
Loop-separable Programs and Their First-order

Definability

Yin Chena,∗, Fangzhen Linb, Yan Zhangc, Yi Zhouc

aDepartment of Computer Science, South China Normal University, Guangzhou,
Guangdong, China

bDepartment of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong

cIntelligent Systems Lab, School of Computing and Mathematics, University of Western
Sydney, Penrith South DC, NSW 1797, Australia

Abstract

An answer set program with variables is first-order definable on finite struc-
tures if the set of its finite answer sets can be captured by a first-order
sentence. Characterizing classes of programs that are first-order definable
on finite structures is theoretically challenging and of practical relevance to
Answer Set Programming. In this paper, we identify a non-trivial class of
answer set programs called loop-separable programs and show that they are
first-order definable on finite structures.

Keywords: answer set programming, first-order definability, knowledge
representation, nonmonotonic reasoning

1. Introduction

This work is about Answer Set Programming (ASP), a constraint-based
programming paradigm that has been found applications in a wide range
of areas including bioinformatics [9, 12, 29] and the semantic web [11, 27].
Currently in ASP applications, a program normally has two parts: a finite set
of rules with variables, and a finite set of ground facts. The former represents
general domain knowledge and the latter the specific instance of the problem

∗Corresponding author
Email addresses: ychen@scnu.edu.cn (Yin Chen), flin@cse.ust.hk (Fangzhen

Lin), yan@scm.uws.edu.au (Yan Zhang), yzhou@scm.uws.edu.au (Yi Zhou)

Preprint submitted to Artificial Intelligence December 11, 2010

that one wants to solve. Since current ASP solvers can only deal with rules
without variables [14, 20, 22, 28], the latter is used to ground the former into
a set of propositional rules, and together they are given to an ASP solver.

Recently there has been work on extending answer set semantics to pro-
grams with variables [4, 13, 23, 25], and to consider the possibility of con-
structing an ASP solver that can deal with rules with variables [4]. Against
this backdrop, in this paper we consider the problem of first-order definability
of answer set programs with variables. This is a problem because in general,
the answer sets of a program with variables correspond to a second-order
sentence [13, 23] or an infinite set of first-order sentences [4].

The study on non-grounding based method for computing answer sets/stable
models has been carried out by some researchers [10, 16]. The motivation
of developing this approach is to avoid large sets of facts after grounding a
program containing variables. By introducing concepts such as constrained
non-ground stables [10] and covers/anticovers [16], using this approach we
can derive some kind of compact representations of the stable models of the
original program, so that stable models may be partially pre-computed at
compile-time.

Although both the approach mentioned above and the first-order defin-
ability of logic programs address non-grounding logic programs, the foun-
dation of these two topics are actually quite different. In this paper, our
study will be based on the first-order stable model semantics and identify a
class of programs that is first-order definable on finite structures, while the
non-ground approach only provided an alternative method to compute stable
models of a propositional logic program.

While our work presented in this paper is the first in-deep study on the
first-order definability of answer set programs with variables, we should men-
tion that the related problem has been addressed in propositional case. In
particular, Dung and Kanchansut have shown that every propositional logic
program Π can be transformed into a propositional theory TΠ such that the
set of stable models of Π is exactly the set of models of TΠ [8]. More recently,
Lin and Zhao proved a similar result by using loop-formulas [22].

Studying the first-order definability of answer set programs has both the-
oretical and practical values. Firstly, since the semantics of first-order answer
set programs is defined based on second-order logic, it becomes an immediate
issue to understand the expressive power of first-order answer set programs.
Results of the first-order definability will provide partial answers to this is-
sue and help us to achieve a better understanding on the difference between

2

first-order answer set programs and classical first-order logic. Results in this
aspect will provide an important theoretical foundation for first-order answer
set programming.

Secondly, as evident from the work in Datalog and finite model theory,
proving first-order definability results are usually highly challenging. Very
often, new proof techniques have to be developed, which may also be useful
for other problem solving. For instance, as it will be shown in this paper,
in order to prove our first-order definability result, we extend the expansion
tree concept in Datalog [3] to Answer Set Programming and apply it to
loop-separable programs. We believe that both the notion of loop-separable
programs and the new expansion tree concept proposed in this paper may
be useful for other related studies in first-order answer set programming.

Finally, knowing that a program is first-order definable is certainly helpful
if one wants to construct an ASP solver for first-order answer set programs.
It initiates the possibility of exploiting first-order inference tools, e.g. model
generators and theorem provers, to reason on programs that are first-order
reducible. Also, it can be helpful for SAT-based propositional ASP solvers.
This is because current SAT-based ASP solvers compute loop formulas incre-
mentally as needed. If we know that the given program can be captured by
a first-order sentence, then it may be more effective to bypass loop formulas
and just instantiate the first-order sentence on a given instance directly.

In this paper, we show that if a program is so-called loop-separable, then
it is first-order definable on finite structures. Furthermore, it is decidable
whether a program is loop-separable. As we shall see, the notion of loop-
separable programs depends on a careful study of how rules interacts with
first-order loops introduced in [4]. It also includes all first-order definable
classes of programs that we knew of, like the class of program with finite set
of complete loops.

The rest of the paper is organized as follows. Section 2 presents basic
logic concepts and notions which will be used in our following study. Section
3 introduces the notion of first-order definability, and section 4 defines a class
of programs called loop-separable program. Section 5 contains the detailed
proof that loop-separable programs are first-order definable. Section 6 con-
siders some special subclasses of loop-separable programs and discusses some
related work. Finally, section 7 concludes this paper with some discussions.

3

2. First-order answer set programs with extensional databases

2.1. Preliminaries

We consider a second-order language with equality but without function
symbols. A vocabulary consists of a finite set of constant symbols and a finite
nonempty set of relation symbols including equality =. Given a vocabulary
τ , we denote by C(τ) the sets of constant symbols in τ , and by P(τ) the set
of relation symbols. The notions of term, atom, (first-order or second-order)
formula and (first-order or second-order) sentence are defined as usual. An
atom is called an equality atom if it is an atom of the form t1 = t2, and a
proper atom otherwise. We use V ar(O) to denote the set of variables occur-
ring in O, which can be a term, atom, formula, sentence or other expressions.
Given a vocabulary τ , the unique name assumption (or UNA for short) on
τ , denoted by Σuna(τ) (or Σuna when τ is obvious from the context), is the
conjunction of ci 6= cj for any two different constant ci, cj in C(τ).

Let P andQ be two relation symbols or variables of the same arity. P < Q
stands for the formula ∀x(P (x) ⊃ Q(x))∧¬∀x(Q(x) ⊃ P (x)). For the given
tuples of relation symbols P = (P1, · · · , Pk) and P ′ = (P ′1, · · · , P ′k), where
all Pi and P ′i (1 ≤ i ≤ k) have the same arity, we use P < P ′ to denote the
formula

∧k
i=1 ∀x(Pi(x) ⊃ P ′i (x)) ∧ ¬

∧k
i=1 ∀x(P ′i (x) ⊃ Pi(x)).

A finite structure A of vocabulary τ is a tuple (A, cA1 , · · · , cAm, RA1 , · · · , RAn),
where A is a finite set called the domain of A, cAi ∈ A (the interpretation
of constant ci), (1 ≤ i ≤ m), and RAi (the interpretation of a k-ary relation
symbol Ri), (1 ≤ i ≤ n), a k-ary relation on A. In the following, We use
Dom(A) to denote the domain of structure A. Unless stated otherwise, the
domains of all structures are assumed to be finite in this paper.

Given two tuples s = (s1, · · · , sn) and t = (t1, · · · , tn) of the same length,
we use s = t to denote the formula

∧n
i=1 si = ti, and s 6= t the formula

¬(s = t). A binding is an expression of the form x/t, where x is a variable,
and t a term, and a substitution is a set of bindings containing at most one
binding for each variable. If ϕ is a first-order formula (term, tuple of terms,
etc.), and θ a substitution, we denote by ϕθ the result of replacing every free
variable in ϕ according to θ.

Given a set of variables or relation variables V and a structure A, an
assignment σ on V over A is function that assigns each variable in V to a
domain element in Dom(A) and each n-ary relation variable in V to an n-ary
relation on Dom(A). We write (A, σ) |= ϕ(x) to mean that ϕ is true in A
under the assignment σ. To simplify notations, if ϕ is a first-order formula,

4

a ∈ An and |x| = n, then we write (A, a) |= ϕ(x) to mean that (A, σ) |= ϕ(x)
for some variable assignment σ such that σ(xi) = ai, (1 ≤ i ≤ n).

2.2. Syntax and semantics

We introduce the syntax and semantics of first-order answer set programs
with extensional databases in this section.

A rule is of the form:

a← b1, · · · , bk, not c1, · · · , not cl, (1)

where a is either a proper atom or ⊥, and b1, · · · , bk, c1, · · · , cl (k, l ≥ 0) are
atoms. A rule is called a constraint if a is ⊥. Given a rule r of form (1),
We call a the head of r, denoted by Head(r), {b1, · · · , bk, not c1, · · · , not cl}
the body of r, denoted by Body(r), {b1, · · · , bk} the positive body of r, and
{not c1, · · · , not cl} the negative body of r. We also use Pos(r) and Neg(r)
to denote the set of atoms {b1, · · · , bk} and the set of atoms {c1, · · · , cl}. A
variable x in a rule r is called a local variable if it occurs in the body of r
but not in the head of r.

A first-order answer set program with extensional database (or simply
called program) is a finite set of rules. Given a program Π, We use τ(Π) to
denote the vocabulary containing all the relation symbols and constants in Π.
A relation symbol P in τ(Π) is called intensional predicate if it occurs in the
head of some rules of Π, and extensional predicates otherwise. We use τext(Π)
to denote the vocabulary containing all extensional predicates and constants
in Π, and τint(Π) the vocabulary containing all intensional predicates in Π.
We also use P(Π), Pint(Π) and Pext(Π) to denote the sets (tuples, if it is clear
from the context) of all predicates, intensional predicates and extensional
predicates in Π respectively. A proper atom P (t) is extensional (intensional)
if P is extensional (intensional).

Now we present the semantics of first-order answer set programs with
extensional databases. For each rule r of form (1), we use r̂ to denote the

sentence ∀x(∃yB̂odyr ⊃ a), where y is the tuple of all local variables of r and

x the rest of variables in r, and B̂odyr the formula b1∧· · ·∧bk∧¬c1∧· · ·∧¬cl.
By Π̂, we denote the sentence

∧
r∈Π r̂.

Let P = (P1, · · · , Pk) and P ′ = (P ′1, · · · , P ′k) be two tuples of relation
symbols or relation variables where Pi and P ′i (1 ≤ i ≤ k) are of the same
arity. Given a rule r of form (1), by r̂[+P/P ′], we mean the formula that
is obtained from r̂ by replacing each relation symbol in P occurring in the

5

head and positive body of r by the corresponding relation symbol in P ′. We
also use Π̂[+P/P ′] to denote the formula ∧r∈Πr̂[+P/P ′]. For instance, if r
is the rule P (x)← R(x), not Q(x), then r̂[+{P,Q}/{P ′, Q′}] is the sentence
∀x(R(x) ∧ ¬Q(x) ⊃ P ′(x)). Note that here we do not replace the relation
symbol Q in the negative body of r.

Definition 1. (Answer set) Let Π be a program. A structure A of τ(Π) is
an answer set of Π if and only if A is a model of

Π̂ ∧ ¬∃P∗(P∗ < Pint(Π) ∧ Π̂[+Pint(Π)/P∗]). (2)

Example 1. We consider a program Π1 consisting of the following rules:

T (x, y) ← E(x, y), not E(x, x), not E(y, y)

T (x, z) ← T (x, y), T (y, z),

where Pext(Π1) = {E} and Pint(Π1) = {T}. Let A = (A,EA, TA) be a
structure of τ(Π), where EA = {(a, a), (a, b), (b, c), (c, d)} and TA = {(b, c),
(c, d), (b, d)}. According to Definition 1, A is an answer set of Π. If we view
E as a graph, then T computed by program Π1 is the transitive closure of the
induced subgraph of E on the set of nodes that do not have an edge going
into themselves. �

Note that in Definition 1, minimization only applies on intensional pred-
icates while extensional predicates are viewed as the initial input of the pro-
gram. This is different from the previous first-order answer set semantics
such as Ferraris et al [13] and Lin and Zhou’s semantics [23]. There are
both theoretical and practical advantages by separating a program vocabu-
lary into intensional and extensional. Firstly, by separating intensional and
extensional predicates in a program, the program itself may be viewed as a
generic description of certain system or agent’s behaviors, while the exten-
sional predicates just provide various instantiations of the system or agent’s
initial inputs. Consequently, the class of programs that contain the same
rules but with different extensional predicate inputs share many essential
properties so that our study on these properties such as first-order definabil-
ity and complexity may be simplified. Secondly, from a practical viewpoint,
such separation will also simplify the underlying implementation for problem
solving in various domains. This is the current practice in ASP anyway. For
instance, we can easily write a generic program of computing Hamiltonian

6

cycles for any finite graph without considering specific input graph - which
will be represented by extensional predicate values.

