
Solving logic program conflict through strong and
weak forgettings?

Yan Zhang

Intelligent Systems Laboratory
School of Computing and Mathematics

University of Western Sydney
Penrith South DC, NSW 1797, Australia

yan@cit.uws.edu.au

Norman Y. Foo

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW 2052, Australia
norman@cse.unsw.edu.au

Abstract

We consider how to forget a set of atoms in a logic program. Intuitively, when a set of
atoms is forgotten from a logic program, all atoms in the set should be eliminated from
this program in some way, and other atoms related to them in the program might also be
affected. We define notions of strong and weak forgettings in logic programs to capture such
intuition, reveal their close connections to the notion of forgetting in classical propositional
theories, and provide a precise semantic characterization for them. Based on these notions,
we then develop a general framework for conflict solving in logic programs. We investigate
various semantic properties and features in relation to strong and weak forgettings and
conflict solving in the proposed framework. We argue that many important conflict solving
problems can be represented within this framework. In particular, we show that all major
logic program update approaches can be transformed into our framework, under which each
approach becomes a specific conflict solving case with certain constraints. We also study
essential computational properties of strong and weak forgettings and conflict solving in
the framework.

Keywords: conflict solving; knowledge representation; answer set semantics; logic pro-
gram update; computational complexity

? Some results presented in this paper were published in IJCAI-2005 and AAAI-2005
[33,34].

Preprint submitted to Elsevier Science 4 January 2008

1 Introduction

1.1 Motivation

One promising approach in the research of reasoning about knowledge dynamics
is to represent agents’ knowledge bases as logic programs on which necessary up-
dates/revisions are conducted as a way of modeling agents’ knowledge evolution.
A key issue in this study is to solve various conflicts and inconsistencies in logic
programs, e.g. [16].

We observe that some typical conflict solving problems in applications are essential
in reasoning about agents’ knowledge change, but they may not be properly handled
by traditional logic program updates. Let us consider a scenario. John wants Sue
to help him to complete his assignment. He knows that Sue will help him if she is
not so busy. Tom is a good friend of John and wants John to let him copy John’s
assignment. Then John learns that Sue hates Tom, and will not help him if he lets
Tom copy his assignment, which will be completed under Sue’s help. While John
does not care whether Sue hates Tom or not, he has to consider Sue’s condition to
offer him help. What is John going to do? We formalize this scenario in a logic
programming setting. We represent John’s knowledge base ΠJ :

r1 : complete(John, Assignment)← help(Sue, John),
r2 : help(Sue, John)← notBusy(Sue),
r3 : goodFriend(John, Tom)←,
r4 : copy(Tom, Assignment)←

goodFriend(John, Tom), complete(John, Assignment),

and Sue’s knowledge base ΠS:

r5: hate(Sue, Tom)←,
r6:← help(Sue, John), copy(Tom, Assignment).

In order to take Sue’s knowledge base into account, John may update his knowl-
edge base ΠJ in terms of Sue’s ΠS . In this way, John obtains a solution: Πfinal

J =
{r1, r2, r3, r5, r6} or its stable model, from which we know that Sue will help John
to complete the assignment and John will not let Tom copy his assignment. Al-
though the conflict between Π J and ΠS has been solved by updating, the result is
somehow not always satisfactory. For instance, while John wants Sue to help him,
he may have no intention to contain the information that Sue hates Tom into his
new knowledge base.

As an alternative, John may just weaken his knowledge base by forgetting atom
copy(Tom, Assignment) from ΠJ in order to accommodate Sue’s constraint on

2

help. Then John will have a new program Πfinal′

J = {r1, r2, r3} - John remains a
maximal knowledge subset which is consistent with Sue’s condition without being
involved in Sue’s personal feeling about Tom.

The formal notion of forgetting in propositional theories was initially considered
by Lin and Reiter from a cognitive robotics perspective [19] and has recently re-
ceived a great attention in KR community. It has been shown that the theory of
forgetting has important applications in solving knowledge base inconsistencies,
belief update and merging, abductive reasoning, causal theories of actions, and rea-
soning about knowledge under various propositional (modal) logic frameworks,
e.g. [14,15,20,28]. Then a natural question is: whether can we develop an analo-
gous theory of forgetting in logic programs and apply it as a foundational basis for
various conflict solving in logic programs? This paper provides an answer to this
question.

1.2 Summary of contributions of this paper

The main contributions of this paper can be summarized as follows.

(1) We define two notions of strong and weak forgettings in logic programs under
answer set programming semantics. We reveal their close connections to the
notion of forgetting in classical propositional theories, and provide a precise
semantic characterization for them.

(2) Based on these notions, we develop a general framework for conflict solving
called logic program contexts. Under this framework, conflicts can be solved
by strongly or/and weakly forgetting certain sets of atoms from corresponding
programs. We show that our framework is general enough to represent many
important conflict solving problems. In particular, for the first time we demon-
strate that all major logic program update approaches can be transformed into
our framework.

(3) We investigate essential computational properties in relation to strong and
weak forgettings and conflict solving in the proposed framework. Specifi-
cally, we show that under the answer set programming with no disjunction
in the head, the associated inference problem for strong and weak forgettings
is coNP-complete, and the irrelevance problem related to strong and weak
forgettings and conflict solving is coDP-complete. We also study other com-
putational problems related to the computation of strong and weak forgetting
and conflict solving.

3

1.3 Structure of the paper

The rest of this paper is organized as follows. We first present preliminary def-
initions and concepts in section 2. In section 3, we give formal definitions of
strong and weak forgettings in logic programs, and present their essential prop-
erties. Based on notions of strong and weak forgettings, in section 4 we propose
a framework called logic program contexts for general conflict solving in logic
programs. In section 5, we investigate various semantic properties and features in
relation to strong and weak forgettings and conflict solving in the proposed frame-
work. In section 6, we show that our conflict solving framework is general enough
to represent all major logic program update approaches. In section 7, we study
essential computational properties of strong and weaking forgettings and conflict
solving. Finally, in section 8 we conclude the paper with some discussions.

2 Preliminaries

We consider finite propositional normal logic programs in which each rule is of the
form:

a← b1, · · · , bm, not c1, · · · , not cn, (1)

where a is either a propositional atom or empty, b1, · · · , bm, c1, · · · , cn are propo-
sitional atoms, and not presents the negation as failure. From (1) we know that a
normal logic program does not contain classical negation and has no disjunction in
the head. When a is empty, rule (1) is called a constraint. Given a rule r of the form
(1), we denote head(r) = {a}, pos(r) = {b1, · · · , bm}, neg(r) = {c1, · · · , cn}, and
body(r) = pos(r) ∪ neg(r). Therefore, rule (1) may simply be represented as the
form:

head(r)← pos(r), not neg(r), (2)

here we denote not neg(r) = {not c1, · · · , not cn}. We also use atom(r) to de-
note the set of all atoms occurring in rule r. For a program Π, we define no-
tions head(Π) =

⋃
r∈Π head(r), pos(Π) =

⋃
r∈Π pos(r), neg(Π) =

⋃
r∈Π neg(r),

body(Π) =
⋃

r∈Π body(r), and atom(Π) =
⋃

r∈Π atom(r). Given sets of atoms P
and Q, we may use notion

r′ : head(r)← (pos(r)− P), not (neg(r)−Q)

to denote rule r′ obtained from r by removing all atoms occurring in P and Q in
the positive and negation as failure parts respectively.

4

The stable model of a program Π is defined as follows. Firstly, we consider Π to
be a program in which each rule does not contain negation as failure not. A finite
set S of propositional atoms is called a stable model of Π if S is the smallest set
such that for each rule a← b1, · · · , bm from Π, if b1, · · · , bm ∈ S, then a ∈ S. Now
let Π be an arbitrary normal logic program. For any set S of atoms, program ΠS is
obtained from Π by deleting (1) each rule from Π that contains not c in the body if
c ∈ S; and (2) all subformulas of not c in the bodies of the remaining rules. Then
S is a stable model of Π if and only if S is a stable model of ΠS [7]. We also call
ΠS is the result of Gelfond-Lifschitz transformation on Π with S. It is easy to see
that a program may have one, more than one, or no stable models at all. A program
is called consistent if it has a stable model. We say that an atom a is entailed from
program Π, denoted as Π |= a if a is in every stable model of Π.

Two programs Π1 and Π2 are equivalent if Π1 and Π2 have the same stable models.
Π1 and Π2 are called strongly equivalent if for every program Π, Π1∪Π and Π2∪Π
are equivalent [18]. The concept of strong equivalence can be used to simplify
a program. For example, if two programs are strongly equivalent, then whenever
one program is contained in a particular program, it can be replaced by the other
program safely. The following observation gives two instances for this case which
will be useful for our later formalization.

Observation 1. Let Π be a logic program Π. Then Π is strongly equivalent to the
empty set iff each rule r in Π is of one of the following two forms: (1) head(r) 6= ∅
and head(r) ⊆ pos(r), or (2) pos(r) ∩ neg(r) 6= ∅ 1 .

For convenience in the later reference in this paper, we call the two types of rules
mentioned above valid rules.

Let Π be a logic program. We use [Π]C to denote the conjunctive normal form
obtained from Π by translating each rule of the form (1) in Π into the clause: a ∨
¬b1 ∨ · · · ∨ ¬bm ∨ c1 ∨ · · · ∨ cm. Note that this is not a translation in a classical
sense since here we replace negation as failure not with classical negation ¬. For
instance, if Π = {a ← not b, c ← a}, then we have [Π]C = (a ∨ b) ∧ (c ∨ ¬a). In
general, we may write [Π]C = {C1, · · · , Cn} where each Ci is a conjunct of [Π]C .
If C is a clause, we call any subformula of C a subclause of C.

Now we introduce the notion of forgetting in a classical propositional theory [19,20].
Let T be propositional theory. We use T [p/true] (or T [p/false], resp.) to denote
the theory obtained from T by substituting all occurrences of propositional atom
p with true (or false, resp.). For instance, if T = {p ⊃ q, (q ∧ r) ⊃ s}, then
T [q/true] = {r ⊃ s} and T [q/false] = {¬p} 2 . Then we can define the notion

1 This result can be viewed as a special case of more general results proved in [9] and [22]
respectively.
2 For convenience, we may consider a finite set of formulas as a single conjunction of all
elements in the set.

5

of forgetting in terms of a propositional theory. For a given propositional theory
T and a set of propositional atoms P , the result of forgetting P in T , denoted as
Forget(T, P), is defined inductively as follows:

Forget(T, ∅) = T ,
Forget(T, {p}) = T [p/true] ∨ T [p/false],
Forget(T, P ∪ {p}) = Forget(Forget(T, p), P).

It is easy to see that the ordering in which atoms in P are considered does not affect
the final result of forgetting P from T . Consider T = {p ⊃ q, (q ∧ r) ⊃ s} again.
From the above definition, we have Forget(T, {q}) = {(r ⊃ s) ∨ ¬p}.

3 Strong and weak forgettings in logic programs

3.1 Definitions

Let us consider how to forget a set of atoms from a logic program. Intuitively, we
would expect that after forgetting a set of atoms, all occurrences of these atoms
in the underlying program should be eliminated in some way. Those atoms having
certain connections to forgotten atoms through rules in the program might or might
not be affected depending on the situation, while all other atoms should not be af-
fected. We observe that the forgetting definition in propositional theories cannot be
directly used for logic programs as logic programs themselves cannot be disjuncted
together. Further, different ways of handling negation as failure in forgetting may
also lead to different resulting programs.

For example, suppose we have a program Π containing two rules:

a← b,
b← c.

Now if we want to forget atom b, we can simply remove the second rule and replace
the first rule with a ← c. In this case, forgetting b is just to remove b through the
rule replacement. However, things become not so simple if we change the program
to:

a← not b,
b← c,

and we still want to forget atom b. In this case, the method of replacement men-
tioned above seems not working because replacing the first rule with a ← not c
will change the entire semantics of the program. One way we can do is to com-
pletely remove the second rule since b is forgotten, and the first rule may be either

6

reduced to a ← or completely removed depending on whether we assume b true
or false. These two examples actually reflect our intuition of defining forgetting
notions in logic programs.

To formalize our idea of forgetting in logic programs, we first introduce a program
transformation called reduction. The intuition behind reduction may be easily il-
lustrated as follows. Given a program Π = {p ← q, p′ ← p, not q′}, performing a
reduction on Π with respect to atom p will result in a new program Π′ = {p′ ← q,
not q′}. The formal definition is presented as follows.

Definition 1 (Program reduction) Let Π be a program and p an atom. We de-
fine the reduction of Π with respect to p, denoted as Reduct(Π, {p}), to be a pro-
gram obtained from Π by (1) for each rule r with head(r) = {p} and each rule
r′ with p ∈ pos(r′), replacing r′ with a new rule r′′ : head(r′) ← (pos(r′) −
{p}), pos(r), not (neg(r) ∪ neg(r′)); (2) if there is such rule r′ in Π and has been
replaced by r′′ in (1), then removing rule r from the remaining program. Let P be a
set of propositional atoms. Then the reduction of Π with respect to P is inductively
defined as follows:

Reduct(Π, ∅) = Π,
Reduct(Π, P ∪ {p}) = Reduct(Reduct(Π, {p}), P).

Note that in our program reduction definition, step (1) is the same as Sakama and
Seki’s [27] and Brass and Dix’s [4] unfolding in logic programs. While unfolding is
to eliminate positive middle occurrences of an atom in a logic program, the reduc-
tion, on other hand, is further to remove those rules with heads of this atom. Now
let us consider a program Π = {a← b, b← a, d← not e}. Then

Reduct(Reduct(Π, {a}), {b}) = {b← b, d← not e}, and
Reduct(Reduct(Π, {b}), {a}) = {a← a, d← not e}.

A brief glimpse of this example seems to indicate that the program reduction is
not well defined since these two programs look different. However, it is easy to see
that they are strongly equivalent, and both can be simplified to {d ← not e}. The
following proposition actually shows that our program reduction is well defined
under the strong equivalence.

Proposition 1 Let Π be a logic program and p, q two propositional atoms. Then
Reduct(Reduct(Π, {p}), {q}) is strongly equivalent to Reduct(Reduct(Π, {q}), {p}).

Proof. To prove this result, we need to consider a general case of iterated reductions
which captures all possible features. For this purpose, it is sufficient to deal with
a program Π = Π1 ∪ Π2, where all possible reductions related to atoms p and
q are only happened within Π1. That is, we can assume Π1 consists of six parts:
Π11 ∪ Π12 ∪ Π13 ∪ Π14 ∪ Π15 ∪ Π16:

7

Π11:
r1 : p← pos(r1), not neg(r1),
· · ·,
rh : p← pos(rh), not neg(rh),

Π12:
rh+1 : p← q, pos(rh+1), not neg(rh+1),
· · ·,
rk : p← q, pos(rk), not neg(rk),

Π13:
rk+1 : q ← pos(rk+1), not neg(rk+1),
· · ·,
rl : q ← pos(rl), not neg(rl),

Π14:
rl+1 : q ← p, pos(rl+1), not neg(rl+1),
· · ·,
rm : q ← p, pos(rm), not neg(rm),

Π15,
rm+1 : am+1 ← p, pos(rm+1), not neg(rm+1),
· · ·,
rn : an ← p, pos(rn), not neg(rn),

Π16:
rn+1 : bn+1 ← q, pos(rn+1), not neg(rn+1),
· · ·,
rs : bs ← q, pos(rs), not neg(rs),

where ai 6= p, ai 6= q, bj 6= p, and bj 6= q for all ai and bj , and also p, q do not occur
in all pos(ri) (i = 1, · · · , s). We assume that p, q are not in head(Π2) and pos(Π2),
i.e. no reduction related to p or q will occur in Π2.

It is not hard to see that the above Π covers all possible cases of reductions of Π with
respect to atoms p and q. In order to avoid a tedious proof, without loss of generality,
we may consider a simplified version of program Π as follows. Π = Π1∪Π2, where
Π1 contains the following rules:

r1 : p← pos(r1), not neg(r1),
r′1 : p← q, pos(r′1), not neg(r′1),
r2 : q ← pos(r2), not neg(r2),
r′2 : q ← p, pos(r′2), not neg(r′2),
r3 : a← p, pos(r3), not neg(r3),
r4 : b← q, pos(r4), not neg(r4).

We assume p and q do not occur in pos(r1), pos(r
′
1), pos(r2) and pos(r′2). Also, all

rules in Π2 do not contain p or q in their heads and positive bodies. We should men-
tion that our following proof can be extended to the general case of Π as constructed
earlier.

8

Firstly, we have Reduct(Π, {p}) = Π′
1 ∪ Π2 consists of the following rules:

r2 : q ← pos(r2), not neg(r2),
r′2 : q ← (pos(r1) ∪ pos(r′2)), not (neg(r1) ∪ neg(r′2)),
r′′2 : q ← q, (pos(r′1) ∪ pos(r′2)), not (neg(r′1) ∪ neg(r′2)),
r′3 : a← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r′′3 : a← q, ((pos(r′1) ∪ pos(r3)), not (neg(r′1) ∪ neg(r3)),
r4 : b← q, pos(r4), not neg(r4).

From Observation 1, we know that {r′′2} is strongly equivalent to the empty set. So
we have Π′

1 = {r2, r
′
2, r

′
3, r

′′
3 , r4}. Then by the reduction of Π′

1 ∪ Π2 with respect
to {q}, we have the following result: Reduct(Reduct(Π, {p}), {q})) = Π′′

1 ∪ Π2,
where Π′′

1 contains the following rules:

r′3 : a← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r∗ : a← ((pos(r1′) ∪ pos(r2) ∪ pos(r3)), not (neg(r′1) ∪ neg(r2) ∪ neg(r3)),
r∗

′

: a← (pos(r1) ∪ (pos(r1′) ∪ pos(r′2) ∪ pos(r3)),
not (neg(r1) ∪ neg(r′1) ∪ neg(r′2) ∪ neg(r3)),

r′4 : b← (pos(r2) ∪ pos(r4), not (neg(r2) ∪ neg(r4)),
r′′4 : b← (pos(r1) ∪ pos(r′2) ∪ pos(r4)), not (neg(r1) ∪ neg(r2) ∪ neg(r4)).

It is easy to see that programs {r′3, r
∗′} and {r′3} are strongly equivalent because

pos(r′3) ⊆ pos(r∗
′

) and neg(r′3) ⊆ neg(r∗
′

). Therefore, rule r∗
′

can be removed.
So finally, we have Π′′

1 = {r′3, r
∗, r′4, r

′′
4}.

