
Ordered Completion for First-Order Logic Programs on Finite Structures

Vernon Asuncion
School of Computing & Mathematics

University of Western Sydney

Fangzhen Lin
Department of Computer Science

Hong Kong University of Sci. & Tech.

Yan Zhang and Yi Zhou
School of Computing & Mathematics

University of Western Sydney

Abstract
In this paper, we propose a translation from normal first-order
logic programs under the answer set semantics to first-order
theories on finite structures. Specifically, we introduce or-
dered completions which are modifications of Clark’s com-
pletions with some extra predicates added to keep track of the
derivation order, and show that on finite structures, classical
models of the ordered-completion of a normal logic program
correspond exactly to the answer sets (stable models) of the
logic program.

Introduction
This work is about translating logic programs under the an-
swer set semantics (Gelfond & Lifschitz 1988) to first-order
logic. Viewed in the context of formalizing the semantics of
logic programs in classical logic, work in this direction goes
back to that of Clark (1978) who gave us what is now called
Clark’s completion semantics, on which our work, like al-
most all other work in this direction, is based.

In terms of the answer set semantics, Clark’s completion
semantics is too weak in the sense that not all models of
Clark’s completion are answer sets, unless the programs are
“tight” (Fages 1994). Various ways to remedy this have
been proposed, particularly in the propositional case (logic
programs without variables) given the recent interest in An-
swer Set Programming (ASP) and the prospect of using SAT
solvers to compute answer sets. This paper considers first-
order logic programs, and the prospect of capturing the an-
swer sets of these programs in first-order logic.

A crucial consideration in work of this kind is whether
extra symbols (in the propositional case) or predicates (in
the first-order case) can be used. For propositional logic
programs, Ben-Eliyahu and Dechter’s translation (1994) is
polynomial in space but uses O(n2) extra variables, while
Lin and Zhao’s translation (2004) using loop formulas is ex-
ponential in the worst case but does not use any extra vari-
ables. Chen et al. (2006) extended loops and loop formulas
to first-order case and showed that for finite domains, the an-
swer sets of a first-order normal logic program can be cap-
tured by its completion and all its first-order loop formulas.
However, in general, a program may have an infinite num-
ber of loops and loop formulas. But this seems to be the best

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that one can hope for if no extra predicates are used: it is
well-known that transitive closure, which can be easily writ-
ten as a first-order logic program, cannot be defined by any
finite first-order theories on finite structures (Kolaitis 1990).

However, the situation is different if we introduce extra
predicates. Our main technical result of this paper is that
by using some additional predicates that keep track of the
derivation order from bodies to heads in a program, we can
modify Clark’s completion into what we call ordered com-
pletion that captures exactly the answer set semantics on fi-
nite structures. While our emphasis in this paper is first-
order logic programs, we nonetheless report some prelimi-
nary experimental results of using our ordered completion to
compute answer sets of a ground logic program.

Preliminaries
We assume a finite first-order language without function
symbols but with equality. Given such a language, the no-
tions of terms, atoms, formulas and sentences are defined as
usual. In particular, an atom is called an equality atom if it
is of the form t1 = t2, and a proper atom otherwise.

A normal logic program is a finite set of rules of the fol-
lowing form

α ← β1, . . . , βk, not γ1, . . . , not γl, (1)
where α is a proper atom, and βi, (1 ≤ i ≤ k), γj , (1 ≤ j ≤
l) are atoms. We call a variable in a rule a local variable if
it occurs in the body but not the head of the rule.

Given a program Π, a predicate is called intentional if it
occurs in the head of a rule in Π, and extensional otherwise.
The signature of Π contains all intentional predicates, ex-
tensional predicates and constants occurring in Π.

For convenience and without loss of generality, in the fol-
lowing we assume that programs are normalized in the sense
that for each intentional predicate P , there is a tuple ~x of
distinct variables matching the arity of P such that for each
rule, if its head mentions P , then the head must be P (~x). So
the rules of P in the program can be enumerated as:

P (~x) ← Body1, · · · , P (~x) ← Bodyk.

