
First-order Indefinability of Answer Set Programs on Finite Structures

Yin Chen
Department of Computer Science

South China Normal University, China
Email: gzchenyin@gmail.com

Yan Zhang and Yi Zhou
School of Computing and Mathematics
University of Western Sydney, Australia
Email: {yan,yzhou}@scm.uws.edu.au

Abstract

An answer set program with variables is first-order defin-
able on finite structures if the set of its finite answer sets
can be captured by a first-order sentence, otherwise this pro-
gram is first-order indefinable on finite structures. In this pa-
per, we study the problem of first-order indefinability of an-
swer set programs. We provide an Ehrenfeucht-Fraı̈ssé game-
theoretic characterization for the first-order indefinability of
answer set programs on finite structures. As an application of
this approach, we show that the well-known finding Hamilto-
nian cycles program is not first-order definable on finite struc-
tures. We then define two notions named the 0-1 property and
unbounded cycles or paths under the answer set semantics,
from which we develop two sufficient conditions that may
be effectively used in proving a program’s first-order indefin-
ability on finite structures under certain circumstances.

Introduction
Answer Set Programming (ASP) is an important program-
ming paradigm for declarative problem solving. In recent
years, it has demonstrated profound applications in many ar-
eas such as semantic web, robotic planning and bioinformat-
ics. Recent work on ASP has extended the traditional ASP
framework by allowing variables in program rules, which we
call first-order ASP, while the semantics of first-order ASP
is defined via second-order logic (Ferraris, Lee, & Lifschitz
2010; Lin & Zhou 2007). Consequently, such extended an-
swer set programs have significantly increased the expres-
sive power compared to propositional answer set programs
(Baral 2003).

Nevertheless, computing first-order answer set programs
is difficult due to their inherited second-order logic seman-
tics. One related issue is the first-order definability (indefin-
ability) problem. An answer set program with variables is
first-order definable on finite structures if the set of its finite
answer sets can be captured by a first-order sentence, oth-
erwise it is first-order indefinable on finite structures. Since
most of our applications on ASP focus on finite structures,
results about the first-order definability on finite structures,
both positive and negative, will have important impacts to
current ASP research. First, results in this aspect will pro-
vide a theoretic foundation to characterize the expressive-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ness of first-order ASP and hence to establish its close con-
nections to classical first-order and second-order logics. It
is observed that the first-order ASP generalizes traditional
Datalog, and the expressive power and complexity of data-
log programs have been well studied (Dantsin & et al 2001).
As such, major first-order (in)definability results in Datalog,
e.g. (Ajtai & Gurevich 1994; Cosmadakis 1989), may be
carried over to first-order ASP. Nevertheless, such results are
generally not applicable in proving a program’s first-order
(in)definability under our context, not only because of the
additional consideration of negation as failure under answer
set semantics, but also due to the fact that these results are
mainly semantic characterizations on datalog programs and
queries.

On the other hand, as evident from previous research
from Datalog and finite model theory (Cosmadakis 1989;
Ebbinghaus & Flum 1999), exploring first-order definabil-
ity for a problem like this is a challenging task. In order to
obtain certain results, especially negative results, very often
new concepts and techniques have to be developed, which
may also be useful for other related research.

In this paper, we focus on the negative results of first-
order definability of answer set programs on finite struc-
tures. We first provide an Ehrenfeucht-Fraı̈ssé game-
theoretic characterization for the first-order indefinability of
answer set programs. Using this approach, we show that
the well-known finding Hamiltonian cycles program is not
first-order definable. We then further propose new notions
named the 0-1 property and unbounded cycles or paths un-
der answer set semantics, from which we develop two suf-
ficient conditions that may be effectively used in proving a
program’s first-order indefinability on finite structures under
certain circumstances.

Basic Concepts and Definitions
We consider a second-order language with equality but with-
out function symbols. A vocabulary is a finite set that
consists of constant symbols and relation symbols includ-
ing equality =. We denote the sets of constant symbols of
a vocabulary τ by C(τ) and relation symbols by R(τ) re-
spectively. Given a vocabulary, terms, atoms, (first-order or
second-order) formulas and sentences are defined as usual.
An atom is called an equality atom if it is of the form
t1 = t2, where t1 and t2 are terms, and a proper atom other-

wise.
A finite structure A of vocabulary τ is a tuple

(A, cA1 , · · · , c
A
m, R

A
1 , · · · , R

A
n), where A is a finite set called

the domain of A, each cAi (i = 1, · · · ,m) is an element in
A which corresponds to a constant symbol ci in C(τ), and
each RA

i (i = 1, · · · , n) is a k-ary relation on A which cor-
responds to a k-ary relation symbolRi inR(τ). Sometimes,
we also use Dom(A) to denote the domain of structure A.
In this paper, we will only consider finite structures in our
context.