Now we consider Reduct(Π, {q}). It is easy to see that Reduct(Π, {q}) = Π†∪Π2,
where Π† consists of the following rules:

r1 : p← pos(r1), not neg(r1),
r′′1 : p← (pos(r′1) ∪ pos(r2)), not (neg(r′1) ∪ neg(r2)),
r′′′1 : p← p, (pos(r′1) ∪ pos(r′2)), not (neg(r′1) ∪ neg(r′2)),
r3 : a← p, pos(r3), not neg(r3),
r′4 : b← (pos(r2) ∪ pos(r4)), not (neg(r2) ∪ neg(r4)),
r′′4 : b← p, (pos(r′2) ∪ pos(r4)), not (neg(r′2) ∪ neg(r4)).

Also, rule r′′′1 can be removed from Π†. So we have Π† = {r1, r
′′
1 , r3, r

′
4, r

′′
4}. Then

Reduct(Reduct(Π, {q}), {p}) = Π‡∪Π2, where Π‡ consists of the following rules:

r′3 : a← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r∗ :← (pos(r′1) ∪ pos(r2) ∪ pos(r3)), not (neg(r′1) ∪ neg(r2) ∪ neg(r3)),
r′4 : b← (pos(r2) ∪ pos(r4)), not (neg(r2) ∪ neg(r4)),
r′′4 : b← (pos(r1) ∪ pos(r′2) ∪ pos(r4)), not (neg(r1) ∪ neg(r′2) ∪ neg(r4)),
r† : b← (pos(r1) ∪ pos(r2) ∪ pos(r′2) ∪ pos(r4)),

not (neg(r1) ∪ neg(r2) ∪ neg(r′2) ∪ neg(r4)).

Since pos(r′′4) ⊆ pos(r†), we know that programs {r′′4 , r
†} and {r†} are strongly

9

equivalent. So r† can be removed from Π‡. Therefore, Π‡ = {r′3, r
∗, r′4, r

′′
4} = Π′′

1 .
This proves our result. 2

Example 1 Let Π1 = {a ← not b, a ← d, c ← a, not e}, Π2 = {a ←
c, not b, c ← not d}, and Π2 = {a ← b, b ← not d, c ← a, not e}. Then
Reduct(Π1, {a}) = {c← not b, not e, c← d, not e}, Reduct(Π2, {a}) = Π2, and
Reduct(Π3, {a, b}) = {c← not d, not e}.

Definition 2 (Strong forgetting) Let Π be a logic program, and p a propositional
atom. We define a program to be the result of strongly forgetting p in Π, denoted as
SForgetLP(Π, {p}), if it is obtained from the following transformation:

(1) Π′ = Reduct(Π, {p});
(2) Π′ = Π′ − {r | r is a valid rule};
(3) Π′ = Π′ − {r | head(r) = {p}};
(4) Π′ = Π′ − {r | p ∈ pos(r)};
(5) Π′ = Π′ − {r | p ∈ neg(r)};
(6) SForgetLP(Π, {p}) = Π′.

Let us take a closer look at Definition 2. Step 1 is just to perform reduction on Π
with respect to atom p. This is to replace those positive middle occurrences of p in
rules with other rules having p as the head. Step 2 is to remove all valid rules which
may be introduced by the reduction of Π with respect to p. From Observation 1,
we know that this does not change anything in the program. Steps 3 and 4 are to
remove those rules which have p as the head or in the positive body. Note that after
reduction, there does not exist any pair of rules r and r′ such that head(r) = {p}
and p ∈ pos(r′). The intuitive meaning of these two steps is that after forgetting p,
any atom’s information in rules having p as their heads or positive bodies will be
lost because they are all relevant to p, i.e. these atoms either serve as a support for
p or p is in part of the supports for these atoms. On the other hand, Step 5 states
that any rule containing p in its negation as failure part will be also removed. The
consideration for this step is as follows. If we think neg(r) as a part of support
of head(r), then when p ∈ neg(r) is forgotten, head(r)’s entire support is lost as
well. Clearly, such treatment of negation as failure in forgetting is quite strong in
the sense that more atoms may be lost together with notp. Therefore we call this
kind of forgetting strong forgetting.

Definition 2 can be easily extended to the case of strongly forgetting a set of atoms:

SForgetLP(Π, ∅) = Π,
SForgetLP(Π, P ∪ {p}) = SForgetLP(SForgetLP(Π, {p}), P).

With a different way of dealing with negation as failure, we have a weak version of
forgetting as defined below.

10

Definition 3 (Weak forgetting) Let Π be a logic program, and p a propositional
atom. We define a program to be the result of weakly forgetting p in Π, denoted as
WForgetLP(Π, {p}), if it is obtained from the following transformation:

(1) Π′ = Reduct(Π, {p});
(2) Π′ = Π′ − {r | r is a valid rule};
(3) Π′ = Π′ − {r | head(r) = {p}};
(4) Π′ = Π′ − {r | p ∈ pos(r)};
(5) Π′ = Π′ − Π∗ ∪ Π†, where Π∗ = {r | p ∈ neg(r)} and

Π† = {r′ | r′ : head(r)← pos(r), not (neg(r)− {p}) where r ∈ Π∗};
(6) WForgetLP(Π, {p}) = Π′.

WForgetLP(Π, {p}) is defined in the same way as SForgetLP(Π, {p}) except Step
5. Suppose we have a rule like r : b ← pos(r), not neg(r) where p ∈ neg(r).
Instead of viewing neg(r) as part of the support of head(r), we may treat it as
a default evidence of head(r), i.e. under the condition of pos(r), if all atoms in
neg(r) are not presented, then head(r) can be derived. Therefore, forgetting p
will result in the absence of p in any case. So r may be replaced by r ′ : b ←
pos(r), not (neg(r) − {p}). The notion of weakly forgetting a set of atoms, de-
noted as WForgetLP(Π, P), is defined accordingly:

WForgetLP(Π, ∅) = Π,
WForgetLP(Π, P ∪ {p}) = WForgetLP(WForgetLP(Π, {p}), P).

The following proposition ensures that our strong and weak forgettings in logic
programs are well defined under strong equivalence.

Proposition 2 Let Π be a logic program and p, q two propositional atoms. Then

(1) SForgetLP(SForgetLP(Π, {p}), {q}) is strongly equivalent to
SForgetLP(SForgetLP(Π, {q}), {p}); and

(2) WForgetLP(WForgetLP(Π, {p}), {q}) is strongly equivalent to
WForgetLP(WForgetLP(Π, {q}), {p}).

Proof. We only prove Result 1, as Result 2 is proved in a similar way. Similar
to the proof of Proposition 1, without loss of generality, we consider a program
Π = Π1 ∪ Π2, where Π1 contains the following rules:

r1 : p← pos(r1), not neg(r1),
r′1 : p← q, pos(r′1), not neg(r′1),
r2 : q ← pos(r2), not neg(r2),
r′2 : q ← p, pos(r′2), not neg(r′2),
r3 : a← p, pos(r3), not neg(r3),
r4 : b← q, pos(r4), not neg(r4).

We assume p and q do not occur in pos(r1), pos(r
′
1), pos(r2) and pos(r′2). Also, all

11

rules in Π2 do not contain p or q in their heads and positive bodies, but may contain
not p or not q.

Then we have Reduct(Π, {p}) = Reduct(Π1, {p}) ∪ Π2, where, according to the
proof of Proposition 1, Reduct(Π1, {p}) consists of the following rules:

r2 : q ← pos(r2), not neg(r2),
r′2 : q ← (pos(r1) ∪ pos(r′2)), not (neg(r1) ∪ neg(r′2)),
r′′2 : q ← q, (pos(r′1) ∪ pos(r′2)), not (neg(r′1) ∪ neg(r′2)),
r′3 : a← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r′′3 : a← q, ((pos(r′1) ∪ pos(r3)), not (neg(r′1) ∪ neg(r3)),
r4 : b← q, pos(r4), not neg(r4).

Then after Step 2 (removing valid rules), rule r′′2 is removed. So we can write
SForgetLP(Π, {p}) = Π′

1 ∪ Π′
2, where Π′

1 = {r2, r
′
2, r

′
3, r

′′
3 , r4}, and Π′

2 ⊆ Π2

in which all rules containing not p are removed. Note that rules in Π′
1 may be

removed if they contain not p, according to Step 5 in the transformation.

Now we consider SForgetLP(Π′
1 ∪ Π′

2, {q}). Since Π′
2 does not contain any rule

having q in its head or positive body, Reduct(Π′
1 ∪ Π′

2, {q}) = Reduct(Π′
1, {q}) ∪

Π′
2. By ignoring the details, we will have the final resulting program: SForgetLP(Π′

1∪
Π′

2, {q}) = Π′′
1 ∪ Π′′

2 , where Π′′
1 consists of the following rules:

r′3 : a← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r∗ : a← ((pos(r′1) ∪ pos(r2) ∪ pos(r3)), not (neg(r′1) ∪ neg(r2) ∪ neg(r3)),
r′4 : b← (pos(r2) ∪ pos(r4), not (neg(r2) ∪ neg(r4)),
r′′4 : b← (pos(r1) ∪ pos(r′2) ∪ pos(r4)), not (neg(r1) ∪ neg(r2) ∪ neg(r4)),

and Π′′
2 ⊆ Π′

2 in which all rules containing not q are removed. Again, rules among
{r′3, r

∗, r′4, r
′′
4} will be removed if they contain not q. Let us denote the resulting

program after such elimination as Π∗′

1 , i.e. Π∗′

1 ⊆ Π′′
1 where each rule in Π′′

1 con-
taining not p or not q is removed from Π∗′

1 .

Let us examine the result of SForgetLP(SForgetLP(Π, {q}), {p}). Firstly, we have
Reduct(Π, {q}) = Reduct(Π1, {q}) ∪ Π2, where Reduct(Π1, {q}) consists of the
following rules:

r1 : p← pos(r1), not neg(r1),
r′′1 : p← (pos(r′1) ∪ pos(r2)), not (neg(r′1) ∪ neg(r2)),
r′′′1 : p← p, (pos(r′1) ∪ pos(r′2)), not (neg(r′1) ∪ neg(r′2)),
r3 : a← p, pos(r3), not neg(r3),
r′4 : b← (pos(r2) ∪ pos(r4)), not (neg(r2) ∪ neg(r4)),
r′′4 : b← p, (pos(r′2) ∪ pos(r4)), not (neg(r′2) ∪ neg(r4)).

Again, after Step 2, rule r′′′1 is removed. So we can write SForgetLP(Π, {q}) =
Π∗

1∪Π∗
2, where Π∗

1 = {r1, r
′′
1 , r3, r

′
4, r

′′
4}, and Π∗

2 ⊆ Π2 in which all rules containing

12

not q are removed. Also rules in Π∗
1 will be removed if they contain not q.

Now we consider SForgetLP(Π∗
1 ∪ Π∗

2, {p}). Since Π∗
2 does not contain any rule

having p in its head or positive body, Reduct(Π∗
1 ∪ Π∗

2, {p}) = Reduct(Π∗
1, {p}) ∪

Π∗
2). Then we have Reduct(Π∗

1, {p}) = Π∗′

1 , which has the following rules:

r′3 : a← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r∗ :← (pos(r′1) ∪ pos(r2) ∪ pos(r3)), not (neg(r′1) ∪ neg(r2) ∪ neg(r3)),
r′4 : b← (pos(r2) ∪ pos(r4)), not (neg(r2) ∪ neg(r4)),
r′′4 : b← (pos(r1) ∪ pos(r′2) ∪ pos(r4)), not (neg(r1) ∪ neg(r′2) ∪ neg(r4)).

This program is Π′′
1 as we have shown above. Also note that rules in {r′3, r

∗, r′4, r
′′
4}

will be removed if they contain not p according to Step 5. Then clearly, such re-
sulting program is Π∗′

1 as mentioned above.

So after performing Steps 2-5, we finally have SForgetLP(Π∗
1 ∪ Π∗

2, {p}) = Π∗′

1 ∪
Π∗′

2 , where Π∗′

2 ⊆ Π∗
2, in which all rules containing not p are removed. Obviously,

Π∗′

2 = Π′′
2 . This proves our result. 2

Example 2 Let Π1 = {a ← not b, b ← not a}, and Π2 = {a ← b, not c,
a← not e, d← a, e, e← not a}. Then

SForgetLP(Π1, {a}) = ∅,
SForgetLP(Π1, {a, b}) = ∅,
WForgetLP(Π1, {a}) = {b←},
WForgetLP(Π1, {a, b}) = ∅,
SForgetLP(Π2, {a}) = {d← b, e, not c},
WForgetLP(Π2, {a}) = {d← b, e, not c, e←}.

3.2 Relationship to forgetting in propositional theories

As we argued earlier, the notion of forgetting in propositional theories is not appli-
cable to logic programs generally. However, as we will show next, there are close
connections between forgetting in propositional theories and strong and weak for-
gettings in logic programs. Let us first consider the following example.

Example 3 Let Π = {b← a, c, d← not a, e← not f}. Then we have

SForgetLP(Π, {a}) = {e← not f}, and
WForgetLP(Π, {a}) = {d←, e← not f}.

Now we consider Forget([Π]C , {a}), which is logically equivalent to formula (b ∨
¬c ∨ d) ∧ (f ∨ e). Then it is clear that

13

|= Forget([Π]C , {a}) ⊃ [SForgetLP(Π, {a})]C , and
|= [WForgetLP(Π, {a})]C ⊃ Forget([Π]C , {a}).

The above example motivates us to examine deeper connections between strong
and weak forgettings in logic programs and forgetting in propositional theories.
To begin with, we introduce a useful notion. Let Π be a program and L a clause,
i.e. L = l1 ∨ · · · ∨ lk where each li is a propositional literal. We say that L is
Π-coherent if there exists a subset Π′ of Π and a set of atoms P ⊆ atom(Π) (P
could be empty) such that [Reduct(Π′, P)]C is a single clause and L is a subclause
of [Reduct(Π′, P)]C . Intuitively, the coherence notion tries to specify those clauses
that are parts of clauses generated from program Π through reduction.

Consider program Π = {a ← b, d ← a, notc, e ← notd}. Clause d ∨ ¬b is Π-
coherent, where clause ¬d ∨ e is not. Obviously, for each rule r ∈ Π, [{r}]C is
Π-coherent. The following proposition provides a semantic account for Π-coherent
clauses.

Proposition 3 Let Π be a program and L a Π-coherent clause. Then either |=
[Π]C ⊃ L or |= L ⊃ Φ for some clause Φ where |= [Π]C ⊃ Φ.

Proof. Note that if L is Π-coherent, then we can find a subset Π′ of Π and a set of
atoms P ⊆ atom(Π), such that Reduct(Π′, P) only contains one rule r and L is
a subclause of [{r}]C . Recall that the reduction Reduct(Π′, P) is just to eliminate
positive middle occurrences of P in rules of Π′ and remove the rules with heads of
P if such positive middle occurrences exist in Π′. Then it is easy to observe that
|= [Π]C ⊃ [Reduct(Π′, P)]C . If L = [Reduct(Π′, P)]C , then |= [Π]C ⊃ L. If L is a
proper subclause of [Reduct(Π′, P)]C , then |= L ⊃ [Reduct(Π′, P)]C . This proves
our result. 2

Definition 4 Let Π be a logic program, ϕ, ϕ1 and ϕ2 three propositional formulas
where ϕ1 and ϕ2 are in conjunctive normal forms.

(1) ϕ1 is called a consequence of ϕ with respect to Π if |= ϕ ⊃ ϕ1 and each
conjunct of ϕ1 is Π-coherent. ϕ1 is a strongest consequence of ϕ with respect
to Π if ϕ1 a consequence of ϕ with respect to Π and there does not exist
another consequence ϕ′

1 of ϕ (ϕ′
1 6≡ ϕ1) with respect to Π such that |= ϕ′

1 ⊃
ϕ1.

(2) ϕ2 is called a premiss of ϕ with respect to Π if |= ϕ2 ⊃ ϕ and each conjunct
of ϕ2 Π-coherent. ϕ2 is a weakest premiss of ϕ with respect to Π if ϕ2 a
premiss of ϕ with respect to Π and there does not exist another premiss ϕ′

2 of
ϕ (ϕ′

2 6≡ ϕ2) with respect to Π such that |= ϕ2 ⊃ ϕ′
2.

Example 4 (Example 3 continued) It is easy to verify that [SForgetLP(Π, {a})]C

is a strongest consequence of Forget([Π]C , {a}) and [WForgetLP(Π, {a})]C is a
weakest premiss of Forget([Π]C , {a}). In fact, the following theorem confirms that

14

this is always true.

Theorem 1 Let Π be a logic program and P a set of atoms. Then [SForgetLP(Π, P)]C

is a strongest consequence of Forget([Π]C , P) with respect to Π and [WForgetLP(Π, P)]C

is a weakest premiss of Forget([Π]C , P) with respect to Π.

Proof. We only prove the first part of the result, while the second part is proved
in a similar way. To simplify our proof, we consider set P to be a singleton, i.e.
P = {p}. The general case can be proved by induction on the size of P . Without
loss of generality, we assume program Π is of the following form: Π = Π1∪Π2∪Π3,
where Π1 only contains rules which are related to the process of the reduction of Π
with respect to p, Π2 does not contain any rules containing p in heads or positive
bodies (i.e. Π2 is irrelevant to the reduction process) but contains rules having p in
their negative bodies, and Π3 does not contain any rules having p in their heads,
positive or negative bodies. Obviously, Π3 is irrelevant to the process of strongly
forgetting p in Π. In particular, we assume Π1 and Π2 have the following forms:

Π1:
r1 : p← pos(r1), not neg(r1),
· · ·,
rk : p← pos(rk), not neg(rk),
rk+1 : qk+1 ← p, pos(rk+1), not neg(rk+1),
· · ·,
rm : qm ← p, pos(rm), not neg(rm),

Π2:
rm+1 : qm+1 ← pos(rm+1), not p, not neg(rm+1),
· · ·,
rn : qn ← pos(rn), not p, not neg(rn).

In Π1, we may assume that p is not in pos(ri) for i = 1, · · · , m (otherwise, those
rules having p as heads can be omitted from Π1 according to Observation 1). For
Π2, on the other hand, p is not in pos(rj) for j = m + 1, · · · , n.

Then according to Definition 1, we have Reduct(Π, {p}) = Π′
1 ∪ Π2 ∪ Π3, where

Π′
1 is as follows:

r1,k+1 : qk+1 ← pos(r1), pos(rk+1), not neg(r1), not neg(rk+1),
· · ·,
r1,m : qm ← pos(r1), pos(rm), not neg(r1), not neg(rm),
· · ·,
rk,k+1 : qk+1 ← pos(rk), pos(rk+1), not neg(rk), not neg(rk+1),
· · ·,
rk,m : qm ← pos(rk), pos(rm), not neg(rk), not neg(rm).

