
Updating Epistemic Logic Programs∗

Yan Zhang
Intelligent Systems Laboratory

School of Computing & Mathematics
University of Western Sydney

Penrith South DC, NSW 1797, Australia
yan@scm.uws.edu.au

Abstract

We consider the problem of updating nonmonotonic knowledge bases represented
by epistemic logic programs where disjunctive information and notions of knowledge
and belief can be explicitly expressed. We propose a formulation for epistemic logic
program update based on a principle called minimal change and maximal coherence.
The central feature of our approach is that during an update or a sequence of updates,
contradictory information is removed on a basis of minimal change under the seman-
tics of epistemic logic programs and then coherent information is maximally retained
in the update result. Through various update scenarios, we show that our approach
provides both semantic and syntactic characterizations for an update problem. We
also investigate essential semantic properties of epistemic logic program update.
Keywords: Epistemic logic programs; non-monotonic reasoning; update

1 Introduction

Reasoning about knowledge system dynamics is one of the central topics in AI research.
As a dominant research trend in this aspect, the problem of belief revision and update has
been extensively studied in the last decade, and profound theoretical foundations to model
agents’ belief and knowledge change have been developed through different approaches,
e.g. [1, 7, 8, 18]. One challenge of applying these results in practice is to develop com-
putational models for modeling agents’ activities in dynamic environments. On the other
hand, logic programming has been proved to be one of the most promising logic based
formulations for problem solving, knowledge representation and reasoning, and reasoning

∗A preliminary version of this paper was published in IJCAI-2003 [24].

1

about actions and plans. Recent research on logic program update shows that logic pro-
gramming also provides a computational framework for reasoning about the agents’ state
change [2, 9, 21, 26].

While various approaches and theories for belief revision and update and logic program
update have been proposed towards the modeling of agents’ dynamic behaviors, they usu-
ally are not used for modeling changes associated with agents’ epistemic states, because
notions of knowledge and belief are not explicitly expressible in the formalisms of belief
revision and update and logic programs. As observed in [6], to precisely model agents’ dy-
namic behaviors, it is essential that both epistemic and actual state changes should be taken
into account. Representing and reasoning about agents’ epistemic states is the main issue
in the research of reasoning about knowledge [10, 20], in which dynamic epistemic logics
deal with the reasoning problem related to agents’ epistemic state change, e.g. [5, 13]. Nev-
ertheless, these logics normally do not specifically consider the actual world change (i.e.
belief revision and update), and do not concern the computational process for modeling
epistemic state changes.

Gelfond’s epistemic logic programs is a significant extension of traditional extended
logic programs under answer set semantics. By combining knowledge and belief operators
into logic rules, epistemic logic programming is a powerful representation formalism in
logic programming paradigm. It can not only deal with more complex problems in rea-
soning with incomplete information while traditional disjunctive extended logic programs
fail to handle that [12], but also provides a formal basis for modeling knowledge and belief
explicitly with a declarative semantics, e.g. [19]. From a dynamics modeling perspective,
when we use an epistemic logic program to represent an agent’s knowledge base, it is a
natural question whether we can develop an update formulation for epistemic logic pro-
grams that may be used to model agents’ behaviors involving both epistemic and actual
states changes.

Updating an epistemic logic program by another epistemic logic program presents some
technical challenges. Since the semantics of knowledge and belief in an epistemic logic
program is represented by the world views of the underlying epistemic logic programs,
changes on the program involving knowledge and belief should be carefully considered,
while the existing (extended) logic program update approaches do not take this issue into
account. In this paper, we propose a formal approach for epistemic logic program update.
We require our update formulation to meet two major criteria: (1) an update should be
performed on a basis of minimal change principle under the semantics of epistemic logic
programs; and (2) based on the minimal change principle, the update result should have a
clear syntactic representation and contain maximal information from previous program(s).
Clearly, to achieve these criteria, we need to develop our approach from both semantic and
syntactic considerations. The main idea we will use in our development is called minimal
change and maximal coherence which presents both semantic and syntactic features in an
update procedure.

