m P r o p o s i t i o n a l p r o g r a m
Figure 2: Traditional ASP solvers

With the work of ordered completion, one can do so in a different way
(see Figure 3).

1’ A translator translates a first-order logic program to its ordered com-
pletion (see Definition 3).

2’ A grounder transforms this ordered completion together with a set of
ground facts to a propositional theory.

3’ A SAT solver is called to compute the models of the propositional
theory, which correspond to the answer sets of the original first-order
program based on those ground facts (by Theorem 2).

4http://www.tcs.hut.fi/Software/smodels/
5http://sourceforge.net/projects/potassco/files/gringo/
6http://www.cs.uni-potsdam.de/clasp/
7http://www.cs.utexas.edu/~tag/cmodels/
8http://www.tcs.hut.fi/Software/lp2diff/
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A n s w e r s e t sG r o u n d F a c t sF i r s t � o r d e r p r o g r a m P r o p o s i t i o n a lT h e o r y S A T / S M TO r d e r e dC o m p l e t i o nT r a n s l a t o r G r o u n d e r
Figure 3: Our new ASP solver

Compared our new approach to the traditional one, it has the following
potential benefits.

• Grounding on ordered completion (i.e. a first-order sentence) is based
on the semantics of classical logic, which is in general simpler than the
stable model semantics. Therefore, many simplification techniques in
classical first-order logic can be used, and some of which might not be
applicable based on the stable model semantics. Thus, ideally, ground-
ing on ordered completion of a program can utilize more optimization
and simplification techniques. It can be expected that this is particu-
larly good for large extensional databases.

• The translator part can utilize some techniques (maybe inspired from
similar techniques in the area of theorem proving) to simplify the first-
order sentence as much as possible. More importantly, this part can be
considered as “off line” since ground facts are not involved yet. In other
words, the time used by translator can be exempted from the whole
ASP solving as it only needs to be done once for each program, and
the result of translator can be used repeatedly when new extensional
databases come.

• The SAT solver part is used as a black box. Any SAT solver can be
used here. Hence, this part can be benefited from the area of SAT
solving.

Following the above ideas, we have implemented a new ASP solver based
on the notion of ordered completion. Firstly, a translator is used to translate
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a given first-order program to its ordered completion. During this procedure,
some optimization techniques presented in Section 4 are used. Then, we have
implemented a grounder, called GRounding on Ordered Completion (GROC),
to transform the ordered completion together with a set of ground facts (the
extensional database) to a propositional theory.

Supposedly, the last step is to call an SAT solver to compute the models
of the propositional theory obtained above. According to Theorem 2, these
models should correspond to the answer sets of the original program together
with the ground facts. However, this might suffer from the transitivity for-
mulas, for which, even with the optimization techniques used in Section 4, we
need to introduce O(n2) new predicates and O(m3) new proportional clauses
in worst case, where n is the number of intensional predicates and m is the
number of intensional ground atoms. As we have tested, this turns out to be
an unbearable burden for ordered completion based ASP solvers.

To address this issue, we propose an alternative solution. Inspired by
Niemelä’s translation [24], we use Satisfiability Modulo Theories (SMT) [25]
instead of classical first-order logic as the host language. That is, we translate
every normal logic program under the stable model semantics to a sentence
(again, its ordered completion) in SMT rather than in classical first-order
logic.

Roughly speaking, Satisfiability Modulo Theories [25] are first-order the-
ories together with some background theories, such as the theory of real
numbers and theory of data structures. For our purpose, we need the theory
of partial orders to eliminate the transitivity axioms. The ordered comple-
tion in SMT (with the theory of partial orders as the background theory)
is basically the same as the version in classical first-order logic except that
we do not need the transitivity axioms (i.e. TranS(Π)). This is because
the comparison predicates ≤PQ can be regarded as built-in predicates in the
theory of partial orders, which naturally satisfy transitivity. In this sense,
the ordered completion of Π in SMT (with the theory of partial orders as the
background theory) is simply the modified Clark’s completion of Π, namely
MComp(Π).

