
Ordered Completion for Logic Programs with Aggregates

Vernon Asuncion, Yan Zhang and Yi Zhou
Intelligent Systems Laboratory

School of Computing, Engineering and Mathematics
University of Western Sydney, NSW, Australia

Abstract

In this paper, we show that first-order logic programs with
monotone aggregates under the stable model semantics can
be captured in classical first-order logic. More precisely, we
extend the notion of ordered completion for logic programs
with a large variety of aggregates so that every stable model
of a program with aggregates corresponds to a classical model
of its enhanced ordered completion, and vice versa.

Introduction
In the last three decades, Answer Set Programming (ASP)
has emerged as a predominant declarative programming
paradigm in the area of knowledge representation and logic
programming (Baral 2003). One of the main focuses of re-
cent advances in ASP is first-order answer set programming
(Ferraris, Lee, and Lifschitz 2011; Lin and Zhou 2011),
which aims to characterize the answer set or stable model
semantics of logic programs directly on a first-order level.
This is significantly different from the traditional approach
by grounding (Gelfond and Lifschitz 1988), which is essen-
tially propositional.

The stable model semantics of first-order logic programs
is defined in second-order logic (Ferraris, Lee, and Lifschitz
2011; Lin and Zhou 2011). Interestingly, Asuncion et al.
(2012) recently proposed a notion of ordered completion (a
first-order sentence) for normal logic programs, and showed
that the stable models of a normal logic program are exactly
corresponding to the models of its ordered completion on
finite structures. This work is not only theoretically interest-
ing but also practically relevant as it initiates a new direction
of ASP solver. A first implementation (Asuncion et al. 2012)
shows that this new direction is promising as it performs sur-
prisingly good for the Hamiltonian Circuit program on big
instances.

However, this work is not adequate enough, at least from a
practical point of view, because it cannot handle aggregates -
a very important building block in ASP that is widely used in
many applications. The reason why aggregates are crucial in
answer set solving is twofold. First, it can simplify the repre-
sentation task. For many applications, one can write a sim-
pler and more elegant logic program by using aggregates,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for instance, the job scheduling program (Pontelli, Son, and
Elkabani 2004). More importantly, it can improve the effi-
ciency of ASP solving (Gebser et al. 2009). Normally, the
program using aggregates can be solved much faster (Faber,
Leone, and Pfeifer 2003).

Incorporating aggregates in ordered completion is a chal-
lenging task. In the propositional case, the complexity of
normal logic programs with arbitrary aggregates is beyond
the class of NP (Ferraris 2011). This possibly suggests that,
most likely, normal logic programs with arbitrary aggregates
cannot be captured in first-order logic. Hence, we are mainly
focused on (anti)monotone aggregates. Even for this case,
the task is still very complicated as aggregate atoms, on one
hand, can express some features of existential quantifiers,
and on the other hand, contribute to the loops (Chen et al.
2006; Lee and Meng 2009) of the program.

In this paper, we show that first-order normal logic pro-
grams with a large variety of (anti)monotone aggregates
(covering the types of aggregates in most benchmark pro-
grams) can indeed be captured in first-order logic. More pre-
cisely, we extend the notion of ordered completion for these
kind of programs so that every stable model of a program is
corresponding to a classical model of its enhanced ordered
completion, and vice versa. Our proof technique is signifi-
cantly different from the original proof for ordered comple-
tion in (Asuncion et al. 2012), thus also sheds new insights
in first-order ASP (with aggregates).

Preliminaries
We first consider a first-order language without functions but
with equality =. A signature contains a set of constants and
a set of predicates. A structure A of a signature is a tuple

(Dom(A), cA1 , . . . , c
A
l , P

A
1 , . . . , P

A
m),

where cAi , 1 ≤ i ≤ l, and PAj , 1 ≤ j ≤ m are interpreta-
tions for constant ci and predicate Pj respectively. We call a
structure finite if Dom(A) is finite.

Aggregates
Now we introduce the aggregate component. For this pur-
pose, we enhance our first-order language with a background
theory for numbers, similar to Satisfiability Modular Theo-
ries (SMT) (Nieuwenhuis, Oliveras, and Tinelli 1999).

An aggregate atom δ is of the form

OP〈v : ∃wBd(δ) 〉 � N, (1)

where:

• OP ∈ {CARD, SUM, PROD,MIN,MAX} is an aggregate
function for cardinality, sum, product, minimum, and
maximum respectively;

• Bd(δ) (the body of δ) is of the form

Q1(y1)∧ · · · ∧Qs(ys)∧¬R1(z1)∧ · · · ∧¬Rt(zt), (2)

where each Qi(yi) (1 ≤ i ≤ s), Rj(zj) (1 ≤ j ≤ t) are
atoms in the first-order language;

• v and w are distinctive tuples of variables mentioned in
(2), and v ∩w = ∅.

