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Abstract

This paper presents a computational model of negotiation
based on Nebel’s syntax-based belief revision. The model
guarantees a unique bargaining solution for each bargaining
game without using lotteries. Its game-theoretic properties
are discussed against the existence and uniqueness of Nash
equilibrium and subgame perfect equilibrium. We also study
essential computational properties in relation to our negotia-
tion model. In particular, we show that the deal membership
checking is DP-complete and the corresponding agreement
inference problem is ΠP

2 -hard.

Introduction
The methodology of logical frameworks for automated
negotiation has received justified attention in recent
years(Sycara 1990; Kraus et al. 1998; Parsons et al. 1998;
Booth 2001; Meyer et al. 2004; Zhang et al. 2004; Zhang
2005). These studies have helped us to establish a qualita-
tive methodology for reasoning about bargaining and nego-
tiation, which differentiates them from the traditional game-
theoretic approaches to bargaining problems(Roth 1979;
Muthoo 1999). Two different formalisms may be identi-
fied in the literature: argumentation-based frameworks and
belief-revision-based frameworks. However, the compu-
tational issues of such logic-based formalisms have been
largely ignored.

In this paper we develop a bargaining solution based on
syntax-dependent formalism of belief revision and discuss
its game-theoretic properties and computational properties.
We will construct a negotiation function based on Nebel’s
prioritized belief base revision operation(Nebel 1992). We
prove that every possible deal of a bargaining game in our
framework is a Nash equilibrium, therefore it is not unique
as most game-theory models of bargaining. However, we
will show that under certain conditions there exists a unique
subgame perfect equilibrium of simultaneous-offers bar-
gaining procedure. Finally we investigate the complexity
issue related to the proposed model.

Representation of Bargaining Problems
In this work, we will restrict us to the bargaining situations
within which only two agents are involved. We assume that
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each agent has a set of negotiation items, referred to as de-
mand set, which is describable in a finite propositional lan-
guage L. The language is that of classical propositional
logic with an associated consequence operation Cn in the
sense that Cn(X) = {ϕ : X � ϕ}, where X is a set of
sentences. A set K of sentences is logically closed or called
a belief set when K = Cn(K). If X , Y are two sets of
sentences, X + Y denotes Cn(X ∪ Y ).

Suppose that X1 and X2 are the demand sets of two
agents. To simplify exploration, we will use X−i to rep-
resent the other set among X1 and X2 if Xi is one of them.

Before we present a solution to bargaining problem, we
first address the problem of how to represent a bargaining
situation.

Preference
In Nash’s bargaining theory, a bargaining problem is defined
as a pair (S, d) where S is a set of utility pairs that can be de-
rived from feasible agreements and d is a pair of utilities des-
ignated to be the “disagreement point”. A function that as-
signs a single outcome to every such problem is a bargaining
solution. Notice that the actual negotiation items and their
logical relations cannot be explicitly represented in Nash’s
model. Such an abstraction can be misleading as Rubin-
stein pointed “the use of numbers to specify the bargaining
problem has obscured the meaning of the Nash bargaining
solution”(Rubinstein 2000). To demonstrate this point, let
us consider a simple bargaining situation.

Example 1 (Marriage Contract) Bob and Mary are going
to marry. They negotiate about how to spend their first few
years after their marriage. Bob thinks that they should have
a child after they marry (c). Mary insists that they should
enjoy their life in the first few years (l). Both of them know
the fact that they can’t have both, i.e., ¬(c ∧ l). Therefore
the negotiation items of two persons can be expressed as
X1 = {c,¬(c ∧ l)} and X2 = {l,¬(c ∧ l)}, respectively.

We can model the problem either as a two-person non-
cooperative game or a Nash bargaining game. Both mod-
els require a numerical representation of bargainers’ prefer-
ences over their negotiation items. Assume that whenever
an agreement is reached the winner receives 1 and the loser
receives 0; Otherwise, both receive 0. It is easy to see that
there are two Nash equilibria in the first game: (c, c) and



