
A Formalization of Distributed Authorization with
Delegation

Abstract

Trust management is a promising approach for the authorization in distributed environ-
ment. There are two key issues for a trust management system: how to design high-level
policy language and how to solve the compliance-checking problem [3, 4]. We adopt
this approach to deal with distributed authorization with delegation. In this paper, we
propose an authorization language AL, a human-understandable high level language to
specify various authorization policies. We define the semantics of AL through Answer
Set Programming. Language AL has rich expressive power which can not only specify
delegation, threshold structures addressed in previous approaches, but also represent
structured resources and privileges, positive and negative authorizations, separation of
duty, incomplete information reasoning and partial authorization and delegation. We
also demonstrate the application of language AL through an authorization scenario.
Keywords: Access control, trust management, authorization, delegation, answer set
programming, knowledge representation, nonmonotonic reasoning.

1 Introduction

Access control is an important topic in computer security research. It provides avail-
ability, integrity and confidentiality services for information systems. The access control
process includes identification, authentification and authorization. With the develop-
ment of Internet, there are increasing applications that require distributed authorization
decisions. For example, in the application of electronic commerce, many organizations
use the Internet (or large Intranets) to connect offices, branches, databases, and cus-
tomers around the world. One essential problem among those distributed applications is
how to make authorization decisions, which is significantly different from that in central-
ized systems or even in distributed systems which are closed or relatively small. In these
traditional scenarios, the authorizer owns or controls the resources, and each entity in
the system has a unique identity. Based on the identity and access control policies, the
authorizer is able to make his/her authorization decision. In distributed authorization
scenarios, however, there are more entities in the system, which can be both autho-
rizers and requesters, and probably are unknown to each other. Quite often, there is
no central authority that everyone trusts. Because the authorizer does not know the
requester directly, he/she has to use the information from the third parties who know
the requester better. He/She trusts these third parties only for certain things to certain

1

degrees. The trust and delegation issues make distributed authorization different from
traditional access control scenarios.

In recent years, the trust management approach, which was initially proposed by
Blaze et al. in [3], has received a great attention by many researchers [3, 4, 5, 16, 17].
Under this approach public keys are viewed as entities to be authorized and the autho-
rization can be delegated to third parties by credentials or certificates. This approach
frames the authorization decision as follows:

“ Does the set C of credentials prove that the request r complies with the
local security policy P? ”

from which we can see that there are at least two key issues for a trust management
system:

1. Designing a high-level policy language to specify the security policy, credentials,
and request. Better it is if the language has richer expressive power and is more
human-understandable.

2. Finding well theory foundation for checking proof of compliance.

Several trust-management systems such as PolicyMaker [3], Keynote [6], SPKI/SDSI
[7, 8, 9, 10, 19], and DL [17] have been developed. PolicyMaker [3] was the first trust
management system. Its access policy and credentials are called assertion which can
be written in any programming language. It initiates the proof of compliance by cre-
ating a “blackboard” for inter-assertion communication, and a proof is achieved if the
blackboard contains an acceptance record indicating that a policy assertion approves
the request. Keynote [6] is the second generation of trust management systems and was
designed according to the same principles as PolicyMaker. Instead of writing policy and
credentials in a general-purpose procedural language, It adopts a specific expression. The
both systems do not provide the negative authorization and re-delegation control. SPKI
(Simple Public Key Infrastructure) [9] and SDSI (Simple Distributed Security Infrastruc-
ture) [19] were started independently. Both of them were motivated by the inadequacy
of public-key infrastructures based on global name hierarchies, such as X.509 [12] and
Privacy Enhanced Mail (PEM) [14]. Later, SPKI and SDSI merged into a collaborative
effort, SPKI/SDSI 2.0. SPKI/SDSI 2.0 has two kinds of certificates, name-definition
certificates and authorization certificates. A name cert binds a local name to a princi-
pal or a more complex name. Name certs are used to resolve names to principals. An
auth cert delegates a certain permission from a principal (the cert’s issuer) to the cert’s
subject. SPKI/SDSI can deal with the k-out-of -n structures and handle certain types
of nonmonotic policies based on validity field of auth certificates. It controls whether
the authorization should be delegated again or not, but there is no delegation depth
control. Delegation Logic, proposed by Li et al. [17], is a more expressive formalization.
It supports delegation with depth control and static and dynamic threshold structures.
Although DL is able to delegate an authorization to a conjunctive-subject structure, it
can not deal with the request from conjunctive subjects which is related with separation
of duty, an important issue in computer security literature. Moreover, it is not suitable
to specify the authorization for structured resources.

2

In our research, we view the problem of a language for representing authorization pol-
icy and credentials as a knowledge representation problem. Logic programming approach
has been proved very successful in knowledge representation. Some research using logic
programming in centralized access control systems has been well developed [2, 13], where
underlying languages can support multiple access-control policies and achieve separation
of policies from enforcement mechanisms. But their work focuses on centralized systems,
and can not be used in distributed systems. Delegation Logic [17], developed by Li et
al., is an approach in distributed systems along this line. However the D1LP is based on
Definite ordinary logic program, which is less expressive and flexible, and cannot deal
with some important issues such as negative authorization, and nonmonotonic reason-
ing. D2LP extends D1LP to have the nonmonotonic features and bases its syntax and
semantics on GCLP (Generalized Courteous Logic Programs). Since it was only briefly
mentioned in [15], it was not clear yet how D2LP can handle nonmonotonic reasoning
in distributed authorization. In our research, we design a language AL, a nonmontonic
language, which is based on Answer Set Programming. We adopt the delegation with
depth control and static and dynamic threshold structure from DL approach. Compared
to previous work in trust management systems, our language is able to specify positive
and negative authorization, the request from conjunctive subjects, structured resources
and privileges, incomplete information reasoning, and partial delegation and authoriza-
tion. The reasons we choose Answer Set Programming as the foundation of language
AL are as follows:

1. Through negation as failure, Answer Set Programming implements nonmonotonic
reasoning which is reasoning about incomplete information. Nonmonotoic reason-
ing was developed to model commonsense reasoning used by humans. A language
with nonmontonic feature is easy to specify security policies which is close to the
natural language. For example, many systems permit a login request only if they
do not find that the requester inputs the password wrong over consecutive three
times.

