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Abstract

We consider the problem of updating of an agent’s knowledge. We propose a formal
method of knowledge update on the basis of the semantics of modal logic S5. In
our method, an update is specified according to the minimal change on both the
agent’s actual world and knowledge. We discuss general minimal change properties
of knowledge update and show that our knowledge update operator satisfies all the
update postulates of Katsuno and Mendelzon. We characterize several specific forms
of knowledge update which have important applications in reasoning about change
of agents’ knowledge. We also examine the persistence property of knowledge and
ignorance associated with knowledge update.

We then investigate the computational complexity of model checking for knowledge
update. We first show that in general the model checking for knowledge update is
ΣP

2 -complete. We then identify a subclass of knowledge update problems that has
polynomial time complexity for model checking. We point out that some important
knowledge update problems belong to this subclass. We further address another in-
teresting subclass of knowledge update problems for which the complexity of model
checking is NP-complete.
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1 Introduction

1.1 Motivation

The well-studied issues of belief update and belief revision [16] are concerned
with the update and revision aspects of an agent’s belief with respect to new
beliefs. The notion of belief update has been used, and often serves as a guide-
line [15,30], in reasoning about the effect of (world altering) actions on the
state of the world. Thus if φ represents the agent’s belief about the world and
the agent performs an action that is supposed to make ψ true in the resulting
world, then the agent’s belief about the resulting world can be described by
φ � ψ, where � is the update operator of choice.

Now let us consider reasoning about sensing actions [26,28], which in their
pure form, when executed, do not change the world, but change the agent’s
knowledge about the world. Let sensef be a sensing action whose effect is
that after it is executed the agent knows whether f is true or not. This can be
expressed as Kf ∨K¬f , where K is the modal operator Knows. The current
theory of belief updates does not tell us how to do updates with respect to
such gain in knowledge due to a sensing action. In this regard note that we
can not just have f ∨¬f and use the the notion of belief update, as f ∨¬f is
a tautology.

A theory of knowledge update as targeted here will allow a reasoner to verify
the correctness of a plan with both physical and sensing actions. The reasoner,
different from the agent who will be executing the plan including sensing as
prescribed by the plan, will be able to verify if the updating of a formula
representing the initial state of the world (both physically and in terms of
what the agent knows about it) by the effect of the actions in the plan will
lead to a desired state of the world.

In the recent past there has also been some research in dynamic epistemic log-
ics, e.g. [3,4,9–12,29,34,35] where the changes in information states (of agents)
is the main focus but changes in the real world are usually not modeled.

The main goal of this paper is to define a notion of knowledge update, analogous
to belief update, where the original theory (say α) and the new theory (say
β) are in a language that can express knowledge, and changes are allowed in
both the real world and the agent’s knowledge about the world. Such a notion
would not only serve as a guideline to reason about pure and mixed sensing
actions in the presence of constraints, but also allow us to reason about actions

? This paper is an expanded and revised version of the authors’ papers in IJCAI-
2001 [1] and KR-2002 [2].

2



corresponding to forgetting and ignorance.

In this paper we investigate the model theoretic semantics and the associated
reasoning and complexity properties of such knowledge update. This not only
provides the theoretical foundation to enhance the current robotic planning
paradigm, as has been observed by other researchers, e.g. [20,26–28], but can
also be viewed as another approach for modeling knowledge dynamics.

1.2 Our work vs the research in dynamic epistemic logic – a brief overview

Since most of the research in dynamic epistemic logics has been reported out-
side Artificial Intelligence avenues, in this subsection we give a brief overview
of that direction of research and how it compares to our goals.

While research on reasoning about knowledge has made significant progress in
the last decade, e.g. [6,13,17,21,25], the problem of modeling the dynamics of
knowledge has only received attention in recent years from different perspec-
tives. One of the major motivations of studying knowledge dynamics is for
the purpose of modeling the dynamics of distributed systems. In this regard
Fagin et al. [6] studied the relationship between knowledge and time from an
axiomatization viewpoint where change in knowledge is caused by executing
the distributed system’s actions. Following this work, van der Meyden [33]
also studied the computational aspect of knowledge modeling in distributed
environments where the issue of knowledge update was discussed. Although
van der Meyden showed that his knowledge update presented a generaliza-
tion of certain aspects of standard knowledge base update, he only used it for
the purpose of efficiently implementing model checking and did not explore
knowledge update from a more semantical perspective.

Fagin et al’s work on knowledge has recently motivated a stream of interesting
investigations on dynamic epistemic logics, e.g. [3,4,9–12,29,34,35]. Changes in
information states (of agents), represented by a collection of possible worlds,
have been widely studied in these logics. Most of these works differ from our
approach in that they usually do not model changes in the real world. The
following quote from page 4 of [10] gives a feel of research in these studies:

In this section we will define operations on possibilities that correspond to
changes in the information states of the agents. The kind of information
change we want to model is that of agents getting new information and
learning that the information state of some other agent has changed in a
certain way. I will introduce ‘programs’ in the object language that describe
such changes. Changes in the ‘real world’ will not be modeled, and I will
ignore other operations of information change such as belief contraction or
‘belief revision’.
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From our discussions above, we can see that knowledge dynamic modeling has
been studied by many researchers in recent years. This paper can be viewed
as a further study on knowledge dynamics but from a different perspective.
Our focus is on the model theoretic semantics of knowledge update. This has
direct applications in the field of reasoning about agents’ knowledge related
actions, particularly in the construction and verification of plans with sensing
actions. We also explore the computational properties of various knowledge
update forms so as to provide guidelines for future implementations.

Most of the previous work on knowledge dynamics and dynamic epistemic log-
ics focus on the development of formal axiomatic systems that are able to deal
with the dynamics of epistemic states and actions. Although these logics have
significant applications in various multi agent environments, they seem not
quite applicable for our purpose mentioned earlier. Also, the computational
properties of these logics remain unexplored.

1.3 Summary of contributions of this paper

The main contributions of this paper can be summarized as follows.

(1) We define a model theoretic semantics for knowledge update based on the
single agent S5 modal logic. This knowledge update semantics presents
a generalization of traditional model based belief update by allowing for
modalities in the base language. That is, in our framework changes on
both the actual world and the knowledge state of the agent are allowable.
Our underlying knowledge update operator can be characterized by an
explicit minimal change principle and satisfies Katsuno and Mendelzon’s
classical belief update postulates [16].

(2) We characterize various forms of knowledge update such as gaining knowl-
edge update, ignorance update, sensing update and forgetting update.
Each of these update forms has its specific meaning in reasoning about
agent’s knowledge related actions. Furthermore, we also investigate the
persistence of knowledge and ignorance during a knowledge update. Our
results provide restricted monotonicity properties that may be used to
simplify the underlying inference problem in knowledge update.

(3) We investigate the computational complexity of model checking for
knowledge update. We show that in general the model checking prob-
lem for knowledge update is ΣP

2 -complete, which places the problem in
the same layer of the polynomial hierarchy as the traditional model based
belief update (e.g. PMA) [19]. We then identify a subclass of knowledge
update problems for which model checking can be achieved in polyno-
mial time. We observe that some important knowledge update problems
belong to this subclass. We further address another interesting middle
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class of knowledge update problem for which the complexity for model
checking is NP-complete.

1.4 Structure of the reminder of the paper

The structure of the rest of the paper is as follows. In Section 2 we start
with describing the particular modal logic that we plan to use in express-
ing knowledge, and describe the notion of k-models analogous to ‘models’ in
classical logic. We define closeness between k-models and use it to define a par-
ticular notion of knowledge update. In Section 3 we discuss minimal change
properties of knowledge update. An interesting result shows that our knowl-
edge update operator satisfies all of the Katsuno and Mendelzon’s update
postulates [16]. In Section 4 we present alternative characterizations of four
particular knowledge updates – gaining knowledge, ignorance, sensing, and
forgetting, and show their equivalence to our original notion of knowledge up-
date. Some of these alternative characterizations are based on the formulation
of reasoning about sensing actions, and thus our equivalence results can serve
as suitable justifications of the intuitiveness of our definition of knowledge
update. In Section 5 we explore sufficiency conditions that guarantee persis-
tence of knowledge (or ignorance) during a knowledge update. From Section
6 we start to investigate model checking complexity for knowledge update.
In Section 6 we first give general background on computational complexity.
In Section 7 we study the model checking complexity for the general case of
knowledge update. In Section 8 we define a subclass of knowledge update prob-
lems whose model checking can be achieved in polynomial time. In Section 9
we further address an interesting intractable subclass of knowledge update
problems whose model checking is lower than the general case. Finally, in Sec-
tion 10 we conclude this paper with some remarks. We present proofs of all
major results in an appendix.

2 Closeness between k-models and knowledge update

In this section, we describe formal definitions for knowledge update. Our for-
malization will be based on the semantics of the propositional modal logic S5
with a single agent. In general, under Kripke semantics, a Kripke structure is
a triple (W,R, π), where W is a set of possible worlds, R is an equivalence
relation on W , and π is a truth assignment function that assigns a proposi-
tional valuation to each world in W . Given a Kripke structure S = (W,R, π),
a Kripke interpretation is a pair (S,w), where w ∈ W is referred to as the
actual world of (S,w). To characterize S5 formulas (which we henceforth refer
to simply as ‘formulas’) we follow [6] in defining an entailment relation |=
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between Kripke interpretations and formulas.

In the case of a single agent, however, we restrict ourselves to those S5 struc-
tures in which the relation R is universal, i.e. each world is accessible from
every world, and worlds are identified with the set of atoms true at the worlds
(see page 28 in [23]). To simplify a comparison between two worlds (e.g. Def-
inition 2), we view an atom p to be in a world w (denoted by p ∈ w) iff p is
mapped to true in the world w (denoted by w |= p). Therefore, in our context
a Kripke structure (W,R, π) is uniquely characterized by W and we define a
k-model as a pair M = (W,w), where w indicates the actual world of the agent
and W presents all possible worlds that the agent may access. Note that since
we assume R to be universal, w is in W for any k-model M = (W,w).

In the rest of this paper we assume our language to have a finite number of
propositions. Thus we will be dealing with a finite propositional S5 modal
logic. Although, this may seem restrictive, we make this assumption to keep
our focus on the main issue of the paper – investigation of knowledge updates
from a viewpoint of reasoning about an agent’s knowledge related actions and
the associated complexity problems. Our work can be viewed as an extension
of traditional propositional belief update where usually a finite language is
also employed, for example in [16].

We use a, b, c, · · ·, p, q, · · · to denote propositional atoms; φ, ψ, υ, · · · to denote
propositional formulas without including modalities (we also call them objec-
tive formulas); and α, β, γ, µ, · · · to denote formulas that may contain modal
operator K. For convenience, we use T ≡ α1 ∧ · · · ∧ αk to represent a finite
set of formulas {α1, · · · , αk} and call T a knowledge set.

Definition 1 Let P be the set of all atomic propositions in the language. The
entailment relation |= under S5 semantics is defined as follows:

(1) (W,w) |= p iff p is an atomic proposition (i.e. p ∈ P) and w |= p;
(2) (W,w) |= α ∧ β iff (W,w) |= α and (W,w) |= β;
(3) (W,w) |= ¬α iff it is not the case that (W,w) |= α;
(4) (W,w) |= Kα iff (W,w′) |= α for all w′ ∈ W .

We use notations and terminologies similar to the ones used in propositional
logic. Following is a list of our definitions and terminologies:

• Given a formula T , (W,w) is called a k-model of T if (W,w) |= T . (Our
notion of k-models is analogous to ‘models’ in propositional logic.)

• We use Mod(T ) to denote the set of all k-models of T .
For an objective formula φ, Mod(φ) simply denotes the set of worlds w

where w |= φ. In this case, w is also called a model of φ.
• For a formula α, we say that T entails α, denoted as T |= α, iff for every
k-model (W,w) of T , (W,w) |= α.
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Note that in the rest of the paper, we may also use M to denote a k-
model, i.e. M = (W,w), and in this case we simply write M |= α if α is true
in (W,w).

• We say a formula is satisfiable if it has a k-model. (This is analogous to the
‘satisfiability’ of propositional theories.)

• We say two formulas T and α are equivalent, denoted by T ≡ α, iff T |= α

and α |= T .