In fact, the semantics presented above is nothing new by a simplification
of the answer set (stable model) semantics recently presented by Ferraris et
al [13] and by Lin and Zhou [23]. The main differences are twofold. First,
we distinguish between extensional and intensional predicates as discussed
above. Second, here we only consider normal logic programs with constraints
(i.e. programs without functions, disjunctions and nested expressions) rather
than an arbitrary first-order sentence. Also, this definition goes back to the
early work of Lin [21] by relating normal logic program under the stable model
semantics and circumscription. As we will show next, under the context of
finite structures, it is the same as the standard Gelfond-Lifschitz transfor-
mation semantics when the program is “grounded” on finite domains.

2.3. Relation to other answer set semantics

Given a program Π, and a structure A of τext(Π), we shall define the
instantiation of Π on A as a propositional program over the following propo-
sitional language LA:

LA = {P (a) | P ∈ Pint(Π) and a ∈ Dom(A)n}.

We begin with one more notation. Let α be an atom and σ an assignment
over A. We denote by α[σ] the result of replacing every constant c in α by
domain element cA and every variable x in α by σ(x).

Let r ∈ Π be a rule of form (1). We define the instantiation of r on A,
written rA, to be the set of propositional rules obtained from

R = {a[σ]← b1[σ], . . . , bk[σ], not c1[σ], . . . not cl[σ]
| σ is an assignment on V ar(r) over A}

by the following transformations:

• if the body of a rule in R contains either a = b for some distinct
elements a, b ∈ Dom(A) or not a = a for some element a ∈ Dom(A),
then delete this rule;

• if the body of a rule in R contains either P (a) for extensional predicate
P and a 6∈ PA or not P (a) for extensional predicate P and a ∈ PA,
then delete this rule;

7

• delete a = a and not a = b for all elements a, b ∈ Dom(A) in the bodies
of the remaining rules;

• delete P (a) and not P (a) in the bodies of the remaining rules, where
P is an extensional predicate.

The instantiation of a program Π on A, written ΠA, is then the union of the
instantiations of all the rules in Π on A.

We also recall some definitions of answer set semantics for propositional
program from [15]. Given a propositional language L, a propositional pro-
gram π is a finite set of propositional rules of the form:

pa← pb1, . . . , pbk, not pc1, . . . , not pcl, (3)

where pa is either ⊥ or a propositional atoms in L, and pb1, . . ., pbk, pc1, . . .,
pcl (k, l ≥ 0) are propositional atoms. A propositional program π is called
positive if l = 0 for all rules of form (3) in π. Given a set of propositional
atoms M ⊆ L and a propositional program π, we use GLM(π) to denote the
propositional program obtained from π by the following transformations:

• if a rule of form (3) is in π, and pci ∈ M for some i, (1 ≤ i ≤ l), then
delete this rule;

• delete not pci in the bodies of the remaining rules.

A set of propositional atoms M ⊆ L is an answer set of a propositional
program π if it is the minimal set of propositional atoms that satisfies every
rule in GLM(π), where M satisfies a rule of form (3) if

• either pa is ⊥, and {pb1, . . . , pbk} 6⊆M or {pc1, . . . , pcl} ∩M 6= ∅,

• or pa is a propositional atom, and pa ∈ M whenever {pb1, . . . , pbk} ⊆
M and {pc1, . . . , pcl} ∩M = ∅.

Proposition 1. Given a program Π and a finite structure A of τext(Π), let
A′ be a structure of τ(Π) such that Dom(A′) = Dom(A), cA

′
= cA for every

constant c, and a ∈ PA′ if and only if a ∈ PA for every extensional predicate
P . A′ is an answer set of Π if and only if MA′ is an answer set of ΠA, where
MA′ = {P (a) | P ∈ Pint(Π) and a ∈ PA′}.

8

Proof: Assume that Pint(Π) = {P1, . . . , Pn}, and let P∗ = {P ∗1 , . . . , P ∗n} be
a set of relation variables such that Pi and P ∗i (1 ≤ i ≤ n) are of the same
arity.

“⇒”: A′ is an answer set of Π. By Definition 1, A′ is a model of (2), and

thus the model of Π̂. By the definition of ΠA and MA′ , we can see that MA′
satisfies every rules in ΠA and GLMA′ (ΠA). We will show that MA′ is the
minimal set which satisfies every rules in GLMA′ (ΠA).

Otherwise, there is a set M ′′ ⊂ MA′ which also satisfies every rules in
GLMA′ (ΠA). We can see that M ′′ also satisfies every rules in Π(A). Let σ
be an assignment on P∗ such that a ∈ σ(P ∗i) if and only if Pi(a) ∈ M ′′,
for every intensional predicate Pi(1 ≤ i ≤ n). We will show that (A′, σ) |=
Π̂[+Pint(Π)/P∗].

Let r ∈ Π be a rule of form (1), and σ′ an assignment on V ar(r). Consider
the propositional rule

r′ : a[σ′]← b1[σ′], . . . , bk[σ
′], not c1[σ′], . . . not cl[σ

′],

we can see that either

• there is a = b for some distinct elements a, b ∈ Dom(A) or not a = a
for some element a ∈ Dom(A) in r′, or

• there is P (a) for extensional predicate P and a 6∈ PA or not P (a) for
extensional predicate P and a ∈ PA,

or

• M ′′ satisfies propositional rule r′′, where r′′ is obtained by removing all
the equality atoms and extensional atoms in the body of r′.

By considering both cases, we have (A′, σ) |= r̂[+Pint(Π)/P∗], and then

(A′, σ) |= Π̂[+Pint(Π)/P∗]. So, we have (A′, σ) |= (P∗ < Pint(Π))∧r̂[+Pint(Π)/P∗]
by noticing that M ′′ ⊂MA′ , which is a contradiction to the fact that A′ is a
model of (2).

“⇐”: MA′ is an answer set of ΠA. By the definitions of ΠA and MA′ ,
we can see that A′ is a model of Π̂. It is sufficient to show that there does
not exist an assignment σ on P∗ such that (A′, σ) |= (P∗ < Pint(Π)) ∧
r̂[+Pint(Π)/P∗].

Otherwise, let σ be an assignment on P∗ such that (A′, σ) |= (P∗ <
Pint(Π)) ∧ r̂[+Pint(Π)/P∗]. Let M ′′ be a subset of LA such that Pi(a) ∈M ′′

9

if and only if a ∈ σ(P ∗i), for every intensional predicate Pi, (1 ≤ i ≤ n). We
will show next that M ′′ satisfies every rules in ΠA.

Let r′′ ∈ ΠA be a propositional rule obtained from the propositional rule

r′ : a[σ′]← b1[σ′], . . . , bk[σ
′], not c1[σ′], . . . not cl[σ

′],

where there is a rule r of form (1) in Π, and σ′ is an assignment on V ar(r).
By the definition of ΠA,

• each equality atom in the body of r′ is of the form a = a or not a = b,
where a and b are distinct elements in Dom(A),

• if P (a) ∈ Pos(r′), then a ∈ PA, for extensional predicate P ,

• if P (a) ∈ Neg(r′), then a 6∈ PA, for extensional predicate P .

We already have (A′, σ) |= r̂[+Pint(Π)/P∗]. So, by the definition of M ′′, we
can see that M ′′ satisfies rule r′′. Furthermore, by (A′, σ) |= P∗ < Pint(Π),
we can see that M ′′ ⊂MA′ , and M ′′ also satisfies every rules in GLMA′ (ΠA)
by noticing that MA′ satisfies every rules in ΠA. This is a contradiction to
the fact that MA′ an answer set of ΠA. �

Proposition 1 indicates that Definition 1 coincides with the standard
Gelfond-Lifschitz semantics but lifted to an arbitrary finite structures rather
than only considering the Herbrand structure [15]. As a consequence, Defi-
nition 1 also coincides with Ferraris et al’s recent semantics [13] restricted to
normal logic programs with constraints on finite structures.

Corollary 2. Let Π be a program such that all predicates in Π are inten-
sional. A structure A is a stable model of Π̂ under Ferraris et al’s definition
[13] iff it is an answer set of Π under Definition 1.

Another issue is that we distinguish between intensional predicates and
extensional predicates in this paper. In fact, the main purpose is conceptual
but not technical. Also followed from Proposition 1, the following two prop-
erties show that programs with and without extensional predicates can be
simply transformed from one another. More precisely, from programs with-
out extensional predicates to those with, one can add “identity rules” of the
form

P (x)← P (x)

10

for every predicate P in Π. For the other way around, one can add “choice
rules” of the form

P ′(x)← not P (x),
P (x)← not P ′(x).

for every extensional predicate P , where P ′ is a new predicate that has the
same arity as P .

Corollary 3. Let Π be a program. A structure A is a stable model of Π̂
under Ferraris et al’s definition [13] iff it is an answer set of Π∪ID(Π) under
Definition 1, where ID(Π) is the set of all identity rules for all predicates in
Π.

Corollary 4. Let Π be a program. A structure A is an answer set of Π

under Definition 1 iff A′ is a stable model of Π̂ ∧ ̂Choice(Π) under Ferraris
et al’s definition [13], where A′ is the conservative extension of A under∧
P∈τ(Π) ∀x(P (x)↔ ¬P ′(x)), and Choice(Π) is the set of all choice rules for

all extensional predicates in Π.

Recently, Pelov, Denecker and Bruynooghe also introduced an alternative
first-order extension of logic programs with aggregates under stable semantics
[26]. In their formalism, a program is a (possibly infinite) set of aggregate
rules of the form A ← ϕ, where A is an atom and ϕ is a first-order for-
mula potentially including aggregate expressions. By defining a three-value
immediate consequence operator of an aggregate program, they defined the
extended stable semantics for such aggregate programs. Nevertheless, by ig-
noring the issue of aggregates, it is not difficult to observe that their fixpoint
based extended stable semantics actually coincides with Gelfond-Lifschitz’s
original stable model semantics on grounded programs [15].

2.4. Loops and loop formulas

For finite domains, the answer set semantics of a first-order logic program
can also be captured by loop formulas [4]. In the following, we review some
results about loops and loop formulas as they will be used in defining a class
of first-order definable programs.1

1Some notions are a little bit different from [4] to fit our context.

11

Given a program Π, the positive dependency graph of Π, denoted by GΠ,
is the infinite graph (V,E), where V is the set of atoms of τint(Π), and (α, β)
is an edge in E if there is a rule r ∈ Π and a substitution θ, such that
α = Head(rθ) and β ∈ Pos(rθ). A finite non-empty subset L of V is said
to be a loop of Π if there exists a cycle in GΠ that goes through only and all
the nodes in L. In particular, for each atom α ∈ V , we treat {α} as a special
loop, in which there is a singleton. A rule r is said to be involved in a loop
if there is a loop L and two atoms α and β in L such that α = Head(r) and
β ∈ Pos(r).

Let r be a rule of form (1), and suppose that a is P (t1, . . . , tn) for some
predicate P and tuple (t1, . . . , tn) of terms. If x = (x1, . . . , xn) is a tuple of
variables not in r, then the normal form of r on x is the following rule:

P (x1, . . . , xn)← x1 = t1, . . . , xn = tn, b1, . . . , bk, not c1, . . . , not cl

Given a program Π and a loop L of Π, and P (t) an atom in L, the external
support formula of P (t) for Π with respect to L, denoted by ES(P (t), L,Π),
is the following formula:

∨
1≤i≤k

∃yi

B̂odyriθ ∧ ∧
Q(t′)∈L,Q(t)∈Pos(riθ)

t 6= t′

 , (4)

where

• r1, . . . , rk are the normal forms on x of rules in Π whose head mention
the predicate P ;

• x is a tuple of variables that are not in Π, and if t = (t1, ..., tn) and
x = (x1, ..., xn), then θ = {x1/t1, ..., xn/tn} (so that xθ = t);

• yi(1 ≤ i ≤ k) is the tuple of local variables of ri.