• �∈ {<,≤,=,≥, >} is a comparison operator on num-
bers;

• finally N is a number.

For convenience, we use Pos(δ) and Neg(δ) to denote the
sets {Q1(y1), . . . , Qs(ys)} and {R1(z1), . . . , Rt(zt)} re-
spectively.

For an aggregate atom δ of the form (1), let y be the set
of free variables in it, i.e. the variables in δ but not in either
v or w. Let A be a structure and a a set of domain elements
that matches y, A |= δ[y/a] if and only if:

1. The multiset1

M = {{c[1] | A |= Bd(δ)[ywv/abc],

b ∈ X, c ∈ Y }}

is in the domain of OP, where X and Y are the sets of
domain tuples that match w and v respectively;

2. OP(M) � N .

Based on this, the satisfaction relation between structures
(along with assignments on variables) and formulas (with
aggregates) is defined recursively as usual in classical logic.

An aggregate atom OP is said to be: monotone if
M1,M2 ∈ Dom(OP) (i.e. in the domain of OP), M1 ⊆
M2, and OP(M1) � N imply that OP(M2) � N ; and
anti-monotone if M1,M2 ∈ Dom(OP), M2 ⊆ M1, and
OP(M1) � N imply that OP(M2) � N .

Stable Models Semantics for Logic Programs
In this paper, we consider normal logic programs with ag-
gregates mentioned above. A rule r is of the form

β1 ∧ · · · ∧ βn ∧ ¬γ1 ∧ · · · ∧ ¬γm → α, (3)

where α is an atom P (x); βi (1 ≤ i ≤ n) and γj (1 ≤ j ≤
m) are either an equality atom t1 = t2, or an atom P (t), or
an aggregate atom of the form (1). In the literature, this form
is also written as

α← β1, . . . , βn, not γ1, . . . , not γm.

1In the following, c[1] denotes the first component (or position)
of c.

For convenience, we use Head(r) and Body(r) to denote α
and β1 ∧ · · · ∧ βn ∧ ¬γ1 ∧ · · · ∧ ¬γm respectively.

A program is a finite set of rules. The signature of a pro-
gram Π, denoted by τ(Π), consists of all constants and pred-
icates occurred in Π. A predicate in a program is said to be
intensional if it occurs in some head of the program, and ex-
tensional otherwise. We use Pint(Π) to denote the set of all
intensional predicates of Π.

Example 1 Consider the following program Π with a sim-
ple aggregate atom

CARD〈x : P (x)〉 = 2→ Q(y), (4)
Q(x)→ P (x), (5)
R(x)→ P (x). (6)

Here, P and Q are intensional while R is extensional. Rule
(4) states that if P (x) holds exactly for two elements, then
we have Q(y).

The stable model semantics of programs (with aggre-
gates) is defined by a second-order sentence. Let Π be a pro-
gram and Pint(Π) = {P1, . . . , Pn}. Let U = {U1, . . . , Un}
be a set of new predicates such that each Ui, 1 ≤ i ≤ n,
matches the arity of Pi. Let ρ = P (x) be an atom. By ρ∗,
we denote Ui(x) if P = Pi where Pi ∈ Pint(Π), and P (x)
itself if P 6∈ Pint(Π). Let δ be an aggregate atom of form
(1). By δ∗, we denote the formula

(OP〈v : ∃wBd(δ)∗ 〉 � N) ∧ (OP〈v : ∃wBd(δ) 〉 � N),

where Bd(δ)∗ = Q∗1(y1)∧ · · · ∧Q∗s(ys)∧¬R1(z1)∧ · · · ∧
¬Rt(zt). Now given a rule r of the form (3), by r∗, we de-
note the universal closure of the following formula

β∗1 ∧ · · · ∧ β∗m ∧ ¬γ1 ∧ · · · ∧ ¬γl → α∗.

Finally, by SM(Π)2, we denote the following second-order
sentence ∧

r∈Π

r̂ ∧ ¬∃U(U < Pint(Π) ∧
∧
r∈Π

r∗), (7)

where r̂ is the universal closure of r and U < Pint(Π) is the
abbreviation of the formula∧

1≤i≤n

∀x(Ui(x)→ Pi(x)) ∧ ¬
∧

1≤i≤n

(Pi(x)→ Ui(x)).

Definition 1 (stable model) Let Π be a program. A τ(Π)-
structure A is said to be a stable model of Π if A is a model
of SM(Π).

Ordered Completion
Asuncion et al. (2012) showed that the stable models se-
mantics for normal logic programs without aggregates can
be captured in classical first-order logic on finite structures.
More precisely, they defined the notion of ordered com-
pletion, which is a modification of Clark’s completion by
adding the track of the derivation order, and showed that the

2Notice that this definition is essentially equivalent to the one
defined in (Bartholomew, Lee, and Meng 2011) but restricted into
normal programs for simplicity.

finite stable models of a normal program corresponds ex-
actly to the models of its ordered completion.