(l, l). The outcome of Nash bargaining game is a mixed
deal 1

2c + 1
2 l. None of the modeling gives a deterministic

solution.
We can easily see that the actual utility values in the ex-

ample do not matter; they just represent bargainers’ pref-
erences over their negotiation items. (Osborne and Rubin-
stein 1990) observe that a pre-ordering over possible out-
comes is enough for specifying bargainers’ preferences. Ac-
cordingly, they define a bargaining problem as a four-tuple
(X,D,�1,�2), where X is a set of feasible outcomes, D
is the disagreement event, and �i is a complete transitive
reflexive ordering representing bargainers’s preference re-
lation. Unfortunately such an enhancement of representa-
tion does not offer any better solution than Nash’s to the
above problem even though it gives an explicit represen-
tation of feasible agreements. As we will see in Example
3, the negotiation outcome of the problem is in fact de-
termined by the logical relation between negotiation items.
(Zhang 2005) defines a bargain problem also as a four-tuple
((X1, ρ1), (X2, ρ2)), where Xi is the logical representation
of agent i’s demand items and ρi is a map from a sentence
to a real number reflecting bargainer i’s entrenchment mea-
surement over possible negotiation items. Unfortunately this
definition is not purely logical because numeration is still in-
volved. In this paper, we combine the above two ideas and
define a bargaining problem as follows:

Definition 1 A bargaining game is a four-tuple1 ((X1,�1

), (X2,�2)), where Xi is a logically consistent set of sen-
tences in L and �i (i = 1, 2) is a complete transitive reflex-
ive ordering over Xi which satisfies the logical constraint2:

(LC) If ϕ1, · · · , ϕn � ψ, min{ϕ1, · · · , ϕn} � ψ.

It is easy to show that an ordering satisfying the above condi-
tions uniquely determines an AGM epistemic entrenchment
ordering, and vice versa(Gärdenfors 1988). So we will refer
to such an ordering as an entrenchment ordering.

Hierarchy of negotiation items
Suppose that X is a set of negotiation items from an agent
and � the agent’s entrenchment ordering overX . We define
recursively a hierarchy, {X k}+∞

k=1, of X with respect to the
ordering � as follows:

1. X1 = {ϕ ∈ X : ¬∃ψ ∈ X(ϕ ≺ ψ)};
T 1 = X\X1.

2. Xk+1 = {ϕ ∈ T k : ¬∃ψ ∈ T k(ϕ ≺ ψ)};
T k+1 = T k\Xk+1.

where ϕ ≺ ψ denotes ϕ � ψ and ψ 
� ϕ. The intuition
behind the construction is that each time collects all maximal
elements and remove them from the current set. It is easy to

see that there exists a number n such that X =
n⋃

k=1

Xk.

In the sequent, we write X≤l to denote
l⋃

k=1

Xk.

1More precisely a pair of pairs.
2The condition of LC is introduced by (Zhang 2005).

LetO be any set of sentences in L, we define the degree of
coverage ofO overX , denoted by ρX(O), to be the greatest
number l which satisfies X≤l ⊆ O.

Prioritized base revision
Once we have a hierarchy of negotiation items of each agent,
we will be able to define a belief revision function for each
agent, which will play a central role in our construction of
bargaining solution. Following (Nebel 1992), we define a
prioritized base revision function ⊗ as follows:

For any sets X and F of sentences and an entrenchment
ordering � over X ,

X ⊗ F
def
=

⋂

H∈X⇓F

Cn(H) + F.

where X ⇓ F is defined in the following: H ∈ X ⇓ F if
and only if

1. H ⊆ X ,

2. for all k = 1, 2, · · ·, H ∩ Xk is set-inclusion maximal

among the subsets of X k such that
k⋃

j=1

(H ∩Xj) ∪ F is

consistent.

Lemma 1 [Nebel 1992] If X is logically closed and � is
an entrenchment ordering over X , then ⊗ satisfies all AGM
postulates.

Bargaining Solution
According to Nash’s definition, a bargaining solution is a
function that assigns a single outcome to every bargaining
game. In this section we will construct such a function in
relation to our definition of bargaining games. First, let us
consider all the possible outcomes of a negotiation game.

Possible deals
A deal is the concessions made by two negotiating agents.
Such a deal can be defined as a pair of subsets of two agents’
demand sets. Considering the real-life bargaining, bargain-
ers normally intend to keep their highly entrenched nego-
tiable items and give up those less entrenched items if nec-
essary. This idea leads to our definition of deals based on
agents’ hierarchy of negotiation items.