Note that p may occur in negative bodies of some rules in Π′
1. However, to simplify

our proof, we may consider that no p occurs in negative bodies in all rules of Π′
1

15

because p’s occurrences in negative bodies have been presented in the case of Π2.

Now we consider SForgetLP(Π, {p}). Clearly, SForgetLP(Π, {p}) = Π′
1 ∪ Π3,

where Π2 is removed from Step 5 in Definition 2. Then we conclude that

[SForgetLP(Π, {p})]C = [Π′
1]

C ∧ [Π3]
C ,

where [Π′
1]

C consists of the following clauses:

(qk+1 ∨ ¬pos(r1) ∨ ¬pos(rk+1) ∨
∨

neg(r1) ∨
∨

neg(rk+1))
3 ,

· · ·
(qm ∨ ¬pos(rk) ∨ ¬pos(rm) ∨

∨
neg(rk) ∨

∨
neg(rm)).

Obviously, each clause of SForgetLP(Π, {p}) is Π-coherent.

Now we consider Forget([Π]C , {p}). Firstly, it is to observe that

Forget([Π]C , {p}) = Φ ∧ [Π3]
C ,

where Φ is formula ([Π1]
C [p/true]∧[Π2]

C [p/true])∨([Π1]
C [p/false]∧[Π2]

C [p/false]).
[Π1]

C [p/true] ∧ [Π2]
C [p/true] consists of the following clauses:

qk+1 ∨ ¬pos(rk+1) ∨
∨

neg(rk+1),
· · ·,
qm ∨ ¬pos(rm) ∨

∨
neg(rm),

and [Π1]
C [p/false] ∧ [Π2]

C [p/false] contains the following clauses:

¬pos(r1) ∨
∨

neg(r1),
· · ·,
¬pos(rk) ∨

∨
neg(rk),

qm+1 ∨ ¬pos(rm+1) ∨
∨

neg(rm+1),
· · ·,
qn ∨ ¬pos(rn) ∨

∨
neg(rn).

Then by translating Φ into CNF, say Con(Φ), it is easy to see that all clauses
of [Π′

1]
C are contained in Con(Φ). So [SForgetLP(Π, {p})]C is a consequence of

Forget([Π]C , {p}) with respect to Π.

Observing Con(Φ)’s structure, we know that Con(Φ) also contains the following
clauses:

qk+1 ∨ ¬pos(rk+1) ∨
∨

neg(rk+1) ∨ qm+1 ∨ ¬pos(rm+1) ∨
∨

neg(rm+1),
· · ·,

3 Here ¬pos(r) presents the disjunction of all negative atoms whose atoms occur in pos(r)
and

∨
neg(r) presents the disjunction of all atoms in neg(r).

16

qk+1 ∨ ¬pos(rk+1) ∨
∨

neg(rk+1) ∨ qn ∨ ¬pos(rn) ∨
∨

neg(rn),
· · ·,
qm ∨ ¬pos(rm) ∨

∨
neg(rm) ∨ qn ∨ ¬pos(rn) ∨

∨
neg(rn).

According to the structure of Π, none of these clauses is Π-coherent. Therefore,
there does not exist another consequence ϕ′ of Forget([Π]C , {p}) with respect to Π
such that |= ϕ′ ⊃ [SForgetLP(Π, {p})]C . This proves our result. 2

Theorem 1 actually states that under a certain set of propositional atoms P , the
conjunctive normal form of the strong forgetting of P in program Π is the strongest
formula which is implied by the forgetting of P in the corresponding propositional
theory, while the conjunctive normal form of the weak forgetting of P in Π is
the weakest formula that implies it. So semantically, our notions of strong and
weak forgettings in logic programs are strongest necessary and weakest sufficient
conditions respectively for the forgetting in the corresponding propositional theory.

3.3 A semantic characterization

From previous presentation, we can see that our strong and weak forgettings are
defined in a syntactic way. This is one of the major differences comparing with
the forgetting notion in propositional theories, where an equivalent model theoretic
semantics is provided for the resulting theory after forgetting some atoms [20].
Although we do not have corresponding model theoretic definitions for strong and
weak forgettings, the following property precisely characterizes the stable models
of strong and weak forgettings.

Firstly, we observe that the consistency of program Π does not necessarily imply a
consistent SForgetLP(Π, P) or WForgetLP(Π, P) for some set of atoms P , and
vice versa. For example, consider program Π = {a ←, b ← not a, not b}, then
weakly forgetting a in Π will result in an inconsistent program {b ← not b}. Sim-
ilarly, strongly forgetting a from an inconsistent program Π = {b ← not a, c ←
b, not c} will get a consistent program {c ← b, not c}. Theorem 2 explains how
this happens.

Given program Π and a set of atoms P , we specify two programs X and Y .
Program X is a subset of Π containing three types of rules in Π: (1) for each
p ∈ P , if p 6∈ head(Π), then rule r ∈ Π with p ∈ pos(r) is in X; (2) for
each p ∈ P , if p 6∈ pos(Π), then rule r ∈ Π with head(r) = {p} is in X; and
(3) rule r ∈ Π with neg(r) ∩ P 6= ∅ but not of the types (1) and (2) is also in
X . Clearly, X contains those rules of Π satisfying atom(r) ∩ P 6= ∅ but will
not be affected by Reduct(Π, P). On the other hand, program Y is obtained as
follows: for each rule r in X of the type (3), a replacement of r of the form:
r′ : head(r) ← pos(r), not (neg(r) − P) is in Y . It should be noted that both

17

X and Y can be obtained in linear time in terms of the sizes of Π and P . Then we
have the following result.

Theorem 2 Let Π be a program and P a set of atoms. A set of atoms S is a stable
model of SForgetLP(Π, P) (or WForgetLP(Π, P) resp.) iff program Π − X (or
(Π−X) ∪ Y resp.) has a stable model S ′ such that S = S ′ − P .

Proof. From the definition of X , we can see that X contains exactly all those
rules of Π that are not affected by Reduct(Π, P) but have to be removed from
SForgetLP(Π, P). So we have SForgetLP(Π, P) = Reduct(Π, P)−X =
Reduct((Π−X), P) (we suppose that no valid rule is presented here as it does not
influence the result). So it is easy to see that SForgetLP(Π, P) has a stable model
S iff Π − X has a stable model S ′ where S = S ′ − P . Similarly, we can observe
that WForgetLP(Π, P) = Reduct((Π−X) ∪ Y, P). 2

It is interesting to note that given program Π and set of atoms P , although com-
puting SForgetLP(Π, P) or WForgetLP(Π, P) may need exponential time (see
Section 7), its stable models can be computed through some program that is ob-
tained from Π in linear time.

4 Logic program contexts - A framework for conflict solving

In this section, we define a general framework called logic program contexts to
represent a knowledge system which consists of multiple agents’ knowledge bases.
We consider the issue of conflicts occurring in the reasoning within the underlying
logic program context. As will be shown, notions of strong and weak forgettings
that we proposed earlier will provide a basis for solving such conflicts.

Definition 5 (Logic program context) A logic program context is an n-ary tuple
Σ = (Φ1, · · · , Φn), where each Φi is a triplet (Πi, Ci,Fi) − Πi and Ci are two
logic programs, and Fi ⊆ atom(Πi) is a set of atoms. We also call each Φi the ith
component of Σ. A logic program context Σ is consistent if for each i, Πi ∪ Ci is
consistent. Σ is conflict-free if for any i and j, Π i ∪ Cj is consistent.

In Definition 5, each component Φi in Σ represents agent i’s local situation, where
Πi is agent i’s knowledge base, Ci is a set of constraints that agent i should comply
and will not change in any case, and Fi is a set of atoms that agent i may forget
if necessary. Now the problem of conflict solving under this setting can be stated
as follows: given a logic program context Σ = (Φ1, · · · , Φn), which may not be
consistent or conflict-free, how can we find an alternative logic program context
Σ′ = (Φ′

1, · · · , Φ
′
n) such that Σ′ is conflict-free and is closest to the original Σ in

some sense.

18

We first present formal definitions about the solution that solves conflicts in a logic
program context.

Definition 6 (Solution) Given a logic program context Σ = (Φ1, · · · , Φn), where
each Φi = (Πi, Ci,Fi). We call a logic program context Σ′ a solution that solves
conflicts in Σ, if Σ′ satisfies the following conditions:

(1) Σ′ is conflict-free;
(2) For each Φ′

i in Σ′, Φ′
i = (Π′

i, Ci,Fi), where Π′
i = SForgetLP(Πi, Pi) or

Π′
i = WForgetLP(Πi, Pi) for some Pi ⊆ Fi.

We denote the set of all solutions of solving conflicts in Σ as Solution(Σ).

Definition 7 (Ordering on solutions) Given three logic program contexts Σ, Σ′

and Σ′′ where Σ′, Σ′′ ∈ Solution(Σ). We say that Σ′ is closer or as close to Σ
as Σ′′, denoted as Σ′ �Σ Σ′′, if for each i, Φ′

i = (Π′
i, Ci,Fi) ∈ Σ′ and Φ′′

i =
(Π′′

i , Ci,Fi) ∈ Σ′′, where Π′
i = SForgetLP(Πi, Pi) or Π′

i = WForgetLP(Πi, Pi)
for some Pi ⊆ Fi, and Π′′

i = SForgetLP(Πi, Qi) or Π′′
i = WForgetLP(Πi, Qi)

for some Qi ⊆ Fi respectively, we have Pi ⊆ Qi ⊆ Fi. We denote Σ′ ≺Σ Σ′′ if
Σ′ �Σ Σ′′ and Σ′′ 6�Σ Σ′.

Proposition 4 �Σ is a partial ordering.

Proof. From the definition of �Σ, it is easy to see that�Σ is reflexive and antisym-
metric. So we only need to show �Σ is transitive, and this is obvious according to
Definition 7. 2

Definition 8 (Preferred solution) Given two logic program contexts Σ and Σ′. We
say that Σ′ is a preferred solution that solves conflicts in Σ, if Σ′ ∈ Solution(Σ)
and there does not exist another Σ′′ ∈ Solution(Σ) such that Σ′′ ≺Σ Σ′.

It should be noted that in order to achieve a preferred solution, both strong and
weak forgettings may have to apply alternatively. Consider the following simple
example.

Example 5 Let Σ = (Φ1, Φ2), where

Φ1: Φ2:
Π1: a←, Π2: c←,

b← a, not c, d← not e,
d← a, not e, e←,
f ← d, f ← d,

C1:← d, not f , C2:← b, not c,
← f, not d,

F1: {a, b, c}, F2: {a, b, c, d, e, f}.

19

It is easy to see that Σ is consistent but not conflict-free because neither Π 1 ∪ C2
nor Π2 ∪C1 is consistent. Now consider two logic program contexts Σ1 = (Φ′

1, Φ
′
2)

and Σ2 = (Φ′′
1, Φ

′′
2), where

Φ′
1 = (SForgetLP(Π1, {c}), C1,F1),

Φ′
2 = (WForgetLP(Φ2, {e}), C2,F2), and

Φ′′
1 = (WForgetLP(Π1, {b, c}), C1,F1),

Φ′′
2 = (WForgetLP(Φ2, {e}), C2,F2).

It can be verified that both Σ1 and Σ2 are solutions that solve the conflict in Σ, but
only Σ1 is a preferred solution.

From the above example, we can see that to solve conflicts in a logic program con-
text, the agent may apply strong forgettings, weak forgettings, or both to obtain a
(preferred) solution. In this sense, the agent has a freedom to choose the ways of
conflict solving if no specific constraint is taken into account. It is noted that some-
times solving conflict through strong forgetting will loose more atoms than weak
forgetting, or vice versa. Therefore, in order to minimally forget atoms from a logic
program, the agent can apply strong and weak forgettings alternatively in different
components. However, in practice, it may be more desirable for an agent to use a
unified approach in conflict solving. Our approach provided here can certainly ac-
commodate this requirement by simply re-defining the solution of a logic program
context by applying strong or weak forgetting only.

Example 6 We consider a conflict solving scenario. A couple John and Mary are
discussing their family investment plan. They consider to invest four types of dif-
ferent shares shareA, shareB, shareC and shareD, where shareA and shareB are
of high risk but also have high returns, and shareC and shareD are property in-
vestment shares and hence are of lower risk and may be suitable for a long term
investment. John is very interested in shareA and wants to buy it definitely. He also
tends to invest shareB if they invest neither shareC nor shareD. However, if they
do not invest shareB, John may consider to invest shareC or shareD if the house
price will keep growing, which John is actually not sure yet. But John does not
consider to invest both of them. On the other hand, Mary is more conservative. She
prefers to invest both shareC and shareD because she believes that the house price
will continue growing as she is confident that the government has no plan to in-
crease the Reserve Bank interest. Mary definitely does not consider to invest both
shareA and shareB. At most, she may consider to buy some shareB if they invest
neither shareA nor shareC. But Mary insists that they should invest at least one of
shareC and shareD in any case. Now how can John and Mary negotiate to achieve
a common agreement?

We first represent John and Mary’s investment preferences as the following pro-
grams respectively:

ΠJ :

20

r1 : shareA←,
r2 : shareB ← not shareC, not shareD,
r3 : shareC ← houseIncrease, not shareB, not shareD,
r4 : shareD ← houseIncrease, not shareB, not shareC,

ΠM :
r5 : shareC ← houseIncrease,
r6 : shareD ← houseIncrease,
r7 : shareB ← not shareA, not shareC,
r8 : houseIncrease← not interestUp.

To negotiate with each other, John and Mary set up their conditions respectively
that they do not want to compromise:

CJ :
← not shareA,
← shareC, shareD, and

CM :
← shareA, shareB,
← not shareC, not shareD.

John and Mary then specify a logic program context to solve the conflict about
their family investment plan: ΣJM = ((ΠJ ,CJ ,FJ), (ΠM ,CM ,FM)), where FJ =
{shareB, shareC, shareD} (note that shareA is not a forgettable atom for John as
he definitely wants to buy it) and FM = {shareA, shareB, shareC, shareD}.

Unfortunately, it is easy to check that ΣJM has no (preferred) solution. That means,
it is impossible for John and Mary to solve their conflict by just weakening their
own belief sets. So John and Mary realize that they have to make further compro-
mise that both of them should not only weaken their own belief sets, but also take
the other’s beliefs into account. However, their strategy is to take the other’s be-
liefs as little as possible. To this end, John and Mary specify a new logic program
context as follows: ΣNew

JM = ((ΠJ ∪∆M ,CJ ,F ′
J), (ΠM ∪∆J ,CM ,F ′

M)), where

∆M :
r′5 : shareC ← houseIncrease, not lr′

5
,

r′51 : lr′
5
← not hr′

5
,

r′6 : shareD ← houseIncrease, not lr′
6
,

r′61 : lr′
6
← not hr′

6
,

r′7 : shareB ← not shareA, not shareC, not lr′
7

,
r′71 : lr′

7
← not hr′

7
,

r′8 : houseIncrease← not interestUp, not lr′
8
,

r′81 : lr′
8
← not hr′

8
,

∆J :
r′1 : shareA← not lr′

1
,

r′11 : lr′
1
← not hr′

1
,

21

r′2 : shareB ← not shareC, not shareD, not lr′
2
,

r′21 : lr′
2
← not hr′

2
,

r′3 : shareC ← houseIncrease, not shareB, not shareD, not lr′
3
,

r′31 : lr′
3
← not hr′

3
,

r′4 : shareD ← houseIncrease, not shareB, not shareC, not hr′
4
,

r′41 : lr′
4
← not hr′

4
,

and F ′
J = FJ ∪ {hr′

i
, lr′

i
| i = 5, · · · , 8} and F ′

M = FM ∪ {hr′
i
, lr′

i
| i = 1, · · · , 4}

(hr′
i
, lr′

i
(i = 1, · · · , 8) are newly introduced atoms).

Let us take a closer look at ∆M . During the conflict solving, if none of h r′
i
, lr′

i

(i = 5, · · · , 8) has been strongly or weakly forgotten, then all rules r ′
i (i = 5, · · · , 8)

in ∆M equipped with the corresponding rules from ΠM will be defeated. In this
case, John does not need to take any of Mary’s beliefs into his consideration. On
the other hand, if for some j (5 ≤ j ≤ 8) hr′

j
is strongly forgotten (or lr′

j
is weakly

forgotten), then rules r′j in ∆M will be initiated and hence will affect John’s deci-
sion for conflict solving. As only a minimal number of h r′

i
(or lr′

i
) (i = 5, · · · , 8)

will be strongly forgotten (or weakly forgotten, resp.) in the conflict solving, John
just takes a minimal number of Mary’s rules for his consideration. The same expla-
nation applies for ∆J .

ΣNew
JM has a unique preferred solution ((Π′

J ,CJ ,F ′
J), (Π′

M ,CM ,F ′
M)), where

Π′
J = WForgetLP(ΠJ ∪∆M , {shareB, lr′

8
}), and

Π′
M = WForgetLP(ΠM ∪∆J , {shareC, lr′

1
}).

Π′
J has two stable models which include {shareA, shareC} and {shareA, shareD}

respectively, and Π′
M has one stable model including shareA and shareD. There-

fore, John has two options: either to invest shareA and shareC, or to invest shareA
and shareD, while Mary will only consider to invest shareA and shareD. Finally,
John and Mary can reach an agreement to invest shareA and shareD.

Example 6 presents an application of our approach to solve complex logic program
conflicts involving negotiation and belief merging that most of current methods
have difficulties to deal with.

5 Semantic properties

In this section, we study important semantic properties in relation to strong and
weak forgettings and logic program contexts.

22

5.1 Irrelevance

Irrelevance is an important issue related to forgetting [19]. Basically, if we are able
to answer an query q against a logic program Π, i.e. Π |= q, then we are interested
in knowing whether we still can answer this query in the resulting program after
strongly or weakly forgetting a set of atoms from Π, because this will enable us to
significantly simplify the inference problem in the resulting logic program. We first
give a formal definition of irrelevance in relation to strong and weak forgetting.

Definition 9 (Irrelevance) Let Π be a logic program and P a set of atoms. We say
that atom a is irrelevant to the strong forgetting (or weak forgetting) of P from Π,
or simply say that a is s-irrelevant (or w-irrelevant, resp.) to P in Π, if Π |= a
iff SForgetLP(Π, P) |= a (or WForgetLP(Π, P) |= a resp.). We say that a is
irrelevant to P in Π if a is either s-irrelevant or w-irrelevant to P in Π.