Let Π be a program without aggregate atoms. The modi-
fied completion of Π, denoted by MComp(Π), is

Π̂ ∧
∧

P∈Pint(Π)

∀x(P (x)→
∨
r∈Π

P (x)=Head(r)

∃y(Body(r) ∧ P ̂os(r) < P (x))),

(8)
where Π̂ =

∧
r∈Π r̂ and P ̂os(r) < P (x) is3∧

Q(y)∈Pos(r),Q∈Pint(Π)

(≤QP (yx) ∧ ¬ ≤PQ (xy)),

where ≤QP and ≤PQ are new predicates called compari-
son predicates for keeping track of the derivation order. Fi-
nally, the ordered completion of Π, denoted by OC(Π), is
MComp(Π) ∧ Trans(Π), where Trans(Π) is∧
P,Q,R∈Pint(Π)

∀xyz(≤PQ (xy)∧ ≤QR (yz)→≤PR (xz)).

Theorem 1 (Asuncion et al. 2012) Let Π be a normal logic
program without aggregate atoms and A a finite τ(Π)-
structure. Then, A is a stable model of Π if and only if A
can be expanded to a model of OC(Π).

Ordered Completion for Programs with
Aggregates

From a theoretical point of view, ordered completion makes
important progressions on understanding first-order answer
set programming. Firstly, it shows that the stable model se-
mantics is simply Clark’s completion plus derivation order.
Secondly, it clarifies the relationship between first-order nor-
mal ASP and classical first-order logic. More precisely, ev-
ery normal answer set program can be captured by a first-
order sentence with some new predicates on finite structures.
Surprisingly, this fails to be true on infinite structures or if
no new predicates are allowed (Asuncion et al. 2012).

Ordered completion is not only theoretically interesting
but also practically important. It initiates a new direction of
ASP solver by first translating a normal logic program to
its ordered completion, then working on finding a model of
this first-order sentence (Asuncion et al. 2012). A first im-
plementation shows that this new direction is promising as it
performs surprisingly good on the Hamiltonian Circuit pro-
gram (Niemelä 1999), especially on big instances.

However, ordered completion can hardly be used beyond
the Hamiltonian Circuit program because it cannot handle
aggregates - a very important building block in ASP that
is widely used in many applications. As far as we are con-
cerned, most benchmark programs contain aggregate con-
structs (Calimeri et al. 2011). Aggregates are crucial in an-
swer set solving because on one hand, it can simplify the
representation task, and on the other hand, it can improve
the efficiency of ASP solving (Gebser et al. 2009).

In this paper, we consider to incorporate aggregates in or-
dered completion. However, this is a challenging task. As

3Pos(r) denotes the positive body atoms of r as usual.

shown in (Asuncion et al. 2012), ordered completion cannot
be extended for disjunctive programs because they are not
in the same complexity level. Similarly, normal answer set
programs with arbitrary aggregates has the same complexity
level as disjunctive programs, which is beyond the complex-
ity of naive normal programs. This suggests that, most likely,
normal logic programs with arbitrary aggregates cannot be
captured in first-order logic, thus not by ordered completion.

Hence, we are mainly focused on some special classes of
aggregates, for instance, (anti)monotone aggregates. Even
for this case, the task is still very complicated. One obser-
vation is that aggregate atoms can express some features of
existential quantifiers, which is even more complicated than
disjunctions in first-order ASP. For instance, recall the pro-
gram specified in Example 1. The first rule, i.e. rule (4), is
actually equivalent to the following rule ∃=2P (x)→ Q(y),
where ∃=2P (x) is a shorthand of

∃xz(x 6= z ∧P (x)∧P (z)∧ ∀u(P (u)→ u = x∨ u = z)),

meaning that P (x) holds exactly for 2 elements.
Another observation is that aggregate atoms that are not

anti-monotone4 contribute to the first-order loops (Chen et
al. 2006; Lee and Meng 2009) of the program.5 Again, con-
sider the program in Example 1. If we ignore the aggregate
atoms, then this program has no loops. But the stable models
of the program cannot be captured by its Clark’s completion
(Clark 1978). This means that the aggregate atom in rule (4)
indeed plays a role to form a loop of the program.

Hence, the difficult part is in identifying the gap between
the aggregates that can be incorporated into ordered com-
pletion and those that cannot. In this paper, we show that
a large variety of (anti)monotone aggregates can indeed be
incorporated in ordered completion, which covers the types
of aggregates in most benchmark programs as far as we have
checked. We extend the notion of ordered completion to nor-
mal logic programs with such kind of aggregates so that
every stable model of a program corresponds to a classical
model of its enhanced ordered completion, and vice versa.