2. The highly efficient solvers for Answer Set Programming have been implemented,
such as Smodels, dlv etc. This is an important reason that Answer Set Pro-
gramming has been widely applied in product configuration, planning, constraint
programming, cryptanalysis, and so on. We need to indicate that Smodels sup-
ports some extended literals such as constraint literal and conditional literal which
are particularly useful to express the static and dynamic threshold structures.

The rest of this paper is organized as follows. Section 2 presents the syntax and
expressive features of language AL. Section 3 develops an answer set language LAns,
provides the translation from AL into LAns, and defines the semantics of AL based on
the translation. Section 4 provides a scenario to demonstrate our research. Finally,
Section 5 concludes the paper.

2 An Authorization Language AL
In this section, we define the syntax of the authorization language AL and illustrate its
expressiveness via some examples.

3

2.1 Syntax of AL
The authorization language AL consists of entities, atoms, thresholds, statements, rules
and queries. The formal BNF syntax of AL is given in Figure 1. We explain the syntax
in detail as follows.

Entities
In distributed systems, the entities include subjects who are authorizers who own or
control resources and requesters who make requests, objects which are resources and
services provided by authorizers, and privileges which are actions executed on objects.

We define three types of constant entities, subject, object and privilege. The constant
entity is every element of three disjointed constant symbol sets, SUB, OBJ, and PRIV,
where SUB is the set of subject constants, OBJ the set of object constants, PRIV the
set of privilege constants. The constant entity must start with a lower-case character.

Correspondingly the variable entity is every element of three disjointed variable sym-
bol sets, Vsub, Vobj , and Vpriv that range over the sets SUB, OBJ , and PRIV respec-
tively. The variable entities are prefixed with an upper-case character.

In the BNF ofAL, 〈sub-con〉, 〈obj-con〉, 〈priv-con〉, 〈sub-var〉, 〈obj-var〉, and 〈priv-var〉
represent elements of the sets SUB, OBJ , PRIV , Vsub, Vobj , and Vpriv respectively.

In language AL, we provide a special subject, local. It is the local authorizer which
makes the authorization decision based on local policy and credentials from trusted sub-
jects.

Atoms
An atom is a function symbol with n arguments, generally one, two or three constant or
variable entities to express a logical relationship between them. There are three types of
atoms:

1. 〈relation-atom〉. An atom in this type is a 2-ary function symbol and expresses the
relationship of two entities. We provide three relation atoms, neq, eq, and below.
The atoms neq and eq denote two same type entities equal or not equal, and below to
denote the hierarchy structure for objects and privileges. In most realistic systems,
the data information is organized using hierarchy structure, such as file systems and
object oriented database system. For example, below(ftp, pub-services) denotes
that ftp is one of pub-services.

2. 〈assert-atom〉. This type of atoms, denoted by exp(a1, . . . , an), is application
dependant function symbol with n arguments, usually one, two or three constant
or variable entities and states the property of the subjects, the relationship between
entities. It is a kind of flexible atoms in languageAL. For example, isaTutor(alice)
denotes that alice is a tutor.

4

〈obj〉 ::= 〈obj-con〉 | 〈obj-var〉
〈priv〉 ::= 〈priv-con〉 | 〈priv-var〉
〈sub〉 ::= 〈sub-con〉 | 〈sub-var〉

〈sub-set〉 ::= 〈sub-con〉 | 〈sub-con〉, 〈sub-set〉
〈sub-struct〉 ::= 〈sub〉 | “[”〈sub-set〉“]” | 〈threshold〉
〈sub-ext-set〉 ::= 〈dth〉 | 〈dth〉, 〈sub-ext-set〉

〈sub-ext-struct〉 ::= 〈sub〉 | “[”〈sub-set〉“]” | 〈threshold〉 | “[”〈sub-ext-set〉“]”
〈entity〉 ::= 〈sub〉 | 〈obj〉 | 〈priv〉

〈entity-set〉 ::= 〈entity〉 | 〈entity〉, 〈entity-set〉
〈sign〉 ::= + | − | ¤

〈relation-atom〉 ::= below(〈obj〉, 〈obj〉) | below(〈priv〉, 〈priv〉 |
neq(〈entity〉, 〈entity〉) | eq(〈entity〉, 〈entity〉)

〈assert-atom〉 ::= exp(〈entity-set〉)
〈auth-atom〉 ::= right(〈sign〉, 〈priv〉, 〈obj〉)

〈k〉 ::= 〈natural-number〉
〈threshold〉 ::= 〈sth〉 | 〈dth〉

〈sth〉 ::= sthd(〈k〉, “[”〈sub-set〉“]”)
〈dth〉 ::= dthd(〈k〉, 〈sub-var〉, 〈assert-stmt〉)

〈relation-stmt〉 ::= “local” says 〈relation-atom〉
〈assert-stmt〉 ::= 〈sub〉 asserts 〈assert-atom〉