We should indicate that traditional minimal change principles used in belief revision
and update [15, 23] are not suitable for developing an update approach for epistemic logic

2

programs. First, let us consider the classical AGM belief revision postulates and Katsuno
and Mendelzon’s belief update postulates [15]. As it has been shown in [9], extended logic
program update generally does not satisfy these postulates. Since epistemic logic programs
are an extension of of extended disjunctive logic programs with additional knowledge and
belief modal operators, it would not be realistic to develop an update approach for epistemic
logic programs satisfying these general postulates. On the other hand, Winslett’s possible
model approach [23] is one of the major approaches for model based belief update that
satisfies all Katsuno and Mendelzon’s update postulates. However, as we mentioned earlier,
since we require that our update approach should reflect the syntactic nature of epistemic
logic programs, a pure model based minimal change principle cannot achieve this purpose.

The paper is organized as follows. Section 2 presents a brief overview for epistemic
logic programs. Section 3 develops a formalization for epistemic logic program update,
while section 4 extends this formalization to handle update sequences. Section 5 investi-
gates important semantic properties for our update approach. Finally, section 6 concludes
the paper with discussions on related issues and future work.

2 Epistemic Logic Programs: An Overview

In this section, we present a general overview on epistemic logic programs. Gelfond ex-
tended the syntax and semantics of disjunctive logic programs to allow the correct repre-
sentation of incomplete information in the presence of multiple extensions [12]. Consider
the following disjunctive program about the policy of offering scholarships in some univer-
sity1:

P:
r1: eligible(x)← highGPA(x),
r2: eligible(x)← minority(x), fairGPA(x),
r3: ¬eligible(x)← ¬fairGPA(x),¬highGPA(x),
r4: interview(x)← not eligible(x), not ¬eligible(x),
r5: fairGPA(mike) or highGPA(mike)←,

while rule r4 can be viewed as a formalization of the statement: “a student whose eli-
gibility is not decided by rules r1, r2 and r3 should be interviewed by the committee”.
It is easy to see that P has two answer sets {highGPA(mike), eligible(mike)} and
{fairGPA(mike), interview(mike)}. Therefore the answer to query interview(mike)
is unknown, which seems too weak from our intuition. Epistemic logic programs will over-
come this kind of difficulties in reasoning with incomplete information.

In epistemic logic programs, the language of (disjunctive) extended logic programs is
expanded with two modal operators K and M . KF is read as “F is known to be true”
and MF is read as “F may be believed to be true”. For our purpose, in this paper we

1This example was due to Gelfond [12]

3

will only consider propositional epistemic logic programs where rules containing variables
are viewed as the set of all ground rules by replacing these variables with all constants
occurring in the language. The semantics for epistemic logic programs is defined by the
pair (A, W), whereA is a collection of sets of ground literals which is also simply called is
a collection of belief sets, and W is a set inA called the agent’s working set of beliefs. The
truth of a formula F in (A, W) is denoted by (A, W) |= F and the falsity by (A, W) =|F ,
and are defined as follows.

(A, W) |= p iff p ∈ W where p is a propositional atom.
(A, W) |= KF iff (A, Wi) |= F for all Wi ∈ A.
(A, W) |= MF iff (A, Wi) |= F for some Wi ∈ A.
(A, W) |= F ∧G iff (A, W) |= F and (A, W) |= G.
(A, W) |= F or G iff (A, W) |= ¬(¬F ∧ ¬G).
(A, W) |= ¬F iff (A, W) =|F .
(A, W) =|F iff ¬F ∈ W where F is a ground atom.
(A, W) =|KF iff (A, W) 6|= KF 2.
(A, W) =|MF iff (A, W) 6|= MF .
(A, W) =|F ∧G iff (A, W) =|F or (A, W) =|G.
(A, W) =|F or G iff (A, W) =|F and (A, W) =|G.

It is worth mentioning that since belief set W allows both positive and negative propo-
sitional atoms, in Gelfond’s semantics, (A, W) =| ϕ is not equivalent to (A, W) 6|= ϕ in
general. For instance, ({{a, b}}, {a, b}) 6|= c, but we do not have ({{a, b}}, {a, b}) = | c
(i.e. ({{a, b}}, {a, b}) |= ¬c). Consequently, here K and M are not dual modal opera-
tors here3. Consider A = {{a, b}, {a, b,¬c}}. Clearly we have A |= ¬K¬c. But having
A |= Mc seems to be wrong.