Trivially, if Π is inconsistent, then a is s-irrelevant (w-irrelevant) to any P in Π
iff SForgetLP(Π, P) |= a (or WForgetLP(Π, P) |= a, resp.). Also if for some
P ⊆ atom(Π), SForgetLP(Π, P) (WForgetLP(Π, P)) is inconsistent, then a is
s-irrelevant (or w-irrelevant, resp.) to P in Π iff Π |= a. To provide a general
characterization result for irrelevance, we need a notion of support.

Definition 10 Let Π be a program and a an atom. We define a’s support with re-
spect to Π to be a set of atoms Support(a) specified as follows:

S0 = {p | p ∈ body(r) where r ∈ Π and head(r) = {a}};
Si+1 = Si ∪ {p | p ∈ body(r) where r ∈ Π and head(r) ⊆ Si};
Support(a) =

⋃∞
i=0 Si.

An atom p ∈ Support(a) is called a positive (or negative) support of a if p ∈ pos(r)
(or ∈ neg(r), resp.) for some rule r occurring in defining Support(a) 4 .

Basically, Support(a) contains all atoms that occur in those rules related to a’s
derivation in program Π. Therefore, changing or removing any rules which contain
atoms in Support(a) may affect atom a. It turns out that the notion of support plays
an important role in deciding the irrelevance.

Theorem 3 Let Π be a logic program, P a set of atoms and a an atom. Suppose
Π, SForgetLP(Π, P) and WForgetLP(Π, P) are consistent. Then the following
results hold.

(1) If a 6∈ head(Π), then a is irrelevant to P in Π;
(2) If a ∈ P , then a is irrelevant to P in Π iff Π 6|= a;
(3) If a 6∈ P and P ∩ Support(a) = ∅, then a is irrelevant to P in Π.

4 Note that an atom in Support (a) could be both positive and negative supports of a.

23

Proof. Proofs for Results 1 and 2 are trivial. Here we only prove Result 3. To prove
this result, we need a result about program splitting from [30]. Before we present
this program splitting result, we introduce a notion. Given a program Π and a set
of atoms S, we use e(Π, S) to denote the program obtained from Π by deleting: (1)
each rule in Π having a form not a in its body with a ∈ S; and (2) all atoms a in
the bodies of the remaining rules with a ∈ S. Intuitively, e(Π, S) can be viewed
as a simplified form of Π given those atoms in S to be true. Then we can re-state
Theorem 5 in [30] under the normal logic program setting:

A set of atoms S is a stable model of program Π if and only if Π = Π1∪Π2 such
that body(Π1) ∩ head(Π2) = ∅, and S = S1 ∪ S2, where S1 is a stable model of
Π1 and S2 is a stable model of program e(Π2, S1).

From the definition of Support(a), we can see that Π can be expressed as Π =
Π1∪Π2, where Π1 is the subset of Π containing all rules mentioned in Support(a).
So we have Π1 ∩ Π2 = ∅. Also, it is observed that body(Π1) ∩ head(Π2) = ∅.
Because if this is not true, then there must be some rule r ∈ Π2 such that body(r)∩
body(Π1) 6= ∅. According to Π1’s construction, this leads to r ∈ Π1 as well. That
is, Π1 ∩ Π2 6= ∅. This is a contradiction. Since P ∩ Support(a) = ∅, it is clear that
all rules containing some atoms in P are in Π2. We may use Π(P) to denote this
set of rules of Π.

From body(Π1) ∩ head(Π2) = ∅, we know that each stable model S of Π can be
expressed as S = S1 ∪ S2, where S2 is a stable model of program e(Π2, S1). Also,
since rule ra ∈ Π1, this implies that Π |= a iff Π1 |= a.

Now from the definitions of strong and weak forgettings and condition Π(P) ⊆ Π2,
we know that both strong and weak forgettings only influence rules in Π 2. So we
have

SForgetLP(Π, P) = Π1 ∪ Π†, and
WForgetLP(Π, P) = Π1 ∪ Π‡,

where head(Π†) ⊆ head(Π2) and head(Π‡) ⊆ head(Π2). This follows:

Π1 ∩ Π† = ∅, body(Π1) ∩ head(Π†) = ∅, and
Π1 ∩ Π‡ = ∅, body(Π1) ∩ head(Π‡) = ∅.

By the result stated above, we have that each stable model Ss of SForgetLP(Π, P)
can be expressed as Ss = S1∪S†, and each stable model Sw of WForgetLP(Π, P)
can be expressed as Sw = S1 ∪ S‡, where S1 is a stable model of Π1, S† and S‡ are
stable models of Π† and Π‡ respectively.

Finally, from the observation that Π |= a iff Π1 |= a, we have (Π |= a iff
SForgetLP(Π, P) |= a) and (Π |= a iff WForgetLP(Π, P) |= a). This proves our
result. 2

24

Theorem 3 provides common conditions under which atom a is both s-irrelevant
and w-irrelevant to P in Π. However, we should note that in general, an atom’s
s-irrelevance does not imply its w-irrelevance, and vice versa. Usually we need to
deal with these two types of irrelevances separately. The following theorem illus-
trates different sufficient conditions to ensure these irrelevances respectively.

Theorem 4 Let Π be a logic program, P a set of atoms and a an atom where
a 6∈ P . Suppose that Π, SForgetLP(Π, P) and WForgetLP(Π, P) are consistent.
Then the following results hold:

(1) If for each p ∈ P ∩ Support(a), p is a negative support of a and Π 6|= p, then
a is w-irrelevant to P in Π;

(2) If for each p ∈ P ∩ Support(a), p is a negative support of a and Π |= p, then
a is s-irrelevant to P in Π.

Proof. We only prove Result 1, while Result 2 can be proved in a similar way. From
the proof of Theorem 3, given Support(a), program Π can be expressed as Π =
Π1 ∪Π2, where Π1 ∩Π2 = ∅, Π1 contains all rules used in computing Support(a),
and Π |= a iff Π1 |= a. Now let us consider WForgetLP(Π, P). We will show that
WForgetLP(Π, P) can be also expressed as WForgetLP(Π, P) = Π′

1 ∪ Π′
2, such

that body(Π′) ∩ head(Π′
2) = ∅, and Π′

1 |= a iff Π1 |= a.

To simplify our presentation, we may assume P = {p} where the proof for the
general case can be easily extended from this special case. Without loss of gener-
ality, we can consider that Π = Π1 ∪ Π2, where Π1 includes the following rules in
relation to P (note that Π1 may also contain other rules):

r1 : head(r1)← pos(r1), not p, not neg(r1),
r2 : p← pos(r2), not neg(r2),
r3 : head(r3)← p, pos(r3), not neg(r3),

and Π2 includes the following rules related to P (again, Π2 may contain other
rules):

r4 : head(r4)← p, pos(r4), not neg(r4),
r5 : head(r5)← pos(r5), not p, not neg(r5).

we should indicate that Π2 does not contain a rule with head of p, because this rule
will be contained in Π1 as a rule used for computing Support(a).

Clearly, by weakly forgetting {p} in Π, only rules r1 - r5 will be affected, and other
rules do remain unchanged. Therefore, we have WForgetLP(Π, {p}) = Π′

1 ∪ Π′
2,

where the only difference between Π1 and Π′
1 are following rules in Π′

1:

25

r′1 : head(r1)← pos(r1), not neg(r1),
r′3 : head(r3)← (pos(r2) ∪ pos(r3)), not (neg(r2) ∪ neg(r3)),

and the only difference between Π2 and Π′
2 are the following rules in Π′

2:

r′4 : head(r4)← (pos(r2) ∪ pos(r4)), not (neg(r2) ∪ neg(r4)),
r′5 : head(r5)← pos(r5), not neg(r5).

This concludes that body(Π′
1) ∩ head(Π′

2) = ∅. Now we show that Π′
1 |= a iff

Π1 |= a. Observing that in Π′
1, weakly forgetting p actually does not affect the

derivation of head(r3), while head(r1)’s derivation might be affected since not p
has been removed from r′1. However, note that Π 6|= a, in the original rule r1 in Π1,
formula not p does not play any role. So removing not p has no any effect on a’s
derivation. This follows that Π′

1 |= a iff Π1 |= a. So a is w-irrelevant to {p} in Π.
2

Example 7 Consider the following program Π:

a← not b,
c← d,
e← c,
b← not c.

It is easy to see that a is w-irrelevant to {c} in Π. This is because Π 6|= a and
WForgetLP(Π, {c}) = {a← not b, e← d, b←} 6|= a. Indeed, since Support(a) =
{b, c} where c is a negative support and Π 6|= c, the condition of Result 1 of Theo-
rem 4 holds. We can also verify that a is not s-irrelevant to {c} in Π.

Now suppose we add an extra rule into Π: Π′ = Π ∪ {d ←}. Here we still have
Support(a) = {b, c} where c is a negative support. However, since Π′ |= c, accord-
ing to Result 2 in Theorem 4, a is s-irrelevant to {c} in Π′. It is also observed that
a is not w-irrelevant to {c} in Π′.

We can generalize the notion of irrelevance to the logic program context. Formally,
let Σ be a logic program context and a an atom, we say that a is derivable from Σ’s
ith component, denoted as Σ |=i a, if Φi = (Πi, Ci,Fi) ∈ Σ and Πi |= a.

Definition 11 (Irrelevance wrt logic program contexts) Let Σ and Σ′ be two
logic program contexts where Σ′ ∈ Solution(Σ), and a an atom. We say that a is
irrelevant with respect to Σ and Σ′ on their ith components, or simply say that a is
(Σ, Σ′)i-irrelevant, if Σ |=i a iff Σ′ |=i a.

Given a logic program context Σ and an atom a, we would like to know whether
there is a preferred solution Σ′ of Σ such that a is (Σ, Σ′)i-irrelevant. To answer this
question, we need to consider the preservation of irrelevance along the preferred

26

ordering�Σ on solutions of Σ. That is, if Σ′, Σ′′ ∈ Solution(Σ), Σ′ �Σ Σ′′ and a is
(Σ, Σ′′)i-irrelevant, then under what conditions a is also (Σ, Σ′)i-irrelevant. If for
each of those more preferred solutions, a’s irrelevance is preserved, then eventually,
we can obtain a’s irrelevance with respect to Σ and its preferred solution.

We formalize this idea as follows. Let Σ, Σ′, Σ′′ be three logic program contexts and
Σ′, Σ′′ ∈ Solution(Σ). We say that Σ′ and Σ′′ are forgetting-congruent on their ith
components with respect to Σ, denoted as Σ′ ∼i

Σ Σ′′, if for each Φi = (Πi, Ci,Fi) ∈
Σ,

Φ′
i = (SForgetLP(Πi, P

′), Ci,Fi) ∈ Σ′,
Φ′′

i = (SForgetLP(Πi, P
′′), Ci,Fi) ∈ Σ′′,

or

Φ′
i = (WForgetLP(Πi, P

′), Ci,Fi) ∈ Σ′,
Φ′′

i = (WForgetLP(Πi, P
′′), Ci,Fi) ∈ Σ′′,

where P ′, P ′′ ⊆ Fi. In other words, if two solutions of Σ are forgetting-congruent
on their ith components, it means that both of their ith components are obtained by
performing either strong forgettings or weaking forgettings on some sets of atoms
from Σ’s ith component. We say that two solutions Σ′ and Σ′′ of Σ are forgetting-
congruent, denoted as Σ′ ∼Σ Σ′′, if Σ′ ∼i

Σ Σ′′ for each i. The following theorem
shows that forgetting-congruence is a sufficient condition for preserving irrelevance
in terms of the preferred ordering on solutions.

Theorem 5 Let Σ, Σ′, Σ′′ be three logic program contexts and Σ′, Σ′′ ∈ Solution(Σ),
a an atom. Suppose Σ′ �Σ Σ′′ and a is (Σ, Σ′′)i-irrelevant. Then a is (Σ, Σ′)i-
irrelevant if Σ′ ∼i

Σ Σ′′.

Proof. To prove this theorem, we need to show that for Σ′, Σ′′ ∈ Solution(Σ), if
Φ′

i = (Π′
i = SForgetLP(Πi, P

′), Ci,Fi) and Φ′′
i = (Π′′

i = SForgetLP(Πi, P
′′), Ci,Fi),

or Φ′
i = (Π′

i = WForgetLP(Πi, P
′), Ci,Fi) and Φ′′

i = (Π′′
i = WForgetLP(Πi, P

′′), Ci,Fi),
where Πi is in some Φi ∈ Σ, Φ′

i ∈ Σ′, Φ′′
i ∈ Σ′′, P ′ ⊆ P ′′ ⊆ Fi, and Πi |= a iff

Π′′
i |= a, then Πi |= a iff Π′

i |= a. Recall that we do not consider invalid strong and
weak forgettings, so here we assume that all Πi, Π′

i and Π′′
i are consistent programs.

In order to avoid unnecessary tediousness in our proof, we consider a simplified
case in our proof where P ′ = {p} and P ′′ = {p, q}. Note that the proof for the
general case of P ′ ⊆ P ′′ can be obtained in a similar way of this proof. Under the
assumption of P ′ = {p} and P ′′ = {p, q}, program Πi may be simplified as a form
of Πi = Πi1 ∪ Πi2 ∪ Πi3, where Πi1 contains the following rules:

r1 : p← pos(r1), not neg(r1),
r′1 : p← q, pos(r′1), not neg(r′1),
r2 : q ← pos(r2), not neg(r2),

27

r′2 : q ← p, pos(r′2), not neg(r′2),
r3 : head(r3)← p, pos(r3), not neg(r3),
r4 : head(r4)← q, pos(r4), not neg(r4).

We assume p and q do not occur in anywhere else in Πi1. Πi2 contains the rules not
having p and q in their heads and positive bodies, but only having p and q in their
negative bodies:

r5 : head(r5)← pos(r5), not p, not q, · · ·,
r6 : head(r6)← pos(r6), not p, · · ·,
r7 : head(r7)← pos(r7), not q, · · ·.

Finally, Πi3 consists of rules not containing p and q in anywhere.

Case 1. Suppose Π′
i = SForgetLP(Πi, {p}) and Π′′

i = SForgetLP(Πi, {p, q}). In
this case, Π′

i and Π′′
i are as follows:

Π′
i:

r2 : q ← pos(r2), not neg(r2),
r′21 : q ← (pos(r1) ∪ pos(r′2)), not (neg(r1) ∪ neg(r′2)),
r31 : head(r3)← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r′31 : head(r3)← q, (pos(r′1) ∪ pos(r3)), not (neg(r′1) ∪ neg(r3)),
r4 : head(r4)← q, pos(r4), not neg(r4),
r7 : head(r7)← pos(r7), not q, · · ·,
Πi3,

Π′′
i :

r31 : head(r3)← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r32 : head(r3)← (pos(r2) ∪ pos(r′1) ∪ pos(r3)),

not (neg(r2) ∪ neg(r′1) ∪ neg(r3)),
r′32 : head(r3)← (pos(r1) ∪ pos(r′2) ∪ pos(r′1) ∪ pos(r3)),

not (neg(r1) ∪ neg(r′2) ∪ neg(r′1) ∪ neg(r3)),
r33 : head(r4)← (pos(r2) ∪ pos(r4)), not (neg(r2) ∪ neg(r4)),
r′33 : head(r4)← (pos(r1) ∪ pos(r′2) ∪ pos(r4)),

not (neg(r1) ∪ neg(r′2) ∪ neg(r4)),
Πi3.

Now we assume that for some atom a, Πi |= a iff Π′′
i |= a. From the proof of

Theorem 3, we know that Πi |= a iff Π∗
i |= a, where Π∗

i = {r | r ∈ Πi and
occurs in the definition of Support(a)}. Let Π

′∗
i = {r | r ∈ Π′

i and occurs in the
definition of Support(a)} and Π

′′∗
i = {r | r ∈ Π′′

i and occurs in the definition of
Support(a)}. From Πi |= a iff Π′′

i |= a, we have Π∗
i |= a iff Π

′′∗
i |= a. Then we

will show that Π
′∗
i |= a iff Π

′∗
i |= a, this will follow Πi |= a iff Π′′

i |= a.

Comparing structures of programs Πi and Π′′
i , it is clear that rules r5, r6 and r7

do not play any role in deriving a even if they are in Π∗
i because these rules are

removed from Π′′
i . Consequently, rule r7 does not play any role in deriving a in Π′

i

28

even if it is in Π
′∗
i . On the other hand, for all rules in Π

′∗
i , they are either in Π

′′∗
i

or have been replaced in Π
′′∗
i by the corresponding rules after reduction on {q}.

Then we have the fact that Π
′′∗
i |= b iff Π

′∗
i |= b for all atoms which are not q. Now

consider that a = q. since Π′′
i 6|= q, and q is (Σ, Σ′′)i-irrelevant, we have Πi 6|= q.

Then we can conclude that Π
′′∗
i 6|= q as well because if this is not the case, we will

have Πi |= q (observing that rules r1, r2 and r′2 used to derive q can be replaced by
r2 and r′21 in Π′′

i), which contradicts with Π′′
i 6|= q. So the result holds.

Case 2. Suppose Π′
i = WForgetLP(Πi, {p}) and Π′′

i = WForgetLP(Πi, {p, q}).
In this case, we have:

Π′
i:

r2 : q ← pos(r2), not neg(r2),
r′21 : q ← (pos(r1) ∪ pos(r′2)), not (neg(r1) ∪ neg(r′2)),
r31 : head(r3)← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r′31 : head(r3)← q, (pos(r′1) ∪ pos(r3)), not (neg(r′1) ∪ neg(r3)),
r4 : head(r4)← q, pos(r4), not neg(r4),
r′5 : head(r5)← pos(r5), not q, · · ·,
r′6 : head(r5)← pos(r5), · · ·,
r7 : head(r7)← pos(r7), not q, · · ·,
Πi3,

Π′′
i :

r31 : head(r3)← (pos(r1) ∪ pos(r3)), not (neg(r1) ∪ neg(r3)),
r32 : head(r3)← (pos(r2) ∪ pos(r′1) ∪ pos(r3)),

not (neg(r2) ∪ neg(r′1) ∪ neg(r3)),
r′32 : head(r3)← (pos(r1) ∪ pos(r′2) ∪ pos(r′1) ∪ pos(r3)),

not (neg(r1) ∪ neg(r′2) ∪ neg(r′1) ∪ neg(r3)),
r33 : head(r4)← (pos(r2) ∪ pos(r4)), not (neg(r2) ∪ neg(r4)),
r′33 : head(r4)← (pos(r1) ∪ pos(r′2) ∪ pos(r4)),

not (neg(r1) ∪ neg(r′2) ∪ neg(r4)),
r′′5 : head(r5)← pos(r5), · · ·,
r′′6 : head(r6)← pos(r6), · · ·,
r′′7 : head(r7)← pos(r7), · · ·,
Πi3.