〈auth-stmt-body〉 ::= 〈sub-struct〉 grants 〈auth-atom〉 to 〈sub〉
〈auth-stmt-head〉 ::= 〈sub〉 grants 〈auth-atom〉 to 〈sub-ext-struct〉

〈delegate-stmt-body〉 ::= 〈sub-struct〉 delegates 〈auth-atom〉
with depth 〈k〉 to 〈sub〉

〈delegate-stmt-head〉 ::= 〈sub〉 delegates 〈auth-atom〉
with depth 〈k〉 to 〈sub-struct〉

〈head-stmt〉 ::= 〈relation-stmt〉 | 〈assert-stmt〉 |
〈auth-stmt-head〉 | 〈delegate-stmt-head〉

〈body-stmt〉 ::= 〈relation-stmt〉 | 〈assert-stmt〉 |
〈auth-stmt-body〉 | 〈delegate-stmt-body〉

〈list-of -body-stmt〉 ::= 〈body-stmt〉 | 〈body-stmt〉, 〈list-of -body-stmt〉
〈rule〉 ::= 〈head-stmt〉 [if [〈list-of -body-stmt〉]

[with absence 〈list-of -body-stmt〉]]
〈query〉 ::= 〈sub〉 requests (+, 〈priv〉, 〈obj〉) |

“[”〈sub-set〉“]” requests (+, 〈priv〉, 〈obj〉)

Figure 1. BNF for the Authorization Language −AL
3. 〈auth-atom〉. The auth-atom is of the form,

right(〈sign〉, 〈priv〉, 〈obj〉).
It states the positive or negative privilege executed on the object based on its

5

arguments, 〈sign〉, 〈obj〉, and 〈priv〉. When an auth atom is used in delegation
statement, the 〈sign〉 is ¤ to denote both positive and negative authorizations.

Statements
There are four types of statements, relation statement, assert statement, auth statement,
and delegation statement. Only the local authorizer can issue the relation statement to
denote the structured resources and privileges. We provide the body and head forms for
auth statements and delegation statements.

Threshold
There are two types of threshold structures, static threshold and dynamic threshold.

The static threshold structure is of the form,
sthd(k, [s1, s2, . . . , sn]),

where k is the threshold value, [s1, s2, . . . , sn] is the static threshold pool, and we require
k ≤ n and si 6= sj for 1 ≤ i 6= j ≤ n. This structure states that we choose k subjects
from the threshold pool.

The dynamic threshold structure is of the form,
dthd (k, S, 〈sub〉 assert exp(. . . , S, . . .)),

where S is a subject variable and we require that S is one argument of assert atom exp.
This structure denotes we choose k subjects who satisfy the assert statement.

Rules
The rule is of the form,

〈head-stmt〉 if 〈list-of -body-stmt〉
with absence 〈list-of -body-stmt〉.

The basic unit of a rule is a statement. Let h be a head statement and b a body statement,
a rule is as follows,

h0, if b1, b2, . . . , bm,
with absence bm+1, . . . , bn.

In language AL, a rule is a local authorization policy or a credential from other subjects
and the issuer of the rule is the issuer of the head statement h0. That is the reason why
we limit the issuer structure in head statements.

Query
Language AL supports single subject query and group subject query. They are of the
forms,

sub requests right(+, p, o), and
[s1, s2, . . . , sn] requests right(+, p, o).

Through group subject query, we implement separation of duty which is an important
security concept. It ensures that a critical task cannot be carried out by one subject. If
we grant an authorization to a group subject, we permit it only when the subjects in
the group request the authorization at the same time.

6

2.2 Characteristics of AL
In this subsection, we present some examples to show the expressive power of AL.

Structured resources
In the file system of a server in a university, there is a directory postgraduate which has
one subdirectory for each postgraduate student, such as alice, bob, and so on.

local says below(alice, postgraduate).
local says below(bob, postgraduate).

Partial delegation and authorization
A firewall system protects the allServices, including ssh, ftp, and http. The administrator
permits ipA to access all the services except ssh and delegates this right to ipB and allow
it redelegated within 2 steps.

local grants right(+, access, X) to ipA if
local says below(X, allServices), local says neq(X, ssh).

local delegates right(¤, access, X) with depth 2 to ipB if
local says below(X, allServices), local says neq(X, ssh).

Separation of duty
A company chooses to have multiparty control for emergency key recovery. If a key
needs to be recovered, three persons are required to present their individual PINs. They
are from different departments, managerA, a member of management, auditorB, an
individual from auditing, and techC, one individual from IT department.

local grants right(+, recovery, k) to [managerA, auditorB, techC].

Negative authorization
In a firewall system, the administrator sa does not permit ipB to access the ftp services.

sa grants right(−, access, ftp) to ipB.

Incomplete information reasoning
In a firewall system, the administrator sa permit a person to access the mysql service if
the human resource manager hrM asserts the person is a staff and not in holiday.

sa grants right(+, access, mysql) to X if
hrM asserts isStaff (X), with absence hrM asserts inHoliday(X).

3 Semantics of AL
In this section, we define the semantics for language AL through translating it to Answer
Set Programming based language LAns. We first present the definition for the domain
description DAL and how to answer queries QAL of language AL. Queries are the
requests in AL. In subsection 3.1, we introduce the language LAns briefly. In the
following subsection, we define function TransRules(DAL) to translate DAL into program
P of LAns, and function TransQuery(QAL) to translate query QAL into program Π and
ground literals ϕ(+) and ϕ(−). We use ϕ(+) to denote positive right and ϕ(−) to denote

7

negative right. There is detailed description for them in section 3.2.3. We solve a query
based on P, Π and ϕ via Smodels.