However, the theory of partial orders is not well-supported in many mod-
ern SMT solvers. To address this issue, we show that, for capturing ordered
completion, we can use linear arithmetic as the background theory in SMT
as well. The main reason to do so is that linear arithmetic is well supported
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by some modern SMT solvers, e.g. Z39, so that they can be used as the black
box in step 3′ of our implementation (see Figure 3).

Formally, the ordered completion in SMT (with linear arithmetic as the
background theory) is defined as follows.

Definition 4 (Ordered Completion in SMT). Let Π be a normal logic
program. The SMT-ordered completion of Π, denoted by OC ′(Π), the fol-
lowing set of sentences for each intensional predicate P

∀−→x (
∨

1≤i≤k

∃−→yi B̂odyi → P (−→x )),

∀−→x (P (−→x ) →
∨

1≤i≤k

∃−→yi (B̂odyi ∧
∧

Q(−→z )∈Posi,Q∈ΩΠ

nQ(−→z ) < nP (−→x ))),

where the notations used are borrowed from Definition 3. In addition,

• for each intensional predicate P of arity n, nP is a function from do-
main tuples to integers, i.e. nP : Dn −→ N;

• < is a built-in predicate in linear arithmetic, meaning “less than”.

We show that the stable models of a program can be equivalently captured
by its SMT-ordered completion as well.

Theorem 3. Let Π be a normal logic program whose signature is σ, and A
a finite σ-structure. Then the following statements are equivalent:

1. A is an answer set of Π;

2. there exists a model M of OC(Π) such that A is the reduct of M on
σ;

3. there exists a model M′ of OC ′(Π) such that A is the reduct of M′ on
σ.

Proof: Theorem 2 proves 1 ⇔ 2. Now we show 2 ⇒ 3. Suppose that we
have a structure M of the signature σ ∪ {≤PQ | P,Q ∈ Ω(Π)}, which is a
model of OC(Π), i.e. MComp(Π)∪TranS(Π). Since M satisfies TranS(Π),
we can define an order ¹ on the set IntM of intensional ground atoms, i.e.
{P (−→u ) | P ∈ Ω(Π),−→u ∈ PM}, of Π as follows:

9http://research.microsoft.com/en-us/um/redmond/projects/z3/
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• for every P (−→u ) ∈ IntM, P (−→u ) ¹ P (−→u );

• for every pair P (−→u ), Q(−→v ) ∈ IntM, P (−→u ) ¹ Q(−→v ) iff (−→u ,−→v ) ∈
≤PQ

M;

• for every pair P (−→u ), Q(−→v ) ∈ IntM, we write P (−→u ) = Q(−→v ) iff
P (−→u ) ¹ Q(−→v ) and Q(−→v ) ¹ P (−→u ).

Clearly, ¹ is a partial order on IntM as the comparison predicates ≤PQ

satisfy the transitivity axioms, i.e. TranS(Π). Therefore, ¹ can be extended
to a total order (also called linear order) ¹′ on IntM. We can construct a
mapping f from IntM to natural numbers, i.e. f : IntM −→ N, such that
for every P (−→u ) ∈ IntM, f(P (−→u )) is the position of P (−→u ) in this total order
¹′. That is, f(P (−→u )) = t iff there exists t elements E1, . . . Et ∈ IntM such
that Ei 6= Ej for all 1 ≤ i < j ≤ t and Ei ¹′ P (−→u ) for all 1 ≤ i ≤ t. Now we
construct M′ based on M and f as follows:

• M′ has the same domain M and constant interpretations as M;

• for all P ∈ σ, PM′
= PM;

• for all Q ∈ Ω(Π) and −→u ∈ Mn, nQ(−→u ) = f(Q(−→u )).