In a similar way as described above, we can show that Π′′
i |= a iff Π′

i |= a. 2

Corollary 1 Let Σ′, Σ′′ ∈ Solution(Σ), where Σ′′ is a preferred solution of Σ, and
a an atom. Then a is (Σ, Σ′′)i-irrelevant if a is (Σ, Σ′)i-irrelevant and Σ′ ∼i

Σ Σ′′.

Example 8 Let us consider a logic program context Σ = (Φ1, Φ2, Φ3), where

Φ1: Φ2: Φ3:
Π1: a← not b, Π2: d←, Π3: b← not a,

29

c← a, b← not c, c← not a,
d← not e, d← not c,

C1: ∅, C2:← not d, C3:← c, d,
e← c,

F1: {a, b, c, d, e}, F2: {b, c, d}, F3: {a, b, c, d}.

It is easy to see that conflicts occur in Σ. That is, Π 1 ∪ C2, Π1 ∪ C3, and Π3 ∪ C2
are inconsistent. By performing strong and weak forgettings, we obtain a solution
of Σ: Σ′ = (Φ′

1, Φ2, Φ
′
3), where Φ′

1 = (Π′
1, C1,F1), Φ′

3 = (Π′
3, C3,F3), Π′

1 =
WForgetLP(Π1, {a, c, e}) = {d ←} and Π′

3 = SForgetLP(Π3, {a}) = {d ←
notc}. We can verify that atom a is (Σ, Σ′)i-irrelevant for all i = 1, 2, 3.

On the other hand, by weakly forgetting only {c, e} in Π1, we further obtain a
more preferred solution of Σ: Σ′′ = (Φ′′

1, Φ2, Φ
′
3), where Φ′′

1 = (Π′′
1, C1,F1), and

Π′′
1 = WForgetLP(Π1, {c, e}) = {a ← notb, d ←}. In fact, Σ′′ is also a preferred

solution of Σ. Since Σ′ ∼Σ Σ′′, according to Corollary 1, we know that a is also
(Σ, Σ′′)i-irrelevant (i = 1, 2, 3).

5.2 Characterizing solutions for conflict solving

In this subsection, we focus our study on the semantic characterization on conflict
solving solutions, because such characterizations are useful to optimize the proce-
dure of conflict solving in logic program contexts. To begin with, we give a general
result for the existence of preferred solutions for arbitrary logic program context.

Theorem 6 Let Σ be a logic program context. Σ has a preferred solution iff
Solution(Σ) 6= ∅.

Proof. Obviously, if Σ has a preferred solution, then Solution(Σ) 6= ∅. Now we
assume that Solution(Σ) 6= ∅. In this case, we only need to show that for each
Σ′ ∈ Solution(Σ), a new solution Σ′′ can always be generated from Σ′ such that
Σ′′ �Σ Σ′. If no such solution can be generated from Σ′, then Σ′ itself is a preferred
solution. We present the following algorithm for this purpose.

Algorithm: Solution-Generation
Input: Σ = (Φ1, · · · , Φn) and Σ′ = (Φ′

1, · · · , Φ
′
n), where

Φi = (Πi, Ci,Fi) and Φ′
i = (Π′

i, Ci,Fi);
Output: Σ′′ = (Φ′′

1, · · · , Φ
′′
n);

for i = 1 to n
let Φ′

i = (Π′
i, Ci,Fi) ∈ Σ′ and

Π′
i = SForgetLP(Π, P) or Π′

i = WForgetLP(Π, P) (P ⊆ Fi);
while Q ⊂ P

testing the consistency of SForgetLP(Π, Q) ∪ Cj

for all j = 1, · · · , n;

30

if consistency holds, then Π′′
i = SForgetLP(Π, Q);

if consistency does not hold, then
testing the consistency of WForgetLP(Π, Q) ∪ Cj

for all j = 1, · · · , n;
if consistency holds, then

Π′′
i = WForgetLP(Π, Q), otherwise Π′′

i = Π′
i;

return Σ′′ = ((Π′′
1, C1,F1), · · · , (Π

′′
n, Cn,Fn)).

It is easy to see that algorithm Solution-Generation terminates as the procedures
of computing SForgetLP(Πi, Q) and WForgetLP(Πi, Q), and consistency testing
for a program can always finish in finite steps respectively. Furthermore, the output
Σ′′ is either the same as Σ′ or Σ′′ �Σ Σ′. This proves our result. 2

The proof of Theorem 5 actually provides a method to generate a preferred solution
for a logic program context. That is, once we have an initial solution for a logic
program context, we can always generate a more preferred solution from the current
one. We continue the process until a preferred solution is finally achieved. However,
not every logic program has a solution. For instance, a logic program context Σ =
(Φ1, Φ2) = (∅, {← a, not b}, ∅), ({a← not b}, ∅, ∅)) has no solution.

Proposition 5 Let Σ = (Φ1, · · · , Φn) be a logic program context. If for each Φi =
(Πi, Ci,Fi), Πi does not contain a constraint rule (a rule with empty head), Ci is
consistent, and for each r ∈ Πi, atom(r) ∩ Fi 6= ∅, then Solution(Σ) 6= ∅.

Proof. We show that Σ′ = (Φ′
1, · · · , Φ

′
n), where Φ′

i = (∅, Ci,Fi) (1 ≤ i ≤ n) is
a solution of Σ. Since for each i, Fi ∩ atom(r) 6= ∅ for each r ∈ Πi, we have
Π′

i = SForgetLP(Πi,Fi) = ∅ (note that this is because we already assumed that
Πi does not contain any rules with empty heads. Instead, this type of rule is con-
tained in Ci). This follows that Π′

i ∪ Cj = Cj for all j = 1, · · · , n are consistent. So
((∅, C1,F1), · · · , (∅, Cn,Fn)) is a solution of Σ. 2

We should indicate that many conflict solving scenarios can be represented in the
type of logic program context in Proposition 5. For example, the negotiation sce-
nario discussed in Example 6 and most logic program update approaches (see sec-
tion 6) can be specified under logic program contexts with this form. Therefore,
solving conflicts for this particular type of logic program context has a special in-
terest in various applications. This motivates us to study more detailed properties
related to the solution of this type of logic program contexts.

We first introduce some useful concepts. A logic program Π’s dependency graph
[1], denoted as G(Π), is a directed graph (atom(Π), E), where atom(Π) is the set
of vertices, and E is the set of edges. An edge (a, b) ∈ E iff there is a rule r ∈ Π
such that a ∈ pos(r)∪neg(r) and {b} = head(r). Edge (a, b) is labelled “positive”
if a ∈ pos(r) and “negative” if a ∈ neg(r). Then a logic program is called call-

31

consistent [12] if it does not contain a constraint (i.e. a rule with empty head) and
its dependency graph has no simple cycles with odd number of negative edges 5 .

Lemma 1 Let Π1 and Π2 be two logic programs and Π1 be consistent. Then pro-
gram Π1 ∪ Π2 is consistent if body(Π1) ∩ head(Π2) = ∅ and Π2 is call-consistent.

Proof. Similar to the proof of Theorem 3, To prove this lemma, we need a re-
sult about program splitting from [30]. To remain a completeness of the proof, we
present this result again. Before we present this program splitting result, we intro-
duce a notion. Given a program Π and a set of atoms S, we use e(Π, S) to denote
the program obtained from Π by deleting: (1) each rule in Π having a form not a
in its body with a ∈ S; and (2) all atoms a in the bodies of the remaining rules
with a ∈ S. Intuitively, e(Π, S) can be viewed as a simplicity of Π giving those
atoms in S to be true. Then we can re-state Theorem 5 in [30] under the normal
logic program setting:

A set of atoms S is a stable model of program Π if and only if Π = Π1∪Π2 such
that body(Π1) ∩ head(Π2) = ∅, and S = S1 ∪ S2, where S1 is a stable model of
Π1 and S2 is a stable model of program e(Π2, S1).

From this result, we can see that under the condition that Π1 is consistent, Π1 ∪Π2

is consistent if body(Π1) ∩ head(Π2) = ∅, and for each stable model S1 of Π1,
e(Π2, S1) is also consistent.

Since a call-consistent program is also consistent [29], to prove our result, we will
prove that if Π2 is call-consistent, then e(Π2, S1) is also call-consistent for any set
of atoms S1. From the definition of call-consistency, it is clear that if Π2 is call-
consistent, its dependency graph does not contain a simple cycle with odd number
of negative edges. Observing that for any set of atoms S1, program e(Π2, S1)’s
dependency graph G(e(Π2, S1)) can be obtained from G(Π2) by removing more
edges and nodes from G(Π2). That is, G(e(Π2, S1)) is a subgraph of G(Π2). This
concludes that G(e(Π2, S1)) does not contain a simple cycle with odd number of
negative edges. So e(Π2, S1) is also call-consistent. 2

We need to mention that in Lemma 1, the call-consistency condition for program Π2

is important. It is easy to see that Π2’s consistency does not imply the consistency
of Π1 ∪Π2 even if the other conditions of Lemma 1 remain the same. For example,
consider two programs Π1 = {b←} and Π2 = {a← b, nota}. Both Π1 and Π2 are
consistent and body(Π1) ∩ head(Π2) = ∅. But Π1 ∪ Π2 has no stable model. The
following theorem states that the procedure of generating a more preferred solution
may be simplified under certain conditions.

5 A simple cycle is the one that does not contain any other cycles.

32

Theorem 7 Let Σ = ((Π1, C1,F1), · · · , (Πn, Cn,Fn)) be a logic program context
satisfying the conditions stated in Proposition 5. Suppose Σ′ = ((Π′

1, C1,F1), · · ·,
(Π′

n, Cn,Fn)) is a solution of Σ, where each Π′
i is of the form SForgetLP(Πi, Pi)

or WForgetLP(Πi, Pi) (Pi ⊆ Fi) 6 . Then a logic program context Σ′′ = ((Π′′
1 , C1,

F1), · · · , (Π
′′
n, Cn,Fn)) is a solution of Σ and Σ′′ �Σ Σ′, if for each i either Π′′

i =
Π′

i, or Π′′
i is of the form Π′′

i = SForgetLP(Πi, Qi) or Π′′
i = WForgetLP(Πi, Qi) for

some Qi ⊆ Pi such that body(
⋃n

i=1 Ci) ∩ head(Π′′
i) = ∅ and Π′′

i is call-consistent.

Proof. From Lemma 1, it follows that if for each i, body(
⋃n

i=1 Ci) ∩ head(Π′′
i) = ∅

and Π′′
i is call-consistent, then all programs Π′′

i ∪C1, · · ·, Π′′
i ∪Cn are consistent. So

Σ′′ is a solution of Σ. On the other hand, since for each i, Qi ⊆ Pi, this concludes
that Σ′′ �Σ Σ′. 2

In Theorem 7, the condition that body(
⋃n

i=1 Ci) ∩ head(Π′
i) = ∅ and Π′

i is call-
consistent ensures that Σ′ is a solution of Σ, while the minimal subset Pi of atom(Πi)
implies that Σ′ is a preferred solution. The following Example 9 illustrates how a
preferred solution can be obtained under the condition of Theorem 7.

Example 9 Consider a logic program context Σ = (Φ1, Φ2, Φ3), where

Φ1: Φ2: Φ3:
Π1: a← not b, Π2: d←, Π3: a← not b,

c← a, not d, f ← not b, c← not b,
e← not d,

C1: e← d, C2:← a, c, C3: f ← d,
F1 = {a, b, c, d}, F2 = {b, d, e, f}, F3 = {a, b, c}.

Clearly, Σ is not conflict free since Π 1 ∪ C2, Π2 ∪ C1, Π2 ∪ C3 and Π3 ∪ C2 are
not consistent. We can verify that a logic program context Σ1 = (Φ′

1, Φ
′
2, Φ

′
3) is a

solution of Σ, where

Φ′
1 = (SForgetLP(Π1, {c}), C1,F1),

Φ′
2 = (SForgetLP(Π2, {d, e, f}), C2,F2),

Φ′
3 = (WForgetLP(Π3, {a}, C3,F3).

Now we consider a program WForgetLP(Π2, {d}):

f ← not b,
e←.

Since {e, f}∩ body(C1∪C2 ∪C3) = ∅ and WForgetLP(Π2, {d}) is call-consistent,
according to Theorem 7, we know that Σ′′

1 = (Φ′
1, Φ

′′
2, Φ

′
3), where

6 Note that from Proposition 5, a solution of Σ always exists. In the initial case, Π ′
i could

be ∅

33

Φ′
2 = (WForgetLP(Π2, {d}), C2,F2) is also a solution of Σ and Σ′′ �Σ Σ′. In fact

Σ′′
1 is a preferred solution of Σ.

6 Representing logic program updates

Logic program updates have been considerably studied in recent years. While sim-
ilarities and differences among these different approaches have been addressed
by many researchers, it is believed that comparing different types of update ap-
proaches at some formal level is generally difficult (discussions on this topic are
referred to [5,6,16,32]). In this section, we show that four major logic program
update approaches can be transformed into the framework of logic program con-
texts, in which all these update approaches become special cases of conflict solving
problems with different types of constraints.

6.1 Representing causal rejection based approach

Eiter et al’s update approach is based on a principle called causal rejection where
a sequence of logic program updates is allowed [5]. Let P = (Π1, · · · , Πn), where
Π1, · · · , Π1 are extended logic programs, be an (extended logic program) update
sequence and A a set of atoms. We say that P is over A iff A represents the set
of all atoms occurring in the rules in Π1, · · · , Πn. We use LitA to denote the set
of all literals whose corresponding atoms are in A. We assume a set A∗ of atoms
extending A by new and pairwise distinct atoms rej(r) and ai, for each rule r
occurring in Π1, · · · , Πn and each atom a ∈ A. Then Eiter et al’s update process is
defined by the following two definitions (here we only consider ground extended
logic programs in our investigation).

Definition 12 [5] Given an update sequence P = (Π1, · · · , Πn) over a set of atoms
A, the update program P/ = Π1/· · ·/Πn overA∗ consisting of the following items:

(1) all constraints in Π1, · · · , Πn (recall that a constraint is a rule with an empty
head);

(2) for each r in Πi (1 ≤ i ≤ n):
li ← body(r), not rej(r) if head(r) = {l};

(3) for each r ∈ Πi−1 (2 ≤ i ≤ n):
rej(r)← body(r),¬li if head(r) = {l};

(4) for each literal l occurring in Π1 ∪ · · · ∪ Πn:
li−1 ← li (1 < i ≤ n), l← l1.

A set S ⊆ LitA is an update answer set of P iff S = S ′ ∩LitA for some answer set
S ′ of P/.

34

As an example, consider an update sequence P = (Π1, Π2, Π3), where Π1, Π2 and
Π3 consist of the following rules respectively [5],

Π1:
r1 : sleep← not tv on,
r2 : night←,
r3 : tv on←,
r4 : watch tv ← tv on;

Π2:
r5 : ¬tv on← power failure,
r6 : power failure←,

Π3:
r7 : ¬power failure←.

According to Definition 12, it is easy to see that P = (Π1, Π2, Π3) has a unique
update answer set S = {¬power failure, tv on, watch tv, night}, which is con-
sistent with our intuition.

In order to transform this update approach into our framework of logic program
context, we first re-formulate this approach in a normal logic program setting. In
particular, given an update sequence P = (Π1, · · · , Πn) over A, we extend the set
A to A by adding atom a to A for each a ∈ A. Then by replacing each negative
atom ¬a occurring in Πi with a, and adding constraint ← a, a for each a ∈ A,
we obtain a translated (normal logic program) update sequence P = (Π1, · · · , Πn)
overA.

We also extend set A to A
∗

by including new atoms rej(r), ai and ai for each rule
r in Π1, · · · , Πn and each pair of atoms a, a ∈ A. Then following Definition 12,
we can obtain the corresponding update program P/ which is also a normal logic
program. We also call a stable model of P/ update stable model of P.

Proposition 6 Let P = (Π1, · · · , Πn) be an update sequence, P/ the update pro-
gram of P, and P and P/ the corresponding translations of P and P/ respectively
as described above. S ⊆ LitA is an update answer set of P iff there is an update
stable model S of P such that S = (S ∩ A) ∪ {¬a | a ∈ S} 7 .

Having Proposition 7, we only need to consider a transformation from a normal
logic program update sequence P = (Π1, · · · , Πn), where P is translated from an
extended logic program update sequence P as described above, to a conflict solving
problem under the framework of logic program contexts.

Definition 13 Let P = (Π1, · · · , Πn) (n > 1) be a normal logic program up-
date sequence over A. We specify a sequence of logic program contexts ΩCR =

7 Note that S is reduced to LitA if both a and ¬a are in S for some a ∈ A.

35

(Σ1, · · · , Σn−1)
8 over the set of atoms B = A

∗
∪ {lai

, lai
| ai, ai ∈ A

∗
, i =

1, · · · , n} where lai
and lai

are newly introduced atoms:

(1) Σ1 = ((Π
∗
1, ∅,F1), (∅, C1, ∅)), where

(a) Π
∗
1 consists of the following rules:
(i) all constraints in Π1, · · · , Πn;

(ii) for each r ∈ Πi: a← body(r) or a← body(r) (i = 1, · · · , n),
ai ← body(r), not lai

, or ai ← body(r), not lai
respectively,

(iii) for each a, a in A,
ai−1 ← ai, ai−1 ← ai (i = 1, · · · , n),
a← a1, a← a1.

(b) F1 = {lan−1
, lan−1

| ∀a ∈ A},
(c) C1 = {← an−1, an, ← an−1, an | ∀a ∈ A};

(2) Σi = ((Π
∗
i , ∅,Fi), (∅, Ci, ∅) (i = 1, · · · , n), where

(a) Π
∗
i = Π

†
i−1, and Π

†
i−1 is in a preferred solution of Σi−1:

Σ′
i−1 = ((Π

†
i−1, ∅,Fi−1), (∅, Ci−1, ∅)),

(b) Fi = {lan−i
, lan−i

| ∀a ∈ A},
(c) Ci = {← an−i, an−i+1, ← an−i, an−i+1 | ∀a ∈ A}.