An answer set program may have one, more than one, or no answer sets at all. For
a given program Π and a ground atom ϕ, we say Π entails ϕ, denoted by Π |= ϕ, iff ϕ
is in every answer set of Π.

Definition 1 A domain description DAL of language AL is a finite set of rules.

Definition 2 Given a domain description DAL and a query QAL of language AL, there
are TransRules(DAL) = P and TransQuery(QAL) = Π∪ϕ(+)∪ϕ(−). We say that query
QAL is permitted, denied, or unknown by the domain description DAL iff (P ∪ Π) |=
ϕ(+), (P ∪Π) |= ϕ(−), or (P ∪Π) 6|= ϕ(+) and (P ∪Π) 6|= ϕ(−) respectively.

3.1 An overview of language LAns

In this subsection, we first briefly introduce language LAns, and then give the propagation
rules, authorization rules, and conflict resolution and decision rules in LAns.

Language LAns is based on Answer Set Programming [1] and we use Smodels as the
solver of LAns which has some extended features such as constraint and conditional lit-
erals to express the threshold structures [20]. The alphabet of language LAns includes
entity sorts, function symbols and predicates symbols. LAns has constant entities begin-
ning with a lowercase letter, and variable entities beginning with a uppercase letter. For
both of them, there are three types of entities respectively, subject, privilege, and object.
We define two function symbols, right(sign, priv, obj) and exp(a1, . . . , an), where priv
is of privilege sort, obj of object sort, and ai of any entity sort. In Smodels, the both
functions are symbolic functions which just defines a new constant as an argument for
the predicates in the application. After grounding, there are no any variables in sym-
bolic functions and they are just ordinary constants. We also define predicates for LAns,
including below, assert, auth, delegate, grant, ggrant, and so on. The detailed description
for language LAns is listed in Appendix A.

For an access control system, the authorization policy is the key component. We
need to indicate that it is easy and flexible for LAns to specify different types of policies.
In the following subsections, we will only present some parts of rules for authorization
policies to demonstrate the expressiveness of LAns because of a space limitation. Readers
are referred to our full paper for the complete set of rules [21].

3.1.1 Propagation rules

In most real world situations, the work to assign all the authorizations is burdensome
and not necessary. The security officer prefers to assign them partly and propagate
them based on propagation policy. There are various different propagation policies in
real world application. Basically, there are three types: (1) No propagation; (2) Propa-
gation without considering whether there are conflicts with previous authorization; (3)
Propagation with considering preferences. Here we choose the second one as an example
to show how to write propagation rules using LAns (We also use them for our scenario in

8

section 4). We leave the conflicts to be solved by conflict resolution and decision rules.

auth(S1, S2, right(Sign, P, Obj2), T) ←
auth(S1, S2, right(Sign, P, Obj1), T), below(Obj1, Obj2).

(1)

below(A1, A3) ← below(A1, A2), below(A2, A3). (2)

The rule (1) is for object propagation. We have a same rule for privilege propagation.
The rule (2) is for structured data propagation.

3.1.2 Authorization rules

In this subsection, we present the authorization rules for the following authorization
policy: if there is only positive authorization and no negative authorization, we conclude
positive authorization; if there is no positive authorization, we grant negative authoriza-
tion; if there are positive and negative authorizations at the same time, We leave the
decision problem to conflict resolution and decision policy.

grant(X, right(+, P, O)) ← auth(local,X, right(+, P,O), T),
not exist neg(X, right(−, P,O)), not exist subneg(X, right(−, P, O)).

(3)

ggrant(l, right(+, P,O)) ← auth(local,X, right(+, P,O), T),
match(X, right(+, P,O)), not exist neg(X, right(−, P,O)),
not exist subneg(X, right(−, P, O)).

(4)

We provide positive authorization rules (3) and (4). In rule (4), l is a special group
subject entity to represent the set of subjects who make a request together. We have
rules for exit neg, exit pos, exit subneg, exit subpos, match, and negative authorizations
[21].

3.1.3 Conflict resolution and decision rules

When both positive and negative authorizations are permitted, the conflict occur. Ex-
isting approaches for handling conflicts include: (1) no conflict policy. It relies on the
security administrator to write the consistent authorization rules. If there are conflicts,
errors happen; (2) no decision policy. When conflicts occur, the system neither permits
nor denies the request; (3) a policy based on relative authorization or specification. For
example, when conflicts occur, the system chooses denial-take-preference or permission-
take-preference; (4) a decision based on ordered authorization rules. In this paper, we
consider delegation as an action and get the step for each authorization which is decided
by the delegation step. All the authorizations arise from local originally and then the
step number denotes how far the authorization is away from local. We take the smallest
step authorization preference. If the conflict occurs with the same step, we deny the
request. Our approach belongs to the third category. The following are some of rules for
our conflict resolution and decision policy.

9

grant(X, right(+, P, O)) ← auth(local, X, right(+, P, O), T1),
auth(local,X, right(−, P,O), T2), neg far(X, right(−, P,O), T2),
not pos far(X, right(+, P, O), T1), not exist subneg(X, right(−, P, O)).

(5)

ggrant(l, right(+, P,O)) ← auth(local, X, right(−, P,O), T2),
neg far(X, right(−, P,O), T2), match(X, right(+, P,O)),
auth(local, X, right(+, P,O), T1), not pos far(X, right(+, P, O), T1),
not exist subneg(X, right(−, P,O)).