Definition 2 Let B = ((X1,�1), (X2,�2)) be a bargain-
ing game. A deal of B is a pair (D1, D2) satisfying the
following two conditions: for each i = 1, 2,

1. Di ⊆ Xi;

2. for each k = 1, 2, · · ·, Di ∩Xk
i is set-inclusion maximal

among the subsets of Xk
i such that

k⋃
j=1

(Di ∩Xj
i ) ∪D−i

is consistent.

The set of all deals of B is denoted by Ω(B).

It is easy to see that if X1 ∪ X2 is consistent, Ω(B) =
{(X1, X2)}.



Example 2 Consider all the possibilities of each person’s
preferences with the scenario described in Example 1. The
possible deals for each case will then be the following:

Games Bob’s pref. Mary’s pref. Deals
B1 ¬(c ∧ l) �1 c l �2 ¬(c ∧ l) D1, D2

B2 c �1 ¬(c ∧ l) ¬(c ∧ l) �2 l D1, D2

B3 ¬(c ∧ l) �1 c ¬(c ∧ l) �2 l D1, D2

B4 c �1 ¬(c ∧ l) l �2 ¬(c ∧ l) D1, D2, D3

where
D1 = ({¬(c ∧ l), c}, {¬(c ∧ l)});
D2 = ({¬(c ∧ l)}, {l,¬(c ∧ l)});
D3 = ({c}, {l}).

The core of agreement
Example 2 shows that in each game, the set of possible deals
lists all possible agreements the negotiation could reach.
However, it is left uncertain that which deal will be most
likely to be the final agreement. Before we answer the ques-
tion, let us analyze which items are most likely to be in-
cluded in the final agreement if the negotiation procedure is
“fair” to each individual.

Given a bargaining game B and a deal D = (D1, D2) of
the game, let

ρB(D)
def
= min{ρX1(D1), ρX2(D2)}

ρB
def
= max{ρB(D) : D ∈ Ω(B)}

We call ρB(D) the degree of coverage of dealD and ρB the
degree of coverage of the game.

Let γ(B) = {D ∈ Ω(B) : ρB(D) = ρB}, representing
the subset of Ω(B) that contains the deals with the highest
degree of coverage over all deals in Ω(B). And let

Φ1
def
=

⋂

(D1,D2)∈γ(B)

D1, Φ2
def
=

⋂

(D1,D2)∈γ(B)

D2

We call Φ = (Φ1,Φ2) the core of the game. The min-max
construction of the core captures the idea that the final agree-
ment should maximally and evenly satisfy both agents’s de-
mands.

It is easy to verify that ρB = min{ρX1(Φ1), ρX2(Φ2)}.

Bargaining solution
Now we can finalize the construction of our bargaining
model.
Definition 3 A bargaining solution is a function A which
maps a bargaining game to a set of sentences (agree-
ment), defined as follows. For each bargaining game B =
((X1,�1), (X2,�2))

A(B)
def
= (X1 ⊗1 Φ2) ∩ (X2 ⊗2 Φ1) (1)

where (Φ1,Φ2) is the core of B and ⊗i is the prioritized
base revision operator over (Xi,�i).
There are a few points we would like to make here:

1. A bargaining process takes two stages. In the first stage,
each agent agrees on accepting the other party’s core de-
mands if the other agent does the same. In the second
stage, each agent adjust its own demands in order to make
them consistent with the reached agreement in the first
stage by conducting a course of belief revision.

2. Different from most existing belief-revision-based frame-
works for negotiation, the bargaining model we define
above is syntax dependent. However, if we restrict the
bargaining games to be the ones where the demand sets
are logically closed, the bargaining solutions will be syn-
tax independent. A detailed discussion on the relationship
between the existing approaches and the current work will
be given in the full version of the paper.

3. Unlike Nash’s definition, our bargaining solution assigns
a set of sentences to each bargaining game. In other
words, the bargaining solution directly gives the actual
contract resulted from the bargaining rather than a pair of
concessions made by two agents.

4. Similar to (Zhang et al. 2004), the outcome of bargaining
is defined as the intersection of two agents’ revision sets.
However, the negotiation function they define is based on
generic AGM belief revision operators without concrete
construction. No computational model is given.

5. Different from Nash’s solution and (Zhang 2005)’s solu-
tion, we do not require to play a lottery (mixed deals) to
settle a tie bargaining situation. The following example
will demonstrate how this can happen.