A subset S ⊆ B is called a model of ΩCR if S is a stable model of Π
†
n−1, where

Π
†
n−1 is in a preferred solution of Σn−1: Σ′

n−1 = ((Π
†
n−1, ∅,Fn−1), (∅, Cn−1, ∅)).

Let us take a closer look at Definition 13. Given an update sequence P = (Π1, · · · , Πn),
Definition 13 specifies a sequence of logic program contexts ΩCR = (Σ1, · · · , Σn−1),
where each Σi solves certain conflicts embedded in P. Σ 1 represents the first level
of conflict solving, where Π

∗
1 is similar to P/ except that the possible conflict

between an−1 and an (or an−1 and an) has been reformulated as a constraint ←
an−1, an (or← an−1, an resp.) in C1. Note that in rules specified in (ii) of Definition
13: ai ← body(r), not lai

, ai ← body(r), not lai
, formulas not lan−1

and not lan−1

(here i = n− 1) are introduced to solve the conflict between a n−1 and an (or an−1

and an resp.).

Observe that Σ1 only solves conflicts between atoms at level n − 1. For example,
if both an−1 and an can be derived from Π

∗
1, then rule an−1 ← body(r), not lan−1

will be eliminated from Π1 by strongly forgetting atom lan−1
under the constraint

← an−1, an in C1.

In the sequence ΩCR = (Σ1, · · · , Σn−1), conflicts are solved in a downwards man-
ner with respect to the update sequence P = (Π1, · · · , Πn), where each Σi (i > 1)
is specified for the purpose of solving conflicts between atoms an−i and an−i+1 (or

8 Note that when n = 1 our transformation becomes trivial since we can simply specify
ΩCR to consist of a single logic program context Σ = ((Π1, ∅, ∅), (∅, ∅, ∅)). In this case
Σ has a (preferred) solution iff Π1 is consistent. So in the rest of the paper we will only
consider the case n > 1.

36

an−i and an−i+1).

Example 10 Consider the TV example mentioned earlier, where P = (Π1, Π2, Π3)
is an update sequence. It is easy to translate P to the corresponding normal logic
program update sequence P = (Π1, Π2, Π3), where ¬tv on and ¬power failure
are replaced by atoms tv on and power failure respectively. According to Defini-
tion 13, we then specify a sequence of logic program contexts ΩCR = (Σ1, Σ2) to
solve the conflict occurring in P. Σ 1 = ((Π

∗
1, ∅,F1), (∅, C1, ∅)), where Π

∗
1 consists

of the following rules 9 :

sleep1 ← not tv on, not lsleep1
,

night1 ← not lnight1
,

tv on1 ← not ltv on1
,

watch tv1 ← tv on, not lwatch tv1
,

tv on2 ← power failure, not ltv on2
,

power failure2 ← not lpower failure2
,

power failure3 ← not lpower failure3
,

night← night1,
tv on← tv on1,
watch tv ← watch tv1,
tv on1 ← tv on2,
tv on← tv on1,
power failure2 ← power failure3,
power failure1 ← power failure2,
power failure← power failure1,
power failure1 ← power failure2,
power failure← power failure1,

F1 = {lpower failure2
, lpower failure2

}, and

C1 = {← power failure2, power failure3}.

It is easy to see that Σ1 is not conflict free since Π
∗
1∪C1 is not consistent (i.e it has no

stable model). To specify Σ2, we first need to obtain a preferred solution of Σ1. In
fact Σ1 has a unique preferred solution Σ′

1 = ((Π
†
1, ∅,F1), (∅, C1, ∅)), where Π

†
1 =

SForgetLP(Π
∗
1, {lpower failure2

}) = Π
∗
1−{power failure2 ← not lpower failure2

}.

Now we specify Σ2 = ((Π
†
1, ∅,F2), (∅, C2, ∅)), where F2 = {ltv on1

, ltv on1
} and

C2 = {← tv on1, tv on2}. Note that Σ2 is already conflict free. So by ignor-
ing those atoms with subscripts, ΩCR has a unique model {power failure, tv on,
watch tv, night}, which is the same as the update stable model of update sequence
P.

9 To avoid unnecessarily tedious details, here we omit some irrelevant rules and atoms
from Π

∗
1, F1 and C1. The same for Σ2.

37

Theorem 8 Let P = (Π1, · · · , Πn) (n > 1) be a normal logic program update
sequence over the set of atomsA. A subset S ofA is an update stable model of P iff
there is a sequence of logic program contexts ΩCR = (Σ1, · · · , Σn−1) constructed
from P as specified in Definition 13 such that ΩCR has a model S satisfying S =
S ∩ A.

Proof. We prove this result by induction on the length n of normal logic program
update sequence P = (Π1, · · · , Πn).
Case 1. We first consider the case n = 2, i.e. P = (Π1, Π2). In this case, ΩCR =
(Σ1), where Σ1 = ((Π

∗
1, ∅,F1), (∅, C1, ∅)) is formed as follows:

(a) Π
∗
1 consists of the following rules:

(i) all constraints in Π1 and Π2;
(ii) for each r ∈ Πi: a← body(r) or a← body(r) (i = 1, 2),

ai ← body(r), not lai
, or ai ← body(r), not lai

respectively,
(iii) for each a, a in A,

a1 ← a2, a1 ← a2,
a← a1, a← a1.

(b) F1 = {la1
, la1
| ∀a ∈ A},

(c) C1 = {← a1, a2, ← a1, a2 | ∀a ∈ A};

Note that in above (ii), for rule r ∈ Π2, a2 ← body(r), not la2
, or a2 ← body(r), not la2

can be simplified as a2 ← body(r), or a2 ← body(r) respectively since atom la2
or

la2
is not forgettable.

Now we consider the update program P/ built upon P (see Definition 12), which
consists of the following rules:

(1) all constraints in Π1 and Π2;
(2) a1 ← body(r), not rej(r) or a1 ← body(r), not rej(r) for r ∈ Π1, and

a2 ← body(r) or a2 ← body(r) for r ∈ Π2;
(3) rej(r)← body(r), a2 if head(r) = {a1} or rej(r)← body(r), a2

if head(r) = {a1} for r ∈ Π1;
(4) for all a ∈ A, a1 ← a2, a1 ← a2, a← a1, a← a1.

Now suppose S is an update stable model of P. Then we can extend S to S
∗

over
setA

∗
so that S

∗
is a stable model of program P/, which contains atoms rej(r) for

some r ∈ Π1. Note that those rules in item (2) above with rej(r) ∈ S
∗

actually
play no roles and hence viewed as been removed from P. Then we specify a set
P ⊆ F1 which includes those la1

or la1
whose corresponding rules r ∈ Π1 in (ii) are

removed from P as indicated above. Then it can be verified that S where S = S∩A
must be a stable model of program SForgetLP(Π

∗
1, P), and P is a minimal such

set to make SForgetLP(Π
∗
1, P) consistent. That is, S is a model of ΩCR.

On the other hand, consider a stable model S of SForgetLP(Π
∗
1, P), where

SForgetLP(Π
∗
1, P) is in a preferred solution of Σ1. Let S = S ∩ A. Similarly,

38

for each la1
or la1

in P , we extend S to S
∗

to contain atoms rej(r) in S
∗
. Note

that for each rej(r), such r ∈ Π1 corresponds to a1 ← body(r), not la1
or a1 ←

body(r), not la1
in (ii) specified above. Now we do a Gelfond-Lifschitz transforma-

tion on program P/ in terms of set S
∗
: P

S
∗

/ . By avioding tedious checkings, we can

show that S
∗

is a stable model of P
S
∗

/ .

Case 2. Suppose for all n < k, S is an update stable model of P = (Π1, · · · , Πn)
iff there is a ΩCR = (Σ1, · · · , Σn−1) such that ΩCR has a model S satisfying S =
S ∩ A. Now we consider the case of n = k.

(⇒) Let S be an update stable model of P = (Π1, · · · , Πk). We will show that we
can generate a sequence of logic program contexts ΩCR with length of k − 1 such
that ΩCR has a model S satisfying S = S ∩ A.

We first specify a new normal logic program update sequence with length of k− 1:
P

′
= (Π1, · · · , Π

′
k−1), where Π

′
k−1 = Π

∗
k−1∪Πk, and Π

∗
k−1 = Πk−1−{r | rej(r) ∈

S
∗
} 10 . Then from Defintion 12, we can see that S is also an update stable model of

P
′
. Now suppose Ω′

CR = (Σ1, · · · , Σk−2) is a sequence of logic program contexts
constructed from P

′
according to Definition 13. From the induction assumption,

we know that Ω′
CR has a model S satisfying S = S ∩ A.

Now we show that Ω′
CR = (Σ1, · · · , Σk−2) actually can be extended to another

ΩCR = (Σ′
1, Σ1, · · · , Σk−2) with a length of k − 1, which eventually is constructed

from P = (Π1, · · · , Πk).

Observe Π
′
k−1 in P

′
, we can see that those ak−1 or ak−1 cannot be derived if ak

or ak is already presented in S. That is, no conflict between a k−1 and ak (or ak−1

and ak) exists in Π
′
k−1. So the first logic program context Σ1 in Ω′

CR is specified as
Σ1 = ((Π

∗
1, ∅,F1), (∅, C1, ∅)):

(1) Π
∗
1 consists of the following rules:

(a) all constraints in Π1, · · · , Π
′
k−1;

(b) for each r: a ← body(r) or a ← body(r) in Πi (i = 1, · · · , k − 2) or in
Π

′
k−1: ai ← body(r), not lai

, or ai ← body(r), not lai
respectively,

(c) for each a, a in A,
ai−1 ← ai, ai−1 ← ai (i = 1, · · · , n),
a← a1, a← a1.

(2) F1 = {lak−2
, lak−2

| ∀a ∈ A},
(3) C ′1 = {← ak−2, ak−1, ← ak−2, ak−1 | ∀a ∈ A}.

Thus, we can view Σ1 in Ω′
CR represents a preferred solution of logic program

context Σ′
1 = ((Π

∗′

1 , ∅,F ′
1), (∅, C

′
1, ∅))

11 , where

10 Here we denote S
∗

to be the extension of S containing atoms from A
∗
.

11 Note the difference between Π
∗
1 and Π

∗′

1 .

39

(1) Π
∗′

1 consists of the following rules:
(a) all constraints in Π1, · · · , Πk;
(b) for each r ∈ Πi: a← body(r) or a← body(r) (i = 1, · · · , k),

ai ← body(r), not lai
, or ai ← body(r), not lai

respectively,
(c) for each a, a in A,

ai−1 ← ai, ai−1 ← ai (i = 1, · · · , n),
a← a1, a← a1.

(2) F ′
1 = {lak−1

, lak−1
| ∀a ∈ A},

(3) C ′1 = {← ak−1, ak, ← ak−1, ak | ∀a ∈ A}.

Now we form a new ΩCR = (Σ′
1, Σ1, · · · , Σk−2). Obviously S is model of ΩCR iff

S is a model of Ω′
CR. On the other hand, According to Definition 13, it turns out

that ΩCR can be viewed as such a sequence of logic program contexts formed from
P = (Π1, · · · , Πk).

(⇐) Given P = (Π1, · · · , Πk) and ΩCR = (Σ1, · · · , Σk−1) which is specified as in
Definition 13. Suppose S is a model of ΩCR. We show that S∩A is an update stable
model of P. Now we consider a subsequence of Ω′

CR = (Σ2, · · · , Σk−1), where
Σ2 = ((Π

∗
2, ∅,F2), (∅, C2, ∅)), which is a preferred solution of Σ1 in ΩCR. So we can

represent Π2 = SForgetLP (Π
∗
1, P), where P ⊆ F1 = {lak−1

, lak−1
| ∀a ∈ A},

and Π
∗
1 is in Σ1. Now we define a program based on P/:

P
′
/ = P/ − ({r : ak−1 ← body(r), not rej(r) | lak−1

∈ P} ∪
{r : ak−1 ← body(r), not rej(r) | lak−1

∈ P}).

Equivalently, we can view P
′
/ as the update program of a new sequence P

′
=

(Π1, · · · , Π
∗
k−1) where Π

∗
k−1 = Π

′
k−1 ∪ Πk, and Π

′
k−1 = Πk−1 − {r | those corre-

sponding rules removed in P
′
/}. Also, it is easy to verify that Ω′

CR can be generated
from Π

′
k−1 following Definition 13. According to the induction assumption, we

know that S ∩ A is an update stable model of P
′
.

On the other hand, since S = S ∩ A is an update stable model of P
′
, we can ex-

tend S to A
∗

containing those atoms in A
∗
. Therefore, for each rule r : ak−1 ←

body(r), not rej(r) or r : ak−1 ← body(r), not rej(r) removed from P/ (see the
definition for P

′

/ above), atom rej(r) should be in A
∗
. Otherwise, this will violate

the induction assumption. This follows that S must be an update model for P too.
This completes our proof. 2

6.2 Representing dynamic logic program approach

Logic program update based on dynamic logic programs (DLP) (or simply called
DLP update approach) was proposed by Alferes, Leite, Pereira, et al [2], and then

40

extended for various purposes [16]. DLP deals with generalized logic programs
in which negation as failure not is allowed to occur in the head of a rule while
classical negation ¬ is excluded from the entire program. Let P = (Π1, · · · , Πn) be
a sequence of generalized logic programs over set of atomsA, we extendA toAD

by adding pairwise distinct atoms a, ai, ai, aPi
, aPi

, for each a ∈ A.

Definition 14 ([16]) Given a update sequence P = (Π1, · · · , Πn) over A, where
each Πi is a generalized logic program, the corresponding dynamic update program
P⊕ = Π1 ⊕ · · · ⊕ Πn over AD is a generalized logic program consisting of the
following rules:

(1) for each r ∈ Πi: head(r)← pos(r), not neg(r),
aPi
← pos(r), not neg(r) if head(r) = {a} or

aPi
← pos(r), not neg(r), if head(r) = {not a};

(2) for each a occurring P and each i = 1, · · · , n,
ai ← aPi

and a← aPi
;

(3) for each a occurring P and each i = 1, · · · , n,
ai ← ai−1, not aPi

,
ai ← ai−1, not aPi

;
(4) for each a occurring P, a0 ←, a← an, a← an, not a← an.

The semantics of DLP is defined in terms of the dynamic stable model semantics
[16]. However, it is easy to characterize this through the original stable model se-
mantics.

Proposition 7 Given a dynamic update program P⊕ = Π1 ⊕ · · · ⊕ Πn, we define
P

∗
⊕ = P⊕−{not a← an | a ∈ A}

12 . Then S is a dynamic stable model of P⊕ iff
S = S ′ ∪ {not a | an ∈ S ′}, where S ′ is a stable model of P∗

⊕.

Now we can represent a transformation from P
∗
⊕ to a sequence of logic program

contexts which captures the dynamic logic programming update approach.

Definition 15 Given a dynamic update program P⊕ = Π1 ⊕ · · · ⊕ Πn over AD

(see Definition 14), and let P
∗
⊕ = P⊕ − {nota ← a−

n | a ∈ A}. We specify a
sequence of logic program contexts ΩDLP = (Σ1, · · · , Σn) over the set of atoms
A∗

D = AD ∪{hai
, hai

, lai
, lai
| ai, ai ∈ AD, i = 0, · · · , n} where hai

, hai
, lai

, lai
are

newly introduced atoms:

(1) Σ1 = ((Π∗
1, ∅,F1), (∅, C1, ∅)), where

(a) Π∗
1 consists of the following rules:
(i) all rules in P

∗
⊕ except the following rules (i = 1, · · · , n):

ai ← ai−1, not api
, and

ai ← ai−1, not api
,

(ii) for each pair of rules in P
∗
⊕ (i = 1, · · · , n):

12 Clearly, P∗
⊕ is a normal logic program.

41

ai ← ai−1, not api
, and

ai ← ai−1, not api
,

replace them with the following rules in Π∗
1:

ai ← ai−1, not lai
, ai ← ai−1, not lai

,
lai
← not hai

, lai
← not hai

,
hai
← aPi

, hai
← aPi

,
(b) F1 = {ha1

, ha1
| ∀a ∈ A},

(c) C1 = {← a1, aP1
,← a1, aP1

| ∀a ∈ A};
(2) Σi = ((Π∗

i , ∅,Fi), (∅, Ci, ∅)), where
(a) Π∗

i = Π†
i−1, and Π†

i−1 is in a preferred solution of Σi−1:
Σ′

i−1 = ((Π†
i−1, ∅,Fi−1), (∅, Ci−1, ∅)),

(b) Fi = {{hai
, hai
| ∀a ∈ A},

(c) Ci = {← ai, aPi
,← ai, aPi

| ∀a ∈ A}.

A subset S ⊆ A∗
D is called a model of ΩDLP if S is a stable model of Π†

n, where Π†
n

is in a preferred solution of Σn: Σ′
n = ((Π†

n, ∅,Fn), (∅, Cn, ∅)).

In Definition 15, the sequence of logic program contexts ΩDLP = (Σ1, · · · , Σn)
represents a way of solving conflicts between atoms in an upwards manner. Starting
from i = 1, for each i Σi solves conflicts between atoms a i and aPi

(or ai and aPi

resp.) through weakly forgetting hai
or hai

. For instance, if both ai−1 and aPi
are

derived from Π∗
i , then both ai and ai can be derived from Π∗

i as well. Therefore a
conflict would occur. Σ i solves such conflict by weakly forgetting h ai

. In particular,
after weakly forgetting hai

, rule hai
← aPi

in Π∗
i will be removed, atom lai

is
then derived from lai

← (note that formula nothai
is deleted from rule lai

←
nothai

). Consequently rule ai ← ai−1, not lai
is defeated so that atom ai cannot be

derived from ai−1 via the corresponding inertia rule. This process continuous until
all conflicts among atoms from level 1 to level n are solved.

Theorem 9 Let P∗
⊕ be specified as above over set of atomsAD. A subset S∗ ⊆ AD

is a stable model of P
∗
⊕ iff there is a sequence of logic program contexts ΩDLP =

(Σ1, · · · , Σn) constructed from P
∗
⊕ as sepcified in Definition 15 such that ΩDLP has

a model S satisfying S∗ = S ∩ AD.

Since the proof for this theorem is tedious but similar to the proof of Theorem 8,
we skip it here.

6.3 Representing syntax based approach

Sakama and Inoue’s update approach is viewed as a typical syntax based logic
program update approach [26], which solves conflicts between two programs on a
basis of syntactic coherence.

To simplify our discussion, we restrict Sakama and Inoue’s approach from an ex-

42

tended logic program setting to a normal logic program setting. Note that this re-
striction does not affect the result presented in this subsection. In fact, we may
use the method described in last subsection to translate an extended logic program
update into a normal logic program update by introducing new atoms in the under-
lying language.