Given two vocabularies τ1 and τ2 where τ2 ⊆ τ1, and a
finite structure A of τ1, we say that the restriction of A on
τ2, denoted by A|τ2, is a structure of τ2 which has the same
domain ofA, and for each constant c and relation symbol R
in τ2, cA and RA are in A|τ2. On the other hand, if we are
given a structureA′ of τ2, a structureA of τ1 is an expansion
of A′ to τ1, if A has the same domain of A′ and retains all
cA

′ and RA′ for all constants c and relation symbols R in
τ2.

LetA be a structure. We usually write a tuple (t1, · · · , tn)
as the form t, where {t1, · · · , tn} is either a set of terms or a
set of elements from Dom(A). If a = (a1, · · · , as) is a tuple
of elements from Dom(A), i.e. ai ∈ Dom(A) (1 ≤ i ≤ s),
then we simply write a ∈ Dom(A)s.

For two tuples t = (t1, · · · , tm) and t′ = (t′1, · · · , t
′
n), we

may simply write t′ ⊆ t if {t′1, · · · , t′n} ⊆ {t1, · · · , tm}.
Consider a structure A = (A, cA1 , · · · , c

A
m, R

A
1 , · · · , R

A
n)

and S ⊆ A where {cA1 , · · · , cAm} ⊆ S. Structure A ↑ S is
called a substructure of A generated from S, if A ↑ S =

(S, cA1 , · · ·, cAm, RA↑S
1 , · · ·, RA↑S

n), where for any tuple a
from S, a ∈ RA↑S

i iff a ∈ RA
i (1 ≤ i ≤ n).

The quantifier rank qr(ϕ) of a first-order formula ϕ is
the maximum number of nested quantifiers occurring in ϕ:
qr(ϕ) = 0 if ϕ is atomic, qr(ϕ1 ∨ ϕ2) = qr(ϕ1 ∧ ϕ2) =
max(qr(ϕ1), qr(ϕ2)), qr(¬ϕ) = qr(ϕ), and qr(∃xϕ) =
qr(∀xϕ) = qr(ϕ) + 1.

With a fixed vocabulary τ , we consider two finite struc-
tures A and B, and m ∈ N. A and B are m-equivalent,
denoted by A ≡m B, if for any first-order sentence ϕ with
qr(ϕ) ≤ m, A |= ϕ iff B |= ϕ. A and B are called iso-
morphic, denoted as A ∼= B, if there is a one-to-one and
onto mapping h: Dom(A) → Dom(B) such that for every
constant c ∈ τ , h(cA) = cB, and for every relation sym-
bol R ∈ τ and every tuple a from Dom(A), a ∈ RA iff
h(a) ∈ RB.

If ϕ is a first-order or second-first sentence, we use
Mod(ϕ) to denote the collection of all finite structures that
satisfy ϕ. LetD be a finite set. We use Mod(ϕ)|D to denote
the collection of all finite structures that satisfy ϕ and whose
domains are D.

First-order Answer Set Programs
Syntax and semantics
A rule is of the form:

a← b1, · · · , bk, not c1, · · · , not cl, (1)
where a is a proper atom or the falsity ⊥, and
b1, · · · , bk, c1, · · · , cl (k, l ≥ 0) are atoms. Here a

is called the head, {b1, · · · , bk} the positive body and
{not c1, · · · , not cl} the negative body of the rule respec-
tively.

A (first-order) answer set program (or simply called pro-
gram) Π is a finite set of rules. Every relation symbol occur-
ring in the head of some rule of Π is called an intentional
predicate, and all other relation symbols in Π are exten-
sional predicates. The extensional predicates and individual
constants occurring in Π form the extensional vocabulary of
Π. We use notions τ(Π) to denote the vocabulary contain-
ing all of relation symbols and constants in Π, τint(Π) the
vocabulary containing all intentional predicates in Π, and
τext(Π) the vocabulary containing all extensional predicates
and constants in Π. We also use notions P(Π), Pint(Π) and
Pext(Π) to denote the sets all predicates, intentional and ex-
tensional predicates in Π respectively. A proper atom P (t)
is extensional (intentional) if P is extensional (intentional).