Clark’s completion
Our following definition of Clark’s completion is standard
except that we do not make completions for extensional
predicates.



Given a program Π, and a predicate P in it, Clark’s Com-
pletion of P in Π is the following first-order sentence (Clark
1978):

∀−→x (P (−→x ) ↔
∨

1≤i≤k

∃−→yi B̂odyi), (2)

where
• P (−→x ) ← Body1, . . ., P (−→x ) ← Bodyk are all the rules

whose heads mention the predicate P (recall that we as-
sume a program is normalized);

• −→yi is the tuple of local variables in P (−→x ) ← Bodyi;

• B̂odyi is the conjunction of elements in Bodyi by simul-
taneously replacing the occurrences of not by ¬.

Clark’s Completion (completion for short if clear from the
context) of Π, denoted by Comp(Π), is then the set of
Clark’s completions of all intentional predicates in Π.

Example 1 [Transitive Closure (TC)] The following normal
logic program TC computes the paths of a given graph:

S(x, y) ← E(x, y)
S(x, y) ← E(x, z), S(z, y),

where E is the only extensional predicate of TC, represent-
ing the edges of a graph, and S is the only intentional pred-
icate of TC. Ideally, the intentional predicate computes the
transitive closure (i.e., all the paths) of a given graph. The
Clark’s Completion of TC is the following first-order sen-
tence:

∀xy(S(x, y) ↔ (E(x, y) ∨ ∃zE(x, z) ∧ S(z, y))).

The answer set (stable model) semantics
The stable model semantics for normal propositional pro-
grams was proposed by Gelfond and Lifschitz (1988), and
later extended to become answer set semantics for proposi-
tional programs that can have classical negation, constraints,
disjunctions, and other operators. Due to space limitation,
we assume familiarity with the answer set semantics for
propositional logic programs.

The answer set semantics (or stable model semantics) for
first-order normal logic programs without extensional predi-
cates have been well studied as well. There are some dif-
ferent characterizations, for instance, in terms of ground-
ing (Gelfond & Lifschitz 1988), in terms of loop formu-
las (Chen et al. 2006), in terms of circumscription (Lin
& Zhou 2007), in terms of modified circumscription (Fer-
raris, Lee, & Lifschitz 2007), and in terms of first-order
equilibrium logic (Pearce & Valverde 2004). It has been
shown that all the above definitions coincide on finite struc-
tures (Ferraris, Lee, & Lifschitz 2007; Lin & Zhou 2007;
Lee & Meng 2008).

Accounting for extensional predicates is straightforward
(see e.g. (Chen et al. 2006)). Assuming one knows the
answer set semantics of ground logic programs, the easiest
way to define answer set semantics for a first-order logic
program is by grounding, which is what we will do here.
But one subtlety is the unique names assumption: whether
distinct constants are interpreted differently. Here we do not
need it, so we will not assume it.

Given a program Π, and a first-order structure M of the
signature used in Π, we use the interpretations of M on the
constants and extensional predicates to ground Π.

Definition 1 The grounding of a program Π on a structure
M, written ΠM below, is the union of the following three
sets:

1. The set of all instances of the rules in Π underM, here an
instance of a rule under M is the result of replacing all
constants in the rule by their interpretations in M, and
all variables in the rule by some domain objects in M;

2. EQM = {u = u | u is a domain object in M};
3. ExtM = {Q(~u) | Q is an extensional predicate and ~u ∈

QM}, here QM is the interpretation of Q in M.

We now have the following definition:
Definition 2 Let Π be a normal logic program and M a
structure. We say that M is a stable model or an answer set
of Π if the following set

EQM ∪ ExtM ∪ IntM

is an answer set of ΠM in the propositional case, where
IntM is the following set

{P (~u) | P is an intentional predicate, and ~u ∈ PM}.