It can be shown that M′ is a model of OC ′(Π) since M is a model of
MComp(Π) and for any two intensional ground atoms P (−→u ), Q(−→v ) ∈ IntM,−→u ≤PQ

−→v (i.e. (−→u ,−→v ) ∈ ≤PQ
M) iff nP (−→u ) < nQ(−→v ) or nP (−→u ) = nQ(−→v ).

For 3 ⇒ 2, suppose that we have a structure M′ of σ∪{nP | P ∈ Ω(Π)},
which is a model of OC ′(Π). We can construct a structure M of σ ∪ {≤PQ

| P,Q ∈ Ω(Π)} such that M agrees everything the same on the signature σ
and (−→u ,−→v ) ∈ ≤PQ

M iff nP (−→u ) < nQ(−→v ) or nP (−→u ) = nQ(−→v ). Following
the similar arguments, it can be shown that M is a model of MComp(Π).
In addition, M is a model of TranS(Π) as well because the functions nP

naturally yield a total order, thus a partial order, on IntM (the same as
IntM′). Hence, M is a model of OC(Π).

Based on Theorem 3, we have implemented a prototype of a new ASP
solver, which contains three steps. First, we translate a program Π to its
SMT-ordered completion, i.e. OC ′(Π). Notice that some of the optimization
techniques mentioned in Section 4 can still be used here. Second, we use our
grounder GROC to ground OC ′(Π) into a propositional SMT theory. Finally,
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we call the SMT solver Z3 to compute a model of the SMT theory, which, by
Theorem 3, should be corresponding to an answer set of Π. Next, we report
on some preliminary experimental results of our solver on the Hamiltonian
Circuit program (see Example 8), compared to other major modern ASP
solvers.

5.2. Experimental results

In the following, we report our first experiment with a prototype imple-
mentation. The goal of our experiments is to compare our new type of ASP
solver based on ordered completion (see Figure 3) with a number of existing
ASP solvers based on the traditional approach (see Figure 2).

Again, the input is divided into two parts: a first-order program as well
as a set of ground facts (i.e. an extensional database). The output is to
return an answer set of the program based on the extensional database if
there exists such one, and to return “no” otherwise.

As mentioned earlier, in order to solve this problem, existing ASP solvers
normally use a 2-step approach. First, a grounder is used to transform the
first-order program together with the extensional database to a propositional
program. Here, we consider to use gringo (version 3.03) as the grounder.
Second, a propositional ASP solver is called to compute an answer set. In
this paper, we consider three different propositional ASP solvers, including
clasp (version 2.0.1), cmodels (version 3.81) and lp2diff (version 1.27) with
Z3 (version 3.2.18).

Differently, our solver needs 3 steps. First, we translate a first-order pro-
gram to its SMT-ordered completion. As this step is normally very efficient
and can be considered as off line, we do not count the time used in this step.
Second, we have implemented a grounder, called groc, to transform the or-
dered completion together with the extensional database to a proportional
SMT theory. Finally, we call an SMT solver to compute a model of the SMT
theory, which should be an answer set of the program based on the exten-
sional database by Theorem 3. We use Z3 (version 3.2.18) as the SMT solver
in this step.

We consider the Hamiltonian Circuit benchmark program by Niemelä
[23] (also see Example 8). The current benchmark graph instances for the
HC program normally contain no more than 150 nodes. Here, instead,
we consider much bigger graph instances. That is, we consider random
graphs with nodes ranging from 200 to 1000, in which the numbers of edges
are ten times the numbers of nodes. The graph instances are named as
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rand nodes edges number, where rand means this is a random graph, nodes
represents the number of nodes in this graph, edges represents the number
of edges in this graph, and number is the code of this graph in this category.
For instance, rand 200 2000 6 is a random graph with 200 nodes and 2000
edges, and is the 6-th graph instance in this category.