If a formula G is of the form KF , ¬KF , MF or ¬MF (where F is a propositional
formula), then its truth value in (A, W) will not depend on W . In this case we call G a
subjective formula. If F is a propositional literal, then we call KF , ¬KF , MF , and ¬MF

subjective literals. On the other hand, if G does not contain K or M , then its truth value in
(A, W) will only depend on W and we call G an objective formula or objective literal if G

is a propositional literal. In the case that G is subjective, we simply write A |= G instead
of (A, W) |= G, and W |= G instead of (A, W) |= G in the case that G is objective.
Consider two formulas F and G. We write F |= G if for each A and each W ∈ A such
that (A, W) |= F , we have (A, W) |= G.

An epistemic logic program is a finite set of rules of the form:

F ← G1, · · · , Gm, not Gm+1, · · · , not Gn. (1)

In (1), m, n ≥ 0, F is of the form F1 or · · · or Fk (k ≥ 1) and F1, · · · , Fk are objective
literals, G1, · · · , Gm are objective or subjective literals, and Gm+1, · · · , Gn are objective

2We denote (A, W) 6|= ϕ iff (A, W) |= ϕ does not hold.
3K and M are called dual if ¬K¬ϕ is logically equivalent to Mϕ.

4

literals. For an epistemic logic program P , its semantics is given by its world view which
is defined in the following steps:
Step 1. Let P be an epistemic logic program not containing modal operators K and M and
negation as failure not. A set W of ground literals is called a belief set of P iff W is a
minimal set of satisfying conditions: (i) for each rule F ← G1, · · · , Gm from P such that
W |= G1 ∧ · · · ∧ Gm we have W |= F ; and (ii) if W contains a pair of complementary
literals then W = Lit, i.e. W is an inconsistent belief set4.
Step 2. Let P be an epistemic logic program not containing modal operators K and M

and W be a set of ground literals in the language of P . By PW we denote the result of (i)
removing from P all the rules containing formulas of the form not G such that W |= G

and (ii) removing from the rules in P all other occurrences of formulas of the form notG.
Step 3. Finally, let P be an arbitrary epistemic logic program and A a collection of sets
of ground literals in its language. By PA we denote the epistemic logic program obtained
from P by (i) removing from P all rules containing formulas of the form G such that G is
subjective andA 6|= G, and (ii) removing from rules inP all other occurrences of subjective
formulas.

Now we define that a collection A of sets of ground literals is a world view of P if
A is the collection of all belief sets of PA. Consider the program P about the eligibility
of scholarship discussed at the beginning of this section, if we replace rule r4 with the
following rule:

r′4: interview(x)← ¬Keligible(x),¬K¬eligible(x),

then the epistemic logic program that consists of rules r1, r2, r3, r′4, and r5 will have a
unique world view:

{{highGPA(mike), eligible(mike), interview(mike)},
{fairGPA(mike), interview(mike)}},

which will result in a “yes” answer to the query interview(mike).

3 Formalizing Epistemic Logic Program Updates

From this section, we begin to develop a formalization for epistemic logic program update.
Consider the update of an epistemic logic program P0 by another epistemic logic program
P1. Our approach consists of two stages: firstly, we update a world view of P0 by P1 - this
will ensure a minimal change for the underlying update semantics; and secondly, based on
the first stage result, we will derive a resulting program which retains the maximal syntactic
information represented by P0.

4Note that in our context, a belief set is simply a set of ground literals. Here a belief set of a program is a
belief set that satisfies the conditions (i) and (ii).

5

3.1 Preliminaries

To begin with, we first introduce some useful notions. Let A be a collection of belief sets
and P an epistemic logic program. We define a pairM = (A, W) where W ∈ A, to be
an epistemic model induced from A. If A is a world view of P , then (A, W) is also called
an epistemic model of P . Clearly, for each A, there are ‖A‖ models of P induced from A
(here ‖A‖ is the cardinality of set A). We use ind(A) to denote the set of all epistemic
models induced from A.

Consider a rule r of the form (1). We use H(r) and B(r) to denote the head and body
parts of rule r respectively. For instance, for rule

r: a or ¬b← c, Kd, not ¬e,

we have H(r) = {a,¬b}, and B(r) = {c, Kd, not¬e}. Recall that H(r) is satisfied in an
epistemic modelM, i.e. M |= H(r), iffM |= l, for some l ∈ H(r). For B(r), since it
contains negation as failure operator not, we extend its satisfaction denotation as follows.
B(r) is satisfied inM, denoted asM |= B(r), if (1) for each objective or subjective literal
l ∈ B(r)M |= l, and (2) for each not l ∈ B(r)M 6|= l. r is satisfied inM, denoted as
M |= r, ifM |= B(r) impliesM |= H(r). An epistemic logic program P is satisfied in
M if each rule of P is satisfied inM. P is satisfied in a collection of belief sets A if P is
satisfied in all epistemic models induced from A.