Ordered Completion
It is well-known that Clark’s completion does not fully cap-
ture the answer set semantics because of the cycles. For
instance, the following program

p ← q

q ← p

has one answer set {}, but its completion completion p ↔ q
has two models {p, q} and {}. Here, we propose a modifi-
cation of Clark’s completion to address this issue. The main
technical property of our new translation is that for each fi-
nite first-order logic program, our translation yields a finite
first-order theory that captures exactly the finite stable mod-
els of the program. The ideas behind our translation can be
best illustrated by simple propositional programs. Consider
the program mentioned above. We introduce four extra sym-
bols Tpq, Tpp, Tqq, Tqp (read, e.g. Tpq as from p to q), and
translate this program into the following theory

(p → q) ∧ (q → p),
q → (p ∧ Tpq ∧ ¬Tqp),
p → (q ∧ Tqp ∧ ¬Tpq),
Tpq ∧ Tqp → Tpp,

Tqp ∧ Tpq → Tqq.

The first sentence is the direct encoding of the two rules.
The second one is similar to Clark’s completion for q except
that we add Tpq and ¬Tqp: for q to be true, p must be true
and that it must be that p is used to derive q but not the other
way around. The third sentence is similar, and the last two
sentences are about the transitivity of the T atoms. It can be
seen that in all models of the above sentences, both p and q
must be false.



Definition of ordered completion
In general, let Π be a first-order normal logic program, and
ΩΠ its set of intentional predicates. For each pair of predi-
cates (P, Q) (might be the same) in ΩΠ, we introduce a new
predicate TPQ, called the comparison predicate, whose arity
is the sum of the arities of P and Q. The intuitive meaning
of TPQ(−→x ,−→y ), read as from P (−→x ) to Q(−→y ), is that there
is a derivation path from P (−→x ) to Q(−→y ).

Definition 3 Let Π be a normal logic program. The ordered
completion of Π, denoted by OC(Π), is the set of following
sentences:

• For each intentional predicate P , the following sen-
tences:

∀−→x (
∨

1≤i≤k

∃−→yi B̂odyi → P (−→x )), (3)

∀−→x (P (−→x ) →
∨

1≤i≤k

∃−→yi (B̂odyi ∧
∧

Q(−→z )∈Posi,Q∈ΩΠ

(TQP (−→z ,−→x ) ∧ ¬TPQ(−→x ,−→z )))) (4)

where we have borrowed the notations used in the defini-
tion of Clark’s completion, and further assume that Posi

is the positive part of Bodyi and Q(−→z ) ranges over all
the intentional atoms in the positive part of Bodyi;

• For each triple of intentional predicates P , Q, and R (two
or all of them can be the same predicate) the following
sentence:

∧

P,Q,R∈ΩΠ

∀−→x−→y −→z (TPQ(−→x ,−→y ) ∧ TQR(−→y ,−→z )

→ TPR(−→x ,−→z )), (5)

In the following, we use MComp(Π) to denote the set of
the formulas (3) and (4), and TranS(Π) the set of formulas
(5). So OC(Π) = MComp(Π) ∪ Trans(Π).

Clearly, for finite programs, OC(Π) is finite, and the predi-
cates occurring in OC(Π) are all the predicates occurring in
Π together with all the comparison predicates {TPQ |P, Q ∈
ΩΠ}.

Notice that Clark’s completion of a predicate consists of
two parts:

∀−→x (
∨

1≤i≤k

∃−→yi B̂odyi → P (−→x ))

∀−→x (P (−→x ) →
∨

1≤i≤k

∃−→yi B̂odyi).

Thus the difference between MComp(Π) and Comp(Π)
is that the former introduces some assertions on the com-
parison predicates, which intuitively mean that there exist
derivation paths from the intentional atoms in the body to
head but not the other way around (see Equation (4)). In ad-
dition, TranS(Π) simply means that the comparison predi-
cates satisfy “transitivity”.