The loop formula of L in Π, denoted by LF (L,Π), is the universal closure
of ∨

α∈L

α ⊃
∨
α∈L

ES(α,L,Π). (5)

We use LF (Π) to denote the set of all loop formulas in Π.

12

Theorem 1. [4] Let Π be a program2 and A a finite structure of τ(Π), where
A is a models of Σuna. A is an answer set of Π if and only if A is a model
of {Π̂} ∪ LF (Π).

In general case, a program may have infinite many loops, and thus LF (Π)
is an infinite set of sentences (see programs Π4 and Π5 illustrated in next
section). However, there are programs whose loop formulas can be captured
by a finite set of loop formulas.

A complete set of loops S of a program Π is a set of loops such that for
every loop L of Π, there is a loop L′ ∈ S and a substitution θ such that
L = L′θ. If a program Π has a finite complete set of loops S, then a finite
structure A is an answer set of Π if and only if A is a model of the sentence
Π̂ ∧

∧
L∈S LF (L).

Example 2. Consider the following program Π2:

r1 : P (x) ← Q(x), R1(x).
r2 : Q(x) ← P (x), R2(x).
r3 : P (x) ← R3(x).
r4 : Q(x) ← R4(x).

One of the complete set of loops of Π2 is {{P (y)}, {Q(y)}, {P (y), Q(y)}},
and thus an structure A is an answer set of Π2 if and only if it is a model of
the conjunction of Π̂2 and the following loop formulas:

∀y (P (y) ⊃ (Q(y) ∧R1(y)) ∨R3(y)),
∀y (Q(y) ⊃ (P (y) ∧R2(y)) ∨R4(y)),
∀y ((P (y) ∨Q(y)) ⊃ R3(y) ∨R4(y)).

�

3. First-order definable programs

Now we present a formal definition of first-order definability for answer
set programs.

2The theorem in [4] consider only programs without constraint, while it is straightfor-
ward to extend it to arbitrary programs.

13

Definition 2. A program Π is called first-order definable on finite structures
(under answer set semantics) if there is a first-order sentence ψ on vocabulary
τ(Π) such that for every finite structure A of τ(Π), A is a model of ψ if and
only if A is an answer set of Π. In this case, we say that Π is defined by ψ.

This notion of first-order definability for answer set programs is closely
related to the well-studied definability problem of datalog queries in deduc-
tive database [1, 6]. A datalog rule is a rule without negation, and a datalog
program is a finite set of datalog rules, i.e., a program without negation. For
any datalog program Π, it can be shown that given any database (struc-
ture) of extensional predicates, there is a unique answer set of Π based on
the database. This unique answer set is what is computed by the datalog
program from the given database of the extensional predicates.

A datalog query (Q,Π) (Q ∈ Pint(Π)) represents the intended value of Q
on a given extensional database A of Π, denoted as Q(A). (Q,Π) is explicitly
first-order definable if and only if there exists a first-order formula φ(x) on
τext(Π) such that for every extensional database A of Π, Q(A) is the same
as the relation represented by φ(x) under A. (Q,Π) is implicitly first-order
definable if there is a first-order sentence φ on τext(Π) ∪ {Q} such that for
every extensional database A of Π and a relation R on A, φ is satisfied in
the extension of A with R if and only if R = Q(A) [17]. It has been shown
that explicit definability implies implicit definability, but the converse is not
true in general on finite structures [1].

Our definition of first-order definability is similar to implicit first-order
definability in Datalog. One main difference is that the first-order definabil-
ity issue considered in ASP is about a program but not a query. Another
difference is that in our definition we require a first-order sentence to cap-
ture all answer sets and thus all intensional predicates, not just the single
intensional predicate mentioned in the query.

Example 3. Consider the following program Π3:

P (x) ← Q(x), not R1(x)

Q(x) ← R2(x).

Π3 has two intensional predicates: P and Q. According to Definition 2, Π3

can be defined by the sentence

∀x(P (x) ≡ (Q(x) ∧ ¬R1(x))) ∧ ∀x(Q(x) ≡ R2(x)).

�

14

From our remarks at the end of last section, we see that if a program has
a finite complete set of loops, then it is first-order definable. However, the
converse is not true in general. As the following examples show.

Example 4. Consider the program Π4:

r1 : P (x) ← R(x). (6)

r2 : P (x) ← P (y), S(x, u), not T (y, v). (7)

For this program P is the only intensional predicate. Clearly, Π4 does not
have a finite complete set of loops: for each n > 0, {P (x1), . . . , P (xn)} is a
loop.

Now consider how P (x1) can be derived. There are two rules for it:

P (x1) ← R(x1). (8)

P (x1) ← P (x2), S(x1, u1), not T (x2, v1). (9)

The first one is a base rule, where a rule is called a base rule if all predicates
in the body of the rule are extensional. The second one has a recursive call
to P (x2). Expanding the recursive call in the second rule produces two new
rules for P (x1):

P (x1) ← R(x2), S(x1, u1), not T (x2, v1). (10)

P (x1) ← P (x3), S(x2, u2), not T (x3, v2),

S(x1, u1), not T (x2, v1). (11)

Again, the first one is a base rule, and the second one has a recursive call
to P (x3) which can be further expanded to produce more rules about P (x1).
However, these new rules are really redundant. For instance, expanding
P (x3) in (11) using rule (6) produces the following rule:

P (x1) ← R(x3), S(x2, u2), not T (x3, v2),

S(x1, u1), not T (x2, v1). (12)

But this rule is subsumed by (10). In fact, one can show that this program
is equivalent to the program Π′4 which contains two rules (8) and (10). Π′4
has no loops and is defined by the conjunction of Π̂′4 and

∀x(P (x) ⊃ R(x) ∨ ∃yuv(R(y) ∧ S(x, u) ∧ ¬T (y, v))).

15

This is an example where recursive expansion terminates in one step. As
we shall see, one reason is that the body of r2 can be separated into two
parts, Bh = {S(x, u)} and Bb = {P (y), not T (y, v)}, such that Bh and the
head of rule r2 do not share any variables with Bb. �

Example 5. Consider another program Π5:

r1 : P (x) ← R1(x).
r2 : Q(x, y) ← R2(x, y).
r3 : P (x) ← Q(x, y), not T (y, v).
r4 : Q(x, y) ← P (x), S(x, u).

For this program, the intensional predicates are P and Q. We can see
that Π5 does not have a finite complete set of loops either: for each n > 0,
{P (x), Q(x, y1), . . . , Q(x, yn)} is a loop. Notice here that in every loop, all
atoms share a common variable x.

Just like Example 4, the recursive rules r3 and r4 only need to be expanded
a finite number of times. For r3, expanding Q(x, y) in its body once produces
one base rule and one recursive rule of the form P (x)← P (x), ... which can
be discarded. For r4, expanding P (x) in its body once produces a base rule
and the following recursive rule:

Q(x, y)← Q(x, y1), S(x, u), not T (y1, v). (13)

Expanding Q(x, y1) in (13) using r2 produces a base rule:

Q(x, y)← R2(x, y1), S(x, u), not T (y1, v).

Expanding Q(x, y1) in (13) using r4 produces a recursive rule:

Q(x, y)← P (x), S(x, u1), S(x, u), not T (y1, v). (14)

(14) is subsumed by r4. It is redundant, and do not need to be expanded.
On further examination, we found that what makes this program first-

order definable is that in every loop that “uses” the recursive rule r3 (and
similarly r4), the body of the rule can be separated into two parts, Bh = ∅ and
Bb = {Q(x, y), not T (y, v)}, such that the variables in both Bh∪{Head(r3)}
and Bb are the same as the variables in all the atoms in this loop. �

16

4. Loop-separable programs

We have seen two examples above that do not have finite complete sets
of loops but are nonetheless first-order definable. They are what we will call
loop-separable programs. Our main result of this paper is in showing that all
such programs are first-order definable. To define these programs, we need
to first introduce some additional notions about loops.

4.1. Loop patterns

The two examples above suggest that when the variables in the rules in-
volved in the loops of a program have some “patterns”, its loop formulas are
then “well-behaved” in the sense that they do not grow infinitely long. How-
ever, loops are sets of atoms, and the variables in a loop may not be the same
as the variables occurring in the rules involved in the loop. This motivates
our following definition of derivation paths, which extends the notion of path
in the dependency graph of a program.

Definition 3. A derivation path S of a program Π is a finite sequence of
pairs of an atom and a rule:

(α1, ρ1), . . . , (αn, ρn) (15)

where

• for 1 ≤ i ≤ n, there is a rule ri ∈ Π and a substitution (xi/yi) such
that ρi = ri(xi/yi), where xi is the tuple of all the variables in ri and
for any local variable xij of ri, yij is a new variable not in (αk, ρk),
(1 ≤ k < i);

• for 1 ≤ i ≤ n, αi = Head(ρi);

• for 1 ≤ i < n, αi+1 ∈ Pos(ρi).

If there is a path starting from an atom and ending at the same atom,
then there is a loop. For derivation path, we also need to know when there
is a cycle. In the following, we will define a relation between two pairs of an
atom and a rule.

Let t1 = (t11, . . . , t1n) and t2 = (t21, . . . , t2n) be two tuples of terms of the
same length. We define t1 ∼ t2 if

• for every i (1 ≤ i ≤ n) and constant c, t1i = c if and only if t2i = c;

17

• for every i (1 ≤ i ≤ n) and variable x, if x ∈ t1 and x ∈ t2, then t1i = x
if and only if t2i = x;

• for every i (1 ≤ i ≤ n) and variable x, if x ∈ t1 and x 6∈ t2, then there
is a variable y such that y ∈ t2 and y 6∈ t1, and t1i = x if and only if
t2i = y;

• for every i (1 ≤ i ≤ n) and variable x, if x ∈ t2 and x 6∈ t1, then there
is a variable y such that y ∈ t1 and y 6∈ t2, and t2i = x if and only if
t1i = y;

We also use t1 6∼ t2 if it is not the case t1 ∼ t2. For example, we have
(x, y, x, z) ∼ (x, u, x, w) and (x, y, z) 6∼ (y, x, u).

Intuitively, t1 ∼ t2 represents a special mutual substitution relation be-
tween t1 and t2, where variables and their corresponding positions occurring
in t1 and t2 cannot be mixed. Precisely, these properties are presented in the
following proposition.

Proposition 5. Let t1 and t2 be two tuples of terms of length n, and t1 ∼
t2. Then, there is a substitution x/y = {x1/y1, . . . , xk/yk}, where xi and yi
(1 ≤ i ≤ k) are variables, and

• for any 1 ≤ i < j ≤ k, xi and xj are different variables;

• for any 1 ≤ i < j ≤ k, yi and yj are different variables;

• {x1, . . . , xk} ∩ V ar(t2) = ∅ and {y1, . . . , yk} ∩ V ar(t1) = ∅;

• t1(x/y) = t2 and t2(y/x) = t1.

Proof: Let x1, . . . , xk be the variables only in t1 and y1, . . . , yk the variables
only in t2, such that t1i = xj if and only if t2i = yj, 1 ≤ i, j ≤ k. �

In the following, we call substitution (x/y), as shown in Proposition 5,
the witness of t1 ∼ t2. For example, {y/u, z/w} is the witness of (x, y, x, z) ∼
(x, u, x, w).

We extend relation ∼ to atoms, rules and pairs of an atom and a rule.
For two atoms α1 and α2, where α1 = P (t1) and α2 = P (t2), we use α1 ∼ α2

if t1 ∼ t2. For two rules ρ1 and ρ2, where ρ1 = r(x/y1), ρ2 = r(x/y2) and
x is the tuple of all variables in r, we use ρ1 ∼ ρ2 if y1 ∼ y2. For two pairs

18

(α1, ρ1) and (α2, ρ2), where α1, α2 are atoms, and ρ1, ρ2 are rules, we use
(α1, ρ1) ∼ (α2, ρ2) if α1 ∼ α2 and ρ1 ∼ ρ2. We also use O1 6∼ O2, if it is not
the case O1 ∼ O2, where O1 and O2 can be two atoms, rules or pairs of an
atom and a rule.