A collection of belief sets is consistent if each of its belief sets is consistent, and is
non-redundant if it does not contains two belief sets W1 and W2 such that W1 ⊆ W2.
An epistemic logic program is consistent if it has a world view and all of its world views
are consistent. By V(P) we denote the set of all non-redundant collections of belief sets
satisfying P . We also denote the set of all world views of P as A(P). Clearly A(P) ⊆
V(P). Under the context of epistemic logic program update, we will only consider the
problem of updating a consistent program by another consistent program or a sequence of
consistent programs.

3.2 Minimal Change on World Views Updates

Let W and W1 be two belief sets. We denote Diff(W, W1) to be the set |(W \ W1) ∪
(W1 \ W)|5. Our method for updating world views shares a similar spirit of traditional
model based update [23] by defining a closeness relation between world views, and we
require that the resulting world view after the update should be as close as possible to the
original world view.

Definition 1 (Closeness) LetA,A1 andA2 be three collections of belief sets. We sayA1 is
at least as close toA asA2, denoted asA1 ≤A A2, iff for any W ∈ A and W2 ∈ A2, there
exists some W1 ∈ A1 such that Diff(W, W1) ⊆ Diff(W, W2). We denote A1 <A A2 if
A1 ≤A A2 and A2 6≤A A1.

5For a set of literals W , |W | = {|l| | l ∈ W} and here |l| is l’s corresponding propositional atom, i.e.
|l| = a if l is a or ¬a.

6

Proposition 1 ≤A defined in Definition 1 is a pre-ordering.

Proof: From Definition 1, it is easy to see that ≤A is reflexive. Now we prove the transi-
tivity. Assume that A1 ≤A A2 and A2 ≤A A3. Clearly, we know that from ∀W ∈ A,
W2 ∈ A2, ∃W1 ∈ A1 Diff(W, W1) ⊆ Diff(W, W2); and ∀W ∈ A, W3 ∈ A3,
∃W2 ∈ A2 Diff(W, W2) ⊆ Diff(W, W3). Then we have ∀W ∈ A, W3 ∈ A3, we
always have particular W1 inA1 and W2 inA2 as indicated above such that Diff(W, W1)
⊆ Diff(W, W2) ⊆ Diff(W, W3). This follows that ∀W ∈ A and W3 ∈ A3, ∃W1 ∈ A1

such that Diff(W, W1) ⊆ Diff(W, W3). This proves≤A’s transitivity. �

Now we consider how a world view A of some program can be updated by a specific
program P . Intuitively, the result of this type of update is a new collection of belief sets,
say A′, which should satisfy P and have a minimal difference from A. Consider a simple
example. LetA = {{a, b}, {a, c}} and P = {¬b∨c ← Ka}. When we updateA by P , we
would expect to obtain an intuitive result like A′ = {{a,¬b}, {a, c}}, which, according to
Definition 1, has a minimal difference fromA. However, note thatA′′ = {{¬a, b}, {a, c}}
also satisfies P and has a minimal difference from A, but A′′ should not be a desirable
result because no information is presented in P to change a.

To capture such intuition of the world view update, we need to compare two collections
of belief sets A′ and A′′, where both of them are in V(P), in terms of which one is more
consistent withA with respect to program P . That is, ifA′ satisfies more rules r in P than
A′′ in some sense under the consideration of A.

To formalize this concept, we define a notion as follows. Let A, A′ be two collections
of belief sets, and P a program, where A′ ∈ V(P). We define

1. R(A,P,A′)0 = {r | r ∈ P , such that for each induced epistemic modelM from A
satisfyingM |= B(r), there is an induced epistemic modelM′ from A′ satisfying
M′ |= B(r) ∧H(r)};

2. R(A,P,A′)i+1 = R(A,P,A′)i ∪ ∆, where R(A,P,A′)i 6= ∅ and
∆ = {r | r ∈ P , where B(r) = B ′(r) ∧ B1(r) ∧ · · · ∧ Bk(r), such that for
each induced epistemic model M from A satisfying M |= B ′(r), there are rules
r1, · · · , rk ∈ R(A,P,A′)i such that for each induced epistemic modelM′ satisfying
(1) M′ |= B(rj) ∧ H(rj) implies M′ |= Bj(r) (j = 1, · · · , k), and (2) M′ |=
B(r) ∧H(r)}.