Proposition 1 Let Π be a normal logic program. Then,
OC(Π) introduces m2 new predicates whose arities are no
more than 2s, and the size of OC(Π) is O(s×m3 + s×n),
where m is the number of intentional predicates of Π, s the
maximal arity of the intentional predicates of Π and n the
length of Π.

Example 2 [Transitive Closure continued] Recall the Tran-
sitive Closure program TC presented in Example 1. In this
case, since the only intentional predicate is S, we only need
to introduce one additional predicate TSS , whose arity is 4.
The ordered completion of TC consists of the following sen-
tences:

∀xy (E(x, y) ∨ ∃z(E(x, z) ∧ S(z, y))) → S(x, y),
∀xy S(x, y) → (E(x, y) ∨ ∃z(E(x, z) ∧ S(z, y)
∧TSS(z, y, x, y) ∧ ¬TSS(x, y, z, y))),

∀xyuvzw TSS(x, y, u, v) ∧ TSS(u, v, z, w)
→ TSS(x, y, z, w).

Intuitively, one can understand TSS(x, y, u, v) to mean that
S(x, y) is used to establish S(u, v). So the second sen-
tence means that for S(x, y) to be true, either E(x, y) (the
base case), or inductively, for some z, E(x, z), S(z, y), and
S(z, y) is used to establish S(x, y) and not the other way
around.

To see how these axioms work, consider the graph in Fig-
ure 1 with four vertices a, b, c, d, with E representing the
edge relation: E(a, b), E(b, a), E(a, c), E(c, d).

a b

c d

Figure 1: An example graph

Clearly, if there is a path from x to y, then S(x, y) (by
the first sentence above). We want to show that if there is no
path from x to y, then ¬S(x, y). Consider S(d, a). If it is
true, then since ¬E(d, a), there must be an x such that

E(d, x) ∧ S(x, a) ∧ TSS(x, a, d, a) ∧ ¬TSS(d, a, x, a).

This is false as there is no edge going out of d.
Now consider S(c, a). If it is true, then there must be an

x such that

E(c, x) ∧ S(x, a) ∧ TSS(x, a, c, a) ∧ ¬TSS(c, a, x, a).

So x must be d, and

S(d, a) ∧ TSS(d, b, a, b) ∧ ¬TSS(a, b, d, b).

However, as shown above, S(d, a) is false.

The main theorem
In this section, we prove the following main theorem.

Theorem 1 Let Π be a normal logic program whose signa-
ture is σ, and A a finite σ-structure. Then, A is an answer



set of Π if and only if there exists a modelM of OC(Π) such
that A is the reduct1 of M on σ.

Proof:(sketch) First we show that every finite answer set A
of Π can be expanded to a model of OC(Π). Construct a
finite structure M by expanding A with the following inter-
pretations on TPQ for each pair (P, Q) of intentional predi-
cates in Π:

TPQ(−→a ,
−→
b ) iff there exists a path from Q(−→b ) to P (−→a ) in

the dependency graph (see the definition in (Lin & Zhao
2003)) of the ground program ΠA.

where−→a and−→b are two tuples of elements in the domain of
A that match the arities of P and Q respectively. It can be
proved that M is a model of OC(Π).

Now we prove that the reduct of any finite modelM of the
ordered completion of Π on σ must be an answer set of Π.
Clearly, M ↑ σ is a model of Comp(Π). Hence, according
to the loop formula characterization of answer set semantics
in the propositional case (Lin & Zhao 2003), it suffices to
show that for all loops L of the ground program ΠM↑σ , the
set of ground atoms EQM↑σ∪ExtM↑σ∪IntM↑σ is a model
of its loop formula.