Sometimes, we simply call a relation RA in a structure
A an intentional (extensional) relation if RA is the interpre-
tation of an intentional (extensional, resp.) predicate of the
underlying program Π.

Now we present the semantics of first-order answer set
programs, which is a simplified version of the general stable
model semantics (Ferraris, Lee, & Lifschitz 2010). For each
rule r of form (1), we use r̂ to denote the sentence

∀x(B̂odyr ⊃ a),

where x is the tuple of all variables occurring in r, and
B̂odyr the formula b1 ∧ · · · ∧ bk ∧ ¬c1 ∧ · · · ∧ ¬cl. Given a
rule r, by Π̂, we denote the sentence ∧r∈Πr̂.

Let P = {P1, · · · , Pk} and P ′ = {P ′
1, · · · , P

′
k} be two

sets of relation symbols where Pi and P ′
i are of the same

arity. By r̂[+P/P ′], we mean the formula that is ob-
tained from r̂ by replacing each relation symbol in P oc-
curring in the head and positive body of r by the corre-
sponding relation symbol in P ′. For instance, if r is a rule
R(x) ← P (x), not Q(x), then r̂[+{Q,R}/{Q′, R′}] ≡

∀x((P (x) ∧ ¬Q(x) ⊃ R′(x)). We define Π̂[+P/P ′] =
∧r∈Πr̂[+P/P ′]. Let P and Q be two predicate symbols or
variables of the same arity. P ≤ Q stands for the formula
∀x(P (x) ⊃ Q(x)). For the given P = {P1, · · · , Pk} and
P ′ = {P ′

1, · · · , P
′
k} where all Pi and P ′

i have the same arity,
P ≤ P ′ stands for formula

∧k

i=1 Pi ≤ P ′
i , and P < P ′

stands for formula P ≤ P ′ ∧ ¬(P ′ ≤ P).
Consider two vocabularies τ1 and τ2 where τ2 ⊆ τ1. Let

ψ be a first-order or second-order sentence on τ1 and A a
finite structure of τ2. We specify Mod(ψ)Aτ1

as follows:
Mod(ψ)Aτ1

= {A′ | A′ ∈ Mod(ψ) and A′ is an expansion of
A to τ1}.

Definition 1 (Answer set program semantics) Given a
first-order answer set program Π and a structure A of
τext(Π). A structure A′ of τ(Π) is an answer set of Π based
on A iff A′ ∈ Mod(ψ)Aτ(Π), where ψ is Π̂ ∧ ¬∃P∗(P∗ <

Pint(Π) ∧ Π̂[+Pint(Π)/P∗]). We also use =(Π,A) to de-
note the collection of all answer sets of Π based on A. A
structure A′ of τ(Π) is an answer set of Π if there is some
structure A of τext(Π) such that A′ ∈ =(Π,A).

In Definition 1, minimization applies on intentional pred-
icates while extensional predicates are viewed as the initial
input of the program. Definition 1 is a simplified version
of the general stable model semantics, where first-order sen-
tences are allowed in a program and any set of predicates in
the program may also be specified as intentional (Ferraris,
Lee, & Lifschitz 2010).

First-order definability for answer set programs
Now we are ready to present a formal definition of first-order
definability for an answer set program.

Definition 2 (First-order definability) A program Π is
called first-order definable iff there exists a first-order sen-
tence ψ on vocabulary τ(Π) such that for every structure A
of τext(Π), Mod(ψ)A

τ(Π) = =(Π,A). In this case, we say
that ψ defines Π.

Consider the program Π = {P (x) ← Q(x), not R(x)}.
According to Definition 2, Π can be defined by the sentence
∀x(P (x) ≡ (Q(x) ∧ ¬R(x))).

Ehrenfeucht-Fraı̈ssé Games for First-order
Answer Set Programs

In this section we extend the traditional Ehrenfeucht-Fraı̈ssé
game-theoretic approach in finite model theory (Ebbinghaus
& Flum 1999) to the context of answer set programs so that
this approach may be used as a tool to prove the first-order
indefinability for a given program.