Example 3 Consider the Marriage Contract example
again. The solution of each bargaining game defined in Ex-
ample 2 is respectively:
A(B1) = Cn({¬c, l}); A(B2) = Cn({c,¬l});
A(B3) = Cn({¬(c ∧ l)}); A(B4) = Cn({c, l}).

In the first game B1, Bob is more level-headed who en-
trenches the commonsense (¬(c ∧ l)) more than his per-
sonal demand (c), which causes him losses the game. B 2 is
just the opposite to B1. In the third game, nobody wins the
game. However, since both of them are quite rational they
might settle down to face the reality. The last game reaches
a “both-win” situation because none of them cares too much
about what the reality is (Hopefully they can create another
reality).

The example shows that logical reasoning plays a key role
in negotiation and bargaining. The logic-based formalism
of bargaining can offer a more subtle solution than game-
theoretic approaches. Our model gives a deterministic solu-
tion to each tie situation (game 3 and 4). Note that our solu-
tion does not necessarily satisfy Pareto Optimality because
in the tie situations we require both players make conces-
sion rather than randomly pick up one to do that by using a
lottery. In fact, this example provides an intuitive counter-
example against this controversial requirement of Nash’s so-
lution (Roth 1979).

The following theorem guarantees the final agreement
contains the consents reached in the first stage of a bargain-
ing procedure.

Theorem 1 For any bargaining gameB, Φ1+Φ2 ⊆ A(B).
Proof: We only prove Φ1 ⊆ X1 ⊗1 Φ2. The rest of the proof
is straightforward. According to the definition of prioritized base
revision, we have X1 ⊗1 Φ2 =

⋂
H∈X1⇓Φ2

Cn(H) + Φ2. For

any H ∈ X1 ⇓ Φ2, there is a deal (D1,D2) ∈ Ω(B) such that
D1 = H . This is because we can extend the pair (H,Φ2) to



a deal (H,D2) so that D2 satisfies the conditions in Definition
2. On the other hand, since X≤ρB ∪ Φ2 is consistent, we have
ρX1(H) ≥ ρB . Therefore (D1,D2) ∈ γ(B). Since Φ1 ⊆ D1,
we then have Φ1 ⊆ H . We conclude that Φ1 ⊆ X1 ⊗1 Φ2. ¶

Game-Theoretic Properties
The model we presented in the previous section has most de-
sired logical properties and game-theoretic properties. Due
to space limit, we omit the presentation of logical properties
and concentrate on its game-theoretic properties. We assume
that readers are familiar with the basic concepts in game the-
ory, such as extensive form of a game, Nash equilibrium,
and subgame perfect equilibrium (Osborne and Rubinstein
1990).

Utilities and Nash equilibrium
In equilibrium analysis, two concepts play an essential role:
strategy and utility. Given a bargaining gameB = ((X1,�1

), (X2,�2)), a strategy profile of the game is a pair (S1, S2)
where S1 ⊆ X1 and S2 ⊆ X2. The intended meaning for a
strategy is that during bargaining process each player places
a subset of her demand set as her proposal toward an agree-
ment.

A strategy profile is called to be compatible if it satisfies:

1. S1 ∪ S2 is consistent;

2. S1 ⊆ X1 ⊗1 S2 and S2 ⊆ X2 ⊗2 S1.

We assume that a strategy profile can lead to an agreement
if and only if it is compatible. The outcome of the game
will be (X1 ⊗1 S2) ∩ (X2 ⊗2 S1). Notice that in this case
S1 ∪S2 ⊆ (X1 ⊗1 S2)∩ (X2 ⊗2 S1), each player’s demand
has been met.

Now we can define the utility for each game player. If a
game ends with an agreement, we define player i ′s payoff is
the degree of coverage of her strategy, i.e., ρXi(Si). If the
game ends with disagreement, then each player’s payoff is
zero.

Theorem 2 For any bargaining game B, each deal of the
game is a Nash equilibrium.