3. R(A,P,A′) =
⋃∞

i=1
R(A,P,A′)i.

Let us take a closer look at notion R(A,P,A′). Intuitively, R(A,P,A′) tries to capture
the rules that make required changes in A′, by giving A in which some induced epistemic
models make these rules’ bodies hold. First, R(A,P,A′) contains those rules from P that
force direct changes of A in order to satisfy these rules in A′ (condition 1 in R(A,P,A′)
definition). Then these rules form a basis to trigger more rules from P to be satisfied byA′

so that more indiect changes are caused inA. In particular, if a rule’s body is only partially

7

satisfied in some induced epistemic model from A, but other parts of its body have been
derived from previous rules that cause changes ofA, then this rule will be triggered as well
to derive further changes of A (condition 2 in R(A,P,A′) definition). So R(A,P,A′)
actually contains the rules from P that enforce all direct and indirect changes of A in the
present of A′. To illustrate the intuition behind this definition clearly, let us consider the
following example.

Example 1 Let A = {{a, b}}, and P a program consisting of the following rules:

r1 : c or d← Ka, not f ,
r2 : e← b, Mc.

Suppose A′ = {{a, b, c, e}, {a, b, d, e}}. Now we compute R(A,P,A′) according to the
previous definition. Firstly, it is easy to see that R(A,P,A′)0 = {r1} since A has a
unique induced epistemic modelM = (A, {a, b}),M |= (Ka, not e), and for the induced
epistemic models M′ = (A′, {a, b, c, e}) and M′′ = (A′, {a, b, d, e}) from A′, M′ |=
(c or d) ∧ (Ka, not e) andM′′ |= (c or d) ∧ (Ka, not e). Then we consider rule r2. We
observe thatM |= b,M′ |= B(r1) ∧ H(r1) andM′ |= Mc, andM′′ |= B(r1) ∧ H(r1)
andM′′ |= Mc. Furthermore,M′ |= e andM′′ |= e. So according to the specification of
R(A,P,A′)i+1, we have R(A,P,A′)1 = R(A,P,A′)0 ∪{r2}. Therefore, R(A,P,A′) =
{r1, r2}. �

We say that A′ is as A-consistent as A′′ with respect to P if R(A, P , A′′) ⊆ R(A, P ,
A′), and A′ is maximally A-consistent with respect to P if there does not exist other A′′

such that R(A, P , A′) ⊂ R(A, P , A′′) (proper set inclusion).

Definition 2 (Updating world views) Let A be a world view of some program. A collec-
tion of belief sets A′ (not necessary a world view of a particular program) is a possible
result of updatingA by a program P , ifA′ satisfies the following conditions:

1. A′ |= P (i.e. A′ ∈ V(P));

2. A′ is maximallyA-consistent with respect to P ′; and

3. there does not exist another collection of belief setsA′′ satisfying conditions 1 and 2,
andA′′ <A A

′.

We use Res(A,P) to denote the set of all possible results of updatingA by P .

Example 2 We first look at a simple example. Let A = {{a}}. Consider the update of
A = {{a}} with program P consisting of the following two rules:

r1: p← Ka, not q,
r2: q ← Ka, not p.

8

It is easy to see that there are four collections of belief sets that satisfy P 6:

A1 = {{a, p}, {a, q}},
A2 = {{a, p}},
A3 = {{a, q}}, and
A4 = {{}}.

Then from the definition of R(A,P,A′), we can see that

R(A,P,A1) = {r1, r2},
R(A,P,A2) = {r1},
R(A,P,A3) = {r2}, and
R(A,P,A4) = {}.

