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Abstract

In this paper, we extend the progression semantics for first-
order disjunctive logic programs and show that it coincides
with the stable model semantics. Based on it, we further show
how disjunctive answer set programming is related to Satisfi-
ability Modulo Theories.

Introduction
This work is about Answer Set Programming (ASP), a
promising paradigm for declarative problem solving. Since
its inception, the syntax of ASP is presented in a first-order
language. However, its semantics is traditionally defined in
a propositional way by grounding.

Recently, several approaches have been proposed for
defining the stable model (answer set) semantics for logic
programs directly on the first-order level (Chen et al. 2006;
Ferraris, Lee, and Lifschitz 2011; Lin and Zhou 2011;
Pearce and Valverde 2004; Zhang and Zhou 2010). Work
in this direction is not only theoretically interesting but also
practically important for initiating the possibility of develop-
ing a first-order ASP solver to bypass the tedious grounding
procedure.

Among them, the progression semantics (Zhang and Zhou
2010), similar to the standard semantics for Datalog, is a
simple and natural one. According to the progression seman-
tics, a structureM is a stable model (or an answer set) of a
program Π if it is a fixed point of the progression of Π based
onM. More precisely,M coincides with the structure ob-
tained by iteratively and increasingly applying the rules in
Π, where the negative parts are fixed byM itself.

However, in (Zhang and Zhou 2010), the progression se-
mantics is only defined for normal logic programs. As dis-
junctive logic programs is an important and useful exten-
sion of normal programs (Eiter, Gottlob, and Mannila 1997;
Gelfond and Lifschitz 1991), it is a natural question to ask
whether this progression semantics can be extended for dis-
junctive programs.

Unfortunately, this seems not an easy task since the heads
of rules are turning to disjunctions of atoms. As a conse-
quence, there might exist multiple choices when a rule is
applied. A naive solution is to randomly pick up one in the
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head of a rule whenever its body is satisfied. However, this
does not work. For instance, the program {a; b ←, a; c ←}
has two stable models, namely {a} and {b, c}. Nevertheless,
according to the above definition, {a, b} is another one since
b might be selected when applying the first rule.

In this paper, we address the difficulties of extending the
progression semantics for disjunctive programs by using the
following two key ideas. Firstly, we require that the progres-
sion is “guarded” by the candidate structure. That is, we al-
ways pick up those elements in heads that are already rec-
ognized by the original structure. More importantly, we take
all possible progressions into account. Roughly speaking, a
structureM is an a stable model of a “disjunctive” program
Π iff “all” progressions of Π based onM converge toM.

This semantics sheds new insights into the stable model
(answer set) semantics of (first-order) disjunctive logic pro-
grams. As an example, we present an alternative character-
ization of the stable model semantics in second-order logic
augmented with linear arithmetic based on the progression
semantics.

Preliminary
We assume that the readers have some basic knowledge
about first-order logic. We consider a first-order language
with equality but without function symbols. LetM be a fi-
nite structure1 whose signature contains another signature σ.
The reduct ofM on σ, denoted byM|σ, is the σ-structure
that agrees withM on all interpretations of predicates and
constants in σ. Let M1 and M2 be two structures of two
disjoint signatures σ1 and σ2 respectively, byM1∪M2, we
denote the σ1∪σ2-structure that agree withM1 (M2) on all
interpretations of predicates and constants in σ1 (σ2 resp.).

Let A be a domain. A ground atom on A is of the form
P (a), where P is a predicate and a a tuple of elements that
matches the arity of P . Let M be a structure. For conve-
nience, we also use P (a) ∈ M, orM |= P (a), to denote
a ∈ PM. Let H be a set of ground atoms. We use H ⊆M,
orM |= H, to denote that for every P (a) ∈ H,M |= P (a).
For convenience, we also useM∪H to denote the structure
obtained fromM by extending every interpretation of pred-
icates with the corresponding ground atoms in H, i.e., for
every predicate P , PM∪H = PM ∪ {a | P (a) ∈ H}.

1For simplicity and clarity, we only consider finite structures.