Proof: Let (D1,D2) ∈ Ω(B). It is easy to verify that (D1,D2)
is a compatible strategy profile. Now we show that if one
player, say player 2, use the strategy D2, then D1 is optimal
to player 1 w.r.t her payoff. Suppose otherwise there is a
strategy S1 for player 1 such that ρX1(S1) > ρX1(D1). We

then have X
≤ρX1 (S1)

1 ⊆ S1. Thus
ρX1 (S1)⋃

j=1

(D1 ∩ Xj
1) ∪ D2

is not set-inclusion maximal, which contradicts the definition
of deals. Therefore player 1 has no incentive to vary her strategy. ¶

The result shows that the concept of Nash equilibrium is
too weak to determine a bargaining solution, which is simi-
lar to the result in game theory(see (Osborne and Rubinstein
1990) p. 41). Interestingly, this theorem provides a natural
link between the essential AI approach - minimization - and
the fundamental game theory approach - equilibrium analy-
sis.

Simultaneous-offers model of bargaining
In order to get a more refined concept of equilibrium, we
devise a bargaining procedure with multiple simultaneous
offers from each player.

Assume that the bargaining between two agents follows
the following simultaneous-offers procedure. Given a bar-
gaining game B = ((X1,�1), (X2,�2)), at each period,
two players simultaneously make a proposal of demands:
(S1, S2), where S1 ⊆ X1 and S2 ⊆ X2. If (S1, S2) is com-
patible, then an agreement is reached. Otherwise, the game
continues for at least one more period, and each player has
an opportunity to make a new proposal by reducing at least
one item from her previous demand. In other words, each
player should delete at least one sentence (as well as its log-
ical equivalent sentences) from her previous proposal. A
player could also choose to stand still by holding her previ-
ous demand. The game ends with agreement at any period in
which the demands of the two players are compatible; or else
the game ends with disagreement at any period in which both
players choose to stand still prior to reaching agreement, in
this case no agreement is reached.

Subgame perfect equilibrium
Given a bargaining game B = ((X1,�1), (X2,�2)), let
Φ∗

1 = X1 ∩ (X1 ⊗1 Φ2) and Φ∗
2 = X2 ∩ (X2 ⊗2 Φ1), where

(Φ1,Φ2) is the core of B. We call (Φ∗
1,Φ

∗
2) the completion

of (Φ1,Φ2).

Theorem 3 If both X1 and X2 are logically closed and
Φ∗

1 ∪ Φ∗
2 is consistent, then (Φ∗

1,Φ
∗
2) is a subgame perfect

equilibrium(SPE) of the simultaneous-offers model3. More-
over, (Φ∗

1,Φ∗
2) is the unique SPE in the sense that for any

compatible strategy profile (S1, S2) such that Φ1 ⊆ S1 and
Φ2 ⊆ S2, ρXi(Si) ≤ ρXi(Φ∗

i ) (i = 1, 2).

Proof: To prove the theorem, we need the following technical
lemma: If X1 and X2 are belief sets and Φ∗

1 ∪ Φ∗
2 is consistent,

then for each i = 1, 2,

1. Φ∗
i ⊆ Xi ⊗i Φ∗

−i;

2. Xi ⊗i Φ−i = Xi ⊗i Φ∗
−i;

3. ρi(Φ
∗
i ) = ρi(Xi ⊗i Φ∗

−i).

Now we prove that (Φ∗
1,Φ

∗
2) is a SPE. First, at any period of

the game, if the strategy (Φ∗
1,Φ

∗
2) is used, an agreement will be

reached and the payoff of the players will be (ρX1(Φ
∗
1), ρX2(Φ

∗
2)).

Assume that only one player, say player 1, applies the strategy and
player 2 instead places a proposal S2. Whenever an agreement is
reached, (Φ∗

1, S2) must be compatible, i.e.,

1. Φ∗
1 ∪ S2 is consistent,

2. Φ∗
1 ⊆ X1 ⊗1 S2 and S2 ⊆ X2 ⊗2 Φ∗

1.