Table 1 reports some runtime data of our experiments on the HC program
with those relatively big graph instances. The experiments were performed on
a CENTOS version 2.16.0 LINUX platform with 2GB of memory and AMD
Phenom 9950 Quad-Core processor running at 2.6GHz. For space reasons,
we only report the overall time used by the following different approaches:

• gringo as the grounder and clasp as the propositional ASP solver (gringo+clasp)

• gringo as the grounder and cmodels as the propositional ASP solver
(gringo+cmodels)

• gringo as the grounder, lp2diff as the translator from propositional
programs to SMT and Z3 as the SMT solver (gringo+lp2diff+Z3)

• finally, our solver by using groc to ground the ordered completion
together with extensional databases, and calling the SMT solver Z3
(groc+Z3).

We set the timeout threshold as 900 seconds, which is denoted by “——” in
our experimental results.

In Table 1, the first column specifies the graph instances. In the second
column, “y” (“n”) means that the corresponding graph has a (no) Hamil-
tonian Circuit, while “?” means that this problem instance is not solved by
any approaches within limited time. The rest four columns record the overall
time in seconds used by the four different approaches. It is worth mention-
ing that, normally, the grounding time (i.e. for gringo and groc) is much less
than the solving time.

Table 1 shows that our solver compares favorably to the others on the
Hamiltonian Circuit benchmark program, especially for those big graph in-
stances. For 200 node random graphs, our solver seems not as good as
gringo+classp in general, but still looks slightly better than the other two.
However, when the graph goes bigger, our advantages emerge. For those 400
node and 600 node graphs, our solver clearly outperforms the rest approaches.
Moreover, for 1000 node random graphs, our solver is the only one capable of
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Table 1: Experimental Results

gringo gringo gringo groc
instances + clasp + cmodels + lp2diff + Z3

+Z3
rand 200 2000 1 y 0.325 3.130 6.954 1.79
rand 200 2000 2 y 0.604 3.310 10.185 1.95
rand 200 2000 3 n 0.175 0.150 2.507 0.00
rand 200 2000 4 y 1.453 7.960 18.412 1.66
rand 200 2000 5 y 0.329 7.600 8.899 15.24
rand 400 4000 1 y —— —— 49.506 5.08
rand 400 4000 2 y 24.110 —— —— 59.31
rand 400 4000 3 ? —— —— —— ——
rand 400 4000 4 y —— —— 46.938 8.10
rand 400 4000 5 y —— —— 162.277 8.00
rand 600 6000 1 y 140.830 —— 114.973 12.16
rand 600 6000 2 y —— —— 203.500 38.41
rand 600 6000 3 y —— —— 340.219 45.84
rand 600 6000 4 y —— —— 83.650 52.13
rand 600 6000 5 y —— —— 403.075 9.20

rand 1000 10000 1 y —— —— —— 324.22
rand 1000 10000 2 y —— —— —— 133.66
rand 1000 10000 3 y —— —— —— 99.32
rand 1000 10000 4 y —— —— —— 256.91
rand 1000 10000 5 y —— —— 295.89
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solving the problems within the time threshold. Also, it is interesting to take
a closer look at the only instance with no answer sets, i.e. rand 200 2000 3.
With our grounder groc, the inconsistency can be immediately identified.

More importantly, it is reasonable to believe that the performance of
our solver can be further improved by employing more optimization tech-
niques because this is our first implementation based on an entirely new
method. Among them, one specific technique, both theoretically challenging
and practically promising, is the simplification of the first-order formula or-
dered completion. As mentioned earlier, this step can be regarded as off line
since it only needs to be done once for each program. Evident from some
simple observations, the simplifications can sometimes significantly reduce
the size of ordered completion, thus the grounded propositional SAT/SMT
theory. To us, this is one of the most important work left to the future.

6. Related Work and Discussions

In this section, we discuss some related work, mostly other existing or
possible translations from logic programs under the stable model (answer
set) semantics to classical logic. In fact, the intuitions behind most of the
current translations are similar. The main differences are in the ways how
these intuitions are formalized.