Syntax of disjunctive logic programs
An extended disjunctive rule (rule for short) is of the form:

α1; . . . ;αm ← βm+1, . . . , βn, not γn+1, . . . , not γk,

not not γk+1, . . . , not not γl, (1)

where 0 ≤ m ≤ n ≤ k ≤ l, αi, 1 ≤ i ≤
m is a non-equality atom, βj (m + 1 ≤ j ≤ n)
and γs (n + 1 ≤ s ≤ l) are atoms. Let r be a
rule of form (1). The head of r, denoted by Head(r),
is {α1, . . . , αm}; the body of r, denoted by Body(r),
is {βm+1, . . . , βn, not γn+1, . . . , not γk, not not γk+1, . . . ,
not not γl}. For convenience, we use Pos(r) to denote
{βm+1, . . . , βn}, the positive body of r, and Neg(r) to de-
note {not γn+1, . . . , not γk, not not γk+1, . . . , not not γl},
the negative body of r. An extended disjunctive logic pro-
gram (program for short if clear from the context) is a finite
set of rules. A rule is said to be normal if m = 1 and k = l.
Then, a program is said to be normal if all the rules in it are
normal.

Here, we distinguish between intentional and extensional
predicates. A predicate P in a program Π is said to be in-
tentional if P occurs in the head of some rules in Π, and
extensional otherwise. Let Π be a program. We use τ(Π) to
denote the signature of Π, including all predicates and con-
stants occurring in Π. In particular, we use τext(Π) to denote
the extensional signature of Π, including all constants and
extensional predicates, and τint(Π) to denote the intentional
signature of Π, including all intentional predicates.

Translational semantics for disjunctive programs
The stable model (answer set) semantics for first-order logic
programs has been well discussed in the literature. Here, we
briefly review the translational semantics by translating to
second-order logic.

Given a program Π, let ΩΠ = {Q1, . . . , Qn} be the set of
all intentional predicates of Π. Let Ω∗Π = {Q∗1, . . . , Q∗n} be
a new set of predicates corresponding to ΩΠ. Given a rule r
in Π of the form (1), by r̂, we denote the universal closure
of the formula

βm+1 ∧ · · · ∧ βn ∧ ¬γn+1 ∧ · · · ∧ ¬γk
∧¬¬γk+1 ∧ · · · ∧ ¬¬γl → α1 ∨ · · · ∨ αm;

by r∗, we denote the universal closure of the formula

β∗m+1 ∧ · · · ∧ β∗n ∧ ¬γn+1 ∧ · · · ∧ ¬γk
∧¬¬γk+1 ∧ · · · ∧ ¬¬γl → α∗1 ∨ · · · ∨ α∗m;

where α∗i = Q∗(x) if αi = Q(x) and

β∗i , (m+1 ≤ i ≤ n) =
{
Q∗j (tj) if βi = Qj(tj), Qj ∈ ΩΠ

βi otherwise.

By Π̂, we denote the first-order sentence
∧
r∈Π r̂; by Π∗, we

denote the first-order sentence
∧
r∈Π r

∗.
Let Π be a program. We use SM(Π) to denote the follow-

ing second-order sentence:

Π̂ ∧ ¬∃Ω∗Π((Ω∗Π < ΩΠ) ∧Π∗),

where Ω∗Π < ΩΠ is the abbreviation of the formula∧
1≤i≤n

∀xQ∗i (x)→ Qi(x) ∧ ¬
∧

1≤i≤n

∀xQi(x)→ Q∗i (x).

Definition 1 A structureM of τ(Π) is called a stable model
of Π if it is a model of SM(Π).

Note that this translational semantics is essentially the same
as the one proposed in (Ferraris, Lee, and Lifschitz 2011)
and (Lin and Zhou 2011). Here, we introduce this simpli-
fied version because we are focused on extended disjunctive
programs rather than arbitrary sentences.

Progression semantics for normal logic programs
The progression semantics for first-order normal logic pro-
grams is proposed in (Zhang and Zhou 2010), based on the
following notion of evolution stage.