Formally, the aggregate functions we considered in this
paper are restricted as follows.

Definition 2 For an aggregate atom of the form (1) where
OP ∈ {CARD, SUM, PROD, MIN, MAX},
• CARD is a function from multisets of domain tuples to Z+,

and it is defined as 0 on the empty multiset ∅;
• SUM is a function from multisets of Z+ to Z+, and it is

also defined as 0 on ∅;
• MIN and MAX are functions from multisets of Z to Z, and

are undefined for ∅;
• PROD is a function from multisets of N to N, and is defined

as 1 on ∅.
Now, we define the ordered completion for normal

programs with aggregate atoms of form (1) under the
restrictions in Definition 2. For convenience, we use

4Aggregate atoms that can enforce a non-empty multiset.
5For space reasons, the readers are referred to (Chen et al. 2006)

for the formal definitions about loops and some related notions.

PosAgg(r) to denote the aggregate atoms from Pos(r);
PosCardSumProd(r) to denote the cardinality, sum, and
product aggregates from Pos(r); and PosMinMax(r) to
denote the minimum and maximum aggregate atoms from
Pos(r) respectively.

Definition 3 (ordered completion with aggregates) Let Π
be a program with aggregate atoms of form (1) under the
restrictions in Definition 2. The modified completion of Π,
denoted by MComp(Π), is

Π̂ ∧
∧

P∈Pint(Π)

∀x{P (x)→
∨

r∈Π,Head(r)=P (x)

∃y[Body(r) ∧

Po ̂s(r) < P (x) ∧ PosAgg ̂(r) < P (x)]}, (9)

where:

• Π̂ =
∧
r∈Π r̂;

• Po ̂s(r) < P (x) is∧
Q(y)∈Pos(r)\PosAgg(r),

Q∈Pint(Π)

(≤QP (yx) ∧ ¬ ≤PQ (xy));

• and PosAgg ̂(r) < P (x) is∧
δ∈PosCardSumProd(r),

�∈{=,≥,>}

(OP〈v : ∃w(Bd(δ)∧

Po ̂s(δ) < P (x)) 〉 � N)∧

∧
δ∈PosMinMax(r),
�∈{<,≤,=,≥,>}

(OP〈v : ∃w(Bd(δ)∧

Po ̂s(δ) < P (x)) 〉 � N),

where for an aggregate atom δ of the form (1) with body
of the form (2), Po ̂s(δ) < P (x) stands for∧

1≤i≤s,Qi∈Pint(Π)

(≤QiP (yix) ∧ ¬ ≤PQi (xyi)). (10)

Finally, the ordered completion of Π, denoted by OC(Π), is
again MComp(Π) ∧ Trans(Π).

Let us take a closer look at Definition 3. First of all,
for non-aggregate atoms, we treat them the same way as
in the original definition of ordered completion. For ag-
gregate atoms, we distinguish two cases. For those atoms
OP〈v : ∃wBd(δ) 〉 � N where OP ∈ {CARD, SUM, PROD}
and �∈ {<,≤} and those atoms negatively occurring in the
rule, we do not need to pay extra attentions. However, for the
rest of the positive aggregate atoms δ, we need to enforce the
comparison assertions, i.e. formula (10). This is because, for
the latter kind of aggregate atoms, we need to keep track of
the derivation order. However, for the former kind, this is
not necessary because they do not enforce the condition of a
non-empty multiset, i.e., since anti-monotone.

Example 2 (Example 1 continued) Consider again the pro-
gram Π in Example 1. Then, OC(Π) is

∀y(CARD〈x : P (x)〉 = 2→ Q(y)) (11)
∧∀x(Q(x)→ P (x)) ∧ ∀x(R(x)→ P (x)) (12)

∧∀x(P (x)→ R(x) ∨ (Q(x) ∧ ̂Q(x) < P (x)) (13)
∧∀y(Q(y)→ (CARD〈x : P (x)〉 = 2)∧

CARD〈x : P (x) ∧ ̂P (x) < Q(y)〉 = 2) (14)
∧Trans(Π), (15)

where ̂Q(x) < P (x) and ̂P (x) < Q(y) are the shorthand
of ≤QP (x, x) ∧ ¬ ≤PQ (x, x) and ≤PQ (x, y) ∧
¬ ≤QP (y, x) respectively. Notice that OC(Π) can be rep-
resented in first-order logic as formula (11) is equivalent to
∀y(∃=2xP (x) → Q(y)) and formula (14) is equivalent to
∀y(Q(y)→ ∃=2x(P (x) ∧ ̂P (x) < Q(y))).