The basic problem of knowledge update that we would like to investigate is
formally described as follows: given a k-model M = (W,w), that is usually
viewed as a state of an agent, and a formula µ - the agent’s new knowledge
that may contain modal operator K, how do we update M to another k-model
M ′ = (W ′, w′) such that M ′ |= µ and M ′ is minimally different from M with
respect to some criterion? To define such a minimal difference (or more often
called minimal change principle) on k-model update, we first study a concept
of closeness between two k-models with respect to a given k-model.

A widely used definition of closeness [37] between simple worlds is based on
the notion of symmetric difference. According to this definition a world w1 is
as close to the world w as w2 is (denoted by w1 ≤w w2) if (w1 \w ∪w \w1) ⊆
(w2 \ w ∪ w \ w2). When defining closeness of k-models we give first prefer-
ence to the comparison between the actual worlds. Hence, if two k-models
M1 = (W1, w1) and M2 = (W2, w2) have different actual worlds then we define
their closeness with respect to a reference k-model M = (W,w) by simply
comparing the symmetric difference between w1 and w, and w2 and w. When
w1 = w2 we need additional comparisons. A straightforward approach would
be to compare the knowledge encoded in each of the k-models. For that we
have the following notation.

• For a k-model M = (W,w), by KM we denote the set {φ | φ is an objective
formula and for all w′ ∈ W we have that w′ |= φ} (here note that w is also in
W ).

A simple comparison between the knowledge encoded in M1 and M2 with re-
spect to M can be done by comparing the symmetric difference between KM1

and KM and KM2 and KM . We use this comparison but in addition consider
two special cases when the symmetric differences may be incomparable but
yet there is reason to consider one k-model to be closer (to M) than the other.
These two special cases are when M1 only loses knowledge with respect to M ,
and when M1 only gains knowledge with respect to M .

Consider the case when M1 only loses knowledge with respect to M . In that
case if M2 both loses and gains knowledge with respect to M then we consider
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M1 to be closer to M than M2 is to M . Also, if M2 (like M1) only loses
knowledge with respect to M , but loses more than M1 does then we consider
M1 to be closer to M than M2 is to M . This is illustrated in Figure 1.

KM2

KM
KM1

KM2

KM
KM1

Fig. 1. M1 ≤M M2 under the condition w1 = w2 and W ⊂W1.

Similarly, consider the case when M1 only gains knowledge with respect to M .
In that case if M2 both loses and gains knowledge with respect to M then we
consider M1 to be more closer to M than M2. Also, if M2 (like M1) only gains
knowledge with respect to M , but gains more than M1 does then we consider
M1 to be closer to M than M2. This is illustrated in the following figure.

KM2

KM1KM2

KM

KM1
KM

Fig. 2. M1 ≤M M2 under the condition w1 = w2 and W1 ⊂W .

Note that classifying knowledge change as two special cases of only increas-
ing (gaining) knowledge and only losing (decreasing) knowledge respectively
is important in our formalization. As we will show later, several interesting
knowledge update forms belong to these two types of updates. Also, the com-
putational complexity of these two types of updates, to be discussed in Sections
8 and 9, are different. We now formally define the closeness between k-models.

Definition 2 (Closeness between k-models) Let M = (W,w), M1 =
(W1, w1) and M2 = (W2, w2) be three k-models. We say M1 is closer or as
close to M as M2, denoted as M1 ≤M M2, if:

(1) (w1 \ w ∪ w \ w1) ⊂ (w2 \ w ∪ w \ w2); or
(2) w1 = w2 and one of the following conditions holds:

(i) W1 = W2;
(ii) W1 6= W2 and if W ⊂ W1, then (a) there exist some φ and ψ such

that M |= Kφ and M2 6|= Kφ and M 6|= Kψ and M2 |= Kψ, or (b)
for any φ if M |= Kφ and M1 6|= Kφ, then M2 6|= Kφ;

(iii) W1 6= W2 and if W1 ⊂ W , then condition (a) above is satisfied, or
(c) for any φ if M 6|= Kφ and M1 |= Kφ, then M2 |= Kφ;
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(iv) W1 6= W2 and if W 6⊂ W1 and W1 6⊂ W , then conditions (b) and (c)
above are satisfied;

(v) W1 6= W2 and W1 = W .

We denote M1 <M M2 if M1 ≤M M2 and M2 6≤M M1.

Note that Fig 1 and Fig 2 given earlier illustrate the conditions (2) (ii) and
(2) (iii) of the above definition respectively. The following figure illustrates the
condition (2) (iv) of the above definition. The meaning of condition (2) (v),
on the other hand, is quite obvious.

KM

KM2

KM1

Fig. 3. M1 ≤M M2 under the condition w1 = w2, W 6⊂W1 and W1 6⊂W .

One may argue that Definition 2 above is too strong in terms of knowl-
edge comparison, particularly the cases in condition (2)(ii) and (2)(iii) as
illustrated by the first diagrams of Figure 1 and Figure 2. For instance, let
W = {w1, w2, · · · , w99, w100}, W1 = {w1} and W2 = {w1, w2, · · · , w99, w101},
and M = (W,w1),M1 = (W1, w1) and M2 = (W2, w1). According to Defini-
tion 2, we have M1 <M M2. However, it is observed that W1 only has one
world w1 in common with W while W2 has 99 worlds in common with W , yet
it is viewed that M1 is closer to M than M2. Although such argument seems
plausible in some sense, our motivation here is based on the agent’s knowledge
instead of just counting the number of common worlds between two k-models.
Let us take a closer look at condition (2) (iii) which defines M1 <M M2 in our
example here. This condition actually says that (a) M1 has all the knowledge
that M has (i.e. W1 ⊂ W ); (b) there exists some knowledge that M has but
M2 does not, and M does not have but M2 has; and (c) for any knowledge
that M1 has but M does not, M2 also has. From statements (a), (b) and (c),
it seems reasonable to us to conclude that M and M1 are closer than M and
M2 do. Another way to justify our formulation is to notice that M1 can be
obtained from M by just performing a pure sensing action, while to obtain M2

from M one has to perform a more complicated action. Similarly, M can be
obtained from M1 by a forgetting action while to obtain M from M2 one has
to perform a more complicated action. (We discuss different kinds of actions
and the corresponding knowledge update in greater detail in Section 4.)

On the other hand, in Definition 2, we give higher priority to difference between
actual worlds to difference between the knowledge about the worlds. This is a
design decision that we made. The possibilities were to treat them equally, or
treat one more important than the other. We consider changes in the real world
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to be harder (needs a physical action) than changes only in the knowledge.
Consider three models M1, M2 and M . Suppose M1 and M have the same
physical part but different knowledge part; and M2 and M have different
physical parts but the same knowledge part. In this case our definition will
say that M1 is closer to M than M2. Again, the intuition is that it is harder to
change the real world through physical actions (say to break an object) than
to change the knowledge (to lie and say that the object was broken). Moreover,
by giving a higher priority of the real world change, our revised definition of
knowledge update is consistent with updates involving only actual worlds as
well as updates involving only epistemic states.

Now using the notion of closeness between k-models we define k-model update.
Our definition is similar to the definition of belief updates, which is defined
using closeness between worlds.

Definition 3 (k-model Update) Let M = (W,w) be a k-model and µ a
formula. A k-model M ′ = (W ′, w′) is called a possible resulting k-model after
updating M with µ if and only if the following conditions hold:

(1) M ′ |= µ;
(2) there does not exist another k-model M ′′ = (W ′′, w′′) such that M ′′ |= µ

and M ′′ <M M ′.

We denote the set of all possible resulting k-models after updating M with µ

as Res(M,µ).

Example 1 Let T ≡ Kc ∧ ¬Ka ∧ ¬Kb ∧K(a ∨ b) and µ ≡ K¬c. We denote

w0 = {a, b, c}, w1 = {a, c}, w2 = {b, c},
w3 = {c}, w4 = {a, b}, w5 = {a},
w6 = {b}, w7 = ∅.

Clearly, M0 = ({w0, w1, w2}, w0) is a k-model of T . Consider the update of
M0 with µ. Let M1 = ({w4, w5, w6}, w4). Now we show that M1 is a possible
resulting k-model after updating M0 with µ.

Since (w0 \ w4 ∪ w4 \ w0) = {c}, we first consider any possible k-model M ′ =
(W ′, w′) such that (w0\w

′∪w′\w0) ⊂ {c}. Clearly, the only possible w′ would be
w0 itself. Let M ′ = (W ′, w0), where W ′ is a subset of {w0, · · · , w7}. However,
since c ∈ w0, there does not exist any W ′ such that M ′ |= K¬c. Therefore,
from Definition 2, only condition 2 can be used to find a possible M ′ such
that M ′ <M M1. So we assume M ′ = (W ′, w4). On the other hand, from M0

and M1, it is easy to see that KM0 = {c, a ∨ b} and KM1 = {¬c, a ∨ b} 2 .

2 For simplicity, here we only consider the prime formulas φ in KM in the sense
that if φ ∈ KM , then there is not another ψ such that |= ψ ⊃ φ and ψ ∈ KM .
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Then we have KM0 \ KM1 = {c} and KM1 \ KM0 = {¬c}. Ignoring the
detailed verifications, we can show that there does not exist such M ′ = (W ′, w4)
satisfying KM0 \KM

′ = KM ′ \KM0 = ∅.

Example 2 Let T = a∧b∧c, and µ = a∧b∧¬c. As in the previous example,
let us assume a, b and c are the only propositions in our world. In that case
we have eight possible worlds; w0, . . . , w7, as given in the previous example.

Now let us compute the various k-models of T . They will be of the form
(W,w0), where W is any subset of {w0, . . . , w7} containing w0. There are
27 = 128 such W s and hence T has 128 k-models. Let M be one of these
k-models, say M = ({w0, . . . , w7}, w0). Let us now compute Res(M,µ).
Res(M,µ) consists of the unique k-model M ′ = ({w0, . . . , w7}, w4); as w4 is
the closest physical world to w0 that satisfies µ, and among all other k-models
of the form (W ′, w4), M

′ is the closest to M . Note that this update does not
result in any change in knowledge. Indeed, since this update does not involve
K operator, the knowledge update is then reduced to the classical PMA update
[37].

Using the notion of k-model update we now define the updating of a formula
T by another formula µ as the union of updating every k-model of T with µ.
This is similar to the way belief update is defined in the literature.

Definition 4 (Knowledge update) Let T and µ be two formulas. The
update of T with µ, denoted as T � µ, is defined by Mod(T � µ) =
⋃

M∈Mod(T ) Res(M,µ).

Example 3 Let T1 = a, and T2 = Ka. Let w0 = {a}, w1 = ∅.

Let W0 = ∅, W1 = {w0}, W2 = {w1}, and W3 = {w0, w1}.

The k-models of T1 are (W1, w0) and (W3, w0). (W0, w0) and (W2, w0) are not
k-models of T1 as neither W0, nor W2 contains w0.

The only k-model of T2 is (W1, w0).

Thus the only k-model of T1 � T2 is (W1, w0).

Clearly, Definition 4 is a generalized form of Winslett’s PMA update [37].
It should be noted that we would not be able to define knowledge update in
such a way as in Definition 4 if we allow the underlying language to be infinite,
because this would require that the set of k-models

⋃
M∈Mod(T )Res(M,µ) be

finitely axiomatized and this is usually not possible for infinite models. On the
other hand, we may think that the update operator � as a function that takes
formulas T and µ as parameters and nondeterministically returns a formula
whose models are characterized by the set

⋃
M∈Mod(T )Res(M,µ). In practice,
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it is not feasible to obtain such a specific formula as there may be infinite
number of formulas whose models are represented by

⋃
M∈Mod(T ) Res(M,µ).

Nevertheless, since our interest here is to capture the semantics of knowledge
update, we actually do not need to know this particular formula. Instead, our
operations on knowledge will focus on the models, similar to the approach
taken in defining belief updates, e.g. [37].

3 Minimal change of knowledge update

In this section, we investigate minimal change properties of knowledge update.
Specifically, we examine the relationship between knowledge update and the
classical Katsuno and Mendelzon’s update postulates [16]. We start with some
useful results about knowledge update.