Definition 2 (Evolution stage for normal programs) Let
Π be a normal program and ΩΠ = {Q1, . . . , Qn} the set
of all intentional predicates of Π. Consider a structure M
of τ(Π). The t-th simultaneous evolution stage2 of Π based
on M, denoted as Mt(Π), is a structure of τ(Π) defined
inductively as follows:

• M0(Π) =M|τext(Π) ∪ E|τint(Π), where E is the struc-
ture in which all interpretations of predicates are empty
set;

• Mt+1(Π) =Mt(Π)∪ {Head(r)η | η is an assignment,
Mt(Π) |= Pos(r)η and M |= Neg(r)η}, where
Mt(Π) |= Pos(r)η means that for all i,m+ 1 ≤ i ≤ n,
βiη ∈ Mt(Π); M |= Neg(r)η means that for all
j, n+ 1 ≤ j ≤ k, γjη 6∈ M.

The underlying intuition behind Definition 2 is quite sim-
ple. As the initial step,M0(Π) just takes the extensional part
ofM into account and set the intentional part to be empty.
Then, for each t,Mt+1(Π) is the structure expanded from
Mt(Π) by applying the rules in Π, where the negative parts
are fixed byM. In other words,Mt+1(Π) is expanded from
Mt(Π) by adding those heads of rules whose positive part
is satisfied by Mt(Π) and whose negative part is satisfied
byM.

Definition 3 (Progression semantics for normal programs)
Let Π be a first-order normal program and M a structure
of τ(Π).M is called a stable model (or an answer set) of Π
iffM∞(Π) =M.

Definition 3 simply says that a structure is a stable model
of a program iff it is a fixed point of the progression of
the program. As shown in (Zhang and Zhou 2010), for nor-
mal programs, the progression semantics coincides with the
translational semantics.

Theorem 1 (Theorem 1, (Zhang and Zhou 2010)) Let Π
be a normal program andM a structure of τ(Π). Then,M
is a model of SM(Π) iffM∞(Π) =M.

2This is called evaluation stage in (Zhang and Zhou 2010).



Extending Progression Semantics for
Disjunctive Programs

In this section, we extend the progression semantics for dis-
junctive programs. Different from normal rules, the head of
a disjunctive rule is generally a set of atoms instead of a
singleton. As we mentioned in the introduction section, this
will cause problems for defining the progression semantics.

Suppose that we are now at the t-th evolution stage. The
only problem is all about how to reach the next one. Sim-
ilar to the progression for normal programs (i.e. Definition
2), we will have a collection of rules which are applicable.
Hence, we will get a collection of heads of rules together
with assignments, i.e., a collection of sets of ground atoms.

The basic requirement is that for each set in the collection,
at least one element in it needs to be selected. To this end,
we recall the following notion of (minimal) hitting set.

Definition 4 (Minimal hitting set) Let S be a set and σ =
{S1, . . . , St, . . . } a collection of sets such that for all i, Si ⊆
S. A subset H ⊆ S is said to be a hitting set of σ if for all i,
H ∩ Si 6= ∅. Furthermore, H is said to be a minimal hitting
set of σ if H is a hitting set of σ and there is no H ′ ⊂ H
such that H ′ is also a hitting set of σ.

Then, we can pick up a minimal hitting set of the col-
lection of sets of ground atoms to continue the progression.
However, there might exist many possible minimal hitting
sets, which means that there might exist different ways to
expand the t-th structure. This shows that, for disjunctive
programs, there might exist different strategies for progres-
sion/evolution. Hence, we will need a notion of evolution
sequence to represent each possible way of progression.

Another issue is that, the minimal hitting set selected
above might beyond the scope the original structure. Recall
the simple example mentioned in the introduction section,
which consists of two rules: a; b ← and a; c ←. Now sup-
pose that the candidate structure is {a}. At the first evolu-
tion step, both the two rules are applicable. Then, we have a
collection of atoms, namely {{a, b}, {a, c}}, which has two
minimal hitting sets, namely {a} and {b, c}. The former is
an appropriate choice and it actually shows that {a} is a sta-
ble model of the program. However, the latter is not rec-
ognized by the original structure (i.e. {a}). If chosen, then
the progression will never converge to the the structure {a},
which means that this progression is failed.