6.1. First-order case

Other first-order translations As the focus of this paper is to consider the
first-order case, we first review the existing work about translating first-order
logic programs under the stable model semantics to standard first-order logic.
To the best of our knowledge, the only such translation is the loop formula
approach [3, 17]. From a syntactical viewpoint, the main difference between
this approach and ours is that the ordered completion results in a finite first-
order theory (which can be represented as a single first-order sentence) but
uses auxiliary predicates, while the loop formula approach does not use any
auxiliary predicates but in general results in an infinite first-order theory.

From a semantical viewpoint, both approaches share some similar ideas.
First of all, both of them are extended from Clark’s completion, and the
extended parts play a similar role to eliminate those structures which are
models of the Clark’s completion but not stable models of the logic program.
The main difference is that the loop formula approach uses loop formulas for
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this purpose, while the ordered completion uses additional comparison pred-
icates to keep track of the derivation order. Secondly, they both require that
every ground atom in a stable model must be justified by certain derivation
path. However, for this purpose, the loop formula approach further claims
that every loop (so is every ground atom) must have some external sup-
ports, while the ordered completion approach explicitly enumerates such a
derivation order (thus a derivation path) by the new comparison predicates.

Similar translations in Datalog Another related work [16] is in the area
of finite model theory and fixed-point logic. Although fixed-point logic and
normal logic programming are not comparable, they have a common frag-
ment, namely Datalog. Kolaitis [16] showed that every fixed-point query
is conjunctive definable on finite structures. That is, given any fixed-point
query Q, there exists another fixed-point query Q′ such that the conjunctive
query (Q,Q′) is implicitly definable on finite structures. As a consequence,
every datalog query is also conjunctively definable on finite structures. From
this result, although tedious, one can actually derive a translation from Dat-
alog to first-order sentences using some new predicates not in the signatures
of the original datalog programs.

We will not go into details comparing our translation and the one derived
from Kolaitis’ result since our focus here is on normal logic programs. Suffice
to say here that the two are different in many ways, not the least is that ours
is based on Clark’s completion in the sense that some additional conditions
are added to the necessary parts of intensional predicates, while the one
derived from Kolaitis’ result is not. We mention this work because Kolaitis’
result indeed inspired our initial study on this topic. We speculated that if it
is possible to translate datalog programs to first-order sentences using some
new predicates, then it must also be possible for normal logic programs, and
that if this is true, then it must be doable by modifying Clark’s completion.
As it happened, this turned out to be the case.

6.2. Propositional case

Translations in the propositional case The ordered completion can
be viewed as a propositional translation from normal logic programs to
propositional theories by treating each propositional atom as a 0-ary predi-
cate. Several proposals in this direction have been proposed in the literature
[2, 15, 19, 20, 24].
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An early attempt is due to Ben-Eliyahu and Dechter [2], who assigned
an index (or level numbering) #p to each propositional atom p, and added
the assertions #p < #q to the Clark’s completion for each pair (p, q) similar
to the ordered completion, where q is the head of a rule and p ranges over
all atoms in the positive body of a rule. A closely related work is recently
proposed by Niemelä [24], in which the level mappings and their comparisons
are captured in difference logic, an extension of classical propositional logic.
More precisely, each atom p is assigned to a number xp, meaning its level or
stage. Then, the assertions xq − 1 ≥ xp are added to the Clark’s completion
similar to Ben-Eliyahu and Dechter and the ordered completion. In addi-
tion, in both approaches, the optimization technique of exploiting strongly
connected components is discussed.