(6)

The rule (5) and (6) specify the policy we take positive authorization if positive and
negative authorizations coexist and positive authorization has smaller step than negative
authorization.

3.2 Transformation from AL to LAns

A rule rD in the domain description DAL is of the following form,

h0 if b1, b2, . . . , bm, with absence bm+1, . . . , bn. (7)

where h0 is head statement denoted by head(rD) and bis are body statements denoted
by body(rD). We call the set of statements, {b1, b2, . . . , bm}, positive body statements,
denoted by pos(rD) and the set of statements, {bm+1, bm+2, . . . , bn} negative body state-
ments, denoted by neg(rD). If there is no confusion in context, we use positive statements
and negative statements to express them respectively. In (7), if m = 0 and n = 0, the
rule is h0 called a fact.

In the next subsections we provide translation functions for DAL and QAL. The
function TansRules(DAL) translates the rules in the domain description DAL into an
answer set program P. We divide the process into three phases, body translation, head
translation, and adding rules in section 3.1.1, 3.1.2, and 3.1.3. For a query in language
AL, we provide TransQuery(QAL) to translate it into a program Π and ground literals
ϕ(+) and ϕ(+).

In language AL, there are function symbols, assert-atom and auth-atom. Corre-
spondingly there are functions exp (a1, . . . , an) and right (sign, priv, obj) in language
LAns. In our translation, if there is no confusion in the context, we use exp and right to
denote them in both languages.

3.2.1 Body transformation

In language AL, there are four types of body statements, relation statement, assert
statement, auth statement, and delegation statement. As auth statement and delegation
statement have similar structure, we give their transformation together. For each rule
rD, its body statement bi is one of the following cases.

1. Relation statement:
local says below(arg1, arg2),
local says neq(arg1, arg2), and local says eq(arg1, arg2).

10

Replace them respectively in program P using:

below(arg1, arg2), (8)

where arg1 and arg2 are of object or privilege entity sort,
neq(arg1, arg2) and eq(arg1, arg2),

where arg1 and arg2 are of same type entity sort to specify they are equal or not
equal. In Smodels, neq and eq are internal function and work as a constraint for
the variables in the rules.

2. Assert body statement:
issuer asserts exp.

Replace it in program P using,

assert(issuer, exp), (9)

where issuer is a subject constant or variable, and exp is an assertion.

3. Auth body statement or delegation statement:
issuer grants right to grantee, or
issuer delegates right with depth k to delegatee.

If issuer is a subject constant or variable, we replace the statements in program
P using,

auth(issuer, grantee, right, T), or (10)

delegate(issuer, delegatee, right, k, Step), (11)

where T is a step variable that means how many steps the right has gone through
from issuer to grantee, k delegation depth, and Step length variable that the
delegation has gone through.

If issuer is a set of subjects, [s1, . . . , sn], for auth statements, we replace them in
program P by conjunction forms of (10) as,

auth(s1, grantee, right, T1), . . . auth(sn, grantee, right, Tn).

If issuer is a static threshold structure, sthd(k, [s1, s2, . . . , sn]), we use choice rule
to replace them as follows,

k{auth(s1, grantee, right, T1), . . . auth(sn, grantee, right, Tn)}k.

If issuer is a dynamic threshold structure, dthd(k, S, assert(sub, exp(S)), we use
choice rule including constraint literal to replace them using,

k{auth(S, grantee, right, Ti) : assert(sub, exp(S))}k.

The translation for delegation body statements is to replace (10) by (11) in previous
forms.

We translate the positive statements as above steps, and for the negative body state-
ments, we do the same translation and just add not before them.

11

3.2.2 Head transformation

In language AL, there are four types of head statements, relation statement, assert
statement, auth statement, and delegation statement. If the head statement h0 is a
relation statement or an assert statement, the translation is same as the body statements.
We adopt the rules (8), (9) to translate them respectively. In relation head statements,
there are no statements for atom neq and eq that just be used as a variable constraints
in body statements. Here we present the translation for assert head statement, and
delegation head statement.

1. Auth head statement:
issuer grants right to grantee.

If grantee is a subject constant or variable, we replace it by,
auth(issuer, grantee, right, 1),

where 1 means the right is granted from issuer to grantee directly.

If grantee is a complex structure, subject set, threshold, or subject extent set, we
introduce group subject entity lnew to denote the subjects in complex subject
structures, and replace its head in program P as follows,

auth(issuer, lnew, right, 1).

We add different rules for different structures.
case 1: [s1, . . . , sn]

match(lnew, right) ← auth(issuer, lnew, right, 1), n{req(s1, right), . . . , req(sn, right)}n.

case 2: sthd(k, [s1, s2, . . . , sn])
match(lnew, right) ← auth(issuer, lnew, right, 1), k{ req(s1, right), . . . , req(sn, right)}k.

case 3: dthd (k, S, sub assert exp(S))
match(lnew, right) ← auth(issuer, lnew, right, 1), k{ req(S, right) : assert(sub, exp(S)) }k.

case 4: [dthd (k1, S, s1 assert exp1(S)), . . . , dthd (kn, S, sn assert expn(S))].
holds(lnew, exp1(S)) ← auth(issuer, lnew, right, 1), assert(s1, exp1(S)), req(S, right).

...
holds(lnew, expn(S)) ← auth(issuer, lnew, right, 1), assert(sn, expn(S)), req(S, right).
match(lnew, right) ← k1{holds(lnew, exp1(S))}k1, . . . kn{holds(lnew, expn(S))}kn.