Given two τ -structures A =
(A, cA1 , · · · , c

A
m, R

A
1 , · · · , R

A
n) and B =

(B, cB1 , · · · , c
B
m, R

B
1 , · · · , R

B
n), and a ∈ As and b ∈ Bs,

an Ehrenfeucht-Fraı̈ssé game, which is played on (A, a)
and (B, b), is played by two players named spoiler and
duplicator. Each round of the game spoiler starts by picking
an element from either A or B, and duplicator responds by
picking an element from the opposite domain. For k ≥ 0,
let ek (or fk) be the element of A (or B resp.) at round k.
By default, we denote ek+i (or fk+i) to be constant ci’s
interpretation in A (or B resp.) where i = 1, · · · ,m. We
say that duplicator wins round k (k ≥ 0) iff the following
conditions hold:

1. there is a bijective map h: ae 7→ bf , where h(a) = b,
h(e) = f , e = (e1, · · · , ek, ek+1, · · · , ek+m) and f =
(f1, · · · , fk, fk+1, · · · , fk+m);

2. for any tuple t ⊆ ae, t ∈ RA
i iff h(t) ∈ RB

i .
For a fixed k ≥ 0, the Ehrenfeucht-Fraı̈ssé game of length k
is played for k rounds. We say that the duplicator wins the
game if he has a strategy to win every round. As a special
case, when |a| = |b| = 0, we also say that the duplicator
wins the Ehrenfeucht-Fraı̈ssé game of length k onA and B.

Theorem 1 (Ebbinghaus & Flum 1999) The duplicator
wins the Ehrenfeucht-Fraı̈ssé game of length k played on
A and B, iff A ≡k B.

Then we can prove the following theorem to characterize
the first-order definability for a given program.

Theorem 2 Let Π be a program. Π is not first-order defin-
able if and only if for every k ≥ 0, there are two structures
Ak and Bk of vocabulary τ(Π) such that1:

1. Ak ∈ =(Π,Ak |τext(Π)), Bk 6∈ =(Π,Bk|τext(Π)); and
2. the duplicator wins the Ehrenfeucht-Fraı̈ssé game of

length k on Ak and Bk.

The program of finding Hamiltonian cycles has been used
as a benchmark to test various ASP solvers. As an appli-
cation of Theorem 2, we will show that this program is not
first-order definable.
Proposition 1 The following finding Hamiltonian cycles
program ΠHC is not first-order definable:

HC(x, y)← E(x, y), not OtherRoute(x, y),
OtherRoute(x, y)←

E(x, y), E(x, z), HC(x, z), y 6= z,
OtherRoute(x, y)←

E(x, y), E(z, y), HC(z, y), x 6= z,
Reached(y)← E(x, y), HC(x, y),

Reached(x), not InitialV ertex(x),
Reached(y)←

E(x, y), HC(x, y), InitialV ertex(x),
← not Reached(x).

Proof: (Sketch) For each k ≥ 0, we consider two structures
Ak and Bk of τ(Π), where

Dom(Ak) = Ak = {0, 1 · · · , 2m− 1}, m ≥ 2k+1,
EAk

= {(i, i+1) | 0 ≤ i < (2m−1)}∪{(2m−1, 0)},
InitialV ertexA

k

= {0}, HCAk

= EAk ,
OtherRouteA

k

= ∅,
ReachedA

k

= {0, 1, · · · , 2m− 1},
Dom(Bk) = {0, 1, · · · , 2m− 1},
EBk

= {(i, i+1) | 0 ≤ i < (m−1)}∪{(m−1, 0)}∪
{(j, j + 1) | m ≤ j < (2m− 1)} ∪
{(2m− 1,m)},

InitialV ertexB
k

= {0}, HCBk

= EBk ,
OtherRouteB

k

= ∅,
ReachedB

k

= {0, 1, · · · , 2m− 1}.
Note that if we only consider the extensional relations,

Ak and Bk may be viewed as two different graphs with
Dom(Ak) and Dom(Bk) being their vertices and EAk

and EBk being their edges respectively. Furthermore,
(Dom(Ak), EAk

) is a single cycle of length 2m, and
(Dom(Bk), EBk

) contains two separate cycles and each has
a length m.

From the the interpretations of all intentional predicates
in Ak, it is easy to see that Ak is an answer set of ΠHC .
On the other hand, Bk is not an answer set of ΠHC be-
cause ReachedBk

= {0, 1, · · · , 2m − 1}, while it is ob-
served that for each j (j ≥ m), j is not reachable under

1It is important to note that this theorem is different from the
general form of Ehrenfeucht-Fraı̈ssé game theorem (Ebbinghaus
& Flum 1999), where it is required that =(Π,Ak|τext(Π)) and
=(Π,Bk|τext(Π)) must be the same class of structures. This is
not the case here.

the given EBk and InitialV ertexBk . So we have Ak ∈
=(Π,Ak |τext(ΠHC)) and Bk 6∈ =(Π,Bk|τext(ΠHC)).