Consider a structure A where RA = ∅. Then, A is a
stable model of Π iff PA = QA = ∅. This in fact corre-
sponds to a model of OC(Π). Otherwise, suppose PA 6= ∅,
say PA = {a, b}. Then since we have P (a), by (13),
Q(a) ∧ ̂Q(a) < P (a) holds. Then by (14), ∃=2x(P (x) ∧

̂P (x) < Q(a)) must also hold. Then since PA = {a, b} ex-
actly contains 2 elements, then P (a) < Q(a) must hold as
well. This contradicts to Trans(Π) and ̂Q(a) < P (a).

Consider a structure A with RA = {a, b}. Then, A is a
stable model of Π iff Dom(A) only contains two elements
and PA = QA = {a, b}. Now we show that this in fact
corresponds to the model of OC(Π) as well. On one hand,
if Dom(A) only contains two elements and PA = QA =
{a, b}, it can be easily extended to a model of OC(Π) by
forcing ∀xy ̂P (x) < Q(y) to be true. On the other hand, sup-
poseDom(A) contains more than 2 elements. Then,OC(Π)
has no model. There are two cases:

Case 1: PA = {a, b}. Then, by (11), Q holds for all do-
main elements. By (12), P holds for all domain elements
as well, a contradiction.

Case 2: PA 6= {a, b}. Then, by (12), {a, b} ⊂ PA. By
(13), QA is not empty. Then by (14), ∃=2xP (x) holds, a
contradiction.

In fact, it can be verified that a finite structureA is a stable
model of Π iff it can be expanded to a model of OC(Π).

In general, we have the following main theorem.

Theorem 2 (main theorem) Let Π be a program with ag-
gregate atoms of form (1) under the restrictions in Definition
2, and A a finite τ(Π)-structure. Then, A is a stable model
of Π if and only ifA can be expanded to a model of OC(Π).

The proof of this theorem is rather technical and tedious.
However, the basic ideas are simple. Here, the notion of ex-
ternally supported set plays a crucial role. Roughly speak-
ing, a set of grounded atoms6 is externally supported if there

6Grounded atoms are of the form P (a), where P is a predicate
and a is a tuple of domain elements matching the arity of P .

exists a grounded atom in it and an associated rule that sup-
ports this atom (i.e. this atom is the head of the grounded
rule) and whose positive body could be satisfied by external
grounded atoms (i.e. grounded atoms not in this set). Then,
we show that a structure is a stable model of a program if
and only if it is a model of the program and every subset of
grounded atoms included in this structure is externally sup-
ported. Furthermore, it is also equivalent to the fact that this
structure can be expanded to a model of the ordered comple-
tion of the program.

For this purpose, we first introduce the following notion.
For a program Π and structure A of signature σ such that
τ(Π) ⊆ σ, by [Pint(Π)]A, we denote the set of grounded
atoms {P (a) | a ∈ PA, P ∈ Pint(Π) }.
Definition 4 (Externally supported set) Let Π be a pro-
gram with aggregate atoms of form (1) and A a structure
of σ such that τ(Π) ⊆ σ. We say that a set S ⊆ [Pint(Π)]A

is externally supported (under A and Π) if there exist some
P (a) ∈ S and rule Body(r) → P (x) ∈ Π with local
variables yr, such that for some assignment of the form
xyr −→ abr,

1. A |= Body(r)[xyr/abr];
2. (Pos(r) \ PosAgg(r))[xyr/abr] ∩ S = ∅;
3. For all aggregate atom δ ∈ PosAgg(r) of the form (1),7

OP〈cv[1] : A |= Bd(δ)[α], Pos(δ)[α] ∩ S = ∅ 〉 � N,

where α is the assignment of the form xyrwv −→
abrcwcv.

By Definition 4, a set S ⊆ [Pint(Π)]A is not externally
supported if for all P (a) ∈ S, rule Body(r) → P (x) ∈ Π
with local variables yr, and assignments xyr −→ abr such
that A |= Body(r)[xyr/abr] (i.e. a “support” for P (a)),
there exists some atom β ∈ Pos(r) such that either

1. β = Q(y), where Q ∈ Pint(Π) and Q(b) ∈ S that is a
further elaboration β[xyr/abr], or

2. β is a aggregate atom δ of the form (1) and

OP〈cv[1] : A |= Bd(δ)[α], Pos(δ)[α] ∩ S = ∅〉 � N
(16)

does not hold, where α is the assignment xyrwv −→
abrcwcv.

Lemma 1 Let Π be a program with aggregate atoms of form
(1) under the restrictions in Definition 2, and A a finite
τ(Π)-structure. Then, A is a stable model of Π iff A |= Π̂
and every S ⊆ [Pint(Π)]A is externally supported.