To address this issue, we require that each progression
step must be “guarded” by the original structure in the sense
that each minimal hitting set selected must be recognized
by the original structure. That is, in every progression step,
if we want to expand the structure to the next one, the new
content must be already in the original structure.

The key definition of evolution sequence for our progres-
sion semantics is defined as follows.

Definition 5 (Evolution sequence) Let Π be a program
and M a structure of τ(Π). Let ΩΠ = {Q1, . . . , Qn} be
the set of all intentional predicates of Π. An evolution se-
quence of Π based on M, denoted as σM(Π), is a se-
quence σ0

M(Π), σ1
M(Π), . . . , σtM(Π), . . . of structures of

τ(Π) such that

• σ0
M(Π) =M|τext(Π) ∪ E|τint(Π);

• σt+1
M (Π) = σtM(Π) ∪ Ht, where there exists Ht ⊆ M

such that it is a minimal hitting set of the collection of the
following sets:

Head(r)η,

where r is a rule in Π and η is an assignment such that
Head(r)η ∩ σtM (Π) = ∅, σtM(Π) |= Pos(r)η andM |=
Neg(r)η.3

The basic idea of Definition 5 follows similarly to the evo-
lution stage for normal programs (see Definition 2). That is,
we take the extensional structure of M as the initial input
and expand it step-by-step by applying the rules in Π. Again,
the negative parts of rules in Π are fixed byM, which is cap-
tured byM |= Neg(r)η in the above definition. σtM(Π) |=
Pos(r)η means that this pair of rule and assignment can be
applied at the t-th stage, while Head(r)η ∩ σtM (Π) = ∅
means that none of the elements in the head is derived be-
fore.

The main differences between them are threefold. Firstly,
as there are many possible progressions for a disjunctive pro-
gram, we use the evolution sequence to distinguish them. In-
deed, σtM(Π) in Definition 5 plays a similar role ofMt(Π)
in Definition 2. Secondly, the new content (i.e. Ht) added
are considered as a whole rather than rule-by-rule in Defini-
tion 2. In fact,Ht is a minimal hitting set of the collection of
heads of rules applied at the t-th stage. Finally, we require
thatHt is guarded byM, i.e.,Ht ⊆M.

Based on the notion of evolution sequence, we are able to
define our progression semantics for (first-order) disjunctive
programs.

Definition 6 (Progression semantics) Let Π be a (disjunc-
tive) program and M a structure of τ(Π). M is called a
stable model (or an answer set) of Π iff there exists at least
one evolution sequence, and for all evolution sequence σ of
Π based onM, σ∞M(Π) =M.

Two programs are said to be equivalent if they have the same
set of stable models.

Again, similar to Definition 3, we require that the pro-
gression converges to the original structure. That is, M is
a fixed point of the progression. However, the main differ-
ence is that we require this is the case “for all” possible pro-
gressions. Restricted to normal programs, this definition co-
incides with Definition 3 as normal programs only have a
unique sequence of evolution/progression.

One may wonder whether this “for all” condition can
be someway modified into a “there exists” condition. Most
likely, this is not the case. Evident from (Eiter, Gottlob, and
Mannila 1997), disjunctive logic programs under the stable
model semantics is more expressive than normal programs,
providing some general assumptions in the computational
complexity theory. Definition 6 provides another explana-
tion where the gap between disjunctive ASP and normal
ASP lies.

3Note that we allow double negation-as-failure in the bodies.
Nevertheless, the meaning ofM |= Neg(r)η is clear here, which
requires additionally that for all i, k + 1 ≤ i ≤ l, riη ∈M.