Otherwise, since M is a model of MComp(Π), we
can get a sequence of ground atoms P0(−→a0), P1(−→a1),
P2(−→a2), . . . , such that for all i, Pi(−→ai ) ∈ L, −→ai ∈ PMi ,
TPi+1Pi

(−−→ai+1,−→ai ) holds in M, and TPiPi+1(−→ai ,−−→ai+1)
does not hold in M. Hence, for all k < l, TPlPk

(−→al ,−→ak)
holds in M but TPkPl

(−→ak,−→al ) does not hold since TPQ

satisfy transitivity for all pairs of intentional predicates.
However, since M is finite, there exist k < l such that
Pk(−→ak) = Pl(−→al ), a contradiction.

Normal logic program with constraints
Recall that we have required the head of a rule to be a proper
atom. If we allow the head to be empty, then we have so-
called constraints:

← β1, . . . , βk, not γ1, . . . , not γl, (6)

where βi, (1 ≤ i ≤ k), γj , (1 ≤ j ≤ l) are atoms. A
model is said to satisfy the above constraint if it satisfies the
corresponding sentence:

∀−→y ¬(β1 ∧ . . . ∧ βk ∧ ¬γ1 ∧ . . . ∧ ¬γl),

where −→y is the tuple of all variables occurring in (6). In the
following, if c is a constraint of form (6), then we use ĉ to
denote its corresponding formula above.

A normal logic program with constraints is then a finite
set of rules and constraints. The answer set semantics can
be extended to normal logic programs with constraints: a
model is an answer set if it is an answer set of the set of the
rules in the program and satisfies all the constraints in the
program.

1A σ-structure is said to be a reduct of a σ′-structure (σ ⊆
σ′) M on σ, denoted by M ↑ σ, if it is the structure obtained
from M by removing the interpretations of the symbols in σ′\σ
(Ebbinghaus & Flum 1995).

Both Clark’s completion and our ordered completion can
be extended straightforwardly to normal logic programs
with constraints: one simply adds the sentences correspond-
ing to the constraints to the respective completions.
Proposition 2 Let Π be a normal logic program whose sig-
nature is σ, C a set of constraints, andA a finite σ-structure.
Then, A is an answer set of Π ∪ C iff there exists a model
M of OC(Π)∪{ĉ | c ∈ C}, such thatA is the reduct ofM
on σ.

Ordered completion on maximal predicate loops
(strongly connected components)
In our definition of ordered completions, we introduce a
comparison predicate between each pair of predicates. This
is not necessary. We only need to do so for pairs of predi-
cates that belong to a same loop in the predicate dependency
graph of the program.

Formally, the predicate dependency graph of a first-order
program Π is a finite graph PGΠ = 〈V, E〉, where V is
the set of all intentional predicates of Π and (P, Q) ∈ E iff
there is a rule whose head mentions P and whose positive
body mentions Q.

Maximal predicate loops are then strongly connected
components of PGΠ. Ordered completions on maximal
predicate loops are the same as ordered completions except
that the comparison predicates TPQ are defined only when
P and Q belong to a same maximal predicate loop. More
precisely, the ordered completion of Π on maximal predi-
cate loops, denoted by OC∗(Π), is of the similar form as the
ordered completion of Π (see Definition 3), except that
• Q(−→z ) in (4) ranges over all the intentional atoms in the

positive part of Bodyi such that for some maximal predi-
cate loop L, both P and Q are in L.

• P , Q and R in (5) are intentional predicates such that for
some maximal predicate loop L, P , Q, and R are all in L.
The following proposition is a refinement of the main the-

orem.
Proposition 3 Let Π be a normal logic program whose sig-
nature is σ, andA a finite σ-structure. Then,A is an answer
set of Π if and only if there exists a model M of OC∗(Π)
such that A is the reduct of M on σ.

In many cases, restricting comparison predicates on max-
imal predicate loops results in a much smaller ordered com-
pletion.
Example 3 [Hamiltonian Circuit (HC)] Consider the fol-
lowing normal program HC with constraints for computing
Hamiltonian circuits of a graph:

hc(x, y) ← arc(x, y), not otherroute(x, y),
otherroute(x, y) ← arc(x, y), arc(x, z), hc(x, z), y 6= z,
otherroute(x, y) ← arc(x, y), arc(z, y), hc(z, y), x 6= z,
reached(y) ← arc(x, y), hc(x, y), reached(x), not init(x),
reached(y) ← arc(x, y), hc(x, y), init(x),
← vertex(x), not reached(x).