Proof: (sketch) “⇒:” SinceA |= SM(Π), we haveA |= Π̂.
Now assume there exists a set S ⊆ [Pint(Π)]A which is
not externally supported. Let σU denote the set of predicate
symbols {Ui | 1 ≤ i ≤ n}. We construct a structure U of
τ(Π) ∪ σU as follows:
• cU = cA for each constant c ∈ τ(Π);
• PU = PA for each predicate P ∈ τ(Π);

7In the following, cv[1] denotes the first component (or posi-
tion) of cv.

• UUi = PAi \ {a | Pi(a) ∈ S} for 1 ≤ i ≤ n.

Clearly, U |= U < Pint(Π). Since A |= SM(Π), there
exists a rule r such that U 6|= r∗. Then, U |= Body(r)∗

and U 6|= Head(r)∗. It follows that Head(r) ∈ S. Then,
any body supporting Head(r) must be dependent on S, i.e.,
there is an atom in S which is used to satisfy the body. How-
ever, this atom is not in U according to our construction.
Hence, U 6|= Body(r)∗, a contradiction. This shows that ev-
ery S is externally supported.

“⇐:” Since A |= Π̂, it suffices to show
A |= ¬∃U(U < Pint(Π) ∧

∧
r∈Π r

∗). We prove this
by contradiction. Suppose there exists such a set U of
interpretations. Let U be the structure obtained from A by
doubling every interpretation of P ∈ Pint(Π) with the in-
terpretation of corresponding U ∈ U. Then, U |=

∧
r∈Π r

∗.
Let S = {P (a) | a ∈ PA\UU}. Firstly, S is not empty as
U < Pint(Π) holds. Since S is externally supported, there
exists r such that Head(r) ∈ S and Body(r) is satisfied by
some atoms irrelevant to S. According to our construction,
U |= Body(r)∗ but U 6|= Head(r)∗. It follows that U 6|= r∗,
a contradiction. This completes our proof. �

Now we prove our main theorem.
Proof of Theorem 2: (sketch) “⇒:” By Lemma 1, for every
set S ⊆ [Pint(Π)]A, S is externally supported. We rank the
grounded atoms in [Pint(Π)]A as follows. At each step, we
select P (a) ∈ [Pint(Π)]A such that there is a grounded rule
satisfied byA, whose head is P (a), and whose positive body
is satisfied by the extensional grounded atoms and the in-
tentional grounded atoms already ranked. This ranking will
range over all grounded atoms in [Pint(Π)]A. Otherwise, let
S be the set of grounded atoms not ranked. Since S is ex-
ternally supported, there exists a grounded rule r satisfied
by A, whose head is in S and whose positive body is satis-
fied by [Pint(Π)]A\S together with the extensional atoms.
However, according to our ranking criterion, Head(r) can
be ranked, a contradiction. Based on this ranking, we expand
A to A′ of the signature τ(Π) ∪ σ≤ such that

≤A
′

PQ= {ab | P (a) is ranked ahead of Q(b)},

where P,Q ∈ Pint(Π). Then, it can be shown that A′ is a
model of OC(Π).

“⇐:” Since A′ |= OC(Π), A′ |= Π̂. Therefore, the re-
striction of A′ on τ(Π) is a model of Π̂ since Π̂ mentions
no comparison predicates ≤PQ. Hence by Lemma 1, it is
enough to show that every set S ⊆ [Pint(Π)]A

′
is exter-

nally supported. On the contrary, assume there exist such a
set S ⊆ [Pint(Π)]A

′
that is non-externally supported. Since

A′ is finite and all the aggregates are (anti)monotone, we
can obtain a total (linear) order ≤S on S that is consistent
with the interpretations of the comparison predicates by us-
ing (9), i.e. we use the fact that every ground atom P (a) ∈ S
is supported by some grounded rule and associated compar-
ison relations. Then, since the total order on S imply that S
is externally supported (since consistent with the compari-
son relations), we get a contradiction. �

It is important to mention that although our work only

considers a certain subclass of aggregates, it is indeed pow-
erful as it covers the types of aggregates used in most ap-
plications. As far as we have checked, almost all aggregates
used in benchmark normal programs (Calimeri et al. 2011)
belong to our class. According to Theorem 2, those pro-
grams can all be captured by their ordered completions.

In addition, our proof technique for Theorem 2, e.g. the
concept of external support, is significantly different from
the original proof for ordered completion in (Asuncion et al.
2012). We believe this will shed new insights in first-order
ASP (with aggregates) as well.

Ordered Completion in FOL

Theorem 2 shows that normal answer set programs with a
large variety of aggregates can be captured by their ordered
completions. However, the ordered completion defined in
Definition 3 is not exactly in first-order logic as it contains
aggregate atoms. A natural question arises whether this can
be further translated in classical first-order logic. We answer
it positively in this section. That is, we show that programs
with aggregates functions restricted in Definition 2 can be
expressed in classical first-order logic with theory on num-
bers.

In fact, what we need to do is to translate an aggregate
atom of form (1) into classical first-order logic. For the ag-
gregate functions MIN and MAX, this is relatively simple.