Definition 16 [26] Let Π1 and Π2 be two consistent logic programs. Program Π′

is a SI-result of a theory update of Π1 by Π2 if (1) Π′ is consistent, (2) Π2 ⊆ Π′ ⊆
Π1 ∪ Π2, and (3) there is no other consistent program Π′′ such that Π′ ⊂ Π′′ ⊆
Π1 ∪ Π2.

Now we transform Sakama and Inoue’s theory update into a logic program context.
First, for each rule r ∈ Π1, we introduce a new atom lr which does not occur in
atom(Π1∪Π2). Then we define a program Π′

1: for each r ∈ Π1, rule r′ : head(r)←
pos(r), not (neg(r) ∪ {lr}) is in Π′

1. That is, for each r ∈ Π1, we simply extend
its negative body with a unique atom lr. This will make each r′ in Π′

1 be removable
by strongly forgetting atom lr without influencing other rules. Finally, we specify
ΣSI = (Φ1, Φ2), where Φ1 = (Π′

1, ∅, {l
r | r ∈ Π1}) and Φ2 = (∅, Π2, ∅).

For convenience, we also use Π−notP to denote a program obtained from Π by
removing all occurrences of atoms in P from the negative bodies of all rules in Π.
For instance, if Π = {a ← b, not c, not d}, then Π−not{c} = {a ← b, not d}. Now
we have the following characterization result.

Theorem 10 Let Π1 and Π2 be two consistent programs, and ΣSI as specified
above. Π′ is a SI-result of updating Π1 by Π2 iff Π′ = Π−not{lr |r∈Π1} ∪ Π2, where
Σ′ = ((Π, ∅, {lr | r ∈ Π1}), (∅, Π2, ∅)) is a preferred solution of ΣSI .

Proof. From the specifications of ΣSI and Σ′, we know that Π = SForgetLP(Π′, P),
where P is a minimal subset of {lr | r ∈ Π1} such that Π ∪ Π2 is consistent. Note
that each rule r ∈ Π is of the form: head(r) ← pos(r), not (neg(r) ∪ {lr}),
which can actually be simplied as head(r) ← pos(r), not neg(r) since atom lr

does not play any role in the program evaluation. That is, Π′ ∪ Π2 is equivalent to
Π−not{lr |r∈Π1} ∪ Π2, which is a SI-result of the update of Π1 with Π2. 2

6.4 Representing integrated update approach

Different from both model based and syntax based approaches, Zhang and Foo’s
update approach integrated both desirable semantic and syntactic features of (ex-
tended) logic program updates [31]. Their approach also solves default conflicts
caused by negation as failure in logic programs by using a prioritized logic pro-
gramming language. Consequently, Zhang and Foo’s update approach can generate
an explicit resulting program for a logic program update and also avoid some un-

43

desirable solutions embedded in Sakama-Inoue’s approach [32].

Since we do not consider default conflict solving in this paper, we will only focus
on the transformation from first part of Zhang-Foo’s update approach, that is, the
conflict (contradiction) elimination, into a logic program context.

Let Π1 and Π2 be two extended logic programs. Updating Π1 with Π2 consists
of two stages. Step (1): Simple fact update - updating an answer set S of Π1 by
program Π2. The result of this update is a collection of sets of literals, denoted
as Update(S, Π2). Step (2): Select a S ′ ∈ Update(S, Π2), and extract a maximal
subset Π∗ of Π1 such that program Π∗ ∪ {l ←| l ∈ S ′} (or simply represented as
Π∗ ∪ S ′) is consistent. Then Π∗ ∪ Π2 is called a resulting program of updating Π1

with Π2.

Note that in Step (1), the simple fact update is achieved through a prioritized logic
programming [31]. Recently, Zhang proved an equivalence relationship between
the simple fact update and Sakama and Inoue’s program update [32]:

Update(S, Π2) =
⋃
S(SI -Update(Π(S), Π2)),

where Π(S) = {l ←| l ∈ S}, and
⋃
S(SI -Update(Π(S), Π2)) is the class of all

answer sets of resulting programs after updating Π(S) by Π2 using Sakama-Inoue’s
approach.

Example 11 Consider two extended logic programs Π1 and Π2 as follows:

Π1: Π2:
a←, b← a,
c← b, ¬c← b.
d← not e.

Π1 has a unique answer set {a, d}. Then Step (1) Zhang-Foo’s simple fact update
of {a, d} by Π2, Update({a, d}, Π2), which is equivalently to update {a ←, d ←
} with Π2 using Sakama-Inoue’s approach, will contain a single set {a, b,¬c, d}.
Applying Step (2), we obtain the final update result {a←, d← not e} ∪ Π2.

As we have already provided a transformation from Sakama-Inoue’s approach to
a logic program context, to show that Zhang-Foo’s update approach can also be
represented within our framework, it is sufficient to only transform Step (2) above
into a conflict solving problem under certain logic program context.

As before, given two extended logic programs Π1 and Π2 over the set of atoms A,
we extend A to A with new atom a for each a ∈ A. Then by replacing each ¬a in
S ′ and Π2 with a, we obtain the corresponding normal logic programs Π1 and Π2

respectively. Suppose Update(S, Π2) is the result of the simple fact update, where
S is a stable model of Π1.

44

Definition 17 Let Π1, Π2, and Update(S, Π2) be defined as above, and S ′ ∈ Update(S, Π2).
We specify a logic program context ΣZF = ((Π′

1, ∅,F), (∅, C, ∅)) over the set of
atoms A ∪ {lr | r ∈ Π1} where lr are newly introduced atoms:

(1) Π′
1 consists of rules: (a) for each rule r : head(r) ← pos(r), not neg(r) in

Π1, head(r)← body(r), not lr is in Π′
1, and (b) S ′ ⊆ Π′

1,
(2) F = {lr | r ∈ Π1},
(3) C = {← a, a | a, a ∈ A}.

The following theorem shows that Step (2) in Zhang-Foo’s approach can be pre-
cisely characterized by a logic program context specified in Definition 17.

Theorem 11 Let Π1, Π2, ΣZF , and Update(S, Π2) be defined as above, and S ′ ∈
Update(S, Π2). Π

∗
is a maximal subset of Π1 such that Π′ = Π

∗
∪ S ′ is consistent

iff Π′′ is in a preferred solution of ΣZF : Σ′
ZF = ((Π′′, ∅,F), (∅, C, ∅)), where Π′′ =

{r : head(r)← pos(r), not neg(r), not lr | r ∈ Π
∗
}.

The proof of Theorem 11 is similar to that of Theorem 10.

6.5 Further discussions: Updates, constraints, and expressiveness

From previous descriptions, we observe that the key step to transform an update
approach into a sequence of logic program contexts (or one logic program context
like the case of SI approach) is to construct the underlying constraints for conflict
solving. In both Eiter et al’s causal rejection and DLP approaches, constraints are
specified based on atoms, e.g.← an−i, an−i+1 in ΩCR, and← ai, aP−

i
in ΩDLP .

For SI approach, on the other hand, the underlying constraints are specified as the
entire update program. For instance, consider the update of Π1 by Π2 using SI
approach, the corresponding logic program context for this update is of the form
Σ = ((Π, ∅,F), (∅, Π2, ∅)), in which program Π2 serves as constraints for conflict
solving.

Finally, since Zhang and Foo’s integrated update approach combined both model
and syntax based approaches, the transformation of this approach into logic pro-
gram context framework consists of two steps: an equivalent SI transformation with
program based constraints, followed by another transformation with atoms based
constraints (see Definition 17).

From the above observation, we can see that the main difference between model
based and syntax based update approaches is to solve conflicts under different types
of constraints, namely atoms based and program based constraints respectively.

While we have shown that our conflict solving approach provides a unified frame-

45

work to represent different kinds of logic program updates, we should indicate that
our approach does not give specific computational advantages over these logic pro-
gram update approaches. As we will see in section 7, conflict solving under our
framework is generally intractable. From previous definitions, we also observe that
transforming model based logic program updates into a sequence of logic program
contexts may need exponential time because it involves the computation of solu-
tions of logic program contexts, although transforming syntax based logic program
updates can always be done in polynomial time.

Nevertheless, the most significant feature of using our logic program contexts to
represent logic program updates is to provide an expressive framework that unifies
many different logic program update approaches. Under the unified framework,
it becomes possible to analyze and compare syntactic and semantic properties of
these different approaches.

7 Computational issues

In this section, we study related computational issues. In particular, we consider
two major computational problems concerning (1) irrelevance in reasoning with
respect to strong and weak forgettings and conflict solving, and (2) general decision
problems for conflict solving under the framework of logic program contexts.

We first introduce basic notions from complexity theory and refer to [24] for further
details. Two important complexity classes are P and NP. The class P includes all lan-
guages recognizable by a polynomial-time deterministic Turing machine. The class
NP, on the other hand, consists of those languages recognizable by a polynomial-
time nondeterministic Turing machine. The class of coNP is the complements of
class NP. The class of DP contains all languages L such that L = L1 ∩ L2 where
L1 is in NP and L2 is in coNP. The class coDP is the complement of class DP.
The class ΣP

2 = NP NP includes all languages recognizable in polynomial time by
a nondeterministic Turing machine with an NP oracle, where the class ΠP

2 is the
complement of ΣP

2 , i.e. ΠP
2 = coΣP

2 . It is well known that P ⊆ NP ⊆ DP ⊆ ΣP
2 ,

and these inclusions are generally believed to be proper.

7.1 Complexity results on irrelevance

By definitions, we can see that the main computation of strong and weak forget-
tings relies on the procedure of reduction that further inherits the computation of
the conventional program unfolding. Hence, it is easy to observe that in the worst
case, the size of the resulting program after strong (or weak) forgetting could be
exponentially larger than the original program. This means that in general comput-

46

ing strong and weak forgettings in logic programs is hard. However, the following
result shows that this actually does not increase the complexity of the associated
inference problem.

Theorem 12 Let Π be a logic program, P a set of atoms, and a an atom. Deciding
whether SForgetLP(Π, P) |= a (or WForgetLP(Π, P) |= a) is coNP-complete.

Proof. The hardness is obvious when P = ∅. To prove the membership, we first
specify two transformations on Π with respect to P . The program STrans(Π, P) is
obtained from Π by removing some rules in Π: (1) for each p ∈ P , if p 6∈ head(Π),
then removing rules r in Π with p ∈ pos(r); (2) if p 6∈ pos(Π), then removing rules
r in Π with head(r) = p; and (3) removing rules r in Π with p ∈ neg(r). The
program WTrans(Π, P), on the other hand, is obtained from Π in the same way as
program STrans(Π, P) except (3): for rules r in Π having p ∈ neg(r), change it
to be of the form: r′ : head(r) ← pos(r), not (neg(r)− {p}). Now we prove the
following two results:

Result 1: SForgetLP(Π, P) is consistent if and only if program STrans(Π, P)
is consistent, and each of SForgetLP(Π, P)’s stable models S ′ can be expressed
as S ′ = S − P , where S is a stable model of STrans(Π, P).
Result 2: WForgetLP(Π, P) is consistent if and only if program WTrans(Π, P)
is consistent, and each of WForgetLP(Π, P)’s stable models S ′ can be expressed
as S ′ = S − P , where S is a stable model of WTrans(Π, P).

Here we give the proof of Result 1, while Result 2 can be proved in a similar way.
Firstly, we assume that SForgetLP(Π, P) is consistent and S ′ is a stable model of
SForgetLP(Π, P). Then we show that STrans(Π, P) must have a stable model S
such that S ′ = S−P . Observing the construction of the structure of STrans(Π, P),
we can see that for each p ∈ P occurring in STrans(Π, P), there are two rules r1

and r2 in STrans(Π, P) of the forms:

r1 : p← pos(r1), not neg(r1),
r2 : head(r2)← p, pos(r2), not neg(r2),

and furthermore, we also have P ∩ neg(STrans(Π, P)) = ∅. Now we present an
algorithm to construct a set S of atoms as follows:
Algorithm: Generating S
Input: STrans(Π, P) and S ′ where S ′ is a stable model of SForgetLP(Π, P);
Output: a set S of atoms;
let S = S ′;
selecting a rule r from STrans(Π, P) of the form:

r : p← pos(r), not neg(r), where p ∈ P and pos(r) ∩ P = ∅;
if no such rule exists in Strans(Π, P), then return S;
else

if each a ∈ pos(r) is in S ′ and each b ∈ neg(r) is not in S ′,
then S = S ∪ {p};

47

repeat the following two steps until S no longer changes
selecting a rule r′ from STrans(Π, P) of the form:

r′ : p← pos(r′), not neg(r′) where p ∈ P ;
if each a ∈ pos(r′) is in S and each b ∈ neg(r′) is not in S,

then S = S ∪ {p};
return S.

We need to show that S generated from the above algorithm is a stable model
of STrans(Π, P). We perform Gelfond-Lifschitz transformation on STrans(Π, P)
with S, and obtain program STrans(Π, P)S. First, we prove that for each rule r :
head(r)← pos(r) in STrans(Π, P)S, if pos(r) ⊆ S, then head(r) ∈ S.
Case 1. If pos(r) ⊆ S ′, then head(r) ⊆ S according to the algorithm.
Case 2. Suppose r is of the form: r : head(r) ← p, pos(r), where p ∈ P , {p} ∪
pos(r) ⊆ S and pos(r) ⊆ S ′. In this case, we show head(r) ∈ S. This is true
if head(r) ∈ P according to the above algorithm. Now suppose head(r) 6⊆ P .
Consider r’s original form in STrans(Π, P): r′ : head(r)← p′, pos(r), not neg(r′)
(i.e. the part not neg(r′) is removed in STrans(Π, P)S). Recall the structure of
STrans(Π, P), in which there exists a rule r′′ : p ← pos(r′′), not neg(r′′). By
performing proper reduction, eventually we can replace r ′′ with a new rule: r∗ :
p ← pos(r∗), not neg(r∗) such that P ∩ pos(r∗) = ∅ (note that if we can not
reach this form of rule r∗, for instance, P ∩ pos(r∗) 6= ∅, we will have p 6∈ S
according to the above algorithm). As p ∈ S, we must have pos(r∗) ⊆ S, and
hence pos(r∗) ⊆ S ′. On the other hand, it is not hard to observe that a rule of
the form is in SForgetLP(Π, P)S′

: head(r) ← pos(r), pos(r∗). Since we already
know that pos(r) ∪ pos(r∗) ⊆ S ′ and S ′ is a stable model of SForgetLP(Π, P), it
follows that head(r) ∈ S ′ and hence head(r) ∈ S as S ′ ⊆ S.
On the other hand, it is also easy to show that S ′ generated from the above algorithm
is the smallest set to have the above property for program STrans(Π, P). This
proves that S is a stable model of STrans(Π, P).

Now we assume that STrans(Π, P) is consistent and S is a stable model of STrans(Π, P).
In this case, we simply prove that S ′ = S−P is a stable model of SForgetLP(Π, P).
We omit the proof as it is easy to verify.

Having these results, the membership is proved as follows. For the case of strong
forgetting, we consider the complement of the problem. Clearly, it is easy to see
that the STrans(Π, P) can be obtained from Π in polynomial time. Guessing a S
stable model of STrans(Π, P), verifying it, and checking whether a 6∈ S − P can
be done in polynomial time. So the complement of of the problem is in NP. Conse-
quently, the problem is in coNP. Proof for the case of weak forgetting is the same. 2

From the above result, we can show the complexity of irrelevance in relation to
strong and weak forgettings.

48

Theorem 13 Let Π be a logic program, P a set of atoms and a an atom. Deciding
whether a is irrelevant to P in Π is coDP-complete.

Proof. To prove this theorem, we need to show deciding whether Π |= a iff
SForgetLP(Π, P) |= a (s-irrelevant) is coDP-complete, and deciding whether Π |=
a iff WForgetLP(Π, P) |= a (w-irrelevant) is coDP-complete. Here we only give
the proof of the first statement, and the second can be proved in a similar way.

Membership. To decide whether Π |= a iff SForgetLP(Π, P) |= a, we need to
show Π |= a and SForgetLP(Π, P) |= a, or Π 6|= a and SForgetLP(Π, P) 6|= a.
Clearly, given Π, P and a, deciding whether Π |= a and SForgetLP(Π, P) |= a
is in coNP, and deciding whether Π 6|= a and SForgetLP(Π, P) 6|= a is in NP (see
Theorem 12). So the problem is in coDP.

Hardness. We consider a pair (Φ1, Φ2) of CNFs and from which we polynomially
construct a program Π, a set of atoms P and an atom a, and prove that Φ1 is satis-
fiable or Φ2 is unsatisfiable iff Π |= a and SForgetLP(Π, P) |= a, or Π 6|= a and
SForgetLP(Π, P) 6|= a.

Let Φ1 = {C1, · · · , Cm} and Φ2 = {C ′
1, · · · , C

′
n}, where each Ci and C ′

j (1 ≤
i ≤ n, 1 ≤ j ≤ n) are sets of propositional literals respectively. We also as-
sume that Φ1 and Φ2 do not share any propositional atoms. Now we construct
a program Π based on propositional atoms atom(Φ1) ∪ atom(Φ2) ∪ X̂ ∪ Ŷ ∪
{l1, · · · , ln, p, a, satΦ1, unsatΦ1 , unsatΦ2}, where any two sets of atoms are dis-
joint and |X̂| = |atom(Φ1)| and |Ŷ | = |atom(Φ2)|. Program Π consists of four
groups of rules:

Π1:
for each x ∈ atom(Φ1), we have:

x← not x̂,
x̂← not x,

for each y ∈ atom(Φ2), we have:
y ← not ŷ,
ŷ ← not y,

Π2:
unsatΦ1 ← C1,
· · ·,
unsatΦ1 ← Cm,
unsatΦ2 ← C ′

1,
· · ·,
unsatΦ2 ← C ′

n,
where for each clause Ci (or C ′

j), if b ∈ Ci (or C ′
j resp.), then not b ∈ Ci (or C ′

j

resp.), and if ¬b ∈ Ci (or C ′
j resp.) then b ∈ Ci (or C ′

j resp.),
Π3:

l1 ← unsatΦ2 , not l2, · · · , not ln,

49

· · ·,
ln ← unsatΦ2, not l1, · · · , not ln−1,
pos(C ′

j)← lj (1 ≤ j ≤ n),
where pos(C ′

j) ← lj represents a group of rules: for all atoms b ∈ C ′
j, we have

b← lj (note that if not b ∈ C ′
j, no rule is needed),

Π4:
satΦ1 ← not unsatΦ1 ,
a← satΦ1 ,
unsatΦ2 ← not a,
p←.