Proposition 1 Let M1 = (W1, w1) and M2 = (W2, w2) be two k-models. Then
the following properties hold:

(1) φ ∈ KM1 iff W1 ⊆Mod(φ);
(2) W1 ⊆ W2 iff KM2 ⊆ KM1;
(3) KM1 = KM2 iff W1 = W2;
(4) Let M ′ = (W1 ∪W2, w), then KM ′ = KM1 ∩KM2;
(5) Let w′ ∈ W1 ∩W2 and M ′ = (W1 ∩W2, w

′), then KM1 ∪KM2 ⊆ KM ′.

Readers are reminded that we may flexibly use Proposition 1 to move between
sets of possible worlds and sets of formulas.

Given a set of k-models S and a k-model M , let ≤M be an ordering on S as
we defined in Definition 2. By Min(S,≤M ) we mean the set of all elements in
S that are minimal with respect to ordering ≤M . The following proposition
simply shows that ≤M is a partial ordering.

Proposition 2 Let M be a k-model. Then ≤M defined in Definition 2 is a
partial ordering.

The following proposition follows from Definitions 3 and 4.

Proposition 3 Let T and µ be two formulas. Then Mod(T � µ) =
⋃

M∈Mod(T ) Min(Mod(µ),≤M ).

Proof: To prove the result, we only need to show that for each k-model
M of T , Res(M,µ) = Min(Mod(µ),≤M ). Let M ′ ∈ Res(M,µ). Since
M ′ |= µ, M ′ ∈ Mod(µ). On the other hand, according to Definition 3, for
any M ′′ ∈ Mod(µ), we have M ′′ 6<M M ′. That is, M ′ ∈ Min(Mod(µ),≤M ).
So Res(M,µ) ⊆Min(Mod(µ),≤M ). Similarly, we can show
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Min(Mod(µ),≤M ) ⊆ Res(M,µ).

The above proposition provides an important characterization on knowledge
update in terms of a particular minimal change criterion. Now the question
we are interested in is whether our knowledge update operator satisfies some
classical properties of belief (knowledge base) update. In the last decade, be-
lief update has been extensively studied by many researchers and its difference
from belief revision is well understood [14,22,39]. From the observation of se-
mantic difference between belief update and revision, Katsuno and Mendelzon
[16] argued that the original revision postulates proposed by Gardenfors el al.
[7] are not quite suitable for update, and ignoring such difference may lead
to unreasonable solutions [16]. Instead, Katsuno and Mendelzon [16] proposed
alternative postulates for any update operator � as follows.

(U1) T � µ |= µ.
(U2) If T |= µ then T � µ ≡ T .
(U3) If both T and µ are satisfiable then T � µ is also satisfiable.
(U4) If T1 ≡ T2 and µ1 ≡ µ2 then T � µ1 ≡ T2 � µ2.
(U5) (T � µ) ∧ α |= T � (µ ∧ α).
(U6) If T � µ1 |= µ2 and T � µ2 |= µ1 then T � µ1 ≡ T � µ2.
(U7) If T is complete (i.e., has a unique k-model) then (T �µ1)∧ (T �µ2) |=
T � (µ1 ∨ µ2).
(U8) (T1 ∨ T2) � µ ≡ (T1 � µ) ∨ (T2 � µ).

Under the context of S5 modal logic, we assume all the formulas occurring in
the above postulates are S5 formulas. The following theorem shows that our
knowledge update operator satisfies all these postulates.

Theorem 1 Knowledge update operator � defined in Definition 4 satisfies
Katsuno and Mendelzon’s update postulates (U1)-(U8).

It is worth mentioning that in [16] Katsuno and Mendelzon relate their update
postulates for belief updates to the ordering used in defining the updates. We
can not use their result directly for the proof of the above theorem as their
result pertains to propositional theories and ordering between propositional
interpretations.

4 Characterizing specific knowledge updates

While the previous section studies general minimal change properties of our
knowledge update, alternative characterizations of knowledge update can be
described for several specific forms. These specific forms present important
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features of knowledge update, and their alternative characterizations are con-
venient when the use of the notion of knowledge update becomes an overkill.
For example, the alternative characterization of sensing update below is a
much simpler characterization that is used in reasoning about sensing actions
[26,28].

4.1 Gaining knowledge update

We first introduce a notation that will be useful in our following discussions.
Let W be a set of worlds and w ∈ W . By W (w,φ), we denote the set {w′ | w′ ∈
W and (w′ |= φ iff w |= φ) }.

Proposition 4 Consider T and Kφ where φ is objective and T |= φ. Then

(1) If M ′ = (W ′, w′) is a k-model of T � Kφ, then there exists a k-model
M = (W,w) of T such that w = w′ and W ′ = W (w,φ);

(2) If M = (W,w) is a k-model of T , then M ′ = (W (w,φ), w) is a k-model of
T �Kφ.

The above proposition reveals an important property about knowledge update
as observed by a reasoner 3 : to know some fact, the agent only needs to restrict
the current possible worlds in each of her k-models, if this fact itself is already
entailed by her current knowledge set. We call this kind of knowledge update
gaining knowledge update.

Corollary 1 For an objective formula φ, if T |= φ then T �Kφ |= φ.

Example 4 Let T ≡ a∧¬Ka∧Kb. Suppose w0 = {a, b}, w1 = {a}, w2 = {b}
and w3 = ∅. Then T has one k-model M = ({w0, w2}, w0). Updating M with
Ka, according to our k-model update definition, we have a unique resulting

3 Note that the update T �µ is done by a third party; not the agent. For example, in
the domain of an agent that needs to use a plan with sensing action (which will give
him new knowledge), the planner or plan verifier is the third party which constructs
the plan or verifies if the plan will indeed achieve the goal. In that case T expresses
the state of the world from the third party’s view point. For example if T1 = a, then
it means that a is true in the real world but our agent does not know it. On the
other hand if T2 = Ka, then it means that a is true in the real world and our agent
knows it. Similarly, if µ = Ka∨K¬a is the effect of a sensing action, then the third
party reasons that after executing that action (or after updating the initial theory
by µ) the agent would know the value of a. In this case updating of T1 with µ will
result in T2, and the third party will known that after the sensing action the agent
would know that a is true; while the agent did not know that before the sensing
action. We discuss this further in a later section.
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k-model M ′ = ({w0}, w0). Indeed, this result is also obtained from Proposition
4.

4.2 Ignorance update

As a contrary case to the gaining knowledge update, we now character-
ize an agent ignoring a fact from her knowledge set which we call ig-
norance update, i.e. updating T with ¬Kφ. From Definitions 3 and 4, it
is easy to see that T � ¬φ |= ¬Kφ. However, it should be noted that
T � ¬φ can not be used to achieve T � ¬Kφ. Consider a k-model M =
({{a, b}, {a}}, {a, b}). Updating M with ¬Ka we have a possible resulting
k-model M ′ = ({{a, b}, {a}, {b}}, {a, b}), while updating M with ¬a will lead
to a possible result M ′′ = ({{a, b}, {a}, {b}}, {b}). Note that both M ′ and M ′′

entail ¬Ka, but M ′ <M M ′′ according to Definition 2.

Proposition 5 Consider T and φ where φ is objective.

(1) If M ′ = (W ′, w′) is a k-model of T � ¬Kφ, then there exists a k-model
M = (W,w) of T such that
(i) if M |= Kφ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= ¬φ,
(ii) otherwise, w′ = w and W ′ = W ;

(2) If M = (W,w) is a k-model of T , then M ′ = (W ′, w′) is a k-model of
T � ¬Kφ, where
(i) if M |= Kφ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= ¬φ,
(ii) otherwise, w′ = w and W ′ = W .

Example 5 Suppose T ≡ ¬Ka ∧ ¬Kb ∧ K(a ∨ b) ∧ Kc and the agent
wants to ignore c. Let w0 = {a, b, c}, w1 = {a, c}, w2 = {b, c}, w3 =
{c}, w4 = {a, b}, w5 = {a}, w6 = {b}, w7 = ∅. Clearly, T has three
k-models: M0 = ({w0, w1, w2}, w0), M1 = ({w0, w1, w2}, w1), and M2 =
({w0, w1, w2}, w2). From Proposition 4, T � ¬Kc has the following twelve k-
models: ({w0, w1, w2, wi}, wj), where i = 4, 5, 6, 7 and j = 0, 1, 2.

4.3 Sensing update

Now we consider the case when µ is of the formKφ∨K¬φ where φ is objective.
Updating T with this type of µ is particularly useful in reasoning about sensing
actions [26,28] where Kφ∨K¬φ represents the effect of a sensing action that
senses φ. After the execution of such a sensing action an agent will know
either φ or ¬φ. We refer to such an update as a sensing update. The following
proposition characterizes the update of T with a formula of the form Kφ ∨
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K¬φ. It is interesting to note that the sufficient and necessary condition for
a k-model of T � (Kφ∨K¬φ) is similar to the one presented in Proposition 4.

Proposition 6 Consider T and µ ≡ Kφ ∨K¬φ where φ is objective.

(1) If M ′ = (W ′, w′) is a k-model of T � (Kφ ∨ K¬φ), then there exists a
k-model M = (W,w) of T such that w = w′ and W ′ = W (w,φ), or w = w′

and W ′ = W (w,¬φ);
(2) If M = (W,w) is a k-model of T , then M ′ = (W ′, w′) is a k-model

of T � (Kφ ∨ K¬φ), where w′ = w and W ′ = W (w,φ), or w′ = w and
W ′ = W (w,¬φ).

The following corollary says that if φ is true in the real world then after sensing
φ (i.e., doing an update with Kφ ∨K¬φ) an agent will know that φ is true.

Corollary 2 For objective formulas φ, if T |= φ then T � (Kφ∨K¬φ) |= Kφ.

Example 6 Suppose T ≡ Kb ∧ ¬Ka ∧ ¬K¬a represents the current knowl-
edge of an agent. Note that T implies that the agent does not have any knowl-
edge about a. Consider the update of T with µ ≡ Ka ∨ K¬a which can be
thought of as the agent trying to reason – in the planning or plan verifica-
tion stage – about a sensing action 4 that will give her the knowledge about
a. Let w0 = {a, b}, w1 = {b}, w2 = {a} and w3 = ∅. It is easy to see that
M0 = ({w0, w1}, w0) and M1 = ({w0, w1}, w1) are two k-models of T . Then
according to the above proposition, it is obtained that M ′

0 = ({w0}, w0) and
M ′

1 = ({w1}, w1) are the two k-models of T � µ.

4.4 Forgetting update

We now consider another important type of knowledge update, the update of
T with µ ≡ ¬Kφ ∧ ¬K¬φ. This update can be thought of as the result of
an agent forgetting her knowledge about the fact φ. We will refer to such an
update as a forgetting update. The following proposition shows that in order
to forget φ from T , for each k-model of the current knowledge set, the agent
only needs to expand the set of possible worlds of this model with exactly one
specific world.

Proposition 7 Consider T and µ ≡ ¬Kφ ∧ ¬K¬φ where φ is objective.

(1) If M ′ = (W ′, w′) is a k-model of T � µ, then there exists a k-model
M = (W,w) of T such that

4 Such reasoning is necessary in creating plans with sensing actions or verifying
such plans. On the other hand after the execution of a sensing action the agent
exactly knows either a or ¬a, and can simply use the notion of belief update.
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(i) if M |= Kφ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= ¬φ;
(ii) if M |= K¬φ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= φ;
(iii) otherwise, w′ = w and W ′ = W .

(2) If M = (W,w) is a k-model of T , then M ′ = (W ′, w) is a k-model of
T � µ where
(i) if M |= Kφ, then W ′ = W ∪ {w∗}, where w∗ |= ¬φ;
(ii) if M |= K¬φ, then W ′ = W ∪ {w∗}, where w∗ |= φ;
(iii) otherwise, W ′ = W .

Example 7 Suppose T ≡ Kb ∧ (Ka ∨ K¬a) represents the current knowl-
edge of an agent. After executing a forgetting action the agent now would
like to update her knowledge with µ ≡ ¬Ka ∧ ¬K¬a. Let w0 = {a, b}, w1 =
{b}, w2 = {a}, w3 = ∅. It is easy to see that M0 = ({w0}, w0) and M1 =
({w1}, w1) are the two k-models of T . Then using Proposition 7, we conclude
that M ′

0 = ({w0, w1}, w0), M
′
1 = ({w0, w3}, w0), M

′
2 = ({w1, w0}, w1), and

M ′
3 = ({w1, w2}, w1) are the four k-models of T � µ. Note that ({w0, w2}, w0)

cannot be a k-model of T � µ according to Proposition 7.