Now we consider the Ehrenfeucht-Fraı̈ssé game of length
k played on Ak and Bk. Without loss of generality, we as-
sume that the game starts with two special points played in
each of the graph: a−1 = 0, a0 = (2m − 1) from Ak, and
their responses b−1 = 0, b0 = (m−1) fromBk respectively.
Intuitively, this means that the two endpoints of the cycle in
Ak have responses of the two endpoints of one cycle in Bk.
Then during the game is played, we denote that a point ai

from Ak has its response bi from Bk, and vice versa. We
also define the distance between two points in Ak or Bk to
be the shortest path between them. Note that in Bk, if one
point is in one cycle component and the other is in another
cycle component, the distance between these two points is
infinity.

In order to prove that ΠHC is not first-order definable,
according to Theorem 2, we only need to show that the du-
plicator has a winning strategy.

By induction, we can prove that the duplicator can play
the game in such a way that ensures the following conditions
after each round i2:

Condition 1. If d(aj , al) ≤ 2k−i,
then d(bj , bl) = d(aj , al),

Condition 2. If d(aj , al) > 2k−i,
then d(bj , bl) > 2k−i.

Finally, we further show that for each k, the duplicator
wins the game of length k. From Theorem 1, that is, we
need to prove Ak ≡k Bk. More specifically, we show that
after k rounds, for any ai, aj fromAk and the corresponding
bi, bj from Bk, the following statements hold:

(1) (ai, aj) ∈ EAk iff (bi, bj) ∈ EBk ,
(2) ai ∈ InitialV ertex

Ak iff bi ∈ InitialV ertexB
k ,

(3) (ai, aj) ∈ HC
Ak iff (bi, bj) ∈ HC

Bk ,
(4) (ai, aj) ∈ OtherRouteA

k iff
(bi, bj) ∈ OtherRouteB

k , and
(5) ai ∈ ReachedA

k iff bi ∈ ReachedB
k .

According to Conditions 1 and 2 we proved above, and
the construction of Ak and Bk, it can be verified that (1)-(5)
hold. �

Sufficient Conditions for Proving ASP
First-order Indefinability

From the proof of Proposition 1, it is observed that showing
a program to be first-order indefinable is rather technical.
In particular, during an Ehrenfeucht-Fraı̈ssé game playing,
the winning strategy for the duplicator highly relies on the
structures we pick up for the proof. In this sense, the ap-
proach demonstrated in the proof of Proposition 1 would be
hardly applied as a general approach to show indefinability
for other programs.

2Note that only these two conditions will be sufficient to lead to
our solution. Also, due to a space limit, we omit the detailed proof
of these conditions.

On the other hand, existing results in finite model theory
regarding the sufficient conditions to ensure winning strate-
gies in Ehrenfeucht-Fraı̈ssé games, for instance, those re-
sults developed in (Arora & Fagin 1997), are just too general
to apply under our ASP setting.

Taking a closer look at the proof of Proposition 1, we ob-
serve that there seem to have two important factors to ef-
fectively apply the Ehrenfeucht-Fraı̈ssé game technique: (1)
both the given program’s intentional and extensional rela-
tions have to be considered during the game; and (2) the em-
bedded structural form (e.g. a cycle) of extensional relations
also significantly affects the duplicator’s winning strategy in
the game. Based on these observations, we will develop use-
ful sufficient conditions for proving a program’s first-order
indefinability which are easier to use in various situations.
Programs with the 0-1 property
Let A = (A, cA1 , · · · , c

A
m, R

A
1 , · · · , R

A
n) be a structure. A

relation RA
i in A is called 0-relation if RA

i = ∅, it is called
1-relation if RA

i = Ah, were h is the arity ofRi. In general,
a relation RA

i in A is called 0-1 relation if it is either a 0-
relation or a 1-relation.
Definition 3 (The 0-1 property) We say that program Π
has the 0-1 property, if for each k ≥ 1, Π has an answer set
A, where |Dom(A)| ≥ k, such that all intentional relations
in A are 0-1 relations. In this case, we also call A a 0-1
answer set of Π and Π a 0-1 program.

Example 1 We consider program ΠRChecking which
checks whether each vertex in a graph is reachable from the
given initial vertex (vertices):
Reachable(x)← InitialV ertex(x),
Reachable(y)← Reachable(x), E(x, y),
← not Reachable(x).