Example 1 [originated from Example 2 in (Eiter, Gottlob,
and Mannila 1997)] Consider the following program Π0:

R(x);G(x);B(x)← (2)
NotColored← R(x), R(y), E(x, y) (3)
NotColored← G(x), G(y), E(x, y) (4)
NotColored← B(x), B(y), E(x, y) (5)
R(x)← NotColored (6)
G(x)← NotColored (7)
B(x)← NotColored (8)
NotColored← notNotColored (9)

E is the only extensional predicates of Π0, which, ideally,
represents the edges of a graph; R, G and B are three unary
intentional predicates, which denote three colors red, green
and blue respectively; NotColored is a 0-ary intentional
predicate to state that the graph is not 3-colorable. In fact,
Π0 is the program for 3-uncolorability. That is, if a graph,
represented by E, is not 3-colorable, then Π0 has a unique
stable model, in which all intentional predicates are inter-
preted as full relation on the domain. On the other hand, if a
graph is 3-colorable, then Π0 has no stable models.

First of all, if Π has a stable model, it must contain
NotColored and the full relation forR,G andB. This is be-
cause by rule (9), NotColored must be in the stable model,
and then by rules (6)-(8), all R, G and B will be derived.

Now we analyze Π0 by using the progression semantics.
Suppose that a graph, represented by E, is not 3-colorable.
Consider the structure A containing E, NotColored and
RA = GA = BA = Dom(A). Then, at the first stage,
rule (2) is the only applicable one, and each minimal hitting
set actually corresponds to a possible color mapping. In fact,
there might exist many different mappings thus many differ-
ent evolution sequences. Since the graph is not 3-colorable,
no matter which evolution sequence is selected, there must
exist a rule among (3)-(5) which is applicable at the second
stage. Hence, NotColored must be derived. Therefore, all
R, G and B will be derived at the third stage according to
rules (6)-(8). Hence, A is a stable model of Π0 if the graph
is not 3-colorable. In addition, it is the unique one.

Suppose that the graph is 3-colorable. For the structure
B containing E, NotColored and RB = GB = BB =
Dom(B), we can construct an evolution sequence which
does not converges to B by simply select the minimal hit-
ting set that corresponds to the 3-coloring solution at the first
stage. Therefore, Π0 has no stable models in this case.

In general, we present the following main theorem.
Theorem 2 Let Π be a program andM a structure of τ(Π).
Then,M is a model of SM(Π) iff there exists and for every
evolution sequence σ of Π based onM, σ∞M(Π) =M.

Proof:(sketch)4 In order to prove this theorem, we introduce
an intermediate semantics and show that it is equivalent to
both semantics described above.

Let Π be a program andM a structure of τ(Π). We say
thatM is a stable model of Π iff

4The proofs in this paper, if given, are sketched due to a space
limit.

1. for every assignment η and every rule r of form (1) in Π,
ifM |= Body(r)η, thenM |= Head(r)η.

2. there does not exist a structureM′ of τ(Π) such that

(a) Dom(M′) = Dom(M),

(b) for each constant c in τ(Π), cM
′

= cM,

(c) for each P ∈ τext(Π), PM
′

= PM,

(d) for all Q ∈ τint(Π), QM
′ ⊆ QM, and for some Q ∈

τint(Π), QM
′ ⊂ QM,

(e) for every assignment η and every rule r of form (1)
in Π, if M′ |= Pos(r)η and M |= Neg(r)η, then
M′ |= Head(r)η.

This semantics coincides with the translational semantics
because Condition 1 holds iffM |= Π̂, and Condition 2 does
not hold iffM |= ∃Ω∗Π((Ω∗Π < ΩΠ) ∧Π∗).

Now we show that this semantics also coincides with the
progression semantics. On one hand, suppose that for ev-
ery evolution sequence σ of Π based on M, σ∞M(Π) =
M. Then, Condition 1 holds. Otherwise, there exists a pair
(r, η) violating Condition 1. Hence, M |= Body(r)η but
M 6|= Head(r)η. Consider an evolution sequence σ. We
have M = σ∞M(Π). Thus, there exists a number t such
that σtM(Π) |= Body(r)η. Then, σt+1

M (Π) = σtM(Π) ∪Ht.
Hence, Ht |= Head(r)η according to the definition. Since
Ht ⊆ σt+1

M (Π) ⊆ σ∞M(Π) = M, M |= Head(r)η as
well, a contradiction. In addition, Condition 2 must hold as
well. Otherwise, let us assume that there exists such anM′.
We construct an evolution sequence σ in the same way as in
Definition 5 except that we require additionally Ht ⊆ M′.
This evolution sequence is well defined because M′ satis-
fies Condition 2, particularly Condition 2(e). Now, by in-
duction on the evolution stage t, it can be shown that for
all t, σtM(Π) ⊆ M′. Therefore, σ∞M(Π) ⊆ M′ ⊂ M, a
contradiction.