SoA1 is the only maximallyA-consistent collection of belief sets with respect to P . From
Definition 2, we know that A1 = {{a, p}, {a, q}} is the unique result of the update of A
with P . �

Example 3 Consider two epistemic logic programs P1 and P2 where

P1:
a←,
¬b← not c,
c← not ¬b, and
P2:

b or c← Ka,

Clearly, P1 has one world view A = {{a,¬b}, {a, c}}. Updating A by P2, according to
Definition 2, we obtain one resulting world views A′ = {{a, b}, {a, c}}. Note that A′′ =
{{a, c}} is not a result. AlthoughA′′ |= P2, andA′′ is maximallyA-consistent with respect
toP2,A′ <A A

′′ because Diff({a,¬b}, {a, b}) = {b} ⊂ {b, c} = Diff({a,¬b}, {a, c}).
Also note thatA′′′ = {{¬a,¬b}, {a, c}} is not a result either becauseA′′′ is not maximally
A-consistent with respect to P2. �

Example 4 We consider another program P as follows:

r1 : a←,
r2 : b← Ka, b,
r3 : c← Ka,¬b.

Suppose A = {{¬a,¬b,¬c}} is a world view of some program, we consider the update
of A by P . Then from Definition 2, it can be verified that A′ = {{a,¬b, c}} is the unique
result from this update. In particular, we have R(A,P,A′) = {r1, r3}, from which we can
see thatA′ is maximallyA-consistent with respect to P .

Note that A′′ = {{a, b,¬c}} is not maximally A-consistent with respect to P because
R(A,P,A′′) = {r1} which is a proper subset of R(A,P,A′) = {r1, r3}. �

6We assume that a, p, q are the only atoms in the language of P .

9

Now we study some basic properties of world view updates. Given a world view (col-
lection of belief sets) A and a program P , we denote Min(V(P),≤A) to be a subset of
V(P) containing all minimal elements with respect to the ordering ≤A. The following
result directly follows from Definition 2.

Proposition 2 Res(A,P) ⊆Min(V(P),≤A).

From the above three examples, we observe that for each case, all changes of a world
view are specifically enforced by the underlying update program and no any extra change
will be generated. Considering Example 1 for instance, although rules r1 and r2 conflict
with each other, each of them still makes a corresponding change once its body is satisfied.
To characterize this property in general, we first introduce a useful notion.

Let P be a program and a rule r ∈ P . We use head literal(r) and neg literal(r)
to denote the sets of propositional literals occurring in the head and negative body of rule
r respectively. By pos literal(r), we mean the set of literals occurring in the body with
positive modal operators K or M in front, or without K or M in front, together with the
negations of all literals that have ¬K or ¬M in front. For instance, if ¬K¬a occurs in the
body of rule r, then a will be in pos literal(r). Let rule rp ∈ P . We define a notion D(rp)
as follows:

D(rp)
0 = {rp};

D(rp)
i = D(rp)

i−1 ∪ {r | there exists some r′ ∈ D(rp)
i−1 such that

head literal(r′) ∩ pos literal(r) 6= ∅
(if pos literal(r) 6= ∅) and
head literal(r′) 6⊆ neg literal(r)};

D(rp) =
⋃∞

i=0
D(rp)

i.

Intuitively, D(rp) represents a sequence of rules r1, r2, · · · , rk (r1 = rp) in P that forms a
causal chain initiated by rule rp. That is, if rule r1 = rp is triggered, then possibly rules
r2, · · · , rk will be triggered as well.

Note that condition head literal(r′) 6⊆ neg literal(r) is necessary in the above def-
inition in order to capture actual causal changes triggered by rp. Consider the following
program:

r1 : a or b or c←,
r2 : d←Mc, not b.

We have D(r1) = {r1, r2}. Clearly, applying rule r1 will trigger rule r2 under certain
circumstance - when c is possibly derived, d will be also derived consequently. So this
progam has a unique world view {{a, d}, {b}, {c, d}}.

It is also worth mentioning that in an epistemc logic program, even if pos literal(r) ∩
neg literal(r) 6= ∅, rule r may still contribute to the generation of the world view of
the underlying program, and therefore it will play a role in generating certain world view
update result. This will be shown in the following example.

10

Example 5 Let A = {{}} and P a program as follows:

r1 : a or b←,
r2 : c←Ma, not a.