Now we can give the definition of loop pattern.

Definition 4. A derivation path of form (15) is called a loop pattern if
n > 1, ρ1 ∼ ρn, and ρi 6∼ ρj for any other i, j(1 ≤ i, j ≤ n).

Example 6. We continue with the program Π4 in Example 4 and Π5 in
Example 5.

For program Π4, its loop patterns are of the form:

lp1 : (P (x1), r2(x/x1, y/x2, u/u1, v/v1)),

(P (x2), r2(x/x2, y/x3, u/u2, v/v2)),

(P (x3), r2(x/x3, y/x4, u/u3, v/v3)). (16)

Note that

r2(x/x1, y/x2, u/u1, v/v1) ∼ r2(x/x3, y/x4, u/u3, v/v3),

but
r2(x/x1, y/x2, u/u1, v/v1) 6∼ r2(x/x2, y/x3, u/u2, v/v2)

and
r2(x/x2, y/x3, u/u2, v/v2) 6∼ r2(x/x3, y/x4, u/u3, v/v3).

For program Π5, there are two forms of loop patterns:

lp1 : (P (x1), r3(x/x1, y/x2, v/v1)),

(Q(x1, x2), r4(x/x1, y/x2, u/u1)),

(P (x1), r3(x/x1, y/x3, v/v2)) (17)

lp2 : (Q(x1, x2), r4(x/x1, y/x2, u/u1)),

(P (x1), r3(x/x1, y/x3, v/v1)),

(Q(x1, x3), r4(x/x1, y/x3, u/u2)). (18)

�

The following proposition shows the relationship between loop patterns
and loops.

19

Proposition 6. Let S be a loop pattern of program Π and of form (15), then
{α1(y/x), . . . , αn(y/x)} is a loop of Π, where (x/y) is the witness of α1 ∼ αn.

Proof: There is a path from α1(y/x) to αn(y/x), and α1(y/x) = αn(y/x). �

There are programs that do not have a finite complete set of loops, while
the following proposition shows that every program has a finite complete set
of loop patterns.

Proposition 7. For every program Π, there is a finite set of loop patterns
Sl such that for each loop pattern S of Π, there is a loop pattern S ′ ∈ Sl
and S = S ′θ, where θ = (x/y) is a substitution, and all variables in y are
different.

Proof: Please see Section 5.1. �

4.2. Loop-separable program

Now we present our main result.

Definition 5. (Loop-separable programs) A program Π is loop-separable
if for every loop pattern of form (15), one of the following cases holds:

Case 1: there is a pair (αi, ρi), (1 ≤ i < n) such that Body(ρi) can be
separated into two parts Bh and Bb and

– Bh ∩Bb = ∅ and Bh ∪Bb = Body(ρi);

– αi+1 ∈ Bb;

– V ar({αi} ∪Bh) ∩ V ar(Bb) = ∅

Case 2: for every i, (1 ≤ i < n), Body(ρi) can be separated into two
parts Bh and Bb such that

– Bh ∩Bb = ∅ and Bh ∪Bb = Body(ρi);

– αi+1 ∈ Bb;

– V ar({αi} ∪Bh) ∩ V ar(Bb) =
⋂n
j=1 V ar(αj)

20

Example 7. Consider loop pattern lp1 of program Π4 and the pair (P (x1), r′2),
where r′2 is

r2(x/x1, y/x2, u/u1, v/v1)) : P (x1)← P (x2), S(x1, u1), not T (x2, v1).

We can separate the body of this rule into two parts, Bh = {S(x1, u1)} and
Bb = {P (x2), not T (x2, v1)}. So lp1 satisfy the first case, and thus program
Π4 is loop-separable.

Consider loop patterns lp1 and lp2 of program Π5, we can see that both
of them satisfy the second case in the Definition 5, and thus program Π5 is
also loop-separable. �

Note that the two cases in Definition 5 are not exclusive. There are
loop patterns that satisfy the conditions in both cases. For instance, a loop
pattern of form (15) could be both of case 1 and case 2 if

⋂n
j=1 V ar(αj) = ∅.

Furthermore, it is possible that for a program, some of its loop patterns are
of case 1 while others case 2.

Example 8. Consider the program Π6:

r1 : P (x) ← R1(x).
r2 : Q(x) ← R2(x).
r3 : P (x) ← Q(x), R3(y).
r4 : Q(x) ← P (x), R4(y).
r5 : P (x) ← P (y), R5(y).

21

there are four forms of loop patterns:

lp1 : (P (x1), r5(x/x1, y/x2)),

(P (x2), r5(x/x2, y/x3))

(P (x3), r5(x/x3, y/x4)) (19)

lp2 : (P (x1), r3(x/x1, y/y1)),

(Q(x1), r4(x/x1, y/y1)),

(P (x1), r3(x/x1, y/y1)) (20)

lp3 : (Q(x1), r4(x/x1, y/y1)),

(P (x1), r3(x/x1, y/y1)),

(Q(x1), r4(x/x1, y/y1)) (21)

lp4 : (Q(x1), r4(x/x1, y/y1)),

(P (x1), r3(x/x1, y/x2)),

(P (x2), r3(x/x2, y/y2)),

(Q(x2), r4(x/x2, y/y2)). (22)

As we can see that lp4 is the loop pattern of case 1, lp2 and lp3 are loop
patterns of case 2, and lp1 is loop pattern of both case 1 and case 2. �

Theorem 2. If a program is loop-separable, then it is first-order definable.

According to Theorem 2, programs Π4, Π5 and Π6 are first-order defin-
able.

Furthermore, the problem of whether a given program is loop-separable
is decidable, as indicated by the following theorem.

Theorem 3. It is decidable to check whether a program is a loop-separable
program.

5. Proofs of the main theorems

The proofs of the main theorems (i.e. Theorems 2 and 3) are rather tech-
nical and tedious. However, the underlying ideas are simple. For Theorem 2,
we first prove that it holds with the restriction of the UNA, then extend this
result to the general case. The first step is of the most technically challeng-
ing. For this purpose, we need to relate the answer set semantics to so-called

22

expansion tree, extended from the same technique in Datalog. Then, we show
that for any loop-separable program, we can always pick up a finite set of
expansion trees to capture all its answer sets. Based on these finite number
of expansion trees, we can explicitly define a first-order sentence that exactly
captures the original program.

Theorem 3 is a direct consequence of Proposition 7, which can be proven
by showing that, under the operator ∼, there are only a finite number of
pairs of an atom and a rule (α, ρ).

5.1. Proofs of Proposition 7 and Theorem 3

We first prove Proposition 7 and Theorem 3, as the proof techniques are
needed in proving Theorem 2. We need the following lemma about the length
of a derivation path.

Lemma 1. Let Π be a program. There exists an natural number N such
that for any derivation path of form (15), if n > N then there exists i, j
(1 ≤ i < j ≤ n) such that (αi, ρi) ∼ (αj, ρj).

Proof: Note that Π has only finite many rules, so the original statement
follows immediately from the following one:

Let k be a natural number. There exists a natural number Nk

such that for any set {t1, . . . , tn} of tuples of length k, if n > Nk

then there exists i, j, (1 ≤ i < j ≤ n) such that ti ∼ tj.

In other words, there exists a bound for a set of term tuples of fixed length
if there are no two similar term tuples in it.

We first ignore all constants. Now we divide the set of term tuples into
categories such that each category is a partition of the k terms. That is, for
any two term tuples t and t′ in the same category, for every pair i, j, (1 ≤
i 6= j ≤ k), ti = tj if and only if t′i = t′j. The number of categories is finite
since k is a fixed number. More specifically, the number of all categories is
exactly Bk, the k-th Bell number, which can be understood as the number of
equivalence relations on a set with k members. Clearly, two term tuples in
different categories are not similar. We now prove that there exists a bound
for any of the categories if there are no two similar term tuples in it. Without
loss of generality, we only consider the case that all terms in the term tuple
are distinct. The other cases can be obtained in a similar way.

In this category, for any term tuple t, there does not exist ti and tj such
that ti = tj. Let Tk be the maximal number of term tuples of length k in

23

this category such that there are no two similar term tuples in it. Clearly,
T1 = 1. Now consider to calculate Tk for k > 1. Suppose there are no two
term tuples that are similar in this category. Let t = (x1, . . . , xk) be a term
tuple and xi 6= xj, (1 ≤ i 6= j ≤ k). If another tuple t′ is not similar to t,
then there must exist i, (1 ≤ i ≤ k) such that xi ∈ t′ and xi is not in the
i-th position in t′. Without loss of generality, assume that x1 is in the k-th
position of t′. Then, consider all the term tuples in this category such that
x1 is in the k-th position. The number of such term tuples is less or equal
than Tk−1. Otherwise, there exist two term tuples that are similar. Thus, we
have

T1 = 1,
Tk ≤ k(k − 1)Tk−1 + 1, k > 1.

Here, k in k(k−1)Tk−1 means that there are k terms, k−1 means that these
variables must be in a different position, and Tk−1 means that, as discussed
above, there are at most Tk−1 term tuples by fixing a term in a particular
position. Hence, Tk is bounded. In fact,

Tk ≤ k!(k − 1)!×
∑

1≤i≤k

1

i!(i− 1)!
.

The above proof shows that there exists a bound when ignoring all con-
stants. When considering constants, this statement still holds since the set
of constants is finite. In fact, we can divide the set of term tuples into m
groups that contain m different constants, 0 ≤ m ≤ C, where C is the num-
ber of all constants. Then, each group has a bound if there does not exist
two substations ”similar”. The above case is for m = 0. The proof can be
easily extended to an arbitrary m. �

Proof of Proposition 7
Proof: By Lemma 1, given a program Π, there are natural numbers N1 and
N2, such that for every loop pattern S of Π, the length of S is less than N1,
and thus, the number of variables in S is less than N2.

Let v1, . . . , vN2 be N2 variables not in Π, and Sl be all the possible loop
patterns of Π using these variables. It is clear that Sl is finite, and for every
loop pattern S of Π, there is a loop pattern S ′ ∈ S and S = S ′θ where
θ = x/t is a substitution, and all variables in y are different. �

Proof of Theorem 3
The set of loop patterns in Sl as defined in Proposition 7 is finite, and it is

24

sufficient to check if the condition in Definition 5 holds for each loop pattern
in Sl. �

5.2. Correspondence between answer set and expansion tree

Now we extend the notion of expansion tree, introduced in Datalog [3], to
first-order answer set program with extensional database, and show how it is
related to the answer set semantics. More precisely, we show that a structure
A is an answer set of a given program Π if and only if A is supported by a
set of expansion trees of Π. In this subsection and the next, unless stated
otherwise, we assume that all the structures considered are models of Σuna.

Definition 6. An expansion tree T of a program Π is a (finite) tree such
that

• the nodes of T are pairs of the form (α, ρ), where α is an atom and
ρ = rθ such that r ∈ Π is a rule, θ a substitution, and α = Head(ρ);

• for any node (α, ρ), let β1, . . . , βi be all the intensional atoms in Pos(ρ),
then (α, ρ) has i children labeled with the atom β1, . . . , βi;

In particular, a node (α, ρ) of an expansion tree T is a leaf of T if and only
if all the atoms in Pos(ρ) are either equality or extensional atoms.

We use αw and ρw to denote the atom and the rule of a node w, and use
Tw to denote the subtree of T whose root is w. We also use dep(T) to denote
the depth of an expansion tree T . Without loss of generality, we assume that
variables in expansion trees and variables in Π are disjoint, and that for any
node w, the variables in the body of ρw either occur in the head of ρw or
they do not occur in any nodes of T except Tw. Note that every path in T
is a derivation path of Π.

Given a node w of an expansion tree T and a substitution θ, let wθ be
the pair (αwθ, ρwθ). Given an expansion tree T , let Tθ be the expansion tree
obtained from T by replace every node w in T by wθ. Let tree(Π) be the
(infinite) set of all expansion trees of program Π. Given an expansion tree
T of program Π, we use rT to denote the rule whose head is the atom of the
root of T , and the positive body and negative body are defined by:

Pos(rT) =
⋃
{Pos(ρw) | w is a leaf of T},

Neg(rT) =
⋃
{Neg(ρw) | w is a node of T}.