Another translation, also sharing the basic idea of comparing stages (or
indices), is due to Janhunen [15], who proposed a simplified translation by
level numbering as well. Different from the above approaches, Lin and Zhao
[19] translated an arbitrary normal logic program equivalently to a tight pro-
gram first by adding some new atoms, and then use the Clark’s completion
of the new program to capture the answer sets of the original one. Finally,
the loop formula approach in the propositional case [20] yields another trans-
lation from propositional normal logic programming to propositional logic.
Again, the loop formula approach requires no new atoms. However, it is not
polynomial in the sense that a program may have exponential loop formulas
in worst case.

Comparisons with Ben-Eliyahu and Dechter’s and Niemelä’s work
Here, we discuss more about the relationships among the ordered completion,
Ben-Eliyahu and Dechter’s translation and Niemelä’s work since these three
translations are very closely related, while the others are slightly different.
In fact, the above three translations basically share the same intuitions in
the propositional case. This is because all of them are modified from Clark’s
completion by adding to it the comparisons of indices/levels/stages. Specif-
ically, the comparisons are represented by ≤pq ∧¬ ≤qp in the ordered com-
pletion, #p < #q in Ben-Eliyahu and Dechter’s translation and xq − 1 ≥ xp

in Niemelä’s work, where in all the above approaches, q is the head of a rule
and p ranges over all atoms in the positive body of a rule. Indeed, these
assertions play the same role to state that the stage (or level) of p should
be less than the one of q. In this sense, the modified completion part of all
these three approaches can be transformed from each other.
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In Ben-Eliyahu and Dechter’s translation, one has to explicitly enumerate
the “indices” #p and “comparisons” #p < #q in propositional logic [2],
which turns out to be rather complicated. This is not an issue for Niemelä’s
work [24] because the level numbering xp associated with atoms and the
comparisons xq−1 ≥ xp can be directly represented by the built-in predicates
within the language of difference logic. Finally, in the ordered completion, we
do not introduce the indices directly but use additional atoms ≤pq in classical
propositional logic to explicitly represent the comparisons ≤pq ∧¬ ≤pq, which
are further specified by the transitivity formulas.

The similarities and differences among the three approaches can be illus-
trated by the following example.

Example 11. Recall the program Π1 in Example 4:

p1 ← p2,

p2 ← p1,

p1 ← not p3.

According to the definitions, the modified completion part of Π1 for the
ordered completion is

(p2 ∨ ¬p3 → p1) ∧ (p1 → p2)

∧ (p1 → p2 ∧ [≤p2p1 ∧¬ ≤p1p2 ] ∨ ¬p3)

∧ (p2 → p1 ∧ [≤p1p2 ∧¬ ≤p2p1 ]),

while for Ben-Eliyahu and Dechter’s translation, this is

(p2 ∨ ¬p3 → p1) ∧ (p1 → p2)

∧ (p1 → p2 ∧ [#p2 < #p1] ∨ ¬p3)

∧ (p2 → p1 ∧ [#p1 < #p2]),

and finally, for Niemelä’s work, this is 10

(p2 ∨ ¬p3 → p1) ∧ (p1 → p2)

∧ (p1 → p2 ∧ [xp1 − 1 ≥ xp2 ] ∨ ¬p3)

∧ (p2 → p1 ∧ [xp2 − 1 ≥ xp1 ]).

10It can be observed that the new atoms bdi
a in Niemelä’s work are not necessary.
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It can be observed that, the modified completion part of the three ap-
proaches can be easily obtained from each other. For instance, from Niemelä’s
work to the ordered completion, one only needs to replace each subformula of
the form xp− 1 ≥ xq (e.g. xp1 − 1 ≥ xp2) with its corresponding counterpart
≤qp ∧¬ ≤pq in the ordered completion (≤p2p1 ∧¬ ≤p1p2 resp.).

The main difference among the three approaches is another part of the
translation, namely how to encode those new indices and comparisons. The
host formalism for both Ben-Eliyahu and Dechter’s translation and our or-
dered completion is propositional logic, but for Niemelä’s work, it is difference
logic, which is an extension of classical propositional logic with linear con-
straints but not propositional logic itself. As a result, the encoding problem
of comparisons for Niemelä’s work is not an issue because the comparisons,
e.g. xp1 − 1 ≥ xp2 , can be naturally represented in the langauge of difference
logic with the built-in predicate ≥. However, for the other two approaches,
more work need to be done.