Here pos literal(r2)∩neg literal(r2) = {a}. We consider the update ofA by P . First we
can see that D(r1) = {r1, r2}, and P has a unique world view A′ = {{a}, {b, c}}. Then
by the definition of R(A,P,A′), we can see that R(A,P,A′) = {r1, r2}. Clearly, A′ is
maximally A-consistent with respect to P . In fact, it is not hard to observe that A′ is the
unique result of updatingA by program P . �

Let us take a closer look at Example 3 once again. In Example 3, we have two causal
chains starting from rule r1 in program P: D(r1) = {r1, r2} and D′(r1) = {r1, r3}. Giving
A = {{¬a,¬b,¬c}}, we can see that each rule in R(A,P,A′) = {r1, r3} is also repre-
sented in D′(r1) = {r1, r3}. In other words, all changes from A to A′ are triggered by
certain rules in some causal chains from P . In general, we have the following result.

Proposition 3 LetA,P be specified as in Definition 2, andA′ ∈ Res(A,P). If an induced
epistemic modelM′ ∈ ind(A′) which is not in ind(A), then there exists a rule rp ∈ P such
that for someM ∈ ind(A), the following conditions hold: (1)M |= B(rp), and (2) for
some D(rp) and r ∈ D(rp),M′ |= B(r) ∧H(r).

Proof: If for someM ∈ ind(A),M |= B(rp), then from the definitions of R(A,P,A′)
and D(rp), we know that for each r′ ∈ D(rp), r′ ∈ R(A,P,A′) iff for some M′ ∈
ind(A′), M′ |= B(r′) ∧ H(r′). Since we know that M′ 6∈ ind(A), this implies that
R(A,P,A′) 6= ∅. Otherwise we would have A = A′ from Definition 2. So there is a rule
rp ∈ R(A,P,A′)0 such thatM |= B(rp) for someM∈ ind(A). This infers that for some
D(rp) and some r ∈ D(rp) (note that r could be rp),M′ |= B(r) ∧H(r). �

The following example further illustrates a situation where indirect changes may lead
to multiple updating results during a world view update.

Example 6 Let A = {{e}} be a world view of some program. We consider the update of
A by program P:

r1 : d←,
r2 : b or c← Kd,¬Ma,
r3 : a or c← Kd,¬Mb.

In this program, we have D(r1) = {r1, r2} and D′(r1) = {r1, r3}. Rule r1 will cause a di-
rect change onA, and this change will further enforce an indirect change from rule r2 or r3,
but not both. In particular, consider two collections of belief setsA1 = {{b, d, e}, {c, d, e}}
and A2 = {{a, d, e}, {c, d, e}} respectively. We have R(A,P, A1) = {r1, r2}, and R(A,
P ,A2) = {r1, r3}, both are maximallyA-consistent with respect to P . Note that due to the

11

mutual exclusion of rules r2 and r3, there does not exist a consistent collectionA′ of belief
sets that such that both r2 and r3 are in R(A,P,A′). So from Definition 2, it is easy to see
thatA1 andA2 are the two possible results after updatingA by P . From Proposition 3, we
know that indeed changes represented by A1 are caused by rules in D(r1) while changes
represented by A2 are caused by rules in D′(r1). �

3.3 Maximal Coherence and Resulting Programs

As discussed earlier, during the second stage of an update procedure, we need to derive
a resulting program which should retain the maximal syntactic information represented
by the initial program. This is achieved by introducing the concept of coherence. Let
M = (A, W) be an epistemic model and r a rule of the form (1) such thatM |= r. We
denote S(M, H(r)) = {l | l ∈ H(r) ∩W andM |= B(r)}. Intuitively, ifM |= B(r),
then S(M, H(r)) presents all literals occurring in H(r) that are true in W . For example,
letM = ({{a, b}, {a, c}, {a, b, c}}, {a, b, c}) and r : b or c ← Ka, then S(M, H(r)) =
{b, c}. In the case ofM 6|= B(r), we have S(M, H(r)) = ∅.

Definition 3 (Subsumption) Given two collections of belief setsA1 andA2 and a program
P . A2 is subsumed by A1 with respect to P , denoted as A2 ⊆P A1, iff A1 |= P implies
A2 |= P and for eachM2 ∈ ind(A2) there exists someM1 ∈ ind(A1) such that for each
r ∈ P , S(M2, H(r)) ⊆ S(M1, H(r)).

Given A1 |= P , if A2 is subsumed by A1 with respect to P , then each rule r in P
is also satisfied in A2 without increasing the satisfied literals of H(r) in the epistemic
models induced from A2. Informally, A2 ⊆P A1 means that A2 is not a larger collection
of belief sets than A1 to satisfy P . For instance, let P = {r : a or b ← Kc}, A1 =
{{a, b, c, }, {b, c, d}} and A2 = {{a, b}, {b, c, e}}, then A2 ⊆P A1. Clearly, A2 is smaller
thanA1 in the sense that fewer literals in H(r) are satisfied in belief sets of A2.