Definition 5 Let δ be an aggregate atom of the form (1)
where OP ∈ {MIN,MAX}, and Lt(δ) be as in Bd(δ) but
where Lt(δ) can mention the comparison atoms. Then by
δFO, we denote the following formula8

∃vwLt(δ) ∧ ΦZ ∧ (17)

∀v1{ ∀v2(∃wLt(δ)[v1/v1] ∧ ∃wLt(δ)[v1/v2]

∧ v1 6= v2 → v1 � v2)→ v1 � N }, (18)

where � is < if OP = MIN and > if OP = MAX, and ΦZ =
∀vw(Lt(δ) → (v1 ≤ 0 ∨ v1 ≥ 0)), i.e. states that the
(satisfying) v1 are integers.

However, for aggregate atoms where OP ∈
{CARD, SUM, PROD}, it is more complicated. Here,
for space reasons, we only present the translation for
aggregate atoms of the form (1) where OP = SUM and
�=≤. The others can be done in a similar manner.

Definition 6 Let δ be the aggregate atom

SUM〈v : ∃wLt(δ) 〉 ≤ N.

8In the following, v1 denotes the first component (or position)
of v such that for a variable v and formula F , F [v1/v] denotes
the formula obtained from F by replacing every occurrence of the
variable in the first position of v by v.

By δFO, we denote the following formula9

∃vwLt(δ)→ ∃v1w1n1 . . .vNwNnN (19)

{
∧

1≤i≤N

Lt(δ)[vw/viwi] ∧
∧

1≤i≤N

(ni = vi[1] ∨ ni = 0) (20)

∧
∧

1≤i<j≤N

(viwi = vjwj → (ni = 0 ∨ nj = 0)) (21)

∧∀vw(Lt(δ) ∧ (v[1] > 0)→∨
1≤i≤N

(vw = viwi ∧ v[1] = ni))} (22)

∧∀vw(Lt(δ)→ v[1] ≥ 0) ∧ (n1 + · · ·+ nN ≤ N). (23)

Although Definition 6 seems a little complicated, the un-
derlying idea is quite simple. We use ni to simulate vi[1] but
only counting non-duplicated occurrences of vi. ∃vwLt(δ)
in formula (19) is to cover the case where SUM is defined
on ∅. The ∃v1w1n1 . . .vNwNnN part in formula (19) is
for our counting. Formula (22) ensures that every satisfiable
instance of vw is considered in our counting. Formula (20)
forces ni to be either vi[1] (count this number) or 0 (not
count it). Formula (21) means that for duplicated satisfiable
instance vw, we only count at most once. Finally, formula
(23) ensures that the (satisfying) v[1]’s are in Z+ (i.e. must
satisfy v[1] ≥ 0) and that the counting result is less than or
equal to N .

It should be noted that the CARD aggregates are already
well known to be translatable into FOL via the ∃=NF (x)
formulas (e.g. see (Lee, Lifschitz, and Palla 2008)).

Theorem 3 For a program Π with aggregate atoms of form
(1) under the restrictions in Definition 2. Let OC(Π)FO be
the formula obtained from OC(Π) by replacing every ag-
gregate atom δ with δFO. Then, a finite structure A is a
stable model of Π iff A can be expanded into a model of
OC(Π)FO.

Theorem 3 enables us to use a first-order theorem prover
or a SMT solver to compute the stable models of a program
(with aggregates). This is our main motivation.

Related Work and Discussions
Aggregates are extensively studied in the literature (Dao-
Tran et al. 2009; Bartholomew, Lee, and Meng 2011; Faber,
Leone, and Pfeifer 2011; Ferraris 2011; Son and Pontelli
2007). Although the syntactic form of aggregates is usually
presented in a first-order language, its semantics is normally
defined propositionally via grounding. There are several ma-
jor approaches: Ferraris’ semantics (Ferraris 2011), the FLP
semantics (Faber, Leone, and Pfeifer 2011) (later extended
for arbitrary formulas by Truszczyński (2010)), and the SP
semantics (Son and Pontelli 2007).

The Ferraris’ semantics and the FLP semantics (and its
extension to arbitrary formulas by Truszczyński) are ex-
tended into first-order case (Ferraris, Lee, and Lifschitz
2011; Bartholomew, Lee, and Meng 2011). Our work cap-
tures the first one, also called the stable model semantics,

9For the following, vi[1] and v[1] denotes the first components
(or positions) of vi and v respectively.

in first-order logic. Certainly, it is interesting to consider
whether the FLP semantics can be captured in first-order
logic as well. We leave this to our future work. Neverthe-
less, it is worth mentioning that if the aggregate atoms only
occurs in the positive bodies of rules and the bodies of these
aggregates contain no negative atoms (this is actually the
case in most benchmark programs), these semantics coin-
cide.