2. Delegation head statement:
issuer delegates right with depth k to delegatee

If delegatee is a subject constant or variable, we replace the statement in program
P using,

delegate(issuer, delegatee, right, k, 1).
where k is the delegation depth, and 1 means the issuer delegates the right to
delegatee directly.
Moreover, we need to add the following implied rules for it in program P.

Auth-delegation rules: When the issuer delegates a right to the delegatee, the
issuer will agree with the delegatee to grant the right to other subjects within

12

delegation depth. The authorization step increases 1. Since we consider structured
resources and privileges, there are three auth-delegation rules.

auth(issuer, S, right(Sn, P, O), T + 1) ←
delegate(issuer, delegatee, right(¤, P,O), k, 1),
auth(delegatee, S, right(Sn, P,O), T).

auth(issuer, S, right(Sn, P, SO), T + 1) ←
delegate(issuer, delegatee, right(¤, P,O), k, 1),
auth(delegatee, S, right(Sn, P, SO), T), below(SO, O).

auth(issuer, S, right(Sn, SP, O), T + 1) ←
delegate(issuer, delegatee, right(¤, P, O), k, 1),
auth(delegatee, S, right(Sn, SP,O), T), below(SP, P).

Dele-chain rules: The delegation can be redelegated within delegation depth.
We also have three dele-chain rules for structured resources and privileges. Here
we just give one of them.

delegate(issuer, S, right(¤, P, O), min(k-Step, Dep), 1 + Step) ←
delegate(issuer, delegatee, right(¤, P, O), k, 1),
delegate(delegatee, S, right(¤, P, O), Dep, Step), Step < k.

Self-delegation rule: The delegatee can delegate the right to himself/herself
within k depth.

delegate(delegatee, delegatee, right, Dep, 1) ←
delegate(issuer, delegatee, right, k, 1), Dep ≤ k.

Weak-delegation rule: If there is a delegation with k steps, we can get the
delegation with steps less than k.

delegate(issuer, delegatee, right, Dep, 1) ←
delegate(issuer, delegatee, right, k, 1), Dep < k.

If delegatee is a complex structure, subject set, static threshold, or dynamic thresh-
old, we introduce a new group subject lnew to denote the subjects in complex
structures, and replace the statement in program P using,

delegate(issuer, lnew, right, k, 1).

We need to add auth-delegation and dele-chain rules for them. There are similar
rules for them, and here we present the rules for subject set structure.

Auth-delegation rule:
auth(issuer, S, right, T + 1) ← delegate(issuer, lnew, right, k, 1),

auth(s1, S, right, T1), . . . , auth(sn, S, right, Tn), T = max(T1, . . . , Tn).

Dele-chain rule:
delegate(sub, S, right, T1, T2) ← delegate(sub, lnew, right, k, 1),

delegate(s1, S, right, Dep1, Step1), . . . , delegate(sn, S, right, Depn, Stepn),
T1 = min(k-Step1, . . . , k-Stepn, Dep), T2 = max(1+Step1, . . . , 1+Stepn),
T1 > 0.

13

3.2.3 Query Transformation

In language AL, there are two kinds of queries, single subject query and group subject
query. We present the function TransQuery(QAL) for both of them and this function
returns program Π and ground literals ϕ(+) and ϕ(−).

If QAL is a single subject query,
s requests right(+, p, o),

TransQuery returns program Π and ground literals ϕ(+) and ϕ(−) as follows respec-
tively,

{req(s, right(+, p, o))}, grant(s, right(+, p, o)) and grant(s, right(−, p, o)).

If QAL is a group subject query,
[s1, s2, . . . , sn] requests right(+, p, o).

TransQuery returns program Π and ground literals ϕ(+) and ϕ(−) as follows respectively,
{req(si, right(+, p, o)) | i = 1, . . . , n }, ggrant(l, right(+, p, o)) and ggrant(l, right(−, p, o)),

where l is a group subject entity to denote the set of subjects, [s1, . . . , sn].

4 A Scenario

In this section we represent a specific authorization scenario to demonstrate the features
of language AL.

Scenario: A company chooses to have multiparty control for emergency key recovery.
If a key needs to be recovered, three persons are required to present their individual
PINs. They are from different departments, a member of management, an individual
from auditing, and one individual from IT department. The system trusts the man-
ager of Human Resource Department to identify the staff of the company. The domain
description DAL for this scenario is the following rules represented using language AL.

local grants right(+, recover, key) to
[dthreshold(1, X, hrM asserts isAManager(X)),

dthreshold(1, Y, hrM asserts isAnAuditor(Y)),
dthreshold(1, Z, hrM asserts isATech(Z))].

hrM asserts isAManager(alice).
hrM asserts isAnAuditor(bob).
hrM asserts isAnAuditor(carol).
hrM asserts isATech(david).

We translate them into language LAns,

auth(local, lkey, right(+, recovery, key), 1).
holds(lkey, isAManager(X)) ← auth(local, lkey, right(+, recovery, key), 1),

assert(hrM, isAManager(X)), req(X, right(+, recovery, key)).
holds(lkey, isAnAuditor(X)) ← auth(local, lkey, right(+, recovery, key), 1),

assert(hrM, isAnAuditor(X)), req(X, right(+, recovery, key)).
holds(lkey, isATech(X)) ← auth(local, lkey, right(+, recovery, key), 1),

14

assert(hrM, isATech(X)), req(X, right(+, recovery, key)).
match(lkey, right(+, recovery, key)) ←

1{holds(lkey, isAManager(X))}1,
1{holds(lkey, isAnAuditor(Y))}1,
1{holds(lkey, isATech(Z))}1.