5 Persistence of knowledge and ignorance

Like most systems that do dynamic modeling, knowledge update discussed
previously is non-monotonic in the sense that while adding new knowledge into
a knowledge set, some previous knowledge in the set might be lost. However, it
is important to investigate classes of formulas that are persistent with respect
to an update, as this may partially simplify the underlying inference problem
[38]. Furthermore, characterizing persistence is also an important issue in non-
monotonic epistemic logic reasoning because it plays an essential role in the
way of how different states of agent’s knowledge can be compared [5,31,32].

Given T and µ, a formula α is said to be persistent with respect to the update
of T with µ, if T |= α implies T � µ |= α. If α is of the form Kφ, we call this
persistence as knowledge persistence, while if α is of the form ¬Kφ, we call it
ignorance persistence. The question that we address now is that under what
conditions, a formula α is persistent with respect to the update of T with µ.

As the update of T with µ is achieved based on the update of every k-model
of T with µ, our task reduces to the study of persistence with respect to a
k-model update. This is defined in the following definition.

Definition 5 (Persistence with respect to k-model update) Let µ and
α be two formulas and M be a k-model. α is persistent with respect to the
update of M with µ if for any M ′ ∈ Res(M,µ), M |= α implies M ′ |= α.
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Clearly a formula α is persistent with respect to the update of T with µ

if and only if for each k-model M of T , α is persistent with respect to the
update of M with µ. To characterize the persistence property with respect to
k-model updates, we first define a preference ordering on k-models in terms
of a formula.

Definition 6 (Formula closeness) Let µ be a formula and M1 and M2 be
two k-models. We say that M1 is as close to µ as M2, denoted as M1 ≤µ M2,
if one of the following conditions holds:

(1) M1 ∈ Mod(µ);
(2) M1,M2 6∈Mod(µ), and for any M ∈Mod(µ), M1 ≤M M2.

We denote M1 <µ M2 if M1 ≤µ M2 and M2 6≤µ M1.

Intuitively, the above definition specifies a partial ordering to measure the
closeness between two k-models to a formula. In particular, if M1 is a k-model
of µ, then M1 is closer to µ than all other k-models (i.e. condition 1). If neither
M1 nor M2 is a k-model of µ, then the comparison between M1 and M2 with
respect to µ is defined based on the k-model preference ordering ≤M for each
k-model M of µ (i.e. condition 2). Note that if both M1 and M2 are k-models
of µ, we have M1 ≤µ M2 and M2 ≤µ M1, and both of them are equally close
to µ.

Example 8 Let µ ≡ Ka ∧Kb, w0 = {a, b}, w1 = {b}, w2 = {a} and w3 = ∅.
Clearly, µ has one k-model M = ({w0}, w0). Consider two k-models M1 =
({w0, w1}, w0) and M2 = ({w1, w2}, w1). Now let us compare which one of
them is closer to µ. Since neither M1 nor M2 is a k-model of µ, we can use
condition 2 in Definition 6 to compare M1 and M2. According to Definition 2,
it is easy to see that M1 ≤M M2 as w0 \ w1 ∪ w1 \ w0 = {a} 6= ∅. Therefore,
we conclude M1 ≤µ M2. Furthermore, we also have M1 <µ M2.

Proposition 8 Let µ be a formula. For any two k-models M1 and M2, if
M1 ≤µ M2, then M2 |= µ implies M1 |= µ.

Proof: Suppose M2 |= µ. Then M2 ∈ Mod(µ). From Definition 6, we know
that for any other k-model M ′, M2 ≤µ M ′. So M2 ≤µ M1. But we have
M1 ≤µ M2. This implies that both M1 and M2 are equally close to µ. Hence,
M1 |= µ.

Given a formula µ and a sequence of k-models M1, · · · ,Mk, if the relation
M1 ≤µ M2 ≤µ · · · ≤µ Mk holds, then it means that Mi is closer to µ than Mj,
where i < j. Now under this condition, if there is another formula α which
satisfies the property that Mj |= α implies Mi |= α whenever i < j, we say
that formula α is persistent with respect to formula µ. In other words, when
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k-models move closer to µ, α’s truth value is preserved in these k-models. The
following definition formalizes this idea.

Definition 7 (≤µ-persistence) Let α, µ be two formulas. We say that α is
≤µ-persistent if for any two k-models M1 and M2, M2 |= α and M1 ≤µ M2

implies M1 |= α.

Now we have the following important relationship between ≤µ-persistence and
k-model update persistence.

Theorem 2 Let α and µ be two formulas and M be a k-model. α is persistent
with respect to the update of M with µ if α is ≤µ-persistent.

Proof: Let M ′ be a k-model in Res(M,µ). Then we have M ′ ∈ Mod(µ). So
for any k-model M ′′, we have M ′ ≤µ M ′′. So M ′ ≤µ M . Now suppose α is
µ-persistent. It follows that M |= α implies M ′ |= α. As M ′ is an arbitrary
k-model in Res(M,µ), we can conclude that α is persistent with respect to
the update of M with µ.

From Theorem 2, we have that ≤µ-persistence is a sufficient condition to
guarantee a formula’s persistence with respect to a k-model update. As will
be shown next, we can provide a unique characterization for µ-persistence. We
first define the notion of ordering preservation as follows.

Definition 8 (Ordering Preservation) Given two formulas α and β. We
say that ordering ≤α preserves ordering ≤β if for any two k-models M1 and
M2, M1 ≤α M2 implies M1 ≤β M2.

The intuition behind ordering preservation is clear. That is, if ≤α preserves
≤β, then for any two k-models M1 and M2, whenever M1 is closer to α than
M2, M1 will be closer to β than M2 as well. Finally, we have the following
important result to characterize µ-persistence.

Theorem 3 Given two formulas α and µ, α is ≤µ-persistent if and only if
≤µ preserves ≤α.

Proof: (⇒) Suppose α is ≤µ-persistent. That is, for any two k-models M1

and M2, M1 ≤µ M2 and M2 |= α implies M1 |= α. So under the constraint
that α is µ-persistent, whenever M1 ≤µ M2, we have M1 ≤α M2. That means,
≤µ preserves ≤α.

(⇐) Suppose ≤µ preserves ≤α. From Definition 8, we have that for any two
k-models M1 and M2, M1 ≤µ M2 implies M1 ≤α M2. Now suppose M1 ≤µ M2.
So we have M1 ≤α M2. From Proposition 7, we have that M2 |= α implies
M1 |= α. From this it follows that α is ≤µ-persistent.
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6 Background on computational complexity

In the rest of this paper, we consider complexity issues of knowledge update.
In particular, we investigate the computational complexity of model checking
for knowledge update.

We first introduce basic notions from complexity theory and refer to [8] for fur-
ther details. Two important complexity classes are P and NP . The class of P
includes those decision problems solvable by a polynomial-time deterministic
Turing machine. The class of NP , on the other hand, consists of those decision
problems solvable by a polynomial-time nondeterministic Turing machine.

Let C be a class of decision problems. The class P C consists of the problems
solvable by a polynomial-time deterministic Truing machine with an oracle for
a problem from C, while the class NP C includes the problems solvable by a
nondeterministic Turing machine with an oracle for a problem in C. By co-C
we mean the class consisting of the complements of the problems in C.

The classes ΣP
k and ΠP

k of the polynomial hierarchy are defined as follows:

ΣP
0 = ΠP

0 = P , and

ΣP
k = NPΣP

k−1 , ΠP
k =co-ΣP

k for all k > 1.

It is easy to see that NP = ΣP
1 and co-NP = ΠP

1 . A problem A is complete
for a class C if A ∈ C and for every problem B in C there is a polynomial
transformation of B to A.

The prototypical ΣP
k -complete and ΠP

k -complete problems are deciding the
validity of quantified Boolean formulas (QBFs) of the form:

Q1X1Q2X2 · · ·QkXkE, k ≥ 1, (1)

where E is a Boolean expression using propositional atoms over alphabets
X1, X2, · · ·, and Xk, and the Qi’s are alternating qualifiers from {∀, ∃} (1 ≤
i ≤ k). If Q1 = ∃, then deciding the validity of (1) is ΣP

k -complete, while
deciding the validity of (1) is ΠP

k -complete if Q1 = ∀.

Let X and Y be two finite set of propositional atoms where X and Y have
the same cardinality, i.e. |X| = |Y |. For convenience, we use notions X ≡ Y

to stand for formula (x1 ≡ y1) ∧ (x2 ≡ y2) ∧ · · · ∧ (xm ≡ ym). Consequently,
X ≡ ¬Y stands for formula (x1 ≡ ¬y1)∧ (x2 ≡ ¬y2) ∧ · · · ∧ (xm ≡ ¬ym). We
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also use ¬X to denote the set {¬xi | xi ∈ X} (or formula
∧

xi∈X ¬xi), and use
notion

∨
¬X to stand for formula

∨
xi∈X ¬xi. For a given formula α, we use

|α| to denote the length of α.

The problem of model checking for knowledge update is described as follows:
Given a knowledge set T , a formula µ, and a k-model M , deciding whether
M ∈ Mod(T �µ). It is well known that the model checking problem for tradi-
tional belief revision and update is located at the lower end of the polynomial
hierarchy from P to ΣP

2 depending on specific revision/update operators and
additional restrictions (if any) [19].

7 Complexity of model checking: General case

In this section, we investigate the complexity of model checking for the general
case of knowledge update. When we say complexity of model checking we mean
the complexity of checking whether M ∈Mod(T � µ) with respect to the size
of M,T and µ. In this we assume that the representation of k-model M is
such that all k-models need the same (or at most polynomial in the size of M)
number of bits for representation.

Lemma 1 Let M = (W,w),M1 = (W1, w1) and M2 = (W2, w2) be three k-
models.

(1) Deciding whether KM \KM2 6= ∅ and KM2 \KM 6= ∅ has time
complexity O(|W | × |W2|).

(2) Deciding whether KM \KM1 ⊆ KM \KM2 has time complexity
O(|W1| × (|W | + |W2|)).

(3) Deciding whether KM1 \KM ⊆ KM2 \KM has time complexity
O(|W1| × |W | × |W2|).

Lemma 2 Let M,M1 and M2 be three k-models. Deciding whether M1 ≤M

M2 can be achieved in polynomial time in the size of the input: M,M1 and
M2.

Proof: According to Definition 2, if w1 6= w2, then M1 ≤M M2 iff (w1 \ w ∪
w \w1) ⊆ (w2 \w∪w \w2). Clearly, this can be verified in polynomial time. If
w1 = w2, then we need to check the following conditions: (i) If W ⊆ W1, then
M1 ≤M M2 iff condition (a) or (b) in Definition 2 is satisfied. From Lemma 1,
we know that deciding whether (a) and (b) are true can be done in polynomial
time. (ii) If W1 ⊆ W , then M1 ≤M M2 iff condition (a) or (c) in Definition 2 is
satisfied. From Lemma 1, deciding whether (c) is true is in P. (iii) If W 6⊂ W1

and W1 6⊂ W , then M1 ≤M M2 iff conditions (b) and (c) should be satisfied.
Again, deciding whether condition (c) is true is in polynomial time. So, the
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problem is in P.

Lemma 3 Let M,M ′ be two k-models and µ a S5 formula. Deciding whether
M ′ ∈ Res(M,µ) is in co-NP (in terms of the size of M,M ′ and µ).

Proof: According to Proposition 3, if M ′ 6∈ Res(M,µ), there must exist an-
other k-model M ′′ such that M ′′ <M M ′. A guess of a k-model M ′′ can be
done in polynomial time. From Lemma 2, deciding whether M ′′ ≤M M ′ is in P
(with respect to the size of M,M ′ and M ′′). Since M ′′ <M M ′ iff M ′′ ≤M M ′

and M ′ 6≤M M ′′, and since we assume that in our representation of k-models,
all k-models need same number of bits for representation, it follows that check-
ing whether M ′′ <M M ′ can be decided in polynomial time. So the problem
is in co-NP.