Bartholomew et al. (2011) studied the aggregate seman-
tics in first-order case via translating into second-order logic.
This work is slightly different from ours. Syntactically, the
former considers aggregate atoms as arbitrary formula while
we only consider a special form, i.e. form (1). Semantically,
the former combines the theory of first-order atoms and ag-
gregate atoms into a unified one, while the latter defines
them separately in the sense that the theory of aggregates is
regarded as a background theory. The main reason is for sim-
plicity. It can be shown that they essentially coincide when
restricted into the specific aggregate forms.

Our main results can also be extended for programs with
other useful building blocks in ASP, e.g. choice rules and
constraints, in the same way as in (Asuncion et al. 2012),
However, for clarity and simplicity, we omit this in the paper.

Conclusion
In this paper, we showed that normal answer set programs
with a large variety of aggregates (covering the aggregates
used in most benchmark programs) can be captured by their
ordered completions (see Theorem 2), which can be further
translated into classical first-order logic (see Theorem 3).
This work enables us to implement a new direction of ASP
solver by firstly translating a program to its ordered com-
pletion, and then working on finding a model of this first-
order sentence using, e.g. SAT or SMT solvers. We leave
this promising task to our future work.

Acknowledgement
This publication was made possible by the support of an
NPRP grant (NPRP 09-079-1-013) from the Qatar National
Research Fund (QNRF). The statements made herein are
solely the responsibility of the authors.

References
Asuncion, V.; Lin, F.; Zhang, Y.; and Zhou, Y. 2012. Or-
dered completion for first-order logic programs on finite
structures. Artificial Intelligence 177-179:1–24.
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
Bartholomew, M.; Lee, J.; and Meng, Y. 2011. First-order
extension of the flp stable model semantics via modified cir-
cumscription. In IJCAI-2011, 724–730.
Calimeri, F.; Ianni, G.; Ricca, F.; Alviano, M.; Bria, A.;
Catalano, G.; Cozza, S.; Faber, W.; Febbraro, O.; Leone, N.;
Manna, M.; Martello, A.; Panetta, C.; Perri, S.; Reale, K.;
Santoro, M. C.; Sirianni, M.; Terracina, G.; and Veltri, P.
2011. The third answer set programming competition: Pre-
liminary report of the system competition track. In LPNMR,
388–403.

Chen, Y.; Lin, F.; Wang, Y.; and Zhang, M. 2006. First-order
loop formulas for normal logic programs. In KR-2006, 298–
307.
Clark, K. L. 1978. Negation as failure. In Logics and
Databases, 293–322.
Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T.
2009. Modular nonmonotonic logic programming revisited.
In ICLP, 145–159.
Faber, W.; Leone, N.; and Pfeifer, G. 2003. Aggregate func-
tions in dlv. In Answer Set Programming: Advances in The-
ory and Implementation, 274–288.
Faber, W.; Leone, N.; and Pfeifer, G. 2011. Recursive ag-
gregates in disjunctive logic programs: Semantics and com-
plexity. Artificial Intelligence 175(1):278–298.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175(1):236–263.
Ferraris, P. 2011. Logic programs with propositional con-
nectives and aggregates. ACM Transactions on Computa-
tional Logic 12(4):25.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2009. On the implementation of weigh constraints in
conflict-driven ASP solvers. In ICLP’09, volume 5649, 250–
264.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proceedings of Inter-
national Logic Programming Conference and Symposium,
1070–1080.
Lee, J., and Meng, Y. 2009. On the reductive semantics of
aggregates in answer set programming. In LPNMR-2009,
182–195.
Lee, J.; Lifschitz, V.; and Palla, R. 2008. A reductive seman-
tics for counting and choice in answer set programming. In
AAAI-2008, 472–479.
Lin, F., and Zhou, Y. 2011. From answer set logic pro-
gramming to circumscription via logic of GK. Artif. Intell.
175(1):264–277.
Niemelä, I. 1999. Logic programs with stable model seman-
tics as a constraint programming paradigm. Ann. Math. and
AI 25(3-4):241–273.
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 1999. Solv-
ing SAT and SAT modulo theories: from an abstract Davis–
Putnam–Logemann–Loveland procedure to DPLL(t). Jour-
nal of the ACM (JACM) 53(6):937–977.
Pontelli, E.; Son, T. C.; and Elkabani, I. 2004. A treatment
of aggregates in ASP (system description). In LPNMR-2004,
356–360.
Son, T. C., and Pontelli, E. 2007. A constructive semantic
characterization of aggregates in answer set programming.
TPLP 7(3):355–375.
Truszczyński, M. 2010. Reducts of propositional theo-
ries, satisfiability relations, and generalizations of semantics
of logic programs. Artificial Intelligence 174(16-17):1285–
1306.