We can see that for each k ≥ 0, there exists an an-
swer set of ΠRChecking , such that the intentional predicate
Reachable’s interpretation in the answer set represents a 1-
relation. Hence, ΠRChecking has the 0-1 property. �

0-1 programs represent an important feature which will
ensure the duplicator’s winning strategy in an overall
Ehrenfeucht-Fraı̈ssé game based on certain local informa-
tion. In particular, if a program has the 0-1 property, all we
need to consider during an Ehrenfeucht-Fraı̈ssé game play-
ing is the underlying program’s extensional relations in rel-
evant structures/answer sets.
Theorem 3 (The 0-1 theorem) Let Π be a 0-1 program. Π
is not first-order definable if for each k ≥ 0, there exists a
structure B of τ(Π), such that B is not an answer set of Π,
and A|τext(Π) ≡k B|τext(Π), where A is a 0-1 answer set of
Π, and for each P ∈ τint(Π), PB = PA.

By Theorem 3, if a program has the 0-1 property, then
when we prove the program’s first-order indefinability, we
may only apply the Ehrenfeucht-Fraı̈ssé game over the re-
stricted structures generated by extensional relations, e.g.
A|τext(Π) and B|τext(Π), instead of the whole structures,
which are usually simpler. This is because in general, ex-
tensional relations for a program can be arbitrary. Conse-
quently, their corresponding structures are also allowed to

be flexible so that an Ehrenfeucht-Fraı̈ssé game is easier to
be proposed on such flexible structures. The following ex-
ample shows an application of Theorem 3.

Example 2 (Example 1 continued). We show that
ΠRChecking is not first-order definable. In Example 1, we
showed that ΠRChecking satisfies the 0-1 property. From
Theorem 3, all we need to do is that for each k, we
can construct two structures Ak and Bk such that (1) Ak

is an answer set while Bk is not; (2) ReachableAk and
ReachableB

k are the 1-relations inAk and Bk respectively;
and (3) prove Ak|τext(ΠRChecking) ≡k Bk|τext(ΠRChecking),
which can be showed using a similar method as described in
the proof of Proposition 1. �

Programs with 0-1 unbounded cycles or paths
Theorem 3 can be effective in proving a 0-1 program
Π’s first-order indefinability if the proof of Ak|τext(Π) ≡k

Bk|τext(Π) is already clear through the Ehrenfeucht-Fraı̈ssé
game approach. Nevertheless, as has been revealed in finite
model theory, directly using the Ehrenfeucht-Fraı̈ssé game
approach is technically challenging for general cases (Arora
& Fagin 1997). Furthermore, in our first-order indefinability
proofs for programs ΠHC and ΠRChecking , both programs
happen to only have one binary extensional predicates, so
that we can use graph representations to specify the game,
which makes our proofs easier.

Although Theorems 2 and 3 do not rely on graph repre-
sentations of structures, when a program involves more than
one binary extensional predicates or extensional predicates
with arity greater than 2, it does not seem to be obvious to
use our method demonstrated in the proof of Proposition 2
to show a program’s first-order indefinability.

In this subsection, we will develop another sufficient con-
dition by which we can effectively prove a program’s first-
order indefinability under certain conditions.

To begin with, we first introduce a useful notion. Let A
be a structure, the Gaifman graph ofA (Ebbinghaus & Flum
1999) is an undirected graph G(A) = (A,EdgeA), where
Dom(A) = A, and EdgeA is defined as follows:
EdgeA = {(a, b) | a 6= b and there are a relation RA

in A and c in A such that c ∈ RA

and a and b are among c}.
We say that A has a cycle (or an acyclic path3) if G(A)
contains a connected component that is a cycle (or a path,
resp.).

Definition 4 (Programs with 0-1 unbounded cycles or
paths) A program Π has unbounded cycles (or paths) if
for every k > 0, there is a Π’s answer set A such that
G(A|τext(Π)) contains a cycle (path, resp.) with length
greater than k. A program Π has 0-1 unbounded cycles (or
paths) if Π is a 0-1 program, and for every k > 0, there is
a Π’s 0-1 answer set A such that G(A|τext(Π)) contains a
cycle (path, resp.) with length greater than k. In this case,
A is called a 0-1 cyclic (linear, resp.) answer set of Π.

3We will simply call it a path.