The agreement will then be (X1 ⊗1 S2) ∩ (X2 ⊗2 Φ∗
1) and

the payoffs will be (ρX1(Φ
∗
1), ρX2(S2)). By above condition 2,

ρX2(S2) ≤ ρX2(X2 ⊗2 Φ∗
1) = ρX2(Φ

∗
2). Therefore deviation

to S2 from Φ∗
2 is not profitable for player 2. If no agreement

is reached, which means (Φ∗
1, S2) is incompatible, the game will

3A strategy profile is a subgame perfect equilibrium of an exten-
sive form of a game if the strategy pair it induces in every subgame
is a Nash equilibrium of that subgame (see (Osborne and Rubin-
stein 1990) p43).



move to next round. As assumed, player 1 will play Φ∗
1 again. If

player 2 also stand still, then the game ends with disagreement in
which player 2 does not achieve any better. On the other hand, if
player 2 chooses to reduce her demand, the game continues with a
situation similar to above but could be even worse (never be bet-
ter because condition 2 needs to be true whenever an agreement is
reached).

Finally we prove the uniqueness. Since (S1, S2)
is compatible, we have Si ⊆ Xi ⊗i S−i. Thus
ρXi(Si) ≤ ρXi(Xi ⊗i S−i) ≤ ρXi(Xi ⊗i Φ−i) = ρXi(Φ

∗
i ). ¶

Note that both conditions for the existence and uniqueness
of SPE are crucial. On one hand, we requires that the de-
mand sets are logically closed because the belief revision op-
erator we use to construct the negotiation function is syntax-
dependent. On the other hand, if the completion pair of the
core of a game is inconsistent, there could be multiple SPEs.
For instance, suppose X1 = {p} and X2 = {¬p}. Then the
core completion is inconsistent. In such a case, we can easily
to verify that there are two SPEs, both of which contain the
core. Nevertheless, the result of Theorem 3 is still signif-
icant because the simultaneous-offers model of bargaining
in game-theoretic bargaining theory could have even contin-
uum SPE (see (Muthoo 1999) p191).

Computational Properties
In this section, we study the computational properties of the
negotiation model that we developed earlier. We assume that
readers are familiar with the complexity classes of P, NP,
coNP, ΣP

2 and ΠP
2 =coΣP

2 . The class of DP contains all
languagesL such thatL = L1∩L2 whereL1 is in NP andL2

is in coNP. It is well known thatP ⊆ NP ⊆ DP ⊆ ΣP
2 , and

these inclusions are generally believed to be proper (readers
may refer to (Papadimitriou 1994) for further details).

Consider a bargaining game B = ((X1,�1), (X2,�2))
where X1 and X2 are finite. From the hierarchy definition
on X1 and X2, it is clear that for each i = 1, 2, we can
always write Xi = X1

i ∪ · · · ∪Xm
i , whereXk

i ∩X l
i = ∅ for

any k 
= l. Also for each k < m, if a formula ϕ ∈ X k
i ,

then there does not exist a ψ ∈ X l
i (k < l) such that

ϕ ≺i ψ. Therefore, for the convenience of our complexity
analysis, in the rest of this section, we will specify a bar-
gaining game as B = (X1, X2), where X1 =

⋃m
i=1X

i
1

and X2 =
⋃n

j=1X
j
2 , and X1

1 , · · ·, Xm
1 , and X1

2 , · · ·, Xn
2

are the partitions of X1 and X2 respectively and satisfy the
property mentioned above. Sometimes we may simply write
B = (X1, X2) wihout specifying partitions on X1 and X2

if they are not important in our discussion. Under our nota-
tion, the definition of agreement function can be simplified
as A(B) = (X1 ⊗ Φ2) ∩ (X2 ⊗ Φ1), where we do not
distinguish operators ⊗1 and ⊗2 (in the original definition)
which correspond to the entrenchment orderings� 1 and �2,
respectively.

Theorem 4 Let B = (X1, X2) be a bargaining game, and
D1 ⊆ X1 and D2 ⊆ X2. Deciding whether (D1, D2) is a
deal of B is DP-complete.

Proof: Membership proof. According to Definition 2, to decide
whether (D1, D2) is a deal ofB, forD1 (orD2), we need to check:

(1) for each k = 1, · · · ,m (or for k′ = 1, · · · , n resp.), whether

D2 ∪
k⋃

j=1

(D1 ∩ Xj
1) (or D1 ∪

k′⋃
j=1

(D2 ∩ Xj
2) resp.) is consis-

tent; and (2) such D1 and D2 are maximal such subsets of X1 and
X2 respectively. Clearly, for each k, the set

⋃k
j=1(D1 ∩Xj

1) can
be computed in polynomial time, and checking the consistency of

D2 ∪
k⋃

j=1

(D1 ∩ Xj
1) is in NP. The same for D2 case. In order

to check whether D1 and D2 are the maximal subsets of X1 and
X2 respectively satisfying the condition, for each ϕ ∈ (X1 \D1)
and ψ ∈ (S2 \ D2), for each k, we check the inconsistency of

D2 ∪ {ψ} ∪
k⋃

j=1

((D1 ∪ {ϕ}) ∩ Xk
1 ) (the same for D2 as well).