In this scenario, the program P consists of the above translated rules, and those
authorization rules we specified in section 3.1.21. If Alice, Bob, and David make a
request to recover a key together, that is,

[alice, bob, david] requests right(+, recovery, key).

After translation, we get program Π,
req(alice, right(+, recovery, key)),
req(bob, right(+, recovery, key)),
req(david, right(+, recovery, key)),

and the ground literal ϕ(+) is,
grant(l, right(+, recovery, key)),

where l is a group subject entity to represent the set of subjects, [alice, bob, david].
Then program P ∪Π (Refer to the Appendix B for complete program) has only one

answer set, and ggrant(l, right(+, recovery, key)) is in the answer set. Therefore the
request is permitted.

Now if we consider that Alice, Bob, and Carol make the same request, they cannot
satisfy the rule for match, then ggrant(l, right(+, recovery, key)) is not in the answer
set. Instead, we get ggrant(l, right(−, recovery, key)), then the request will be denied.

5 Conclusion and Future Work

In this paper, we developed an expressive authorization language AL to specify the
distributed authorization with delegation. We used Answer Set Programming as a foun-
dational basis for its semantics. As we have showed earlier, AL has a rich expressive
power which can represent positive and negative authorization, structured resources and
privileges, partial authorization and delegation, and separation of duty. It is worth
mentioning that language AL can represent all the scenarios discussed by Delegation
Logic [17]. Moreover, as we have illustrated in section 4, AL can also represent complex
authorization scenarios which Delegation Logic cannot.

We should indicate that our formulation also has implementation advantages due
to recent development of Answer Set Programming technology in AI community.2 The
scenario in section 4 has been fully implemented through Answer Set Programming (See
Appendix B).

Our paper leave space for future work. One issue we plan to investigate is using
preference of policy rules for conflict resolution which is more reasonable and flexible in
some real applications. We also plan to investigate how to find the authorization path
(Trust path) based on answer sets.

1A complete answer set logic program for this translation is referred to Appendix B.
2Please refer to http://www.tcs.hut.fi/Software/smodels/index.html

15

References

[1] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003. ISBN 0521818028.

[2] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo. A Logical Framework for Rea-
soning on Data Access Control Policies. In Proceedings of the 12th IEEE Computer
Security Foundations Workshop(CSFW-12), pages 175-189, IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1999.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In Pro-
ceedings of the Symposium on Security and Privacy, IEEE Computer Society Press,
Los Alamitos,1996, pages 164-173.

[4] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance-checking in the PolicyMaker
trust management system. In Proceedings of Second International Conference on Fi-
nancial Cryptography (FC’98), volume 1465 of Lecture Notes in Computer Science,
pages 254-274. Springer, 1998.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The Role of Trust
Management in Distributed Systems. Secure Internet Programming, Lecture Note
of Computer Science, vol. 1603, pages 185-210, Springer, Berlin, 1999.

[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote
Trust-Management System, Version 2, Internet Engineering Task Force RFC 2704,
September 1999. http://www.ietf.org/rfc/rfc2704.txt

[7] D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Certificate
Chain Discovery in SPKI/SDSI, manuscript, Nov 1999.

[8] J. Elien. Certificate Discovery Using SPKI/SDSI 2.0 Certificates. Masters Thesis,
MIT LCS, May 1998, http://theory.lcs.mit.edu/ cis/theses/elien-masters.ps.

[9] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
Certificate Theory. Internet Engineering Task Force RFC 2693, September 1999.
http://www.ietf.org/rfc/rfc2693.txt

[10] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
Simple Public Key Certificate, Internet Draft (Work in Progress), July1999.
http://world.std.com/ cme/spki.txt

[11] M.Gelfond and V.Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. Bowen, editors, Logic Programming: Proc. of the Fifth Int’L
Conf. and Symp., pages 1070-1080. MIT Press, 1988.

[12] ITU-T Rec. X.509 (revised), The Directory - Authentication Framework, Interna-
tional Telecommunication Union, 1993.

[13] S. Jajodia, P. Samarati, and V. S. Subrahmanian. Flexible Support for Multiple
Access Control Policies. InACM Transactions on Database Systems, Vol.26, No.2,
June 2001, Pages 214-260.

16

[14] S. T. Kent. Internet Privacy Enhanced Mail, Communications of the ACM, 36:8,
pages 48-60, August 1993.

[15] N. Li, J. Feigenbaum, and B.N. Grosof. A logic-based knowledge representation for
authorization with delegation (extended abstract). In Proceedings of the IEEE Com-
puter Security Foundations Workshop (CSFW-12)(June). IEEE Computer Society
Press, Los Alamitos, Calif., pages 162-174.

[16] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery
in trust management. In Journal of Computer Security, volume 11, number 1, pages
35-86, February 2003.

[17] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A logic-based approach to
distributed authorization. InACM Transactions on Information and System Security
(TISSEC), February 2003.

[18] I. Niemela and P. Simons, and T. Syrjanen, Smodels: A system for answer set
programming. In proceedings of the 8th International Workshop on Non-monotonic
Reasoning. USA 2000.

[19] R. L. Rivest, and B. Lampson. SDSI - A Simple Distributed Security Infrastructure,
October 1996. Available at http://theory.lcs.mit.edu/ rivest/sdsi11.html

[20] T. Syrjänen. Lparse 1.0 User’s Mannual. http://www.tcs.hut.fi/Software/smodels.

[21] S. Wang, and Y. Zhang. Handling Distributed Authorization with Delegation
through Answer Set Programming(manuscript). 2005.