25

Given two expansion trees T1 and T2, we say that T1 is subsumed by T2 (or
T2 subsumes T1) if the roots of T1 and T2 are labeled by the same atom and
Body(rT2) ⊆ Body(rT1).

Definition 7. Let Π be a program, A a structure of τ(Π) and T a (possibly
infinite) set of expansion trees. We say that A is supported by T , if for
every intensional predicate P and a ∈ PA, there is an expansion tree T ∈ T
and an assignment σ on all variables y of T over A, such that σ(t) = a and

(A, σ) |= B̂odyrT , where P (t) is the atom of the root of T .

The following two lemmas show the relationship between the answer sets
and expansion trees.

Lemma 2. Let Π be a program and A be a structure of τ(Π) which is a

model of Π̂. If A is an answer set of Π, then A is supported by tree(Π).

Proof: Assume that A is an answer set of Π. Let Ae be the structure of
τext(Π) such that Dom(Ae) = Dom(A) and PAe = PA for all extensional
predicate P ∈ Pext(Π). Also, let M = {P (a) | P ∈ Pint(Π) and a ∈ PA}. By
Proposition 1, M is an answer set of the propositional program ΠAe , where
ΠAe is the instantiation of Π on Ae.

By Definition 7, it is sufficient to show that for every P (a) ∈M , there is
an expansion tree T ∈ tree(Π) and an assignment σ on y over A such that

P (a) = α[σ] and (A, σ) |= B̂odyrT , where y is the tuple of the variables in T
and α is the atom of the root of T .

From the definition of the answer set for propositional program, M is the
minimal set which satisfies every rules in GLM(ΠAe). We define M0 = ∅ and
Mi = TP (Mi−1) for i > 0, where TP is a map from a subset of LA to a
subset of LA defined as following:

TP (S) = {pa | there is a rule pa← pb1, . . . , pbk in GLM(ΠAe)
such that {pb1, . . . , pbk} ⊆ S}.

GLM(ΠAe) is positive, so there exists n such that Mn = Mn+1 = M [30]. We
will show by induction that for every 0 ≤ i ≤ n, if P (a) ∈ Mi, then there is
an expansion tree T ∈ tree(Π) and an assignment σ on y over A such that

P (a) = α[σ] and (A, σ) |= B̂odyrT , where y is the tuple of the variables in T
and α is the atom of the root of T .

26

For i = 0, the statement holds trivially. We assume that the statement
holds for all i < j, and we show next that it also holds for j.

Let P (a) ∈Mj. By the definition of TP (Mj), there is a rule

P (a)← pb1, . . . , pbk

in GLM(ΠAe) such that {pb1, . . . , pbk} ⊆ Mj−1. By the definitions of ΠAe
and GLM(ΠAe), there is a rule

P (a)← pb1, . . . , pbk, not pc1, . . . , not pcl

in ΠAe , and there is a rules r:

P (t)← b1, . . . , bk, bk+1, . . . , bk′ , not c1, . . . , not cl, not cl+1, . . . , not cl′

in Π and an assignment σ on V ar(r) over A such that:

• P (t)[σ] = P (a);

• b1, . . . , bk are intensional atoms, and bm[σ] = pbm, 1 ≤ m ≤ k;

• bk+1, . . . , bk′ are either extensional atoms or equality atoms, and (A, σ) |=
bm, k < m ≤ k′;

• c1, . . . , cl are intensional atoms, and cm[σ] = pcm, 1 ≤ m ≤ l;

• cl+1, . . . , cl′ are either extensional atoms or equality atoms;

• (A, σ) 6|= cm, 1 < m ≤ l′;

By assumption, for every 1 ≤ m ≤ k, there is an expansion tree Tm ∈
tree(Π) and an assignment σm on y over A such that pbm = αm[σm] and

(A, σm) |= ̂BodyrTm , where y is the tuple of the variables in Tm and αm is the
atom of the root of Tm. Without loss of generality, we assume V ar(Tm1) ∩
V ar(Tm2) = ∅, 1 ≤ m1 6= m2 ≤ k.

We introduce a new variable vc for every domain element c ∈ Dom(A),
and define a substitution θm for every Tm(1 ≤ m ≤ k) as following

θm = {x/vc | x ∈ V ar(Tm) and x is assigned to c in σm}.

We can see that pbm = αm[σm] = αmθm[σ′m], and (A, σm) |= ̂BodyrTm if and

only if (A, σ′m) |= ̂BodyrTmθm , where αm is the root of Tm and σ′m is the

27

assignment on V ar(Tmθm) over A which assign every variable of the form vc
to the domain element c.

Let θ be the substitution defined as following:

θ = {x/vc | x ∈ V ar(r) and x is assigned to c in σ}.

We then define an expansion tree T as following:

• the root of T is (P (t)θ, rθ);

• (P (t)θ, rθ) have k subtree: T1θ1, . . . , Tkθk.

We can see that b1θ, . . . , bkθ are all the intensional atoms in Pos(rθ). For
1 ≤ m ≤ k, the atom of the root of Tmθm is αmθm, and αmθm = bmθ by
noticing that αmθm[σ′m] = pbm and pbm = bm[σ] = bmθ[σ

′
m]. So T is well

defined.
All variables in T are of the form vc where c is a domain element of A.

Let σ∗ be the assignment on V ar(T) that assign every variable of the form
vc in V ar(T) to the domain element c. We can see that:

• Tθ is an expansion tree by noticing that T1θ1, . . . , Tkθk are expansion
trees, and that (P (t)θ, rθ) has k children which are labeled with the
atoms b1θ, . . . , bkθ;

• the root of Tθ is labeled by atom P (t)θ, and P (a) = P (t)θ[σ∗] by
noticing P (a) = P (t)[σ];

• (A, σ∗) |= B̂odyrTθ by noticing that (A, σm) |= ̂BodyrTmθm (1 ≤ m ≤ k),
(A, σ∗) |= bm(k < m ≤ k′), and (A, σ∗) 6|= cm(1 ≤ m ≤ l′).

This completes the proof. �

Lemma 3. Let Π be a program and A be a structure of τ(Π) which is a

model of Π̂. If A is supported by a set of expansion trees T , then A is an
answer set of Π.

Proof: Assume thatA is a model of Π̂, and is supported by a set of expansion
trees T . By Theorem 1, it is sufficient to show that A is a model of LF (Π).

28

Let L be a loop of Π The loop formula of L is the universal closure of∨
α∈L

α ⊃
∨
α∈L

ES(α,L,Π).

Let σ be an arbitrary assignment on V ar(L) overA. If (A, σ) 6|=
∨
α∈L α, then

(A, σ) |=
∨
α∈L α ⊃

∨
α∈LES(α,L,Π). Otherwise, there exists a ∈ PA such

that P (t) ∈ L and a = σ(t). We will show that (A, σ) |=
∨
α∈LES(α,L,Π)

holds in this case.
By assumption, A is supported by T . So there exists an expansion tree

T ∈ T and an assignment δ on V ar(T) over A such that (A, δ) |= B̂odyrT
and δ(t∗) = a, where P (t∗) is the atom of the root of T . We will show
by induction on the structure of the expansion tree T that for every node
w = (P ′(t′), ρ) of T ,

• (A, δ) |= P ′(t′);

• for every loop L′, if there is an atom P ′(t′′) ∈ L′ and an assign-
ment σ′ on V ar(L′) over A such that σ′(t′′) = δ(t′), then (A, σ′) |=∨
α∈L′ ES(α,L′,Π). Without loss of generality, we assume V ar(L′) ∩

V ar(T) = ∅.

(1) If w = (P ′(t′), ρ) is a leaf, then Body(ρ) ⊆ Body(rT). We have

(A, δ) |= B̂odyρ and (A, δ) |= P ′(t′) by noticing that A is a model of Π̂.
Let L′ be a loop and x be the tuple of variables in L′. Let σ′ be an

assignment on x over A such that there is an atom P ′(t′′) ∈ L′ and σ′(t′′) =
δ(t′). Also, let y be the tuple of the local variables of ρ, and σ′′ be the
assignment on x ∪ y over A such that σ′′(x) = σ′(x) and σ′′(y) = δ(y).

We have
(A, σ′′) |= B̂odyρ ∧

∧
Q(s)∈L′,Q(s′)∈Pos(ρ)

s 6= s′

by noticing that there are only intensional atoms in L′, and that the positive
part of ρ are all extensional atoms. So, we have

(A, σ′) |= ∃y

B̂odyρ ∧ ∧
Q(s)∈L′,Q(s′)∈Pos(ρ)

s 6= s′


and

(A, σ′) |=
∨
α∈L′

ES(α,L′,Π).

29

(2) If w = (P ′(t′), ρ) is not a leaf, then let w1, . . . , wn be the children of
w. Assume that for every child wi = (Qi(ti), ρi) of w, 1 ≤ i ≤ n,

• (A, δ) |= Qi(ti);

• for every loop L′′, if there is an atom Qi(t′i) ∈ L′′ and an assignment
σ′′ such that σ′′(t′i) = δ(ti), then (A, σ′′) |=

∨
α∈L′′ ES(α,L′′,Π).

By the definition of rT , we have Neg(ρ) ⊆ Neg(rT). We also have
Pos(ρ) = {Q1(t1), . . . , Qn(tn)}, and (A, δ) |= Qi(ti), 1 ≤ i ≤ n. So, we

have (A, δ) |= B̂odyρ and (A, δ) |= P ′(t′). We still need to show that for ev-
ery loop L′, if there is an atom P ′(t′′) ∈ L′ and an assignment σ′ on V ar(L′)
such that σ′(t′′) = δ(t′), then (A, σ′) |=

∨
α∈L′ ES(α,L′,Π).

If there is a child wi = (Qi(ti), ρi) of w, and there is an atom Qi(t′i) ∈ L′
such that σ′(t′i) = δ(ti), then (A, σ′) |=

∨
α∈L′ ES(α,L′,Π) by induction

hypotheses. Otherwise, for any two atoms Q(s) ∈ L′ and Q(s′) ∈ Pos(ρ), we
have σ′(s) 6= δ(s′). Similarly to (1), let y be the tuple of the local variables
of ρ, and σ′′ be the assignment on x ∪ y over A such that σ′′(x) = σ′(x) and
σ′′(y) = δ(y). We have

(A, σ′′) |= B̂odyρ ∧
∧

Q(s)∈L′,Q(s′)∈Pos(ρ)

s 6= s′.

So,

(A, σ′) |= ∃y

B̂odyρ ∧ ∧
Q(s)∈L′,Q(s′)∈Pos(ρ)

s 6= s′


and

(A, σ′) |=
∨
α∈L′

ES(α,L′,Π).

�

5.3. Finite set of expansion trees for loop-separable program

From Lemmas 2 and 3, a program Π can be defined by Π̂ and all its
expansion trees. However, there might exist infinite number of expansion
trees in general by even considering the equivalence under substitution. For-
tunately, we can show that for loop-separable programs, we can always find
a finite set of expansion trees which is equivalent to tree(Π).

30

The key idea is that for loop-separable programs, the depth of their ex-
pansion trees can be bounded to some extent. That is, for any loop-separable
program, there exists a natural number k such that for any expansion tree of
the program whose depth is greater than k, we can always construct another
expansion tree, which subsumes the original one and whose depth is less than
k. Roughly speaking, any large expansion tree of a loop-separable program
can be unfolded into a smaller one.

For this purpose, we need to show some propositions of derivation path
and loop pattern. A derivation path of form (15) is called a base pattern
if atoms in Pos(ρn) are either equality or extensional atoms, and ρi 6∼ ρj,
(1 ≤ i < j ≤ n). In the following, we will define how a derivation path
is extended by a loop pattern, and show the relationship between the loop
patterns and the derivation paths in expansion trees.

Definition 8. Let S = (w1, . . . , wn) be a derivation path, S ′ = (w′1, . . . , w
′
m)

a loop pattern, and V ar(S) ∩ V ar(S ′) = ∅. We say that S can be extended
by S ′ if there is a node wi(1 ≤ i ≤ n) such that wi ∼ w′1. An extension of S
by S ′ is a sequence of pairs:

w1, . . . , wi−1, w
′
1θ1, . . . , w

′
mθ1, wi+1θ2, . . . , wnθ2 (23)

where

• (x/x′) is the witness of wi ∼ w′1;

• (y1/ym) the witness of w′1 ∼ w′m;

• θ1 = x′/x ∪ z′/z, where z′ is the tuple of variables in V ar(S ′) \ x′, z is
a tuple of new variables not in V ar(S) ∪ V ar(S ′), and all variables in
z are different;

• θ2 = {u/v | there is a variable v′ such that u/v′ ∈ (x/x′), v′/v′′ ∈
(y1/ym) and v′′/v ∈ θ1}.