This program has three intentional predicates: hc,
otherroute and reached. According to the original ver-
sion of ordered completion (see Definition 3), we need to



introduce 9 comparison predicates, and the maximal arity is
4.

However, by using maximal predicate loops, only one ex-
tra predicate is needed since HC has only one maximal pred-
icate loop, namely {reached}. The only comparison pred-
icate needed is TRR(x, y), which is binary. Hence, the new
form of the ordered completion of HC is the following set of
sentences:

∀xy(hc(x, y) ↔ arc(x, y) ∧ ¬otherroute(x, y)),
∀xy(otherroute(x, y) ↔

∃z(arc(x, y) ∧ arc(x, z) ∧ hc(x, z) ∧ y 6= z) ∨
∃z(arc(x, y) ∧ arc(z, y) ∧ hc(z, y) ∧ x 6= z)),

∀y((∃x(arc(x, y) ∧ hc(x, y) ∧ reached(x) ∧ ¬init(x)) ∨
∃x(arc(x, y) ∧ hc(x, y) ∧ init(x))) → reached(y)),

∀y(reached(y) → (∃x(arc(x, y) ∧ hc(x, y) ∧ init(x)) ∨
∃x(arc(x, y) ∧ hc(x, y) ∧ reached(x) ∧ ¬init(x) ∧

TRR(x, y) ∧ ¬TRR(y, x)))),
∀x¬(vertex(x) ∧ ¬reached(x)),
∀xyz(TRR(x, y) ∧ TRR(y, z) → TRR(x, z)).

Arbitrary structures
Finally, we want to emphasize that the correspondence be-
tween classical first-order models of our ordered comple-
tions and stable models of a logic program holds only on
finite structures. In general, the result doesn’t hold on arbi-
trary structures. For instance, on arbitrary structures, the
transitive closure program cannot be captured by a first-
order sentence with or without using new predicates.

Related Work and Discussions
The only other translations from first-order logic programs
under answer set semantics to first-order logic are based on
loop formulas (Chen et al. 2006; Lee & Meng 2008). As
mentioned earlier, the main difference between these trans-
lations and ours is that ours results in a finite first-order the-
ory but uses extra predicates while the ones based on loop
formulas do not use any extra predicates but in general re-
sult in an infinite first-order theory.

As we also mentioned, the basic intuitions behind almost
all of the current translations from logic programs with an-
swer set semantics to classical logic are similar. The main
differences are in the ways these intuitions are formalized.
In the following, we briefly review some of the closely re-
lated ones in the propositional case.

Propositional case
Ordered completion can be viewed as a propositional trans-
lation from normal logic programs to propositional theories
by treating each propositional atom as a 0-ary predicate.
Several proposals in this direction have been proposed (Ben-
Eliyahu & Dechter 1994; Lin & Zhao 2003; Janhunen 2004;
Lin & Zhao 2004; Niemelä 2008). Ben-Eliyahu and Dechter
(1994) assigned an index (or level numbering) #x to each
propositional atom x, and added the assertions #x < #y to
the Clark’s completion for each pair (x, y), where x is the

head of a rule and y is in the positive body of the rule. Jan-
hunen (2004) proposed another similar translation and im-
plemented an ASP solver called “lp2atomic|lp2sat”. More
recently, Niemelä (2008) proposed to capture the level map-
ping in difference logic, and based on it, designed an ASP
solver called lp2diff using an SMT solver that integrates
SAT with a difference logic module.