Programs with 0-1 unbounded cycles or paths are of spe-
cial interests in relation to first-order indefinability. The fol-
lowing theorem provides a new sufficient condition, which,
as will be showed next, completely avoids the Ehrenfeucht-
Fraı̈ssé game.
Theorem 4 (The 0-1 unbounded cycles or paths theo-
rem) A program Π is not first-order definable if (1) Π has
0-1 unbounded cycles or paths, and (2) for each Π’s 0-1
cyclic or linear answer set A, G(A|τext(Π)) contains only
one cycle or path, while all other connected components of
G(A|τext(Π)) are neither cycles nor paths.

Example 3 Consider program ΠTCovered as follows:
r1: T (x, y)← E(x, y), not E(x, x), not E(y, y),
r2: T (x, y)← T (x, z), T (z, y),
r3: Covered(x) ← D(x, y),
r4: Covered(y)← D(x, y),
r5: ← D(x, y), not E(x, y),
r6: ← not Covered(x).

Intuitively, program ΠTCovered computes the transitive clo-
sure based on the subgraph of E without self-loops and ver-
ifies whether all vertices of the graph are covered by a given
subset D of edges of the graph. �

Proposition 2 Program ΠTCovered in Example 3 is not
first-order definable.

Proof: We prove this result by using Theorem 4. For any
given k > 0, we consider structureAk as follows:

Dom(Ak) = {0, 1, · · · ,m}, where m ≥ k,
EAk

= {(i, i+ 1) | 0 ≤ i < m} ∪ {(m, 0)},
DAk

= {(j, j + 1) | 0 ≤ j < m},
TAk

= {(i, j) | 0 ≤ i, j ≤ m},
CoveredA

k

= {0, · · · ,m}.
It is easy to verify thatAk is a 0-1 answer set of ΠTCovered.
In fact, for both intentional predicates T and Covered, they
are interpreted as 1-relations in Ak. So ΠTCovered has the
0-1 property. Furthermore, G(Ak |{E,D}) is a cycle with
length m. Since there is no bound on m, ΠTCovered has
0-1 unbounded cycles.

It is also observed that for an arbitrary 0-1 cyclic answer
set B of ΠTCovered, G(Bk|{E,D}) must be of the same form
of G(Ak |{E,D}) as specified above. So both conditions (1)
and (2) in Theorem 4 for ΠTCovered. This concludes that
ΠTCovered is not first-order definable. �

Proof of Theorem 4
In order to prove Theorem 4, we will need a result in fi-
nite model theory (Fagin, Stockmeyer, & Vardi 1995). We
first present necessary notions and concepts. Consider a
structure A = (A, cA1 , · · · , c

A
m, R

A
1 , · · · , R

A
n). Let G(A) =

(A,EdgeA) be the Gaifman graph ofA and a an element of
A. The neighborhoodN(a, d) of a of radius d is recursively
defined as follows:
N(a, 1) = {a, cA1 , · · · , c

A
m},

N(a, d+ 1) = N(a, d) ∪ {c | c ∈ A, and there is
b ∈ N(a, d) such that (b, c) ∈ EdgeA}.

Intuitively,N(a, d) may be viewed as a sphere forming from
elements ofA where each element in N(a, d) has a distance
from a not more than d. Then we define that the d-type
of a is the isomorphism type of A ↑ N(a, d). That is, if
B is a structure of the same vocabulary of A and b is an
element of Dom(B), then a and b have the same d-type iff
A ↑ N(a, d) ∼= B ↑ N(b, d) under an isomorphism mapping
a to b. A and B are d-equivalent if for every d-type ι, they
have the same number of points with d-type ι.
Theorem 5 (Fagin, Stockmeyer, & Vardi 1995) For every
k > 0 and for every d ≥ 3k−1, if A and B are d-equivalent,
then A ≡k B.

Lemma 1 If Π has unbounded cycles, then for each k > 0,
there exist two structures A and B of τ(Π) such that (1) A
is an answer set of Π andG(A|τext(Π)) contains a cycle, (2)
G(B|τext(Π)) contains two disjoint cycles, and (3) for each
d > 0, A|τext(Π) and B|τext(Π) are d-equivalent.

Lemma 2 If Π has unbounded paths, then for each k > 0,
there exist two structures A and B of τ(Π) such that (1) A
is an answer set of Π and G(A|τext(Π)) contains a path, (2)
G(B|τext(Π)) contains disjoint one cycle and one path, and
(3) for each d > 0,A|τext(Π) andB|τext(Π) are d-equivalent.