Proposition 8. Let S = (w1, . . . , wn) be a derivation path and S ′ = (w′1, . . . , w
′
m)

a loop pattern such that V ar(S)∩V ar(S ′) = ∅. If S∗ be an extension of S by
S ′, then S∗ is also a derivation path, V ar(S∗) ∩ V ar(S ′) = ∅ and the length
of S∗ is n+m− 1.

31

Proof: Let S∗ be an extension of S by S ′ of form (23). By Definition 8,
we have wi = w′1(x′/x) = w′1θ1 and w′mθ1 = wiθ2, so S∗ is also a derivation
path. In the substitution θ1, all variables in S ′ are substitute to distinct new
variables, so we have V ar(S∗) ∩ V ar(S ′) = ∅. It is obvious that the length
of S∗ is n+m− 1. �

Given a derivation path S and loop patterns S1, . . . , Sn, We also say a
derivation path S ′ is an extension of S by S1, . . . , Sn if there exist derivation
paths S ′0(= S), S ′1, . . . , S

′
n(= S ′) such that for 1 ≤ i ≤ n, S ′i is an extension

of S ′i−1 by Si.

Proposition 9. Let Π be a program and T an expansion tree of Π. Also, let
Sl be the set of loop patterns as mentioned in Proposition 7 and assume that
V ar(T)∩V ar(Sl) = ∅. If S = (w1, . . . , wn) is a path in T such that w1 is the
root of T and wn a leaf, then S is either a base pattern or an extension of
S0 by S1, . . . , Sm, where S0 is a base pattern and S1, . . . Sm are loop patterns
such that Si ∈ Sl, (1 ≤ i ≤ m).

Proof: If wi 6∼ wj, wi, wj ∈ S, (1 ≤ i < j ≤ n), then S is a base pattern.
Otherwise, there exists wi, wj, (1 ≤ i < j ≤ n) in S such that wi ∼ wj.

By Proposition 7, if there exists a base pattern S0 and loop patterns
S ′1, . . . , S

′
m such that S is an extension of S0 by S ′1, . . . , S

′
m, then there always

exist loop patterns S1, . . . , Sm, such that Si ∈ Sl(1 ≤ i ≤ m) and S is an
extension of S0 by S1, . . . , Sm. In the following, we will show that if S is not
a base pattern, then there exists a derivation path S∗1 and a loop pattern S∗2
such that the length of S∗1 is less than the length of S and S is an extension
of S∗1 by S∗2 .

Without loss of generality, we assume that wi′ 6∼ wj′ for every i ≤ i′ <
j′ ≤ j unless i = i′ and j = j′. Let S∗1 = (w1, . . ., wi, wj+1(y1/x1), . . .,
wn(y1/x1)), where (x1/y1) is the witness of wi ∼ wj. Let S∗2 = (wi(x2/y2),
. . ., wj(x2/y2)), where x2 is the tuple of all variables in {wi, . . . , wj}, y2 is a
tuple of new variables not in T and all variables in y2 are different.

S∗1 is a derivation path by noticing that wi = wj(y1/x1) and all variables
in x1 do not occur in wj+1, . . . , wn. S∗2 is a loop pattern and V ar(S∗1) ∩
V ar(S∗2) = ∅ by noticing that y2 is a tuple of new variables. Furthermore,
by Definition 8 and Proposition 8, S is an extension of S∗1 by S∗2 , and the
length of S∗1 is less than the length of S. �

32

In the following, we will show that some properties of a derivation path
still keep unchanged when it is extended. We introduce one more notion
here. Given a derivation path S of form (15), we use NS(S) to denote the
number of pair (αi, ρi), 1 ≤ i < n, such that Body(ρi) can be separated into
two parts Bh and Bb and

• Bh ∩Bb = ∅ and Bh ∪Bb = Body(ρi);

• αi+1 ∈ Bb;

• V ar({αi} ∪Bh) ∩ V ar(Bb) = ∅.

Proposition 10. Let S = (w1, . . . , wn) be a derivation path, S ′ = (w′1, . . . , w
′
m)

a loop pattern and V ar(S) ∩ V ar(S ′) = ∅. Let S∗ be the extension of S by
S ′ of form (23), then

(1) if (w′1, . . . , w
′
m) is a loop pattern of case 1 in Definition 5, and w′j is the

pair as mentioned in Definition 5, and w′j = (α′j, ρ
′
j) is the pair such

that Body(ρ′j) can be separated into two parts Bh and Bb, and

– Bh ∩Bb = ∅ and Bh ∪Bb = Body(ρ′j);

– α′j+1 ∈ Bb;

– V ar({α′j} ∪Bh) ∩ V ar(Bb) = ∅

then (w′1θ1, . . . , w
′
mθ1) is also a loop pattern of case 1 and Body(w′j)θ1

can be separated into two parts Bhθ1 and Bbθ1, and

– Bhθ1 ∩Bbθ1 = ∅ and Bhθ1 ∪Bbθ1 = Body(ρj)θ1;

– α′j+1θ1 ∈ Bbθ1;

– V ar({α′jθ1} ∪Bhθ1) ∩ V ar(Bbθ1) = ∅;

(2) if (w′1, . . . , w
′
m) is a loop pattern of case 2 in Definition 5, then (w′1θ1,

. . ., w′mθ1) is also a loop pattern of case 2 in Definition 5;

(3) NS(S∗) = NS(S) +NS(S ′).

Proof: Statements (1) and (2) hold by noticing that a variable is always
replaced by a distinct new one in substitutions θ1 and θ2.

33

For statement (3), we have wi = w′1(x′/x) = w′1θ1 and w′mθ1 = wiθ2. So,

NS(S) = NS((w1, . . . , wi)) +NS((wi, . . . , wn))

= NS((w1, . . . , wi−1, w
′
1θ1)) +NS((wiθ2, . . . , wnθ2))

= NS((w1, . . . , wi−1, w
′
1θ1)) +NS((w′mθ1, . . . , wnθ2)),

and

NS(S∗) = NS((w1, . . . , wi−1, w
′
1θ1)) +NS(S ′θ1) +NS((w′mθ1, . . . , wnθ2))

= NS(S) +NS(S ′θ1)

= NS(S) +NS(S ′).

�

In the following two propositions, we will show that for some large ex-
pansion tree T , we can always find another smaller one T ∗ such that T is
subsumed by T ∗ and the depth of T ∗ is less than T .

Proposition 11. Given a program Π and an expansion tree T of Π, let
S = (w1, . . . , wn) be a path in T such that w1 is the root of T and wn a leaf.
If S is an extension of a base pattern S0 by loop patterns S1, . . . , Sm and
there exists a loop pattern S∗ of case 1 in Definition 5 such that S∗ occurs
in S1, . . . , Sm more than once, then there is an expansion tree T ∗ such that
T is subsumed by T ∗ and dep(T ∗) < dep(T).

Proof: S∗ is loop pattern of case 1 in Definition 5. Let w = (αk, ρk) be the
pair in S∗ such that Body(ρk) can be separated into two parts Bh and Bb

and

• Bh ∩Bb = ∅ and Bh ∪Bb = Body(ρk);

• αk+1 ∈ Bb;

• V ar({αk} ∪Bh) ∩ V ar(Bb) = ∅

From (3) in Proposition 10, there exist two nodes wi, wj in S such that

• wi = (αi, ρkθi) and wj = (αj, ρkθj);

• for two different variables x1, x2, x1/y1 ∈ θi and x2/y2 ∈ θi, then y1, y2

are two different variables;

34

wi

w1

αi ←Bhθi, Bbθi

αj ←Bhθj, Bbθj

wj

wn

wS*
αk ←Bh, Bb

w*

w1

αi ←Bhθi, Bbθi

wn

Bbθj

θi θj
θ*

Figure 1: the proof of Proposition 11

• for two different variables x1, x2, x1/y1 ∈ θj and x2/y2 ∈ θj, then y1, y2

are two different variables.

So, Body(ρk)θi can be also separated into two parts Bhθi and Bbθi and

• Bhθi ∩Bbθi = ∅ and Bhθi ∪Bbθi = Body(ρkθi);

• αi+1θi ∈ Bbθi;

• V ar({αiθi} ∪Bhθi) ∩ V ar(Bbθi) = ∅

Let θ∗ be the substitution:

θ∗ = {x/t | x ∈ V ∗, x/t ∈ θj} ∪ {x/t | x 6∈ V ∗, x/t ∈ θi},

where V ∗ is the set of variables in Bb. Consider the rule ρkθ
∗, we have

• Head(ρkθ
∗) = αi;

• for every literal l ∈ Body(ρk), if lθi ∈ Bhθi, then lθ∗ = lθi ∈ Body(ρkθi);

• for every literal l ∈ Body(ρk), if lθi ∈ Bbθi, then lθ∗ = lθj ∈ Body(ρkθj).

We can construct T ∗ as shown in Figure 1. Let T ∗ be the expansion tree
obtained from T by

35

• keep the nodes not in the subtree of w the same as T ;

• replace the node w by w∗ = (αi, ρkθ
∗);

• for every intensional atom β∗ ∈ Body(ρkθ
∗), if β ∈ Body(ρk) is the

atom such that βθi = β∗ ∈ Bhθi then (αw, ρkθ
∗) has a child labeled by

atom β∗, and copy all the node in the subtree of βθi in Twi to T ∗;

• for every intensional atom β∗ ∈ Body(rθ∗), if β ∈ Body(ρk) is the atom
such that βθi ∈ Bbθi and βθj = β∗, then (αw, ρkθ

∗) has a child labeled
by atom β∗, and copy all the node in the subtree of βθj in Twj to T ∗.

From the construction of T ∗, we have

• the roots of T and T ∗ are labeled by the same atom;

• Body(rT ∗) ⊂ Body(rT).

• the depth of T ∗ is less than that of T ;

So T is subsumed by T ∗ and dep(T ∗) < dep(T). �

Proposition 12. Given a program Π and an expansion tree T of Π, let
S = (w1, . . . , wn) be a path in T such that w1 is the root of T and wn a leaf.
If there exist wi and wj in S such that (wi, . . . , wj) is a loop pattern of case
2 in Definition 5, then there is an expansion tree T ∗ such that T is subsumed
by T ∗ and dep(T ∗) < dep(T).

Proof: (wi, . . . , wj) is a loop pattern of case 2 in Definition 5. Let wi =
(αi, r(x/ti)), wj = (αj, r(x/tj)). From case 2 of Definition 5, r(x/ti) can be
separated into two parts Bh and Bb such that

• Bh ∩Bb = ∅ and Bh ∪Bb = Body(r(x/ti));

• αi+1 ∈ Bb;

• V ar({αi} ∪Bh) ∩ V ar(Bb) =
⋂j
k=i V ar(αwk).

Let θ∗ be the substitution:

θ∗ = {x/t | x ∈ V ∗, x/t ∈ x/tj} ∪ {x/t | x 6∈ V ∗, x/t ∈ x/ti},

where V ∗ is the set of variables in Bb and not in
⋂j
k=i V ar(αwk).

Consider the rule rθ∗, we have

36

~

wi

w1

αi ←Bh, Bb

αj ←Bhθ, Bbθ
wj

wn

w*

w1

αi ←Bh, Bbθi

wn

Bbθ

S*
wi

wj
θ: the witness of wj~wi

Figure 2: the proof of Proposition 12

• Head(rθ∗) = αwi ;

• for every literal l ∈ Body(r), if l(x/ti) ∈ Bh, then lθ∗ = l(x/ti) ∈
Body(r(x/ti));

• for every literal l ∈ Body(r), if l(x/ti) ∈ Bb, then lθ∗ = l(x/tj) ∈
Body(r(x/tj)).