Theorem 4 Model checking for knowledge update is in ΣP
2 .

Proof: From Definition 4, M ∈ Mod(T � µ) iff for some M ′ ∈ Mod(T ),
M ∈ Res(M ′, µ). A guess of M ′ and check whether M ′ ∈ Mod(T ), i.e.
M ′ |= T , can be achieved in polynomial time. According to Lemma 3, de-
ciding whether M ∈ Res(M ′, µ) can be solved with one call to a co-NP oracle.
So the problem is in ΣP

2 .

The above result shows that model checking for knowledge update is in the
same layer of the polynomial hierarchy as the traditional model based belief
update. It should be noted though that the size of the input for model checking
in knowledge updates is much larger from the input for model checking in belief
updates [19].

7.1 Knowledge gradual update

The hardness can be simply proved by reducing model checking for Winslett’s
update operator [37] to our knowledge update operator, then following Liber-
atore and Schaerf’s result [19], the hardness follows.

However, here we will present a different hardness proof because our proof
gives rise a new subclass of knowledge update problems (yet different from
Winslett’s belief update) which can be viewed as a lower bound for knowledge
update problems that are ΣP

2 -complete for model checking (see sections 8 and
9 for other subclasses of knowledge update problems).

Given T and µ, we say the update of T with µ is knowledge gradual if for any
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k-model M ′ = (W ′, w′) of T �µ, there exists a k-model M = (W,w) of T such
that either W ⊆ W ′ or W ′ ⊆ W . Note that, after performing a knowledge
gradual update, the agent’s knowledge may be decreased or increased (or
without change), and the agent’s actual world may be changed as well.

Example 9 Let T = a ∧ ¬Ka and µ = K¬a. Obviously, T has a unique
k-model M = ({{a}, ∅}, {a}). Then updating M with µ generates a unique
k-model of T � µ: M ′ = ({∅}, ∅). Obviously, M ′ has increased knowledge from
M and the actual world of M ′ is also different from M ’s.

Theorem 5 Model checking for knowledge update is ΣP
2 -complete. The hard-

ness holds even if the update is knowledge gradual.

8 A tractable subclass - knowledge decreased update

In this section, we identify a subclass of knowledge update problems for which
model checking can be achieved in polynomial time. We first introduce a useful
notation. Let α be a S5 formula and φα be an objective formula (i.e. no K

occurs in it) occurring in α. We then say φα is an objective sub-formula of α.
We denote the set of all objective sub-formulas of α as Subo(α). For instance,
given α = Ka ∨K¬b, Subo(α) = {a, b,¬b}.

Definition 9 Given S5 formulas T and µ, updating T with µ is called knowl-
edge decreased if for any k-model M ′ = (W ′, w′) of T � µ, there exists a
k-model M = (W,w) of T such that (i) W ⊆ W ′ and w = w′; and (ii) there
exists some φµ ∈ Subo(µ), such that W = {w∗ | w∗ ∈ W ′ and w∗ |= φµ} or
W = {w∗ | w∗ ∈ W ′ and w∗ |= ¬φµ}.

¿From the above definition, it is easy to see that if an update is knowledge
decreased, then the actual world of the agent’s state will not change, and
the agent’s knowledge can only be decreased. Furthermore, the set of possible
worlds in the agent’s original state can be specifically computed from her
resulting state. This feature leads to a tractable result on the model checking
for knowledge decreased update.

Theorem 6 Model checking for knowledge decreased update can be achieved
in polynomial time.

Proof: Given T , µ and a k-model M ′ = (W ′, w′). Suppose T �µ be knowledge
decreased. To check whether M ′ ∈ Mod(T � µ), we need to do the following
things:

(1) Check whether M ′ |= µ,
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(2) Compute a subset W of W ′ such that for any w∗ ∈ W ′, w∗ ∈ W iff
w∗ |= φµ or w∗ |= ¬φµ for some φµ ∈ Subo(µ),

(3) Check whether (W,w) |= T .

Clearly, Steps 1 and 3 can be done in polynomial time. As |Subo(µ)| ≤ |µ|, it
follows that Step 2 can be also done in polynomial time.

It is worthwhile to mention specific forms of knowledge decreased update
which, as we have presented earlier, have important applications in practi-
cal domains.

Theorem 7 Ignorance and forgetting updates are knowledge decreased.

Proof: The proof directly follows from Propositions 5 and 7 respectively.

Corollary 3 Model checking for ignorance and forgetting updates can be
achieved in polynomial time.

9 An intractable subclass - Knowledge increased update

In this section, we address another subclass of knowledge update problems
whose model checking complexity are intractable but lower than the general
case. Such investigation will be useful for us to design efficient model checking
algorithms for these subclasses of update problems.

As a contrary case to the knowledge decreased update, the knowledge increased
update is defined as follows.

Definition 10 Given T and µ, updating T with µ is called knowledge in-
creased if for any k-model M ′ = (W ′, w′) of T � µ, there exists a k-model
M = (W,w) of T such that (i) W ′ ⊆ W , and w = w′; and (ii) there ex-
ists some φµ ∈ Subo(µ), such that W ′ = {w∗ | w∗ ∈ W and w∗ |= φµ} or
W ′ = {w∗ | w∗ ∈ W and w∗ |= ¬φµ}.

It is clear that if a knowledge increased update is performed to an agent’s
knowledge set, it only increases the agent’s knowledge and does not change the
agent’s actual world. Unfortunately, different from the knowledge decreased
update, the model checking problem for knowledge increased update is not
tractable.

Theorem 8 Model checking for knowledge increased update is NP-complete.
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It is interesting to note that some specific forms of knowledge update we
discussed earlier such as gaining knowledge and sensing updates are knowledge
increased.

Theorem 9 Gaining knowledge and sensing updates are knowledge increased.

Proof: The proof directly follows from Propositions 4 and 6 respectively.

Corollary 4 Model checking for gaining knowledge and sensing updates are
NP-complete.

10 Conclusions

In this paper we developed an explicit notion of knowledge update as an
analogous notion to belief update and illustrated its usefulness in character-
izing the knowledge change of an agent in presence of new knowledge. In our
formulation, knowledge update is particularly relevant in reasoning about ac-
tions and plan verifications when there are sensing or forgetting actions. We
presented simpler alternative characterization of knowledge update for par-
ticular cases, and showed its equivalence to the original characterization. We
discussed when particular knowledge (or ignorance) persists with respect to
a knowledge update. We also undertook a further study about the complex-
ity issue of knowledge update. In particular, we analyzed the complexity of
model checking for knowledge update in the general case and in special cases.
We identify special subcases where the model checking is either tractable or
its complexity is lower than the general case. We expect that these results
will be useful for designing more optimal model checking algorithms in the
implementation of knowledge update.

We believe our work here to be a starting point on knowledge update, and as
evident from the research in belief update and revision in the past decade, a lot
needs to be done in knowledge update. For example, issues such as multi-agent
knowledge update, iterative knowledge update, abductive knowledge update,
minimal knowledge in knowledge update, etc. remain to be explored. Similarly,
in regards to reasoning about actions, additional specific cases of knowledge
update need to be identified and simpler alternative characterization for them
need to be developed. On the other hand, as our knowledge update is de-
veloped based on Kripke models, it may be integrated into model checking
formalism so that a unified system of model checking and model updating
can be used not only for automatic system verification but also for automatic
system modification.
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Appendix: Proofs

Proposition 1 Let M1 = (W1, w1) and M2 = (W2, w2) be two k-models. Then
the following properties hold:

(1) φ ∈ KM1 iff W1 ⊆Mod(φ);
(2) W1 ⊆ W2 iff KM2 ⊆ KM1;
(3) KM1 = KM2 iff W1 = W2;
(4) Let M ′ = (W1 ∪W2, w), then KM ′ = KM1 ∩KM2;
(5) Let w′ ∈ W1 ∩W2 and M ′ = (W1 ∩W2, w

′), then KM1 ∪KM2 ⊆ KM ′.

Note that under the finite model restriction, the above results are simply those
statements presented in Exercise 3.1.7.1, Exercise 3.1.7.2 and Exercise 3.1.6.2
of [23]. For readers’ convenience, here we still present our complete proof as
follows.

Proof: (1). (⇒) From φ ∈ KM1, we have for all w′ ∈ W1, w
′ |= φ (note that

φ is a formula without containing modal operator K). That is, w′ ∈Mod(φ).
So W1 ⊆Mod(φ).

(⇐) Suppose W1 ⊆Mod(φ). Then we have for any w′ ∈ W1, w
′ |= φ. That is,

φ ∈ KM1.

(2). Let
∧
KM1 and

∧
KM2 be the conjunctions of all prime formulas in

KM1 and KM2 respectively. Then it is clear that Mod(
∧
KM1) = W1

and Mod(
∧
KM2) = W2. So we have KM2 ⊆ KM1 iff Mod(

∧
KM1) ⊆

Mod(
∧
KM2) iff W1 ⊆ W2.

(3). In the proof of 2, we stated that Mod(
∧
KM1) = W1 and Mod(

∧
KM2) =

W2. So KM1 = KM2 iff Mod(
∧
KM1) = Mod(

∧
KM2) iff W1 = W2.

(4). According to the definition of M ′, we have φ ∈ KM ′ iff for all w′ ∈
W1 ∪W2, w

′ |= φ iff for all w′ ∈ W1, w
′ |= φ and for all w′′ ∈ W2, w

′′ |= φ iff
φ ∈ KM1 and φ ∈MK2 iff φ ∈ KM1 ∩KM2.

(5). If φ ∈ KM1 ∪ KM2, we have φ ∈ KM1 or φ ∈ KM2. So either for all
w1 ∈ W1, we have w1 |= φ or for all w2 ∈ W2, we have w2 |= φ. In either case,
for any w′ ∈ W1 ∩W2, we have w′ |= φ. That is, φ ∈ KM ′.

Proposition 2 Let M be a k-model. Then ≤M defined in Definition 2 is a
partial ordering.

Proof: From Definition 2, it is clear that ≤M is reflexive and antisymmet-
ric. Now we prove ≤M is also transitive. Let M = (W,w), M1 = (W1, w1),

29



M2 = (W2, w2) and M3 = (W3, w3) be k-models, and M1 ≤M M2 and
M2 ≤M M3. Now we prove M1 ≤M M3.
Case 1. Suppose M1 ≤M M2 is due to condition (1) in Definition 2, i.e.
(w1\w∪w\w1) ⊂ (w2\w∪w\w2). Consider M2 ≤M M3. According to Defini-
tion 2, either condition (1) or (2) is satisfied. If condition (1) is satisfied, then
(w2\w∪w\w2) ⊂ (w3\w∪w\w3). This follows (w1\w∪w\w1) ⊂ (w3\w∪w\w3).
So M1 ≤M M3. If condition (2) is satisfied, it means w2 = w3, it also follows
(w1 \ w ∪ w \ w1) ⊂ (w3 \ w ∪ w \ w3), and therefore M1 ≤M M3.
Case 2. Now suppose M1 ≤M M2 is due to condition (2) in Definition 2, i.e.
w1 = w2 and one of conditions (i), (ii), (iii), (iv), or (v) is satisfied. If M2 ≤M

M3 is due to condition (1) in Definition 2, i.e. (w2\w∪w\w2) ⊂ (w3\w∪w\w3),
it follows that M1 ≤M M3 because w1 = w2. Suppose M2 ≤M M3 is due to
condition (2) in Definition 2, that is, w2 = w3 and one of conditions (i), (ii),
(iii), (iv), or (v) is satisfied. Here we only consider the following three cases,
while all other cases can be proved in a similar way.
Case 2.1. Both M1 ≤M M2 and M2 ≤M M3 are due to condition (2) and (ii)
in Definition 2. Under this case, we can only have (a) KM3 ⊂ KM2 ⊂ KM1 ⊂
KM ; or (b) KM2 ⊂ KM1 ⊂ KM but KM \KM2 6= ∅ and KM2 \KM 6= ∅.
Clearly, in either case, we have M1 ≤M M3.
Case 2.2. M1 ≤M M2 is due to condition (2) and (ii) and M2 ≤M M3 are due
to condition (2) and (iii) in Definition 2. By analyzing Definition 2, it con-
cludes that this situation will never occur. This is because from M1 ≤M M2,
we can only have either KM2 ⊂ KM or KM \KM2 6= ∅ and KM2 \KM 6= ∅,
and from M2 ≤M M3, we can only have KM ⊂ KM2. Obviously, these two
cases conflict with each other.
Case 2.3. M1 ≤M M2 is due to condition (2) and (ii) and M2 ≤M M3 are
due to condition (2) and (iv) in Definition 2. Using (2)(ii), we will have
KM1 ⊂ KM and KM2 \ KM 6= ∅ and KM \ KM2 6= ∅. Using (2)(iv)
we have KM2 \ KM ∪ KM \ KM2 ⊆ KM3 \ KM ∪ KM \ KM3. Thus we
have KM1 ⊂ KM and KM3 \ KM 6= ∅ and KM \ KM3 6= ∅. This implies
M1 ≤M M3.