Appendix A

The language alphabet of LAns

1. Entity Sort:
There are three types of constant entities, subject, object, and privilege. The subject
entity sort includes group subject entities introduced in translation process to
denote a set of subjects. l is a particular group subject to denote the set of subjects
who make a request together. All the constant entities start with a lowercase
characters.

There are three disjointed variable sets, the sets of subject variables, object vari-
ables, and privilege variables that range over the constant entities respectively.
The variable entities begin with a uppercase characters.

2. Function symbols:
right(sign, priv, obj), where sign is +, − or ¤, priv privilege sort, obj object sort.

exp(a1, . . . , an), where ai is one of the entity sort.

In Smodels, the above both functions are symbolic functions which just defines a
new constant as an argument for the predicates in the application. We define them

17

just to combine the related arguments together to express a right or an assertion
which are parameters for predicates auth, delegate, and assert. After the rules in
the program are grounded, there are no any variables in both functions and they
are just ordinary constant arguments for the related predicates.

3. Predicate symbols:
below(arg1, arg2), where arg1 and arg2 are of the same kind of entity sort to
denote partial order relationship in a hierarchy structure.

assert(issuer, exp(a1, . . . , an)), where issuer is of subject sort, exp is an applica-
tion dependant function of n arguments that are of entity sort.

auth(issuer, grantee, right(sign, priv, obj), time), where issuer and grantee are
both of subject entity sort, time is a natural number or variable which means how
many steps the right goes through from issuer to grantee.

delegate(issuer, delegatee,right(sign, priv, obj) , depth, step), where issuer and
delegatee are of subject entity sorts, depth, and step are natural numbers or vari-
ables. depth states how far the right can be delegated further. step states how
many steps the delegation has gone through.

grant(sub, right(sign, priv, obj)), where sub is of subject entity sort. It states
that the right(sign, priv, obj) is granted to sub.

ggrant(sub, right(sign, priv, obj)), where sub is one of subject group entities in-
troduced during the translation process. It states that the right(sign, priv, obj) is
granted to a set of subjects.

req(sub, right(+, priv, obj)), where sub is of subject entity sort. It states that sub
requests the right(+, priv, obj).

holds(sub, exp(s)), where sub is one of subject group entities introduced during the
translation process, exp(s) assert atom. It states that the group subject includes
subject s.

match(sub, right(+, priv, obj)), where sub is one of group subject entities intro-
duced during the translation process. It states that the subject group requests
right together.

exist pos(sub, right(+, priv, obj)), where sub is of subject entity sort. It states
there is positive privilege on obj for sub.

exist subpos(sub, right(+, priv, obj)), where sub is of subject entity sort. It states
there is partial positive privilege on obj for sub.

exist neg(sub, right(−, priv, obj)), where sub is of subject entity sort. It states
there is negative privilege on obj for sub.

exist subneg(sub, right(−, priv, obj)), where sub is of subject entity sort. It states
there is partial negative privilege on obj for sub.

pos far(sub, right(+, priv, obj), time), where sub is of subject entity sort. It states
that there is at lease a positive authorization for sub that has more steps than some
negative authorizations.

18

neg far(sub, right(−, priv, obj), time), where sub is of subject entity sort. It states
that there is at lease a negative authorization for sub that has more steps than some
positive authorizations.

Appendix B

The program for the scenario in section 4

time(1..6).
subjects(alice;bob;carol;david;list).
#domain subjects(X),subjects(Y),subjects(Z).
#domain time(T),time(T1),time(T2).

% Beginning of translation
assert(hrM,isAManager(alice)). assert(hrM,isAnAuditor(bob)).
assert(hrM,isAnAuditor(carol)). assert(hrM,isATech(david)).

% For auth transformation.
auth(local,list,right(pp,recovery,key),1).
holds(list,isAManager(X)):- auth(local,list,right(pp,recovery,key),1),

assert(hrM,isAManager(X)), req(X,right(pp,recovery,key)).
holds(list,isAnAuditor(X)):-auth(local,list,right(pp,recovery,key),1),

assert(hrM,isAnAuditor(X)), req(X,right(pp,recovery,key)).
holds(list,isATech(X)):- auth(local,list,right(pp,recovery,key),1),

assert(hrM,isATech(X)), req(X,right(pp,recovery,key)).
match(list,right(pp,recovery,key)):- 1{holds(list,isAManager(X))}1,

1{holds(list,isAnAuditor(Y))}1, 1{holds(list,isATech(Z))}1.

% Request transformation
req(alice,right(pp,recovery,key)).
req(bob,right(pp,recovery,key)).
req(david,right(pp,recovery,key)).

% Authorization rule.
% No structured resources and privileges,
% we do not need exist_subpos and exist_subneg.
exist_pos(X,right(pp,recovery,key)):-auth(local,X,right(pp,recovery,key),T).
exist_neg(X,right(mm,recovery,key)):-auth(local,X,right(mm,recovery,key),T).
ggrant(l,right(pp,recovery,key)):-auth(local,X,right(pp,recovery,key),T),

match(X,right(pp,recovery,key)), not exist_neg(X,right(mm,recovery,key)),
not exist_subneg(X,right(mm,recovery,key)).

ggrant(l,right(mm,recovery,key)):-auth(local,X,right(mm,recovery,key),T),
match(X,right(pp,recovery,key)), not exist_pos(X,right(pp,recovery,key)).

ggrant(l,right(mm, recovery,key)):-
not ggrant(l,right(pp,recovery,key)).

19