Let us look at the intuition behind this program. Clearly, Π1 generates all truth
assignments for Φ1 and Φ2 (recall that atom(Φ1) ∩ atom(Φ2) = ∅). This ensures
that there is a correspondence between stable models of Π and truth assignments of
Φ1 and Φ2. Π2 indicates that if Φ1 (or Φ2) is unsatisfiable, then atom unsatΦ1 (or
unsatΦ2 resp.) will be derived. Rules in Π3 are used to force Φ2 to be unsatisfiable.
That is, if atom unsatΦ2 is derived from through rule unsatΦ2 ← nota in Π4, then
the corresponding truth assignment of Φ2 in each stable model of Π must make
some C ′

j to be true.

Now we prove that Φ1 is satisfiable or Φ2 is unsatisfiable if and only if Π |= a
and SForgetLP(Π, {p}) |= a; or Π 6|= a and SForgetLP(Π, {p}) 6|= a. We ob-
serve that SForgetLP(Π, {p}) = Π − {p ←}, which implies that if Π |= a then
SForgetLP(Π, {p}) |= a and if Π 6|= a then SForgetLP(Π, {p}) 6|= a.

Suppose that Φ1 is satisfiable or Φ2 is unsatisfiable. We consider the following
cases. (1) If Φ1 is satisfiable, then it is easy to see that none of rules in Π2 with
head unsatΦ1 is applicable and hence atoms satΦ1 and a can be derived from Π. In
this case, no matter if Φ2 is satisfiable or unsatisfiable, we always have Π |= a and
SForgetLP(Π, {p}) |= a.
(2) If Φ2 is unsatisfiable. In this case one of rules in Π2 having unsatΦ2 as heads
is applicable and hence atom unsatΦ2 is derivable from Π. In this case, if Φ1 is
satisfiable, then a is derived from Π. Otherwise, a is not derivable from Π. The
same for SForgetLP(Π, {p}). So we have the statement: if Φ1 is satisfiable or
Φ2 is unsatisfiable, then Π |= a and SForgetLP(Π, {p}) |= a, or Π 6|= a and
SForgetLP(Π, {p}) 6|= a.

Suppose Π |= a and SForgetLP(Π, {p}) |= a; or Π 6|= a and SForgetLP(Π, {p}) 6|=
a. (1) If Π |= a and hence SForgetLP(Π, {p}) |= a. From the construction of Π,
we know that the only way to derive a from Π is that rule a← satΦ1 in Π4 is appli-
cable. This implies that none of rules in Π2 having unsatΦ1 as heads is applicable.
Consequently, one of truth assignments generated from Π1 for Φ1 must satisfy Φ1.
So Φ1 is satisfiable.
(2) If Π 6|= a and hence SForgetLP(Π, {p}) 6|= a. In this case, sat unsatΦ2 can be
derived from rule unsatΦ2 ← not a. Then from rule in Π3, we know that in each

50

stable model of Π, the corresponding truth assignment of Φ2 must not satisfy Φ2.
Since all truth assignments of Φ2 have been represented in Π’s stable models, this
concludes that Φ2 is unsatisfiable. This proves our result. 2

The following complexity result of irrelevance with respect to logic program con-
texts is inherited from Theorem 13.

Theorem 14 Let Σ and Σ′ be two logic program contexts where Σ′ ∈ Solution(Σ),
and a an atom. Deciding whether a is (Σ, Σ′)i-irrelevant is coDP-complete.

7.2 Complexity results on conflict solving

Proposition 8 Let Σ be a logic program context. Deciding whether Σ has a pre-
ferred solution is NP-hard.

Proof. We consider a special form of logic program context Σ = ((Π1, ∅, ∅), · · ·,
(Πn, ∅, ∅)). Clearly, Σ has a solution iff each Πi has a stable model, and we know
checking whether a program has stable is NP-hard. On the other hand, from The-
orem 6, we know that Σ has a preferred solution iff Solution(Σ) 6= ∅. Then the
result directly follows. 2

We observe that computing a solution for a logic program context consists of two
major stages: (1) computing strong and weak forgettings, and (2) consistency test-
ing for all Πi ∪ Cj in the resulting logic program context (see Definition 6). While
many existing results may be used for efficient consistency testing of a logic pro-
gram (e.g. see section 5.2 and Chapter 3 in [3]), it is important to investigate possi-
ble optimizations for computing strong and weak forgettings in logic programs.

For this purpose, we first introduce a useful notion. Let Π be a logic program, a
an atom in atom(Π), and G(Π) the dependency graph of Π. In G(Π), we call a
positive path 13 without cycles starting from a the inference chain starting from a.
We define the inference depth of a, denoted as i-depth(a), to be the length of the
longest inference chain starting from a in G(Π). Intuitively, i-depth(a) represents
the maximal number of rules that may be used to derive any other atoms starting
from a in program Π. We denote the inference depth of Π as

i-depth(Π) = Max(i-depth(a) : a ∈ atom(Π)).

It turns out that the inference depth plays a key role in characterizing the computa-
tion of strong and weak forgettings in logic programs.

13 That is, a path does not contain any negative edges.

51

Theorem 15 Let Π be a logic program. If Π has a bounded inference depth, i.e.
i-depth(Π) ≤ c for some constant c, then for any set of atoms P ⊆ atom(Π),
SForgetLP(Π, P) and WForgetLP(Π, P) can be computed in polynomial time.

Proof. To prove this theorem, we only need to show that under the condition of
bounded inference depth, Reduct(Π, P) is polynomially achievable for any P ⊆
atom(Π). Without loss of generality, for P = {p1, · · · , pk}, we may assume that Π
consists of three components:

Π1:
r11 : p1 ← pos(r11), not neg(r11),
· · ·,
rll1 : p1 ← pos(r1l1), not neg(r1l1),
r21 : p2← pos(r21), not neg(r21),
· · ·,
r2l2 : p2 ← pos(r2l2), not neg(r2l2),
· · ·,
rk1 : pk ← pos(rk1), not neg(rk1),
· · ·,
rklk : pk ← pos(rklk), not neg(rklk),
Π2

14 :
r1 : head(r1)← p1, pos(r1), not neg(r1),
r2 : head(r2)← p2, pos(r2), not neg(r2),
· · ·,
rk : head(rk)← pk, pos(rk), not neg(rk),
Π3,

where the reduction only occurs among rules in Π1 ∪ Π2, and Π3 contains all
rules irrelevant to the reduction process. Now we show that if i-depth(Π) ≤ c
for some constant c, the size of Reduct(Π, P) will be at most polynomial times
of the size of Π. Indeed, since i-depth(Π) ≤ c, it follows that for each pi ∈ P ,
i-depth(pi) ≤ c in program Π1. This implies that during the reduction, for each
pi’s occurrence in other rule’s positive body, at most only h1 × · · · × hc+1, where
{h1, · · · , hc+1} ⊆ {l1, · · · , lk}, new rules will be introduced due to the inference
chain in Π1 starting from a. This number of rules is bounded by |Π|c+1. If pi oc-
curs in all other rules’ positive bodies in Π1, the total number of new rules possibly
introduced through reduction via pi is bounded by |P | × |Π|c+1. Therefore, the
number of all new rules introduced through the entire reduction via P is bounded
by O(|P |2 × |Π|c+1). In other words, to perform Reduct(Π, P), the number of all
operations on rule substitutions and replacements is bounded by O(|P |2× |Π|c+1).
2

14 In Π2, there may be more than one rules having pi in their positive bodies. But this
simplified case does not affect our proof.

52

Theorem 16 Let Σ = (Φ1, · · · , Φn) and Σ′ = (Φ′
1, · · · , Φ

′
n) be two logic program

contexts, where for each Φi = (Πi, Ci,Fi) ∈ Σ (1 ≤ i ≤ n), Φ′
i ∈ Σ′ is of the form

Φ′
i = (Π′

i, Ci,Fi), where Π′
i = SForgetLP(Πi, Pi) or Π′

i = WForgetLP(Πi, Pi)
for some Pi ⊆ Fi. Then the following results hold:

(1) Deciding whether Σ′ is a solution of Σ is NP-complete;
(2) Deciding whether Σ′ is a preferred solution of Σ is in ΠP

2 provided that strong
and weak forgettings in Σ can be computed in polynomial time 15 ;

(3) For a given atom a, deciding whether for all Σ′′ ∈ Solution(Σ), Σ′′ |=i a
is in ΠP

2 provided that strong and weak forgettings in Σ can be computed in
polynomial time.

Proof. Result 1 is easy to prove. To check if Σ′ is a solution of Σ, we only need
to check whether Π′

i ∪ Cj is consistent for all i and j, and altogether we need to
do n2 such consistency checkings. On the other hand, we know that checking the
consistency of Π′

i ∪ Cj is in NP. So the problem is in NP. For the hardness, just
consider a special case where n = 1, then Σ′ is a solution of Σ iff Π′

1 ∪ C1 is
consistent, and this is NP-hard.

To prove Result 2, we consider the complement of the problem. If Σ′ is not a
preferred solution of Σ, then there must exist Σ′′ such that Σ′′ ∈ Solution(Σ)
and Σ′′ ≺Σ Σ′. This equals to that there are P ′′

1 , · · · , P ′′
n where P ′′

i ⊆ Pi and for
some k we have P ′′

k ⊂ Pk such that (1) Σ′′ = ((Π′′
n, C1,F1), · · · , (Π

′′
n, Cn,Fn)), and

each Π′′
i is of the form SForgetLP(Πi, P

′′
i) or WForgetLP(Πi, P

′′
i); and (2) Σ′′ ∈

Solution(Σ). Clearly, guessing such P ′′
1 , · · · , P ′′

n and computing each SForgetLP(Πi, P
′′
i)

and WForgetLP(Πi, P
′′
i) can be done in polynomial time. Then we can construct a

Σ′′ in polynomial time, where Σ′′ is of the form Σ′′ = ((Π′′
1, Ci,F1), · · · , (Π

′′
n, Cn,Fn)),

in which for each i, Π′′
i can be either SForgetLP(Πi, P

′′
i) or WForgetLP(Πi, P

′′
i).

Then checking whether Σ′′ is a solution of Σ can be achieved with number of n2

calls for an NP oracle. So the problem is in ΣP
2 . Consequently, the original problem

is in ΠP
2 .

We prove Result 3 as follows. We guess a set of atoms Si, and n sets of atoms
P1, · · · , Pn such that Pi ⊆ Fi for each 1 ≤ i ≤ n. Then similarly to the proof of
result 2, we can construct a logic program context Σ in polynomial time. Check-
ing whether Σ′ ∈ Solution(Σ) can be achieved with one call to an NP oracle.
Then checking whether Si is a stable model of a particular Π′

i, where Φ′
i ∈ Σ′ and

Φ′
i = (Π′, Ci,Fi), and a 6∈ Si can be done in polynomial time as well. So the com-

plement of the problem is in ΣP
2 , and thus the original problem is in ΠP

2 . 2

15 Computing strong and weak forgettings in Σ, we mean that for each Φi = (Πi, Ci,Fi) ∈
Σ and P ⊆ Fi, we compute SForgetLP (Πi, P) and WForgetLP(Πi, P).

53

8 Conclusions

In this paper, we defined notions of strong and weak forgettings in logic programs,
which may be viewed as an analogy of forgetting in propositional theories. Based
on these notions, we developed a framework of logic program contexts. We then
studied the irrelevance property related to strong and weak forgettings and conflict
solving and provided various solution characterizations for logic program contexts.
We showed that our approach presented in this paper is quite general and unified
all major logic program update approaches. We also analyzed the computational
complexity of strong and weak forgettings in logic programs and conflict solving
in logic programs contexts.

We noted that there were other methods for solving the inconsistency of logic pro-
grams in the literature, especially the work involving abductive reasoning in logic
programs. For instance, Inoue’s method of deletion and addition of names of rules
[8], where certain atoms can be blocked from derivation by removing/adding some
rules in the program. In this case, these atoms are still presented in the program.
As we have shown in subsection 6.3, by introducing new atom such as lr in the
language, our approach can simply model this method to solve program inconsis-
tency. The main difference between our approach and others is that we presented a
very general framework based on strong and weak forgettings, and this framework
can handle many different types of conflict solving scenarios including logic pro-
gram updates, negotiation and belief merging, that seem to be difficult for any other
single method in the literature (e.g. see Example 6 in section 4).

Our work presented in this paper can be further extended. One interesting issue
is to integrate dynamic preference orderings on forgettable atoms into the current
framework of logic program contexts, so that the extended framework can repre-
sent domain-dependent conflict solving cases. This is particularly important when
we use this approach to represent complex belief merging (e.g. [10,11]) and nego-
tiations under the setting of logic programming, in which each agent usually has
different preferences on the atoms that she may forget for a final agreement.

Acknowledgments

The authors thank Fangzhen Lin for useful discussions on this topic and valuable
comments on an early draft of this paper. The research of the first author was sup-
ported in part by Australian Research Council under grant DP0666540. The authors
also thank the anonymous reviewers for their insightful comments and criticisms
which were helpful in revising and improving the paper.

54

References

[1] K.R. Apt, H.A. Blair and A. Walker, Towards a theory of declarative knowledge. In J.
Minker ed., Foundations of Deductive Database and Logic Programming, pp 293-322.
Margan Kaufmann, 1988.

[2] , J.J. Alferes, J.A. Leite, L.M. Pereira and et al, Dynamic logic programming. In
Proceedings of KR-98, pp 98-111. 1998.

[3] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University, 2002.

[4] S. Brass and J. Dix, A general framework for semantics of disjunctive logic programs
based on partial evaluation. Journal of Logic programming 38(3) (1998) 167-213.

[5] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits, On properties of update sequences
based on causal rejection. Theory and Practice of Logic programming 2 (2002) 711-
767.

[6] T. Eiter, M. Fink, G. Sabbatini and H. Tompits, Reasoning about evolving
nonmonotonic knowledge base. ACM Transaction on Computational Logic 6 (2005)
389-440.

[7] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming. In
Proceedings of the International Conference on Logic Programming, pp 1070-1080.
The MIT Press 1988.

[8] K. Inoue, A simple characterization of extended abduction. In Proceedings of of the
First International Conference on Computational Logic (CL-2000), pp 718-732. 2000.

[9] K. Inoue and C. Sakama, Update of equivalence of logic programs. In Proceedings of
JELIA 2004, 2004.

[10] S. Konieczny and R. Pino Pérez, On the logic of merging. In Proceedings of the 6th
International Conference on Knowledge Representation and Reasoning (KR-98), pp
488-498, 1998.

[11] S. Konieczny and R. Pino Pérez, Propositional belief base merging or how to merge
beliefs/goal coming from several sources and some links with social choice theory.
European Journal of Operational Research 160(3) (2005) 785-802.

[12] K. Kunen, Signed data dependencies in logic programs. Journal of Logic
Programming 7(3) (1989) 231-245.

[13] J. Lang and P. Marquis, Complexity Results for Independence and Definability in
Propositional Logic. In Proceedings of the 6th International Conference on Principles
of Knowledge Representation and Reasoning (KR’98), pp 356-367. Morgan Kaufmann
Publishers, Inc., 1998.

[14] J. Lang and P. Marquis, Resolving inconsistencies by variable forgetting. In
Proceedings of the 8th International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), pp 239-250. Morgan Kaufmann Publishers,
Inc., 2002.

55

[15] J. Lang, P. Liberatore and P. Marquis, Propositional independence - Formula-variable
independence and forgetting. Journal of Artificial Intelligence Research 18 391-443
(2003).

[16] J.A. Leite, Evolving Knowledge Bases: Specification and Semantics, IOS Press, 2003.

[17] P. Liberatore and M. Schaerf, A system for the integration of knowledge bases. In
Proceedings of the 7th International Conference on Knowledge Representation and
Reasoning (KR-2000), pp 145-152. Morgan Kaufmann Publishers, Inc., 2000.

[18] V. Lifschitz, D. Pearce and A. Valverde, Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4) (2001) 426-541.

[19] F. Lin and R. Reiter, Forget it! In Working Notes of AAAI Fall Symposium on
Relevance, pp 154-159, 1994.

[20] F. Lin, On the strongest necessary and weakest sufficient conditions. Artificial
Intelligence 128 143-159 (2001).

[21] F. Lin, Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In Proceedings of the 8th International Conference on Principles
of Knowledge Representation and Reasoning (KR2002), pp170-176. Morgan
Kaufmann Publishers, Inc., 2002.

[22] F. Lin and Y. Chen, Discovering classes of strongly equivalent logic programs. In
Proceedings of IJCAI-2005, 2005.

[23] V.W. Marek and M. Truszczyński, Autoepistemic logic. Journal of the Association of
Computing Machinery, 38(3), 588-619, 1991.

[24] C.H. Papadimitriou, Computational Complexity, Addison Wesley, 1995.

[25] M. Proietti and A. Pettorossi, Unfolding-definition-folding, in this order, for avoiding
unnecessary variables in logic programs. Theoretical Computer Science 142 (1995)
98-124.

[26] C. Sakama and K. Inoue, Updating extended logic programs through abduction. In
Proceedings of LPNMR’99, pp 2-17, 1999.

[27] C. Sakama and H. Seki, Partial deduction in disjunctive logic programming. Journal
of Logic Programming 32(3) (1997) 229-245.

[28] K. Su, G. Lv an Y. Zhang, Reasoning about knowledge by variable forgetting.
In Proceedings of the 9th International Conference on Principles of Knowledge
Representation and Reasoning (KR2004), pp576-586. Morgan Kaufmann Publishers,
Inc., 2004.

[29] J.-H. You and L. Yuan, A three-valued semantics for deductive databases and logic
programs. Journal of Computer and System Sciences 49(2) (1994) 334-361.

[30] Y. Zhang, Two results for prioritized logic programming. Theory and Practice of Logic
Programming 3(2) (2003) 223-242.

56

[31] Y. Zhang and N. Foo, Updating logic programs. In Proceedings of ECAI-1998, pp403-
407, 1998.

[32] Y. Zhang, Logic program based updates. ACM Transaction on Computational Logic
(to appear) 2006 (http://www.acm.org/pubs/tocl/accepted.html).

[33] Y. Zhang, N.Y. Foo, and K.Wang, Solving logic program conflict through strong and
weak forgettings. In the Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI-05), pp 627-632. 2005.

[34] Y. Zhang and N.Y. Foo, A unified framework for representing logic program updates.
In the Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-
05), pp 707-712. 2005.

57