Theorem 1 Knowledge update operator � defined in Definition 4 satisfies
Katsuno and Mendelzon’s update postulates (U1)-(U8).

Proof: From Definitions 3 and 4, it is easy to verify � satisfies postulates
(U1)-(U4). For illustration purposes we give the proof of (U1). Let (W,w) be
an arbitrary k-model of T � µ. To show (U1) we need to show that (W,w) |=
µ. By Definition 4, there must exist a model M = (W ′, w′) of T such that
(W,w) ∈ Res(M,µ). By Definition 3, for (W,w) to be in Res(M,µ), it must
be the case that (W,w) |= µ.

Now we prove � satisfies (U5). To prove that (T � µ) ∧ α |= T � (µ ∧ α), it is
sufficient to prove that for each k-model of T , say M , Res(M,µ)∩Mod(α) ⊆
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Res(M,µ ∧ α). In particular, we need to show for any M ′ ∈ Res(M,µ) ∩
Mod(α), M ′ ∈ Res(M,µ ∧ α). Suppose M ′ 6∈ Res(M,µ ∧ α). According to
Definition 3, we have (1) M ′ 6|= µ ∧ α; or (2) there exists another k-model
M ′′ such that M ′′ |= µ ∧ α and M ′′ <M M ′. If it is case (1), it follows that
M ′ 6∈ Res(M,µ) ∩ Mod(α). Then the result holds. If it is case (2), it also
implies that M ′′ |= µ and M ′′ <M M ′. That means, M ′ 6∈ Res(M,µ) from
Definition 3. The result still holds.

Now we prove � satisfies (U6). Similarly, to prove � satisfies (U6), we only
need to prove for any k-model of T , say M , if Res(M,µ1) ⊆ Mod(µ2)
and Res(M,µ2) ⊆ Mod(µ1), then Res(M,µ1) = Res(M,µ2). We first prove
Res(M,µ1) ⊆ Res(M,µ2). Let M ′ ∈ Res(M,µ1). Then M ′ |= µ2. Suppose
M ′ 6∈ Res(M,µ2). It follows that there exists another M ′′ ∈ Res(M,µ2) such
that M ′′ <M M ′. Also note that M ′′ |= µ1. This contradicts the fact that
M ′ ∈ Res(M,µ1). This proves Res(M,µ1) ⊆ Res(M,µ2). Similarly, we can
prove Res(M,µ2) ⊆ Res(M,µ1).

Now we prove � satisfies (U7). Since T is complete, it follows that T has a
unique k-model M . So we only need to prove Res(M,µ1) ∩ Res(M,µ2) ⊆
Res(M,µ1 ∨ µ2). Let M ′ ∈ Res(M,µ1) ∩ Res(M,µ2). Suppose M ′ 6∈
Res(M,µ1 ∨ µ2). Then there exists a k-model M ′′ ∈ Res(M,µ1 ∨ µ2) such
that M ′′ <M M ′. Note that M ′′ |= µ1 ∨ µ2. If M ′′ |= µ1, it will follow that
M ′ 6∈ Res(Mu, µ1), otherwise, M ′ 6∈ Res(Mu, µ2). In either case, we have
M ′ 6∈ Res(M,µ1) ∩ Res(M,µ2). This proves the result.

Finally, the fact that � satisfies (U8) is obtained straightforward from Defini-
tions 3 and 4.

Proposition 4 Consider T and φ where φ is objective and T |= φ. Then

(1) If M ′ = (W ′, w′) is a k-model of T � Kφ, then there exists a k-model
M = (W,w) of T such that w = w′ and W ′ = W (w,φ);

(2) If M = (W,w) is a k-model of T , then M ′ = (W (w,φ), w) is a k-model of
T �Kφ.

Proof: To prove this proposition, we first prove the following result:

Consider T and Kφ where φ is objective and T |= φ. Let M = (W,w)
be a k-model of T and M ′ = (W (w,φ), w). For any M ′′ ∈ Mod(Kφ) and
M ′′ 6= M ′, M ′ <M M ′′.

It is easy to see that for any M ′′ = (W ′′, w′′) ∈ Mod(Kφ), where w′′ 6= w,
M ′ <M M ′′. Now let us consider M ′′ = (W ′′, w), where W ′′ 6= W (w,φ). We
consider the following possible cases.
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Case 1. W ′′ ⊂ W (w,φ) (proper set inclusion). Since W (w,φ) ⊆ W , from Propo-
sition 3, we have KM ⊆ KM ′ ⊂ KM ′′, and hence KM ′ \KM ⊂ KM ′′ \KM .
From Definition 2, it follows M ′ ≤M M ′′ and M ′′ 6≤M M ′, that is, M ′ <M M ′′.
Case 2. W (w,φ) ⊂ W ′′ (proper set inclusion). Without loss of generality, we
assume W ′′ = W (w,φ) ∪ {wi}, where wi |= φ. Clearly, wi 6∈ W otherwise we
will have wi ∈ W (w,φ) and then W ′′ = W (w,φ). Since W ′′ 6⊆ W and W 6⊆ W ′′,
from Proposition 3, we have KM 6⊆ KM ′′ and KM ′ 6⊆ KM . Then it must be
the case that KM \KM ′′ 6= ∅ and KM ′′ \KM 6= ∅. From Definition 2 (i.e.
(iii) in condition 2), we know that M ′ ≤M M ′′ and M ′′ 6≤M M ′.
Case 3. W (w,φ) 6⊂ W ′′ and W ′′ 6⊂ W (w,φ). Without loss of generality, we can
assume that W ′′ = W (w,φ) ∪ {wi} \ {wj}, where wj ∈ W (w,φ). Since we require
that M ′′ |= Kφ, it follows that wi |= φ. Also, from the construction of W (w,φ),
we know that wi 6∈ W otherwise it reduces to the case that W ′′ ⊆ W (w,φ).
Therefore, W ′′ 6⊆ W and W 6⊆ W ′′. From the above discussion, it follows that
KM \ KM ′′ 6= ∅ and KM ′′ \ KM 6= ∅. So from Definition 2, we know that
M ′ ≤M M ′′ and M ′′ 6≤M M ′.

Now by using the above result, we prove statements (1) and (2).

Proof of (1). M ′ = (W ′, w′) is a k-model of T � Kφ iff M ′ ∈ Mod(T � Kφ)
iff there exists a k-model M of T , such that M ′ ∈ Res(M,Kφ) iff M ′ ∈
Min(Mod(Kφ),≤M ) for some M ∈Mod(T ). We now argue that this implies
W ′ = W (w,φ) and w′ = w. Suppose this is not the case. Then let M ∗ =
(W (w,φ), w). By the above result we then have M ∗ <M M ′. But this contradicts
with M ′ ∈ Min(Mod(Kφ),≤M ). Hence our assumption is wrong and W ′ =
W (w,φ) and w′ = w.

Proof of (2). Let M = (W,w) be a k-model of T . It is easy to see that

M ′ = (W (w,φ), w) is a model of Kφ. All we need to show is that M ′ ∈
Min(Mod(Kφ),≤M ). This follows from the above result we have proved.

Proposition 5 Consider T and φ where φ is objective.

(1) If M ′ = (W ′, w′) is a k-model of T � ¬Kφ, then there exists a k-model
M = (W,w) of T such that
(i) if M |= Kφ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= ¬φ,
(ii) otherwise, w′ = w and W ′ = W ;

(2) If M = (W,w) is a k-model of T , then M ′ = (W ′, w′) is a k-model of
T � ¬Kφ, where
(i) if M |= Kφ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= ¬φ,
(ii) otherwise, w′ = w and W ′ = W .

Proof: To prove this proposition, we first prove the following result:

Consider T and φ where φ is objective. Let M = (W,w) be a k-model of T ,
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M |= Kφ, and M ′ = (W ′, w), where W ′ = W ∪ {w∗}, w∗ |= ¬φ. Then for
any k-model M ′′ ∈Mod(¬Kφ) and M ′′ 6= M ′, M ′ <M M ′′.

Since M = (W,w) is a k-model of T it is easy to see that for two k-models
M ′ = (W ′, w′) and M ′′ = (W ′′, w′′) such that M ′ |= µ and M ′′ |= µ, and
w′ = w and w′′ 6= w, M ′ <M M ′′. So M ′′ can not be a k-model of T � µ. In
other words, a k-model of T � µ must have the form M ′ = (W ′, w).

From Proposition 3, to prove the result, we only need to show that for any
k-model M ′′ = (W ′′, w) such that M ′′ ∈ Mod(¬Kφ) and W ′′ 6= W ∪ {w∗}
where w∗ |= ¬φ, M ′ <M M ′′.

Note M |= Kφ. Let M ′ = (W ∪ {w∗}, w), where w∗ |= ¬φ. We first show that
for any k-model M ′′ = (W ′′, w) such that M ′′ |= ¬Kφ and W ′′ does not have
a form of W ∪ {wi}, M

′ <M M ′′.

Case 1. Suppose W ′ ⊂ W ′′. This implies that KM ′′ ⊆ KM ′ ⊆ KM from
Proposition 1. So M ′ <M M ′′ according to Definition 2 (condition (b)).
Case 2. Suppose W ′′ ⊂ W ′. Without loss of generality, we assume that W ′′ =
W ∪{w∗} \ {wj} where wj ∈ W . This follows that W 6⊂ W ′′ and W ′′ 6⊂ W . So
it is the case that KM \KM ′′ 6= ∅ and KM ′′ \KM 6= ∅. On the other hand,
we have W ⊆ W ′, from Definition 2 (i.e. condition (a)), we have M ′ <M M ′′.
Case 3. Suppose W ′′ 6⊂ W ′ and W ′ 6⊂ W ′′. Without loss of generality, we can
assume that W ′′ = W ∪ {w∗, wi} \ {wj}, where wj ∈ W and w∗, wi 6∈ W .
Again, this results to the situation that W 6⊂ W ′′ and W ′′ 6⊂ W . From the
above discussion, it implies that M ′ <M M ′′.

Now we show that for any k-model M ′′ that is of the form M ′′ = (W ∪{wi}, w)
and wi is any world such that wi |= ¬φ (note M |= Kφ), M ′ 6≤M M ′′ and
M ′′ 6≤M M ′. Suppose M ′ ≤M M ′′. Since W ⊂ W ∪ {w∗}, then according
to Definition 2, condition (a) or (b) should be satisfied. As W ⊂ W ∪ {wi},
condition (a) can not be satisfied. So condition (b) must be satisfied. That
is, for any ψ such that M |= Kψ and M ′ 6|= Kψ, M ′′ |= Kψ. However, this
implies that KM \KM ′ ⊆ KM \KM ′′, and also KM ∩KM ′′ ⊆ KM ∩KM ′.
From Proposition 1 (Results 2 and 4), it follows that W ∪ W ′ ⊆ W ∪ W ′′,
that is, W ∪ {w∗} ⊆ W ∪ {wi}. Obviously, this is not true. Similarly, we can
show that M ′′ 6≤M M ′. That means, both M ′ and M ′′ are in Res(M,µ). This
completes our proof for the above result.