There are (|X1|−|D1|)·(|X2|−|D2|) such (D1∪{ϕ}, D2∪{ψ})
to check, which can be done in coNP. So the problem is in DP.

Hardness proof. It is known that for given propositional
formulas ϕ1 and ϕ2, deciding whether ϕ1 is satisfiable and ϕ2

is unsatisfiable is DP-complete (Papadimitriou 1994). Given two
propositional formulas ϕ1 and ϕ2, we construct in polynomial
time a transformation from the ϕ1’s satisfiability and ϕ2’s
unsatisfiability to a deal decision problem of a game. We simply
define a game B = (X1,X2) = ({a, a ⊃ ϕ2}, {ϕ1}), where
a is a new propositional atom not occurring in ϕ1 or ϕ2, and no
partition is specified on X1 or X2. Let D1 = X1 \ {a ⊃ ϕ2} and
D2 = X2 = {ϕ1}. Clearly, D1 and D2 are the maximal subsets
of X1 and X2 respectively such that D1 ∪D2 is consistent iff ϕ1

is satisfiable and ϕ2 is unsatisfiable. ¶

Now we study computational issues in relation to the bar-
gaining solution function (Definition 3). As described ear-
lier, the degree of coverage of deals plays an essential role
in the definition.

Proposition 1 Given a bargaining game B = (X1, X2)
and a deal (D1, D2) of the game. The degree of coverage
of (D1, D2) can be computed in time O(|X1| + |X2|).

From Proposition 1 we know that computing a deal’s de-
gree of coverage is easy. However, the following result im-
plies that finding the core of agreement for a given game is
quite difficult.
Theorem 5 Given a bargaining game B and a pair of sets
of formulas Φ = (Φ1,Φ2). Deciding whether Φ is the core
of B is NP-hard as well as coNP-hard.

Proof: We consider a special case that γ(B) only contains one deal
of B. Then our problem reduces to decide whether the given pair
of sets of formulas (now we write them as (D1, D2) is in γ(B)).
We show this decision problem is NP-hard as well as coNP-hard.
Due to a space limit, we only present the proof of coNP hardness,
while NP hardness is proved in a similar style but somewhat more
tedious.

Given a propositional formula ϕ whose set of variables is V =
{x1, · · · , xn}. Based on ϕ, we construct in polynomial time a
bargaining game B = (X1,X2) and specify a pair (D1,D2)
where D1 ⊆ X1 and D2 ⊆ X2, and show that ϕ is valid iff
(D1,D2) is a deal of B with a maximal degree of coverage. Let
{a, b, c, p, p1, p2, p3, p4} be newly introduced variables not occur-

rings in ϕ. We specify a game B = (X1 =
5⋃

i=1

Xi
1,X2 =

5⋃
j=1

Xj
1), where X1 = X1

1 ∪ X2
1 ∪ X3

1 ∪ X4
1 ∪ X5

1 = {p} ∪



{¬a} ∪ {¬b} ∪ {¬x1, · · · , ,¬xn} ∪ {¬c}, and X2 = X1
2 ∪X2

2 ∪
X3

2 ∪X4
2 ∪X5

2 = {μ}∪{p1}∪{p2}∪{p3}∪{p4}, and μ = [(ϕ ⊃
(a∧b))∧ (

∧¬xi ∧c)]∨ [¬ϕ∧¬a∧b∧¬c]. Clearly, both X1 and
X2 are consistent but X1 ∪X2 is not consistent. Now we specify
D1 = {p,¬x1, · · · ,¬xn} and D2 = X2 = {μ, p1, p2, p3, p4}.
We will show that ϕ is valid iff (D1, D2) is a deal of B with a
maximal degree of coverage 1. That is, (D1,D2) ∈ γ(B).