On the other hand, suppose that a structure M satisfies
both Conditions 1 and 2. Then, it can be shown that for
every evolution sequence σ, σtM(Π) ⊆ M by induction on
the evolution stage t by Condition 1. Hence, σ∞M(Π) ⊆ M.
Now we prove that for any σ, σ∞M(Π) 6⊂ M. Otherwise,
we construct a structureM′ of τ(Π) in the following way:
Dom(M′) = Dom(M), for each constant c ∈ τ(Π),
cM

′
= cM, for each extensional predicate P ∈ τext(Π),

PM
′

= PM, and finally, for each intentional predicate
Q ∈ ΩΠ, QM

′
= Qσ

∞
M(Π). It can be checked that M′

satisfies Conditions 2(a)-(e) as well, a contradiction. This
shows that for any σ, σ∞M(Π) =M. �

A relate work to our progression semantics is due to
Minker and Rajasekar (1990), who proposed a fixed point
for disjunctive logic programs and showed that it coincides
with the minimal model semantics. Different from ours, their
definition is defined on so-called extended Herbrand struc-
tures but not on arbitrary structures. Also, its relationship to
stable model semantics remains unknown.



From Disjunctive ASP to SMT
In this section, we consider an application of the progres-
sions semantics to relate Disjunctive ASP and Satisfiabil-
ity Modulo Theories (SMT), which are logical theories aug-
mented with some background theories (Nieuwenhuis, Oliv-
eras, and Tinelli 2006). More precisely, we show that the sta-
ble model semantics for (first-order) disjunctive logic pro-
grams can be characterized alternatively in second-order
logic augmented with linear arithmetics.

Recall Definition 5 for evolution sequence. The sequence
of structures is constructed inductively. Then, for every in-
tentional ground atom P (a) ∈ σ∞M(Π), there exists a mini-
mal number k such that P (a) ∈ σkM(Π). We call k the level
of P (a) in σ. For those P (a) 6∈ σ∞M(Π), we treat its level as
∞.5 This motives us to consider a notion of level mapping
for ground atoms as follows.
Definition 7 (Level mapping) Let Π be a program andM
a finite structure of τ(Π). A level mapping ofM on Π is a
function f from all intentional ground atoms to the natural
numbers, i.e. f : {P (a) | P ∈ τint(Π), a ∈ Dom(M)} 7→
N. In addition, we say that f is complete if

f(P (a)) =∞ iff P (a) 6∈ M;

we say that f is valid if
1. for all P (a) 6∈ M, f(P (a)) =∞;
2. for every pair (r, η) of rule and assignment, if M |=
Body(r)η and for all Q(a) ∈ Head(r)η, f(Q(a)) >
max(Pos(r)η),6 then there exists Q(a) ∈ Head(r)η
such that f(Q(a)) = max(Pos(r)η) + 1.

3. for every Q(a) such that f(Q(a)) 6= ∞, there exists
a pair (r, η) of rule and assignment such that Q(a) ∈
Head(r)η, f(Q(a)) = max(Pos(r)η) + 1 and for all
other R(b) ∈ Head(r)η, f(R(b)) > f(Q(a)).
Intuitively, a level mapping represents the minimal steps

to derive all intentional ground atoms inM by iteratively ap-
plying rules in Π. It is complete if consistent with the struc-
tureM. That is, all intentional ground atoms inM can be
derived and those not inM cannot (i.e. its level is∞). It is
valid if corresponding to an evolution sequence. Condition
1 means that all intentional ground atoms not inM cannot
be derived. Condition 2 means that every applicable rule (to-
gether with an assignment) should be used.M |= Body(r)η
means that the rule r is applicable, and max(Pos(r)η) rep-
resents its stage. The if-then condition means that if none of
the elements in the head is not derived before, then at least
one of them must be derived at this stage. Finally, Condition
3 is a reverse condition of Condition 2, meaning that every
derivable ground atom must be justified by a particular pair
of rule and assignment, which is used to derive this atom.
Here, f(R(b)) > f(Q(a)) means that the other atoms in the
head are derived neither before nor at this stage.