Proof of Theorem 4:
Since Π is a 0-1 program and has 0-1 unbounded cycles or
paths, from Lemmas 1 and 2, we know that for any k > 0,
Π has a 0-1 cyclic or linear answer set A, and we can al-
ways find a structure B of τ(Π) such that A|τext(Π) and
B|τext(Π) are d-equivalent for each d > 0, where whenever
G(A|τext(Π)) contains one cycle (path), G(B|τext(Π)) con-
tains two cycles (one cycle and one path, resp.). Since this
result holds for any k > 0 and d > 0, from Theorem 5, by
setting d ≥ 3k−1, we then have A|τext(Π) ≡k B|τext(Π).

Now by setting every intentional relation of B to be either
0-relation or 1-relation accordingly as in A, it is concluded
that B cannot be an answer set of Π due to condition (2) of
Theorem 4. So by Theorem 3, Π is not first-order definable.
�

Related Work
In Datalog, it has been shown that on arbitrary structures,
a datalog program is bounded iff the corresponding datalog
queries are first-order definable iff the datalog program is
equivalent to a recursion-free datalog program. On finite
structures, this is also true for pure datalog programs but
not for arbitrary datalog programs (Ajtai & Gurevich 1994;
Cosmadakis 1989). These results, however, do not provide
many hints about how to prove a datalog query’s first-order
(in)definability.

In finite model theory, Ehrenfeucht-Fraı̈ssé game ap-
proach is the primary tool for proving first-order indefin-
ability result (Ebbinghaus & Flum 1999). However, as it is
well recognized (Fagin 1997), using this approach for spe-
cific cases is technically challenging. One way to deal with
such difficulty is to develop stronger sufficient conditions
to ensure the winning strategy for the duplicator during an
Ehrenfeucht-Fraı̈ssé game. Although the existing results in
finite model theory, for instance, those summarized in (Fagin

1997), are just too general to apply to our problems under
ASP setting, this idea indeed motivated our work presented
in this paper.

The first result of extending Ehrenfeucht-Fraı̈ssé game
approach to Datalog was due to Cosmadakis’ work (Cos-
madakis 1989). Our Theorem 2 may be viewed as an anal-
ogy of Theorem 2.6 in (Cosmadakis 1989) for ASP. Note
that both results have looser conditions for the classes of
structures than the original Ehrenfeucht-Fraı̈ssé game the-
orem (Ebbinghaus & Flum 1999). Since these two results
only provide the corresponding Ehrenfeucht-Fraı̈ssé game-
theoretic characterizations on the frist-order indefinability
for ASP and Datalog respectively, as in finite model theory,
they are quite hard to use.

Conclusions
In this paper, we provided an Ehrenfeucht-Fraı̈ssé game-
theoretic characterization on the first-order indefinability of
answer set programs on finite structures. The two sufficient
conditions proposed in this paper can be used as power-
ful tools in proving an answer set program’s first-order in-
definability. In fact, we have further generalized the two
sufficient conditions (Theorems 3 and 4) and discovered
that most commonly known first-order indefinable programs
have been covered by our results. Due to a space limit, we
refer this part to our full paper.
Acknowledgement: The first author was partially sup-
ported by a grant of National Science Foundation of China
(NSFC60705095). This research was supported in part by an
Australian Research Council Discovery grant (DP0988396).

References
Ajtai, M., and Gurevich, Y. 1994. Datalog vs. first order
logic. J. of Computer and System Sciences 49:562–588.
Arora, S., and Fagin, R. 1997. On winning strategies in
Ehrenfeucht-Fraı̈ssé games. Theoretical Computer Science
174:97–121.
Baral, C. 2003. Knowledge Representsation, Reasoning,
and Declarative Problem Solving. MIT Press.
Cosmadakis, S. 1989. On the first-order experssibility of
recursive queries. In Proceedings of the 8th ACM SIGACT-
SIGMOD-SIGART Symposium on PODS, 311–323.
Dantsin, E., and et al. 2001. Complexity and expressive
power of logic programming. ACM Computing Surverys
33:374–425.
Ebbinghaus, H., and Flum, J. 1999. Finite Model Theory.
2nd edition, Springer.
Fagin, R.; Stockmeyer, L.; and Vardi, M. 1995. On
monadic NP vs. monadic co-NP. Information and Com-
putation 120:78–92.
Fagin, R. 1997. Easier ways to win logical games. De-
scriptive Complexity and Finite Models 1–32.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2010. Stabel models
and circumscription. Artificial Intelligence.
Lin, F., and Zhou, Y. 2007. From answer set logic program-
ming to circumscription via logic of gk. In Proceedings of
IJCAI-2007, 441–661.