Clearly, if ϕ is valid, [¬ϕ∧¬a∧ b∧¬c] cannot be satisfied. So
the only deal of B is (D1,D2) which is of the degree of coverage
1 (note that X1

1 ⊆ D1 and X1
1 ∪X2

1 �⊆ D1). On the other hand,
if ϕ is not valid, it means that formula [¬ϕ ∧ ¬a ∧ b ∧ ¬c] is
satisfiable. In this case, there exists a deal (D′

1,D2) of B where
{p,¬a,¬b} ⊆ D′

1 such that D′
1 ∪D2 consistent. This implies that

the degree of coverage of (D′
1,D2) equals to or is greater than 3 as

X1
1 ∪X2

1 ∪X3
1 ⊆ D′

1. So (D1,D2) �∈ γ(B). ¶
Given a bargaining game B and an agreement function

A, the inference problem of negotiation is to decide whether
some ϕ is derivable from A(B). This is also difficult, even
if we restrict B to a very special case.

Theorem 6 Let B be a bargaining game and ϕ a formula.
Deciding whether A(B) � ϕ is ΠP

2 -hard.

Proof: We consider a special B = (X1,X2), where no partitions
are put on X1 and X2, and X2 = {�}. It is easy to see that each
deal in γ(B) is of the form (D1, {�}) where D1 is a maximal
consistent subset of X1. In this case, Φ1 =

⋂
(D1,{�})∈γ(B) D1

and Φ2 = {�}. Therefore, A(B) = (X1 ⊗ {�}) ∩ ({�} ⊗
Φ1) = X1 ⊗ {�}. So we have A(B) � ϕ iff X1 ⊗ {�} � ϕ.
Clearly, deciding X1 ⊗ {�} � ϕ is ΠP

2 -complete (Nebel 1992).
So deciding A(B) � ϕ is ΠP

2 -hard. ¶
From Theorem 6, we can see that the syntax based nego-

tiation is at least as hard as Nebel’s syntax based belief revi-
sion. From Theorem 5, we further observe that the core of
agreement checking forB is probably beyondNP ∪ coNP
(otherwise it will result in NP=coNP). Since computing the
core of agreement is a precondition to compute A(B), we
believe that the inference problem for syntax based negoti-
ation is probably beyond Π2. It follows that syntax based
negotiation is generally harder than syntax based belief re-
vision. Although this result is not encouraged from a com-
putational viewpoint, it indeed informs that the logic based
negotiation is a more complex process than belief revision.

The following proposition states that under the condition
that γ(B) is provided, the inference problem for negotiation
is in ΠP

2 .
Proposition 2 Let B be a bargaining game and ϕ a for-
mula. Deciding whether A(B) � ϕ is in ΠP

2 provided that
γ(B) is given.

Conclusion and Related work
In this paper, we have developed a logical framework of bar-
gaining based on Nebel’s prioritized belief base revision. In
the framework, a negotiation procedure is divided into two
stages. In the first stage, two agents meet together to work
out mutually acceptable core demand from each side. In the
second stage, each agent adjusts its own demand in order to
make it consistent with the consent reached in the first stage
by conducting a course of belief revision. The outcome of
the bargaining is then the intersection of two agents’ revised

demand sets. We have proved that in certain conditions the
pair of revised demand sets determines a unique subgame
perfect equilibrium of simultaneous-offers model. Our com-
plexity analysis indicates that the computation related to a
syntax-based negotiation is more difficult than syntax-based
belief revision.

There are several pieces of work in the literature which
use belief revision as a tool to build negotiation model.
(Booth 2001; Meyer et al. 2004; Zhang et al. 2004) pre-
sented a series of AGM-like frameworks of negotiation op-
eration. These frameworks are all syntax-independent and
deal with only generic properties of negotiation processes.
Additionally, since there is no representation of players’
preferences in these frameworks, it is unclear how these
modelings are related to the game-theoretic approaches.
(Zhang 2005) proposed a bargaining solution which com-
bines Nash’s axiomatic approach and belief-revision-based
approach with a real-number representation of player’s pref-
erences. Since their definition of bargaining solution relies
on the representation and calculation of real numbers, their
solution cannot be expressed purely in logic. More signifi-
cantly, the uniqueness of their bargain solution is not guar-
anteed without introducing mixed deals. Finally, none of
the above approaches addressed the computational issue of
logic-based negotiation in detail4.
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