By using this result, we now prove statements (1) and (2).

proof of (1). M ′ = (W ′, w′) is a k-model of T � ¬Kφ iff M ′ ∈ Mod(T � ¬Kφ)
iff M ′ ∈ Min(Mod(¬Kφ),≤M ) for some M ∈ Mod(T ). Now we prove that
if M |= Kφ then W ′ = W ∪ {w∗}, where w∗ |= ¬φ and w′ = w; otherwise
M ′ = M = (W,w).
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First, if M 6|= Kφ, that means |= ¬Kφ. In this case, according to Definition
3, Res(M,¬Kφ) = {M}, i.e. no any change will be made. So M ′ = M .
Now we consider M |= Kφ. We will show that in this case w′ = w and
W ′ = W ∪ {w∗}, where w∗ |= ¬φ. Assume that this is not the case. So either
w′ 6= w or W ′ 6= W ∪ {w∗}, where w∗ |= ¬φ. If w′ 6= w, it is quite clear
that for any M ′′ = (W ′′, w) ∈ Mod(¬Kφ), M ′′ <M M ′, this contradicts with
M ′ ∈ Min(Mod(¬Kφ),≤M ). Now assume W ′ 6= W ∪ {w∗}, where w∗ |= ¬φ.
In this case, from the above result we proved, it follows that there exists a
k-model M∗ = (W ∗, w), where W ∗ = W ∪{w∗}, where w∗ |= ¬φ, M∗ <M M ′.
Hence it also contradicts with M ′ ∈Min(Mod(¬Kφ),≤M ).

Proof of (2). Let M = (W,w) be a k-model of T and M |= Kφ. It is easy to
see that M ′ = (W ′, w), where W ′ = W ∪ {{w∗} and w∗ |= ¬φ is a k-model of
¬Kφ. All we need to show it aht M ′ ∈Min(Mod(¬Kφ,≤M ). This is followed
from the above result we have proved. On the other hand, if M 6|= Kφ, then
it is obviously Res(M,¬Kφ) = {M} which implies M ′ = M .

Proposition 6 Consider T and µ ≡ Kφ ∨K¬φ where φ is objective.

(1) If M ′ = (W ′, w′) is a k-model of T � (Kφ ∨ K¬φ), then there exists a
k-model M = (W,w) of T such that w = w′ and W ′ = W (w,φ), or w = w′

and W ′ = W (w,¬φ);
(2) If M = (W,w) is a k-model of T , then M ′ = (W ′, w′) is a k-model

of T � (Kφ ∨ K¬φ), where w′ = w and W ′ = W (w,φ), or w′ = w and
W ′ = W (w,¬φ).

Proof: We first prove the following result:

Consider T and µ ≡ Kφ ∨ K¬φ where φ is objective. Let M = (W,w) be
a k-model of T , and M ′ = (W (w,φ), w) or M ′ = (W (w,¬φ), w). Then for any
M ′′ ∈ Mod(Kφ ∨K¬φ) and M ′′ 6= M ′, M ′ <M M ′′.

This result can be proved in the same way as the proof of the result in the
proof of Proposition 4 described earlier.

Now by using this result, we prove statements (1) and (2).

Proof of (1). M ′ = (W ′, w′) is a k-model of T � (Kφ ∨ K¬φ) iff M ′ ∈
Mod(T � (Kφ ∨ K¬φ)) iff M ′ ∈ Min(Mod(Kφ ∨ K¬φ),≤M ) for some
M ∈ Mod(T ). Now we show that W ′ = W (w,φ) and w′ = w, or W ′ = W (w,¬φ)

and w′ = w. Suppose this is not the case. Then let M ∗ = (W (w,φ), w) or
M∗ = (W (w,¬φ), w). But the above result, we have M ∗ <M M ′. This contra-
dicts with M ′ ∈Min(Mod(Kφ∨K¬φ),≤M ). Hence our assumption is wrong
and it must be the case W ′ = W (w,φ) or W ′ = W (w,¬φ).
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proof of (2). Let M = (W,w) be a k-model of T . It is easy to see that

M ′ = (W (w,φ), w) or M ′ = (W (w,¬φ), w) is a k-model of Kφ ∨ K¬φ. All we
need to show is that M ′ ∈Min(Mod(Kφ∨K¬φ),≤M ). This follows from the
above result we proved.

Proposition 7 Consider T and µ ≡ ¬Kφ ∧ ¬K¬φ where φ is objective.

(1) If M ′ = (W ′, w′) is a k-model of T � µ, then there exists a k-model
M = (W,w) of T such that
(i) if M |= Kφ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= ¬φ;
(ii) if M |= K¬φ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= φ;
(iii) otherwise, w′ = w and W ′ = W .

(2) If M = (W,w) is a k-model of T , then M ′ = (W ′, w) is a k-model of
T � µ where
(i) if M |= Kφ, then W ′ = W ∪ {w∗}, where w∗ |= ¬φ;
(ii) if M |= K¬φ, then W ′ = W ∪ {w∗}, where w∗ |= φ;
(iii) otherwise, W ′ = W .

Proof: We first prove the following result:

Consider T and µ = ¬Kφ ∧ ¬K¬φ. Let M = (W,w) be a k-model of T ,
and M ′ = (W ′, w), where W ′ = W ∪ {w∗} and w∗ |= ¬φ if M |= Kφ,
W ′ = W ∪ {w∗} and w∗ |= φ if M |= K¬φ, and W ′ = W otherwise. Then
for any k-model M ′′ ∈Mod(¬Kφ ∧ ¬K¬φ) and M ′ 6= M ′, M ′ <M M ′′.

The proof for this result is similar to the proof of the result in Proposition 5.
Let µ = ¬Kφ∧¬K¬φ. Firstly, it is easy to see that for any M ′′ = (W ′′, w′′) ∈
Mod(¬Kφ ∧ ¬K¬φ) where w′′ 6= w, M ′ <M M ′′. So, to prove the result, we
only need to show that for any k-model M ′′ = (W ′′, w) ∈Mod(¬Kφ∧¬K¬φ)
and W ′′ 6= W ∪ {w∗}, M ′ <M M ′′.

Let M ′ = (W ∪ {w∗}, w), where w∗ |= ¬φ if M |= Kφ and w∗ |= φ if
M |= K¬φ. We first prove that for any k-model M ′′ = (W ′′, w) such that
M ′′ |= µ and W ′′ does not have a form of W ∪ {wi}, M

′ <M M ′′.

Suppose M |= Kφ. Clearly M ′ |= µ.
Case 1. Consider a k-model M ′′ = (W ′′, w) where W ′ = W ∪ {w∗} ⊂ W ′′.
Note that M ′′ |= µ as well. However, from Proposition 1, we have KM ′′ ⊂
KM ′ ⊆ KM . So M ′ <M M ′′ according to Definition 2 (i.e. condition (b)).
Case 2. Suppose W ′′ ⊂ W ′. Without loss of generality, we assume that W ′′ =
W ∪{w∗} \ {wj} where wj ∈ W . This follows that W 6⊂ W ′′ and W ′′ 6⊂ W . So
it is the case that KM \KM ′′ 6= ∅ and KM ′′ \KM 6= ∅. On the other hand,
we have W ⊆ W ′, from Definition 2 (i.e. condition (a)), we have M ′ <M M ′′.
Case 3. Now suppose W ′′ 6⊂ W ′ and W ′ 6⊂ W ′. Without loss of generality, we
can assume that W ′′ = W ∪ {w∗, wi} \ {wj}, where wj ∈ W and w∗, wi 6∈ W .
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Again, this results to the situation that W 6⊂ W ′′ and W ′′ 6⊂ W . From the
above discussion, it implies M ′ <M M ′′.

Following the same way as above, we can prove that under the condition
that M |= K¬φ and M ′ = (W ∪ {w∗}, w) where w∗ |= φ, for any k-model
M ′′ = (W ′′, w) such that M ′′ |= µ and W ′′ does not have a form of W ∪ {wj}
M ′ <M M ′′.

Now we show that for any k-model M ′′ that is of the form M ′′ = (W ∪
{wi}, w) and wi is any world such that wi |= ¬φ if M |= Kφ or wi |= φ

if M |= K¬φ, M ′ 6≤M M ′′ and M ′′ 6≤M M ′. Suppose M ′ ≤M M ′′. Since
W ⊂ W ∪{w∗}, then according to Definition 2, condition (a) or (b) should be
satisfied. As W ⊂ W ∪ {wi}, condition (a) can not be satisfied. So condition
(b) must be satisfied. That is, for any ψ such that M |= Kψ and M ′ 6|= Kψ,
M ′′ |= Kψ. However, this implies that KM \KM ′ ⊆ KM \KM ′′, and also
KM ∩KM ′′ ⊆ KM ∩KM ′. From Proposition 1 (Results 2 and 4), it follows
that W ∪W ′ ⊆ W ∪W ′′, that is, W ∪ {w∗} ⊆ W ∪ {wi}. Obviously, this is
not true. Similarly, we can show that M ′′ 6≤M M ′. That means, both M ′ and
M ′′ are in Res(M,µ). This completes our proof for this result.

By using the above result, we now prove statements (1) and (2).

Proof of (1). M ′ is a k-model of T � µ iff M ′ ∈ Min(Mod(µ),≤M ) for some
M ∈ Mod(T ). We show that M ′ must be of the form as stated in statement
(1). Similarly to the proof of Proposition 5 earlier, if M ′ is not of such form,
then for a k-model M ∗ which has such form, we have M ∗ <M M ′ according
to the above result.

Proof of (2). Let M = (W,w) ∈ Mod(T ). All we need to show is that for
any M ′ that is of the form as stated in (2), M ′ ∈ Min(Mod(µ),≤M ). This is
indeed the case as showed by the above result.

Lemma 1 Let M = (W,w),M1 = (W1, w1) and M2 = (W2, w2) be three
k-models.

(1) Deciding whether KM \KM2 6= ∅ and KM2 \KM 6= ∅ has time
complexity O(|W | × |W2|).

(2) Deciding whether KM \KM1 ⊆ KM \KM2 has time complexity
O(|W1| × (|W | + |W2|)).

(3) Deciding whether KM1 \KM ⊆ KM2 \KM has time complexity
O(|W1| × |W | × |W2|).

Proof: Result 1 is equivalent to deciding whether W 6⊂ W2 and W2 6⊂ W

(proper set inclusion). Obviously, this can be verified in O(|W | × |W2|) time.
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Now we prove Result 2. From set inclusion and intersection properties, it is
easy to see that KM \KM1 ⊆ KM \KM2 iff KM2∩KM ⊆ KM1∩KM . Then
from Proposition 1 (Results 2 and 4), it follows thatKM2∩KM ⊆ KM1∩KM
iff W1 ∪W ⊆ W2 ∪W . Obviously, checking whether W1 ∪W ⊆ W2 ∪W can
be done in time O(|W1| × (|W | + |W2|)).

Finally we prove Result 3. First it is easy to show that KM1 \KM ⊆ KM2 \
KM iff KM1 ∪ KM ⊆ KM2 ∪ KM iff KM1 ⊆ KM2 ∪ KM . We will now
show that

KM1 6⊆ KM2 ∪KM if and only if there exists w ∈ W and w2 ∈ W2, such
that w,w2 6∈ W1.

(⇒) Let φ ∈ KM1 and φ 6∈ KM2∪KM . This implies φ 6∈ KM2 and φ 6∈ KM .
This implies there exists w2 ∈ W2 and w ∈ W such that w2 6|= φ and w 6|= φ.
These w and w2 are both not in W1 as φ is true in all worlds of W1.

(⇐) Let φ = ¬(
∧
w)∧¬(

∧
w2).

5 It is easy to see that φ 6∈ KM2 and φ 6∈ KM ,
and φ holds in all worlds in W1. Hence, KM1 6⊆ KM2 ∪KM .

Now to determine if there exists w ∈ W and w2 ∈ W2, such that w,w2 6∈ W1,
we need to go through each worlds in W and W2 and check if they are in W1

or not. All these checks can be done in time O(|W1| × |W | × |W2|).

To prove Theorem 5, we need to prove the following lemma first.