The main difference between Ben-Eliyahu and Dechter’s
translation and ours is that we use the comparison atoms
Txy instead of indices #x. In fact, Txy ∧ ¬Tyx in ordered
completion plays the role as #x < #y in Ben-Eliyahu
and Dechter ’s translation. Although they look similar in
the Clark’s completion part, the ways to encode indices and
comparison atoms in classical propositional logic are very
different. As the difference to Niemelä’s work, which for-
malized the notion of groundedness using the build-in pred-
icate “<” in difference logic, we did it by introducing some
new (comparison) predicates in classical logic. This dif-
ference shows up in the implementations as well: while
Niemelä uses SMT, we use SAT.

Another translation, also sharing the basic idea of com-
paring stages, is due to Lin and Zhao (2003). However, they
first translate a program equivalently to a tight program, and
then use the Clark’s completion of the new program to cap-
ture the original one. Also, the loop formula approach in the
propositional case (Lin & Zhao 2004) can be regarded as
a translation from logic programs to propositional theories.
Different from the ones mentioned above, the loop formula
approach requires no extra atoms but may be exponential.
Based on this idea, two solvers called “assat” (Lin & Zhao
2004) and “cmodels” (Lierler & Maratea 2004) are imple-
mented by adding loop formulas incrementally.

Fixed-point logic and Datalog
Another related work (Kolaitis 1990) is in the area of finite
model theory and fixed-point logic. Although fixed-point
logic and normal logic programming are not comparable,
they have a common fragment, namely Datalog. Kolaitis
(1990) showed that every fixed-point query is conjunctive
definable on finite structures. That is, given any fixed-point
query Q, there exists another fixed-point query Q′ such that
the conjunctive query (Q,Q′) is implicit definable on finite
structures. As a consequence, every datalog query is also
conjunctive definable on finite structures. From this result,
although tedious, one can actually derive a translation from
datalog to first-order sentences using some new predicates
not in the signatures of the original datalog programs.

We will not go into details comparing our translation and
the one derived from Kolaitis’ result since our focus here is
on normal logic programs. Suffice to say here that the two
are different in many ways, not the least is that ours is based
on Clark’s completion in the sense that some additional con-
ditions are added to the necessary parts of intentional predi-
cates, while the one derived from Kolaitis’ result is not. We
mention this work because Kolaitis’s result did play an im-
portant role early on in our work. We speculated that if it
is possible to translate datalog programs to first-order sen-
tences using some new predicates, then it must also be pos-
sible for normal logic programs, and that if this is true, then



it must be doable by modifying Clark’s completion. As it
happened, this turned out to be the case.

Some Experimental Results
While our interest is mainly on first-order normal logic pro-
grams, and the possibility of constructing a first-order ASP
solver, as an easy exercise, we implemented a prototype
propositional ASP solver, called asp2sat, using our ordered
completion. Our preliminary experimental results seem to
indicate that while not as good as clasp2, it is quite compet-
itive with other SAT or SMT-based ones.

Table 1 contains some runtime data on Niemelä’s Hamil-
tonian Circuit program with the particular instances taken
from the assat website3. The following solvers were com-
pared: our asp2sat using either zchaff (3.12)4 or minisat
(2.0)5; lp2atomic (1.12)6 with minisat and lp2diff (1.10)7

with z3; cmodels (3.79)8 with zchaff, and clasp. In the ta-
ble, “y” (“n”) means that the corresponding graph has a (no)
Hamiltonian Circuit. For each instance, we record the aver-
age time for 5 runs in seconds. We set the timeout threshold
as 900 seconds, which is denoted by “-” in the table.

graph asp2sat asp2sat lp2atomic lp2diff cmodels clasp
+zchaff +minisat +minisat +z3

nv60a356 y 1.04 0.35 0.27 0.13 3.01 0.02
nv60a526 y 3.21 3.11 1.06 0.21 1.82 0.09
nv60a554 y 7.33 16.06 1.95 0.26 0.39 0.04
nv70a396 y 0.43 0.95 0.55 0.16 7.26 0.04
nv70a428 y 1.52 2.08 0.67 0.20 0.68 0.03
nv70a511 y 1.20 15.57 1.52 0.28 2.27 0.04
nv70a549 y 3.05 17.12 1.91 0.24 0.33 0.04
nv70a571 y 4.35 5.35 5.52 0.24 0.33 0.04