We can construct T ∗ as shown in Figure 2. Let T ∗ be the expansion tree
obtained from T by

• keep the nodes not in the subtree of wi the same as T ;

• replace the node wi by (αwi , rθ
∗);

• for every intensional atom β∗ ∈ Body(rθ∗), if β ∈ Body(r) is the atom
such that β(x/ti) = β∗ ∈ Bh then (αwi , rθ

∗) has a child labeled by
atom β∗, and copy all the node in the subtree of β(x/ti) in Twi to T ∗;

• for every intensional atom β∗ ∈ Body(rθ∗), if β ∈ Body(r) is the atom
such that β(x/yi) ∈ Bb and β(x/tj) = β∗, then (αwi , rθ

∗) has a child
labeled by atom β∗, and copy all the node in the subtree of β(x/tj) in
Twj to T ∗;

From the construction of T ∗, we have

37

• the roots of T and T ∗ are labeled by the same atom;

• Body(rT ∗) ⊂ Body(rT).

• the depth of T ∗ is less than that of T ;

So T is subsumed by T ∗ and dep(T ∗) < dep(T). �

To end this section, we draw the conclusion that every loop-separable
program can be captured by a finite set of its expansion trees.

Lemma 4. Given a loop-separable program Π, there exists a finite set of
expansion trees T such that for any structure A of τ(Π) which is a model of

Π̂, if A is supported by tree(Π), then A is supported by T .

Proof: Let Sl be the set of loop patterns as mentioned in Proposition 7. Let
Sl = Sl1 ∪ Sl2, where Sl1 is the set of loop patterns of case 1 in Definition 5
and Sl2 is the set of loop patterns of case 2 and not case 1 in Definition 5.
Let

N1 = (numns +maxbn + 1)× (N + 1) +maxbl,

where

• numns = ΣS∈Sl1NS(S),

• N be the number mentioned in Lemma 1,

• maxbl be the maximum length of base patterns of Π,

• maxbn be the maximum NS(Sb) when Sb is a base pattern.

By Lemma 1, maxbl andmaxbn always exist. LetN2 be the maximum number
of variables in an expansion tree whose depth is less than or equal to N1. Let
v1, . . . , vN2 be N2 variables not in Π, and T be the set of all the expansion
trees using these variables whose depth is less than or equal to N1.

It is obvious that T is finite, and for every expansion trees T such that T
do not share variables with T and dep(T) ≤ N1, there is an expansion tree
T ′ ∈ T and a substitution x/y such that T = T ′(x/y), where x is the tuple
of all variables in T ′.

Let T ∈ tree(Π) be an expansion tree and dep(T) = lT > N1. It is suffi-
cient to show that there exists an expansion tree T ′ such that T is subsumed
by T ′ and dep(T ′) ≤ N1.

38

Let S = (w1, . . . , wn) be a path in T , where w1 is the root of T , wn is a
leaf of T , and n = lT . We can see that

(1) either NS(S) > numns +maxbn, or

(2) there are wk1 , wk2 in S such that k2−k1 > N andNS({wk1+1, . . . , wk2}) =
0.

We will show that for both cases, there exists an expansion tree T ∗ such that
T is subsumed by T ∗ and dep(T ∗) < dep(T).

(1) By Proposition 9, Assume that S is an extension of S0 by S1, . . . , Sm,
where S0 is a base pattern and S1, . . . Sm are loop patterns such that Si ∈ Sl,
1 ≤ i ≤ m. By Proposition 10, we have NS(S) = Σm

k=0NS(Sk). We already
have NS(S) > numns + maxbn. So there exists a loop pattern S∗ such that
S∗ is a loop pattern of case 1 in Definition 5 and S∗ occurs in S1, . . . Sm more
than once. By Proposition 11, we can construct an expansion tree T ∗ such
that T is subsumed by T ∗ and dep(T ∗) < dep(T).

(2) From Lemma 1, there are two nodes wi, wj ∈ S(k1 < i < j ≤ k2) such
that wi ∼ wj and NS((wi, . . . , wj)) = 0. Without loss of generality, assume
that wi′ 6∼ wj′(i ≤ i′ < j′ ≤ j) unless i = i′ and j = j′. We can see that
(wi, . . . , wj) is a loop pattern of case 2 in Definition 5. By Proposition 12,
we can construct an expansion tree T ∗ such that such that T is subsumed by
T ∗ and dep(T ∗) < dep(T).

Repeat above construction. We can always find an expansion tree T ′ such
that T is subsumed by T ′ and dep(T ′) < N1. �

5.4. Proof of Theorem 2

Now, we face to the proof of our main theorem, namely Theorem 2. We
first consider the case with the restriction of the UNA, and then release the
condition to the general case.

Lemma 5. If a program Π is loop-separable, then Π is first-order definable
under UNA. That is, there exists a first-order sentence ψ on vocabulary τ(Π)
such that for every structure A of τ(Π) which is a model of Σuna, it is an
answer set of Π if and only if A is a model of ψ.

Proof: Let T be the set of expansion trees mentioned in Lemma 4. From
Lemmas 2, 3 and 4, Π is defined by the conjunction of Π̂ and the following

39

sentences:

∀x

(
P (x) ⊃

∨
T∈T ∗

B̂odyrT ∧ x = t

)
for every predicate P ∈ Pint(Π), where T ∗ is the set of expansion trees in T
whose root is labeled by the atom of the form P (t). �

Clearly, if a program is first-order definable then it is first-order definable
under UNA. However, the converse does not hold in general.

Example 9. We consider a program Π7 consisting of the following rules:

T (x, y) ← E(x, y), not E(x, x), not E(y, y)

T (x, z) ← T (x, y), T (y, z)

P (a, b) ← a = b (24)

P (a, b) ← not P (a, b) (25)

where C(τ(Π7)) = {a, b}, Pext(Π7) = {E} and Pint(Π) = {T, P}.
For any structure A which is a model of Σuna, we can see that A is not an

answer set of Π by noticing that rule (24) is never triggered and rule (25) is
a contradiction. Π has no answer set which is a model of Σuna, and is defined
by ⊥ under UNA.

If we also consider structures where a and b are mapped to the same
domain element, we can see that Π is not first-order definable. Otherwise,
the program Π1 in Example 1 would be first-order definable.3 �

Fortunately, for loop-separable programs, they are always first-order de-
finable even without the restriction of the UNA.

Given a vocabulary τ , let Fτ be the set of all functions f , where

• the domain of f is C(τ), and the range of f is a subset of C(τ);

• if c ∈ C(τ) is in the range of f , then f(c) = c.

Given a program Π and f ∈ Fτ(Π) a function, let Πf be the program
obtained by replace each occurrence of c in Π by f(c) for all c ∈ C(τ(Π)).
Note that the only difference between vocabularies τ(Π) and τ(Πf) is the set
of constants. The set of constants of τ(Πf) is a subset of that of τ(Π).

3For the proof of the indefinability of Π1, please refer to Example 3 and Proposition 2
in [5]. The basic ideas of these two examples are quite similar.

40

Proposition 13. Let Π be a program, and f ∈ Fτ(Π) a function. If Π is a
loop-separable program, then Πf is a loop-separable program.

Proof: Directly from the definition of loop-separable program. �

The following proposition explicitly defines a sentence that captures a
loop-separable program without the restriction of the UNA.

Proposition 14. Let Π be a loop-separable program. Π is defined by

∨
f∈Fτ(Π)

ψΠf ∧ Σuna(τ(Πf)) ∧
∧

c∈C(τ(Π))

(f(c) = c)

 , (26)

where Πf is defined by ψΠf under UNA.

Proof: Let A = (A, cA1 , . . . , c
A
m, R

A
1 , . . . , R

A
n) be a structure of τ(Π). It is

sufficient to show that:

(i) if A is an answer set of Π, then there is a function f ∈ Fτ(Π) such that
A is a model of ψΠf ∧ Σuna(τ(Πf)) ∧

∧
c∈C(τ(Π))(f(c) = c);

(ii) if there is a function f ∈ Fτ(Π) such that A is a model of ψΠf ∧
Σuna(τ(Πf)) ∧

∧
c∈C(τ(Π))(f(c) = c), then A is an answer set of Π.

(i) Let f ∈ Fτ(Π) be a function such that f(c1) = f(c2) if and only if
cA1 = cA2 , where c1 and c2 are constants in τ(Π). Let A′ = (A, cA

′
1 , . . ., cA

′

m′ ,
RA1 , . . ., RAn) be the structure of τ(Πf), where cA

′
i = f(ci)

A for 1 ≤ i ≤ m′.
From the definition of f and A′, A′ is a model of Σuna(τ(Πf)).

If A is an answer set of Π, then A′ is an answer set of Πf . Πf is also a
loop-separable program, and is defined by ψf under UNA, so A′ is a model
of ψΠf ∧ Σuna(τ(Πf)) by noticing that A′ is model of Σuna(τ(Πf)). Notice
that ψΠf ∧Σuna(τ(Πf))∧

∧
c∈τ(Π)(f(c) = c) is also a formula of vocabulary of

τ(Π), so A is a model of ψΠf ∧ Σuna(τ(Πf)) ∧
∧
c∈τ(Π)(fA(c) = c)

(ii) Let f ∈ Fτ(Π) be the function such that A is a model of ψΠf ∧
Σuna(τ(Πf)) ∧

∧
c∈τ(Π)(f(c) = c). Let A′ = (A, cA

′
1 , . . . , c

A′
m′ , R

A
1 , . . . , R

A
n) be

the structure of τ(Πf), where cA
′

i = f(ci)
A′ for each constant ci in vocabulary

τ(Πf). We can see that A′ is a model of Σuna(Πf) and ψΠf , so it is an answer
set of Πf , and thus A is an answer set of Π. �

41

Finally, Theorem 2 follows from Lemma 5 and Proposition 14.

Proof of Theorem 2
Lemma 5 shows that a loop-separable program is first-order definable under
UNA, and Proposition 14 shows that it is also first-order definable without
the restriction of Σuna. �

6. Subclasses and related results

We identify some interesting subclasses of loop-separable program, and
show some related results.

6.1. Programs with a finite complete set of loops

We show here that the set of programs with a finite complete set of loops
is a subset of loop-separable programs.

Proposition 15. If program Π has a finite complete set of loops, then Π is
a loop-separable program.

Proof: By Theorem 2 in [4], a program Π has a finite complete set of loops, if
and only if for every loop L and any two atoms α, β ∈ L, V ar(α) = V ar(β).

Let (α1, ρ1), . . . , (αm, ρm) be a loop pattern. We show first that for every
1 ≤ i < j ≤ m, V ar(αi) = V ar(αj). Otherwise, assume that V ar(αi) 6=
V ar(αj) for some 1 ≤ i < j ≤ m. Let x/y be the witness of (α1, ρ1) ∼
(αm, ρm), θ = x/y ∪ y/x, and L = {α1, . . . , αm} be a set of atoms. We can
see that L∪Lθ is a loop of Π by noticing that αm = α1θ and α1 = αmθ. We
still have {αi, αj} ⊆ L ∪ Lθ and V ar(αi) 6= V ar(αj), which contradicts to
Theorem 2 in [4].

Thus, for every rule ρi, (1 ≤ i ≤ m), ρi can be separated into two parts:
Bh = ∅ and Bb = Body(ρi). �

Example 10. We continue with the program Π2 in Example 2. Now we
consider Π2 as a loop-separable program. For intensional predicate P , we
need to consider the following two expansion trees:

T1 : (P (y), r3(x/y))
T2 : (P (y), r1(x/y)) − (Q(y), r4(x/y))

42

and for Q, the following two expansion trees:

T3 : (Q(y), r4(x/y))
T4 : (Q(y), r2(x/y)) − (P (y), r3(x/y))

Thus, Π2 is defined by the conjunction of Π̂2 and

∀y (P (y) ⊃ (R3(y) ∨ (R2(y) ∧R4(y))))
∀y (Q(y) ⊃ (R4(y) ∨ (R1(y) ∧R3(y))))

�

As we can see, a program with a finite complete set of loops can be
defined by using loop formulas or by using expansion trees, and the formulas
obtained by these two ways are quite different.

6.2. Separable on rules

It is obvious that “loop-separable” is not a modular property. Program
Π∪Π′ is possibly not loop-separable program, when both Program Π and Π′

are loop-separable programs. However, if we consider the “separable” prop-
erty on each rule of a program, we can specify a subclass of loop-separable
programs.

A program Π is rule-separable if for every rule r ∈ Π, Body(r) can be
separated into two parts Bh and Bb such that V ar(Bh) ⊆ V ar(Head(r)) and
V ar(Bb) ∩ V ar(Head(r)) = ∅.