Lemma 4 Let X, Y, X̂, Ŷ be sets of propositional atoms and a be a proposi-
tional atom, where |X| = |X̂|, |Y | = |Ŷ | and any two sets of X, Y, X̂, Ŷ and
{a} are disjoint. Suppose φ is an objective formula only using letters from set
X ∪ Y . Let T and µ be the following two S5 formulas respectively:

T = γ1 ∨ γ2, where
γ1 = (((X ≡ X̂) ≡ φ) ≡ a) ∧ (Y ∧ ¬Ŷ )∧

¬K¬(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ),
γ2 = (((X ∧ ¬X̂) ≡ ¬φ) ≡ ¬a) ∧ Ŷ , and
µ = K(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ )∨

K(¬a ∧X ∧ ¬X̂ ∧ (
∨
¬Y ) ∧ Ŷ )∨

K(¬a ∧X ∧ ¬X̂∧ Y ∧ Ŷ ) 6 .

Then T � µ is knowledge gradual.

5 Note that we use notion
∧
w to denote the conjunction of all propositional atoms

that occur in w. If an atom is not in w, its negation will be in
∧
w. For instance, if

w = {a, c}, then
∧
w = a ∧ ¬b ∧ c when a, b and c are the only propositional atoms

in the language.
6 Recall that

∨
¬Y =

∨
yi∈Y ¬yi.
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Proof: To prove T �µ to be knowledge gradual, we need to show that for any
k-model M = (W,w) ∈ Mod(T ), if M ′ = (W ′, w′) ∈ Res(M,µ), then either
W ⊆ W ′ or W ′ ⊆ W . From the construction of T , it is easy to see that if
M ∈ Mod(T ), then either M |= γ1 or M |= γ2, but M 6|= γ1 ∧ γ2. Based on
this observation, our proof consists of two cases.

Case 1. Let M = (W,w) ∈Mod(γ1). Since M |= γ1, we have

w = X1 ∪ X̂1 ∪ Y ∪ {a}, where X1 ∪ Y |= φ for some X1 ⊆ X.

Furthermore, since M |= ¬K¬(a ∧ X ∧ ¬X̂ ∧ Y ∧ Ŷ ), there exists a world
w∗ ∈ W such that

w∗ = X ∪ Y ∪ Ŷ ∪ {a}.

Now we specify a k-model of µ as follows:

M∗ = ({w∗}, w∗).

It is easy to see that M ∗ |= K(a∧X ∧¬X̂ ∧Y ∧ Ŷ ). So M∗ |= µ. Furthermore,
M∗ is the unique k-model of K(a ∧ X ∧ ¬X̂ ∧ Y ∧ Ŷ ). We prove M ∗ is the
unique k-model in Res(M,µ).

Note Diff(w,w∗) = (X \X1) ∪ X̂1 ∪ Ŷ . Besides M∗, µ has two other types
of k-models:

M1 = (W1, w1), where w1 = X ∪ Y1 ∪ Ŷ , where Y1 ⊂ Y (Y1 6= Y ), and
M2 = (W2, w2), where w2 = X ∪ Y ∪ Ŷ .

Note that

M1 |= K(¬a ∧X ∧ ¬X̂ ∧(
∨
¬Y ) ∧ Ŷ ), and

M2 |= K(¬a ∧X ∧ ¬X̂∧ Y ∧ Ŷ ).

Consider

Diff(w,w1) = (X \X1) ∪ X̂1∪ (Y \ Y1) ∪ Ŷ ∪ {a},
Diff(w,w2) = (X \X1) ∪ X̂1 ∪ Ŷ ∪ {a}.

Clearly, we have

Diff(w,w∗) ⊂ Diff(w,w1), and
Diff(w,w∗) ⊂ Diff(w,w1).

So Res(M,µ) = {M ∗}. Also observe that M ∗ = ({w∗}, w∗), {w∗} ⊂ W .

Case 2. Let M = (W,w) ∈Mod(γ2). We have
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w = X ∪ Y1 ∪ Ŷ , where X ∪ Y1 |= ¬φ for some Y1 ⊆ Y .

If Y1 6= Y , then we have

w |= ¬a ∧X ∧ ¬X̂ ∧ (
∨
¬Y ) ∧ Ŷ ),

this implies that there exists a subset W1 of W where for each wi ∈ W1,

wi |= (¬a ∧X ∧ ¬X̂ ∧ (
∨
¬Y ) ∧ Ŷ ).

By specifying W1 to be the maximal such subset of W , it is easy to note that
M1 = (W1, w) is a k-model in Res(M,µ).

On the other hand, if Y1 = Y , then we have

w |= (¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ),

this implies that there exists a subset W2 of W where for each wi ∈ W2,

wi |= (¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ).

Similarly, by specifying W2 to be the maximal such subset of W , it is easy to
note that M2 = (W2, w) is a k-model in Res(M,µ).

Since in both cases, we have W1 ⊆ W and W2 ⊆ W , this follows that for any
k-model M of T where M |= γ2, every resulting k-model after updating M

with µ only increases the knowledge from M .

Theorem 5 Model checking for knowledge update is ΣP
2 -complete. The hard-

ness holds even if the update is knowledge gradual.

Proof: According to Theorem 4, we only need to prove the hardness part. This
part is based on a variation of the proof of Lemma 4. We prove the hardness
by giving a polynomial transformation from deciding the validity of ∃X∀Y E,
where E is a Boolean expression using propositional atoms over X ∪ Y . We
construct T , µ and a k-model M ∗ over propositional atoms X∪Y ∪X̂∪Ŷ ∪{a},
where |X̂| = |X| and |Ŷ | = |Y |, and any two sets among X, Y, X̂, Ŷ and {a}
are disjoint.

T = γ1 ∨ γ2, where
γ1 = (((X ≡ X̂) ≡ E) ≡ a) ∧ (Y ∧ ¬Ŷ )∧

¬K¬(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ),
γ2 = (((X ∧ ¬X̂) ≡ ¬E) ≡ ¬a) ∧ Ŷ ,
µ = K(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ )∨

K(¬a ∧X ∧ ¬X̂ ∧ (
∨
¬Y ) ∧ Ŷ )∨

K(¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ),
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M∗ = (W ∗, w∗), where
W ∗ = {w∗}, w∗ = X ∪ Y ∪ Ŷ ∪ {a}.

Note that

M∗ |= K(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ).

So M∗ is a k-model of µ. Furthermore, it is the unique k-model of K(a∧X ∧
¬X̂ ∧Y ∧ Ŷ ). From Lemma 10, we know that T �µ is knowledge gradual. Now
we will show that M ∗ is a k-model of T � µ if and only if ∃X∀Y E is valid.

(⇒) Suppose ∃X∀Y E is valid. Then for some X1 ⊆ X, X1 ∪ Y |= E. We
specify a k-model of γ1 as follows:

M = (W,w), where w = X1 ∪ X̂1 ∪ Y ∪ {a}.

Since M |= ¬K¬(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ), it is clear that the world w∗ must be
in W , i.e. w∗ ∈ W . With the same justification as described in the proof of
Lemma 4, we conclude that M ∗ is a k-model of updating M with µ.

(⇐) Suppose ∃X∀Y E is not valid. That is, ∀X∃Y ¬E is valid. Then X ∪Y1 |=
¬E for some Y1 ⊆ Y . In this case, T has the following type of k-models:

M = (W,w), where w = X ∪ Y1 ∪ Ŷ .

Note that w |= ((X ∧ ¬X̂ ≡ ¬E ≡ ¬a) ∧ Ŷ ). That is, M is a k-model of γ2.

If Y1 6= Y , then we have

w |= (¬a ∧X ∧ ¬X̂ ∧(
∨
¬Y ) ∧ Ŷ ).

We now specify a k-model of µ as follows: M1 = (W1, w1), where w1 = w and
W1 is the maximal subset of W such that for each wi ∈ W1,

wi |= (¬a ∧X ∧ ¬X̂ ∧ (
∨
¬Y ) ∧ Ŷ ).

Since

Diff(w,w∗) = (X \X1) ∪ X̂1 ∪ Ŷ , and
Diff(w,w1) = ∅ ⊂ Diff(w,w∗),

M∗ is not a k-model in Res(M,µ).

If Y1 = Y , then we have

w |= (¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ).

Again, we can specify a k-model of µ as follows: M2 = (W2, w2), where w2 = w
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and W2 is maximal subset of W such that for each wi ∈ W2,

wi |= (¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ).

Since Diff(w,w2) = ∅ ⊂ Diff(w,w∗), M∗ is not a k-model in Res(M,µ) in
this case either.

Finally, suppose for some X1 ⊆ X and Y1 ⊆ Y , E is evaluated to be true on
X1∪Y1, i.e. X1∪Y1 |= E. Without loss of generality, we can assume Y1 6= Y 7 .
This implies that γ1 does not have a k-model under this situation. Therefore,
if ∃X∀Y E is not valid, all k-models of T must be k-models of γ2.

Theorem 8 Model checking for knowledge increased update is NP-complete.

Proof: Membership proof. Given T , µ and M ′ = (W ′, w′). To deciding
whether M ′ ∈Mod(T �µ), we only need to show that for some M ∈Mod(T ),
M ′ ∈ Res(M,µ). A guess of M = (W,w) and verifying M |= T can be done in
polynomial time. Since T �µ is knowledge increased, to decide M ′ ∈ Res(M,µ),
we only need to check: (1) w = w′, and (2) for any w∗ ∈ W , w∗ ∈ W ′ iff
w∗ |= φµ or w∗ |= ¬φµ for some φµ ∈ Subo(µ). Obviously, both (1) and (2)
can be checked in polynomial time. So the problem is in NP.

Hardness proof. The hardness is proved by transforming the NP-complete
SAT problem to a gaining knowledge update that has been showed to be
knowledge increased. Let E be a CNF on the set of propositional atoms X.
We construct formulas T , µ and a k-model M ′ over two disjoint sets X and
X̂ where |X| = |X̂|.

T = (X ≡ X̂) ∧ ¬K(X ≡ X̂),
µ ≡ K(X ≡ X̂ ∨ ¬E), and
M ′ = (W ′, w′), where
W ′ = {w′}, w′ = X ∪ X̂.

Clearly, M |= µ. We will show that E is satisfiable iff M ′ ∈Mod(T �µ). Note
that since T |= X ≡ X̂ ∨ ¬E and µ = K(X ≡ X̂ ∨ ¬E), T � µ is a gaining
knowledge update that is knowledge increased according to Theorem 5.

(⇒) Suppose E is satisfiable. Let X1 ⊆ X such that X1 |= E. We specify a
k-model as follows:

M∗ = (W ∗, w∗),

7 Note that this assumption is always feasible. For instance, if X1 ∪ Y |= E, we
can expand Y to be Y ′ by adding a new atom y′ into Y to make Y 6= Y ′, i.e.
Y ′ = Y ∪ {y′}, and modify E to be E ′ = E ∧ ¬y′ such that X1 ∪ Y |= E′ but
X1 ∪ Y

′ 6|= E′.
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W ∗ = {w∗, w′′},
w∗ = w′ = X ∪ X̂, and
w′′ = X1 ∪ X̂1, where X̂1 = {x̂i | x̂i ∈ X̂ and xi 6∈ X1}.

Since w′′ 6|= X ≡ X̂, it is easy to see that M ∗ |= ¬K(X ≡ X̂). Therefore, M ∗

is a k-model of T . On the other hand, since w′′ |= E and w′′ 6|= X ≡ X̂, it
follows that W ′ = {w′} = {w∗} = W ∗(w∗,φ), where φ = (X ≡ X̂) ∨ ¬E. From
Lemma 6, M ′ ∈ Res(M∗, µ), so M ′ ∈Mod(T � µ).

(⇐) Now suppose E is not satisfiable. That is, for any X1 ⊆ X, X1 |= ¬E.
Then from Lemma 6, for any k-model of T of the form M = (W,w),
where w 6= w′, M ′ 6∈ Res(M,µ). We consider k-models of T of the form
M = (W,w) where w = w′ (note w′ ∈ W ). Without loss of generality, we
assume that there is one world w∗ ∈ W such that w∗ 6|= X ≡ X̂, otherwise
M |= K(X ≡ X̂) and M cannot be a k-model of T . On the other hand, since
E is not satisfiable, ¬E must be true in each world in W . So M |= K¬E
and hence M |= K(X ≡ X̂ ∨ ¬E). This implies that W ′ 6= W (w,φ), where
φ = (X ≡ X̂) ∨ ¬E. So M ′ is not a k-model of T � µ.
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