5Here, we use the notation∞ for clarity and more readability.
Technically, we can use an arbitrarily large integer instead.

6For simplicity, by given a set S of atoms, we use max(S)
(min(S) resp.) to denote the maximal (minimal) number of
{fP (t) | P (t) ∈ S}. In particular, if S contains no intentional
predicates, we treat this maximum as 0.

The following proposition indicates the correspondence
between evolution sequences and valid level mappings.
Proposition 1 An evolution sequence σ yields a valid level
mapping f , in which all ground atoms are mapped into
its level in σ, i.e., f(P (a)) = k, where k is the level of
P (a) in σ. Conversely, a valid level mapping f can be con-
verted back to an evolution sequence σ by grouping the
ground atoms at the same level together as the expanded
ground atoms, i.e., σk+1

M (Π) = σkM(Π) ∪ Hk, where Hk =
{P (a) | f(P (a)) = k}.
Proof:(sketch) “⇒:” Condition 1 holds obviously since
Ht ⊆ M, thus σ∞M(Π) ⊆ M. For Condition 2, if M |=
Body(r)η and for all Q(a) ∈ Head(r)η, f(Q(a)) >
max(Pos(r)η), then (r, η) is applicable at some stage t in
σ. Hence, there exists Q(a) ∈ Head(r)η selected at this
stage, i.e., Q(a) ∈ Ht. Thus, f(Q(a)) = max(Pos(r)η) +
1. Condition 2 holds. Finally, for Condition 3, if f(Q(a)) 6=
∞, then Q(a) must be selected at some stage t in σ with re-
spect to a pair (r, η). Hence, f(Q(a)) = max(Pos(r)η)+1.
In addition, for all other R(b) ∈ Head(r)η, f(R(b)) >
f(Q(a)) since none of the other elements in Head(r)η is
derived before. This shows that Condition 3 holds as well.

“⇐:” It suffices to show that for all k, Hk is the minimal
hitting set of the collection {Head(r)η} meeting the
requirements. This can be proved by induction on k. It
holds obviously when k = 0. Consider the t-th stage.
Condition 1 implies that Ht ⊆ M. In addition, if a pair
(r, η) is applicable, then Condition 2 applies under the
induction hypothesis. Therefore, Head(r)η ∩ Ht 6= ∅.
Finally, Condition 3 ensures that Ht is actually minimal
since every Q(a) in Ht must be selected with respect to a
pair (r, η) at this stage. �

Furthermore, the following proposition shows that an evo-
lution sequence converges to the original structure iff its cor-
responding level mapping is complete.
Proposition 2 Let σ be an evolution sequence and f its cor-
responding level mapping. Then, σ∞M(Π) =M iff f is com-
plete.

Based on the above observations, we can reformulate the
progression semantics for (first-order) disjunctive programs
on finite structures to second-order logic augmented with
linear arithmetic, similar to SMT. To this end, we need
to introduce a set of function variables7 to represent the
level mapping. More precisely, let ΩΠ = {Q1, . . . , Qn}
be the set of intentional predicates in Π, we introduce a set
FΠ = {fQ1 , . . . , fQn

} of function variables, where fQi
has

the same arity as Qi. Ideally, FΠ is used to simulate a level
mapping in the sense that f(Qi(t)η) (i.e. the level mapping
of a ground atom Qi(t)η) is represented as fQi(t)η in the
language.
Theorem 3 Let Π be a program andM a finite structure of
τ(Π). Then,M is a stable model of Π iff it is a model of the
following sentence:
∃FΠ(V F (Π)∧CF (Π))∧∀FΠ(V F (Π)→ CF (Π)), (10)