Proposition 16. A rule-separable program is loop-separable.

Proof: Let Π be a rule-separable program, and S = (α1, ρ1), . . . , (αn, ρn)
be a loop pattern of Π, then for every ρi, (1 ≤ i ≤ n), Body(ρi) can be
separated into two parts Bhi and Bbi such that V ar(Bhi) ⊆ V ar(Head(ρi))
and V ar(Bbi) ∩ V ar(Head(ρi)) = ∅.

If there exists 1 ≤ i < n such that αi+1 ∈ Bbi , then S is a loop pattern of
case 1 in Definition 5.

Otherwise, for 1 ≤ i < n, we have αi+1 ∈ Bhi . By the definition of rule-
separable program, we have V ar(αi+1) ⊂ V ar(αi) for 1 ≤ i < n. By the
definition of loop pattern, we have α1 ∼ αn, and V ar(α1) = · · · = V ar(αn).
So, S is a loop pattern of case 2 in Definition 5. �

43

We can see that if Π and Π′ are two rule-separable programs, then Π∪Π′

is also a rule-separable programs.
A program is called unary program if it has only unary predicates and no

equality (=). The program Π6 in Example 8 is an unary program.

Proposition 17. If Π is an unary program, then Π is rule-separable.

Proof: For every rule r ∈ Π, the body of r can be separated into two parts
Bh and Bb, where

Bh = {α | α ∈ Body(r) and V ar(α) = V ar(Head(r))},

and
Bb = {α | α ∈ Body(r) and V ar(α) 6= V ar(Head(r))}.

�

By Proposition 17, an unary program is first-order definable. If we con-
sider our definition of answer set as a second-order formula, then this result
is a special case of Theorem 8 in [7] (also see [24]), which shows that any
second-order sentence that only contains unary predicates is always first-
order definable.

6.3. Separable on loops

If we replace “loop patterns” by “loops” in Definition 5, we get another
subclass of loop-separable program, as shown in the following proposition.

Proposition 18. Let Π be a program. If for each loop L of Π, one of the
following holds:

(a) for every cycle α1, . . . , αn(= α1) such that {α1, . . . , αn} = L, there is
αi, (1 ≤ i < n) such that for any rule r ∈ Π and substitution θ, if
αi = Head(rθ) and αi+1 ∈ Body(rθ), then Body(rθ) can be separated
into two parts Bh and Bb, such that:

– Bh ∩Bb = ∅ and Bh ∪Bb = Body(rθ);

– αi+1 ∈ Bb;

– V ar({αi} ∪Bh) ∩ V ar(Bb) = ∅;

44

(b) for any two atoms and α, β ∈ L, and any rule r ∈ Π and substitution
θ, if α = Head(rθ) and β ∈ Body(rθ), then Body(rθ) can be separated
into two parts Bh and Bb, such that:

– Bh ∩Bb = ∅ and Bh ∪Bb = Body(rθ);

– β ∈ Bb;

– V ar({α} ∪Bh) ∩ V ar(Bb) =
⋂
α′∈L V ar(α

′),

then Π is a loop-separable program.

Proof: We show this by contradiction. Let Π be not a loop-separable pro-
gram, and (α1, ρ1), . . . , (αn, ρn) be a loop pattern of neither case 1 nor case
2 in Definition 5.

Let y/y′ be the witness of α1 ∼ αn, and x the tuple of variables in
V ar(α1)∩V ar(αn). We can see that

⋂n
i=1 V ar(αi) = x by noticing that we al-

ways use new variables for local variables of a rule in derivation path. Let θ =
y/y′ ∪ y′/y ∪ z/z′ where z is the tuple of all variables in (α1, ρ1), . . . , (αn, ρn)
except variables in x ∪ y ∪ y′, and z′ a tuple of new variables.

We can see that (α1θ, ρ1θ), . . . , (αnθ, ρnθ) is also a loop pattern of nei-
ther case 1 nor case 2 in Definition 5. Consider the set of atoms L =
{α1, . . . , αn, α1θ, . . . , αnθ}, we can see that L is a loop by noticing that
α1θ = αn, and αnθ = α1. We also have

⋂
α′∈L V ar(α

′) = x, and thus
α1, . . . , αn(= α1θ), . . . , αnθ(= α1) is a cycle of neither case (a) nor case (b)
in Proposition 18, which contradicts to the assumption of Π. �

However, there are loop-separable programs that are not covered by the
conditions in Proposition 18 .

Example 11. Let Π7 be the program:

P (x, y) ← Q(u, v)

Q(x, y) ← P (u, v).

45

There are two loop patterns of Π7:

lp1 : (P (x1, x2), P (x1, x2)← Q(x3, x4)),

(Q(x3, x4), Q(x3, x4)← P (x5, x6)),

(P (x5, x6), P (x5, x6)← Q(x7, x8))

lp2 : (Q(x1, x2), Q(x1, x2)← P (x3, x4)),

(P (x3, x4), P (x3, x4)← Q(x5, x6)),

(Q(x5, x6), Q(x5, x6)← P (x7, x8))

Both lp1 and lp2 are loop patterns of case 1 in Definition 5, but if we consider
loop

L = {P (x1, x2), Q(x1, x2), P (x1, x3)}

of program Π7, we can see that L is neither a loop of (a) nor (b) in Proposi-
tion 18. �

Example 11 also shows the reason why we need the notion loop pattern
to define the loop-separable program.

6.4. Safe programs

Lee and Meng recently also identified a subclass of first-order definable
programs named safe programs [19]. By restricting to our definition of pro-
gram, a program Π is safe if for every rule r ∈ Π, every variable occurring
in the rule also occurs in Pos(r). However, when extensional databases are
taken into account, a safe program is not necessarily first-order definable.
For instance, the program Π1 in Example 1 is a safe program, and can be
proved that it is not first-order definable under our context [5].

7. Concluding remarks

In this paper, we have studied a notion of first-order definability for first-
order answer set program with extensional database. Our main contribution
is in identifying a nontrivial class of programs that are first-order definable
on finite structures. This class, what we called loop-separable programs, is
defined based on a detailed analysis of first-order loops, and contains several
other interesting classes of first-order definable programs.

46

As we have mentioned in Section 1, study on first-order definability for
answer set programs has an important application value. In another recent
paper [2], we have proposed an approach to implement a first-order ASP
solver, where we have shown that under finite structures, every normal logic
program can be translated to a first-order sentence within a larger signature.
By developing a proper first-order grounder, we can then further implement
an SAT based ASP solver. What makes our results presented in this paper
useful is that for loop-separable programs, the translation from the program
to a first-order sentence could be much simpler.

One future work is to discover more classes of first-order definable pro-
grams, especially those that generalize our class of loop-separable programs.
The notion of loops and loop formulas has been extended to disjunctive pro-
grams [18, 19]. It could be interesting to consider whether our result can
be extended to disjunctive programs. Another important future work is to
study computational properties of loop-separable programs. We proved that
the class of loop-separable programs is decidable. However, in general, decid-
ing whether a program is loop-separable is expensive. It would be interesting
to see whether a nontrivial tractable subclass can be identified.

References

[1] M. Ajtai and Y. Gurevich, Datalog vs first-order logic. Journal of Com-
puter and Systems Science 49 (1994) 562-588.

[2] V. Asuncion, F. Lin, Y. Zhang and Y. Zhou, Ordered completion for
first-order logic programs on finite structures. In Proceedings of AAAI-
2010, pp 249-254, 2010.

[3] S. Chaudhuri and M.Y. Vardi, On the equivalence of recursive and non-
recursive datalog programs. In Proceedings of the 11th ACM SIGACT-
SIGMOD-SIGART Symposium on PODS, pp 55-66, 1992.

[4] Y. Chen, F. Lin, Y. Wang and M. Zhang, First-order loop formulas for
normal logic programs. In Proceedings of the 10th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR-
2006), pp 298-307, 2006.

[5] Y. Chen, Y. Zhang and Y. Zhou, First-order indefinability of answer set
programs on finite structures. In Proceedings of the 24th AAAI Confer-
ence on Artificial Intelligence (AAAI-2010), pp 285-290, 2010.

47

[6] S.S. Cosmadakis, On the first-order expressibility of recursive queries.
In Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium
on PODS, pp 311-323, 1989.

[7] P. Doherty, W. Lukaszewicz and A. Szalas, Computing circumscription
revisited: A reduction algorithm. Journal of Automated Reasoning 18
(1997) 297-336.

[8] P.M. Dung and K. Kanchanasut, On the generalized predicate comple-
tion of non-Horn programs. In Proceeding of NACLP’89, pp 604-625,
1989.

[9] S. Dworschak, S. Grell, V.J. Nikiforova, T. Schaub and J. Selbig, Model-
ing biological networks by action languages via answer set programming.
Constraints 13 (2008) 21-65.

[10] T. Eiter, J. Lu and V.S. Subrahmanian, Computing non-ground repre-
sentations of stable models. In Proceedings of the 4th International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR-
1997), pp 198-217, 1997.

[11] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer and H. Tompits, Com-
bining answer set programming with description logics for the semantic
web. Artificial Intelligence 172 (2008) 1495-1539.

[12] E. Erdem, O. Erdem and F. Türe, HAPLO-ASP: Haplotype Infer-
ence Using Answer Set Programming. Proceedings of the 10th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR-2009), pp 573-578, 2009.

[13] P. Ferraris, J. Lee and V. Lifschitz, A new perspective on stable models.
In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI-2007), pp 372-379, 2007.

[14] M. Gebser, B. Kaufmann, A. Neumann and T. Schaub, Conflict-driven
answer Set solving. In Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI-2007), pp 386-392, 2007.

[15] M. Gelfond and V. Lifschitz, The stable model semantics for logic pro-
gramming. In Proceedings of the 5th International Conference and Sym-
posium on Logic Programming, pp 1070-1080, 1988.

48

[16] G. Gottlob, S. Marcus, A. Nerode, G. Salzer and V.S. Subrahmanian, A
non-ground realization of the stable and well-founded semantics. Theo-
retical Computer Science 166 (1996) 221-262.

[17] P.G. Kolaitis, Implicit definability on finite structures and unambiguous
computations (preliminary report). In Proceedings of the 5th Annual
IEEE Symposium on Logic in Computer Science (LICS’90), pp 168-180,
1990.

[18] J. Lee and V. Lifschitz, Loop formulas for disjunctive logic programs. in
Proceedings of the 19th International Conference on Logic Programming
(ICLP-2003), pp 451-465, 2003.

[19] J. Lee and Y. Meng, On loop formulas with variables. In Proceedings
of the 11th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-2008), pp 444-453, 2008.

[20] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri and F.
Scarcello, The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic 7 (2006) 499-562.

[21] F. Lin, A study of nonmonotonic reasoning. PhD thesis, Stanford Uni-
versity. 1991.

[22] F. Lin and Y. Zhao, ASSAT: Computing answer sets of a logic program
by SAT solvers. Artificial Intelligence 157 (2004) 115-137.

[23] F. Lin and Y. Zhou, From answer set logic programming to circum-
scription via logic of GK. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-2007), pp 441-446, 2007.

[24] L. Löwenheim, Über Möglichkeiten im Relativekalkül. Mathematische
Annalen, pp 137-148, 1915.

[25] D. Pearce and A. Valverde, Quantified equilibrium logic and founda-
tions for answer set programs. In Proceedings of the 24th International
Conference on Logic Programming (ICLP-2008), pp 546-560, 2008.

[26] N. Pelov, M. Denecker and M. Bruynooghe, Well-founded and stable
semantics of logic programs with aggregates. Theory and Practice of
Logic Programming 7 (2007) 301-353.

49

[27] A. Polleres, From SPARQL to rules (and back). In Proceedings of the
16th International Conference on World Wide Web (WWW-2007), pp
787-796, 2007.

[28] T. Syrjänen and I. Niemelä, The Smodels system. In Proceedings of the
6th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-2001), pp 434-438, 2001.

[29] N. Tran and C. Baral, Hypothesizing about signaling networks. Journal
of Applied Logic 7 (2009) 253-274.

[30] M.H. van Emden and R.A. Kowalski, The semantics of predicate logic
as a programming language. Journal of ACM 23 (1976) 733-742.

[31] A. van Gelder, The alternating fixpoint of logic programs with negation.
Journal of Computer and System Sciences 47 (1993) 185-221.

50