2xp30.1 y 4.04 4.97 2.60 28.83 8.44 0.01
2xp30.3 y 2.56 8.40 580.93 2.29 17.31 0.04
2xp30.4 n 17.56 18.66 - 198.58 217.23 8.33
4xp20 n 0.00 0.09 118.27 2.82 0.14 0.00

4xp20.1 n 0.52 0.19 113.12 2.55 0.65 0.08
4xp20.2 y 1.40 1.26 126.51 0.28 0.90 0.02
4xp20.3 n 6.10 0.62 122.50 3.36 1.38 0.01

Table 1: Experimental results

Conclusion
The main contribution of this paper is to introduce a notion
of ordered completion that captures the answer set semantics
of normal logic programs on finite structures (See Theorem
1). Interestingly, this result fails if infinite structures are al-
lowed. Theorem 1 is also surprising in the sense that many
logic programs cannot be captured by first-order sentences
without extra predicates (e.g. TC in Example 1).

2http://www.cs.uni-potsdam.de/clasp/
3http://assat.cs.ust.hk/Assat-2.0/hc-2.0.html
4http://www.princeton.edu/∼chaff/zchaff.html
5http://www.minisat.se/
6http://www.tcs.hut.fi/Software/lp2sat/
7http://www.tcs.hut.fi/Software/lp2diff/
8http://www.cs.utexas.edu/∼tag/cmodels/

Theorem 1 is important from both a theoretical and a prac-
tical point of view. To the best of our knowledge, our trans-
lation from first-order normal logic programs to first-order
sentences is the first such one. It is also worth noting that
this translation, when instantiated in the propositional case
in an obvious way, yields an ASP solver that is competi-
tive with other ASP solvers based on SAT and SMT solvers.
More interestingly, we are looking at the possibility of using
Theorem 1 to construct a first-order ASP solver. For us, this
is the most important future direction of this work.

References
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional se-
mantics for disjunctive logic programs. Ann. Math. Artif.
Intell. 12(1-2):53–87.
Chen, Y.; Lin, F.; Wang, Y.; and Zhang, M. 2006. First-
order loop formulas for normal logic programs. In KR’06,
298–307.
Clark, K. L. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds., Logics and Databases. New York: Plenum
Press. 293–322.
Ebbinghaus, H. D., and Flum, J. 1995. Finite Model The-
ory. Springer-Verlag.
Fages, F. 1994. Consistency of Clark’s completion and
existence of stable of stable models. Journal of Methods of
Logic in Computer Science 1:51–60.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2007. A new perspec-
tive on stable models. In IJCAI’07, 372–379.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In ICLP’88, 1070–1080.
Janhunen, T. 2004. Representing normal programs with
clauses. In ECAI’04, 358–362.
Kolaitis, P. G. 1990. Implicit definability on finite struc-
tures and unambiguous computations (preliminary report).
In LICS’90, 168–180.
Lee, J., and Meng, Y. 2008. On loop formulas with vari-
ables. In KR’08, 444–453.
Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-based
answer set solver enhanced to non-tight programs. In LP-
NMR’04, 346–350.
Lin, F., and Zhao, J. 2003. On tight logic programs and yet
another translation from normal logic programs to propo-
sitional logic. In IJCAI’03, 853–858.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer
sets of a logic program by SAT solvers. Artif. Intell. 157(1-
2):115–137.
Lin, F., and Zhou, Y. 2007. From answer set logic pro-
gramming to circumscription via logic of GK. In IJCAI’07,
441–446.
Niemelä, I. 2008. Stable models and difference logic. Ann.
Math. Artif. Intell. 53(1-4):313–329.
Pearce, D., and Valverde, A. 2004. Towards a first or-
der equilibrium logic for nonmonotonic reasoning. In
JELIA’04, 147–160.