7An n-ary function variable in second-order logic can be refor-
mulated as an n+ 1-ary predicate variable in a standard way.



where V F (Π) is the conjunction of the following formulas∧
P∈ΩΠ

∀x(¬P (x)→ [fP (x) =∞]), (11)

∧
r∈Π

∀y(B̂ody(r)→
∨

Q(x)∈Head(r)

Q(x) ∧

[min(Head(r)) ≤ max(Pos(r)) + 1]), (12)∧
Q∈ΩΠ

∀x([fQ(x) 6=∞]→
∨

r∈Π,Q(x)∈Head(r)

∃y(B̂ody(r) ∧ [fQ(x) = max(Pos(r)) + 1]
∧[fQ(x) < min(Head(r)\Q(x))])), (13)

and CF (Π) is the following formula∧
P∈ΩΠ

∀x(P (x)↔ [fP (x) 6=∞]). (14)

Proof:(sketch) This assertion follows from Proposition 1,
Proposition 2 and Definition 6 by noticing that a structure
M of the signature τ(Π) ∪ FΠ is a model of V F (Π) iff the
level mapping f , obtained by f(Q(a)) = fQ(a), is valid;
M is a model of CF (Π) iff f is complete. �

The underlying intuitions behind Theorem 3 are quite
clear. Above all, formula (10) precisely encodes the progres-
sion semantics (see Definition 6). That is, a structure is a sta-
ble model of a program iff “there exists” and “for all” evolu-
tion sequences (formulated by valid level mappings accord-
ing to Proposition 1), the resulting structure coincides with
the original one (formulated by complete level mappings).
Here, CF (Π) means that FΠ represents a complete level
mapping, while V F (Π) means that FΠ represents a valid
level mapping. In particular, Formulas (11)-(13) exactly cor-
respond to Conditions 1-3 in Definition 7 respectively.

By restricting Theorem 3 to the propositional case, we can
get a translation from propositional disjunctive ASP to quan-
tified Satisfiability Modulo Theories (SMT), where quanti-
fiers may be used over arithmetical variables. This points
out the possibility to develop a new kind of disjunctive ASP
solver by using a QBF-like solver with some techniques for
handling linear constraints. We believe this is a promising
approach and leave this to our future investigations.

Also, it is worth mentioning that Theorem 3, restricted
to normal logic programs, yields a translation from normal
ASP to first-order SMT on finite structures since normal pro-
grams only have a unique evolution sequence (i.e. valid level
mapping). More precisely, a finite structure M is a stable
model of a normal program Π if it is a model of the formula

∃FΠ(V F (Π) ∧ CF (Π)),

or equivalently, it is a reduct of the formula V F (Π)∧CF (Π)
on τ(Π). A similar work is proposed recently (Asuncion et
al. 2010), whose host language is classical first-order logic
instead of first-order SMT. By further restricting this re-
sult to the propositional case, we can get a translation from
propositional normal ASP to propositional SMT. This result
is actually different from Niemela’s translation from normal

ASP to difference logic (Niemelä 2008) in the sense that it
uses an alternative encoding. We leave the detailed compar-
isons about related work to our full version.

Conclusions
In this paper, we extended the progression semantics for
(first-order) disjunctive logic programs and showed that it
coincides with the translational stable model semantics (see
Theorem 2). This semantics sheds new insights into disjunc-
tive answer set programming. According to the progression
semantics, one can conclude that:

disjunctive answer set programming
= rules + negation-as-failure + disjunctive heads (syntactic)
= progression + fixed point + minimal hitting set (semantic)
In contrast, Datalog corresponds to the first component and
normal ASP corresponds to the first two, both from a syn-
tactic and a semantic point of view.

Based on the progression semantics, we presented another
equivalent characterization of the stable model semantics
(see Theorem 3). We believe that this new characterization is
not only of theoretical interests but also useful for develop-
ing more sophisticated solvers for disjunctive ASP. We leave
this as one of our future investigations. Another work worth
pursuing is to further extend the progression semantics for
arbitrary sentence-like programs, particularly for handling
existential quantifiers.
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