In the ordered completion, we use additionally transitivity formulas among
new atoms ≤pq for this purpose. For instance, for the program Π1, the tran-
sitivity formulas is: 11

≤p1p2 ∧ ≤p2p1→≤p1p1

∧ ≤p2p1 ∧ ≤p1p2→≤p2p2

In Ben-Eliyahu and Dechter’s translation, one needs to explicitly encode
the indices #p and the comparisons #p < #q in classical propositional logic.
This is rather complicated because one has to enumerate all the possibilities.
For instance, for the program Π1, the encoding of each index, e.g. #p1, is:

(p1 = 1 ∨ p1 = 2) ∧ (p1 = 1 → ¬(p1 = 2)),

and the encoding of each comparison, for instance #p1 < #p2, is:

p1 = 1 ∧ p2 = 2.

6.3. First-order definability and weak definability

Since the ordered completion is about translating logic programs to first-
order logic, it is closely related to the concepts of (first-order) definability for
answer set programming [17, 28].

11All the other transitive formulas are trivially true.
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A program is (first-order) definable (on finite structures) iff there exists
a first-order sentence of the signature of the program such that its (finite)
models are exactly the (finite) stable models of the program. It is well-known
that many programs are not first-order definable, e.g. the program TC in
Example 1, both on arbitrary structures and on finite structures [6].

A weaker notion of first-order definability is to allow new predicates. A
program is (first-order) weakly definable (on finite structures) iff there exists
a first-order sentence of a signature containing the signature of the program
such that the reducts of its (finite) models on the signature of the program
are exactly the (finite) stable models of the program. It is easy to see that a
program is weakly definable (on finite structures) if and only if it is defined
by an existential second-order sentence (on finite structures).

The following result immediately follows from Theorem 2.

Corollary 11. Every normal logic program is weakly definable on finite struc-
tures. More precisely, every program is weakly defined by its ordered comple-
tion on finite structures.

However, as shown in Proposition 5, this result does not hold on arbitrary
structures. For instance, the TC program is not weakly definable on arbitrary
structures. In fact, following a similar proof, Proposition 5 can be extended
to the following result.

Proposition 12. On arbitrary structures, if a normal logic program is not
definable, then it is not weakly definable.

7. Conclusion

The main contribution of this paper is introducing a notion of ordered
completion that captures exactly the answer set semantics of first-order nor-
mal logic programs with constraints and choice rules on finite structures (see
Theorem 2, Propositions 3 and 4). It can be summarized as follows:

For first-order normal logic programs on finite structures,

Answer Set = Clark’s Completion + Derivation Order

= Ordered Completion
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This seems to be a very tight result. First of all, as we have seen, this
result cannot be be extended to disjunctive logic programs unless NP =
coNP (see Proposition 6). For normal logic programs, with this result, we
now have a rather complete picture of mappings from logic programs to first-
order logic which is summarized by Table 2.

Table 2: From normal ASP to FOL

Structures New Predicates Resulting Theory Translation
Arbitrary Allowed No restriction Does not exist

Finite Not Allowed Finite Does not exist
Finite Not Allowed No restriction Loop Formula
Finite Allowed Finite Ordered Completion

The significance of our ordered completion can be seen from both a theo-
retical and a practical point of view. To the best of our knowledge, it provides
for the first time a translation from first-order normal logic programs under
the stable model semantics to first-order sentences. Also, it initiates a new
direction of ASP solvers by grounding on a program’s ordered completion
instead of the program itself. We report our first implementation of such a
solver (see Section 5), which compares favorably to other major existing ASP
solvers, especially on big problem instances (See Table 1).
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