Definition 4 (Coherence) Let P and P ′ be two programs and A ∈ V(P). P ′ is coherent
with P with respect toA iff for each A′ ∈ Res(A,P ′), A′ is consistent andA′ ⊆P A.

The intuitive meaning of coherence is explained as follows. Given the collection of
belief sets A and programs P and P ′ where A |= P . Updating A by P ′ will change A to
other possible collections of belief sets that satisfyP ′. Coherence ensures that such changes
do not violate the satisfaction of P , i.e. for each A′ ∈ Res(A,P ′) A′ |= P . Furthermore,
it also ensures that A′ is subsumed by A with respect to P (i.e. A′ is not larger than A in
terms of P’s satisfaction). Definition 4 also implies that to be coherent, both program P
and P ′ must be consistent.

Now the resulting program can be specified by the following definition.

Definition 5 (Resulting programs) Let P1 and P2 be two programs. An epistemic logic
program P ′ is a possible resulting program after updating P1 by P2, iff there exists some
A ∈ A(P1), P ′ = P∗

1 ∪ P2, where P∗
1 is a maximal subset of P1 such that for each

A′ ∈ Res(A,P2) P
∗
1 is coherent with P2 with respect to A′.

12

Example 7 Example 3 continued. Note that A = {{a,¬b}, {a, c}} is the unique world
view of P1. After updating A by P2, we have Res(A,P2) = {A′} = {{a, b}, {a, c}} as
shown in Example 1. Then it can be verified that {a ←} is the only maximal subset of P1

that is coherent with P2 with respect to {{a, b}, {a, c}}. Therefore, from Definition 5, we
have

P ′:
a←,
b or c← Ka,

from which, we conclude that P ′ has a unique world view {{a, b}, {a, c}}. �

Example 8 Consider a scenario that John is being investigated in relation to a crime. The
following rules have been applied to decide whether or not John is innocent. If it is not
believed that John is involved in the crime, then John is clear. If it is known that John is
clear, then John is innocent. On the other hand, if it is not believed that John is clear, then
John is involved in the crime, and if it is known that John is involved in the crime, then
John is a suspect. These statements can be represented in the following epistemic logic
program:

P1:
clear(john)← ¬Mbe involved(john),
innocent(john)← Kclear(john),
be involved(john)← ¬Mclear(john),
suspected(john)← Kbe involved(john).

Now suppose that John is either not clear or not being involved in the crime:

P2:
¬clear(john) or ¬be involved(john)←.

We consider to update P1 by P2. It is easy to see that P1 has two world views:

A1 = {{clear(john), innocent(john)}} and
A2 = {{be involved(john), suspected(john)}}.

We first update A1 by P2. From Definition 2, we have Res(A1,P2) = {A11,A12}, where
A11 = {{¬clear(john), innocent(john)},

{clear(john),¬be involved(john), innocent(john)}}, and
A12 = {{¬clear(john), be involved(john), suspected(john)},

{¬be involved(john), suspected(john)}}.
Then it can be verified that a program consisting of the following two rules

13

P∗:
innocent(john)← Kclear(john),
suspected(john)← Kbe involved(john)

is the maximal subset ofP1 that is coherent withP2 with respect toA11 andA12. Therefore,
from Definition 5 we have:

P ′:
innocent(john)← Kclear(john),
suspected(john)← Kbe involved(john),
¬clear(john) or ¬be involved(john)←

is a resulting program after updating P1 by P2. From the update of A2 by P2, on the other
hand, we will obtain exactly the same resulting program P ′. That is, P ′ is the unique result-
ing program after updating P1 by P2, which has a unique world view {{¬clear(john)},
{¬be involved(john)}}. It is also noted that program P1 ∪ P2 is not consistent as it does
not have a world view. �

4 Handling Update Sequences

In this section, we extend our previous update formulation to handle update sequences
where more than two programs are involved. Let P1, · · · ,Pk be consistent programs. P =
(P1, · · · ,Pk) is called an update sequence. Informally performing this update sequence
means that program P1 is sequentially updated by P2, · · ·, and Pk. From our intuition,
during this process we would like to assign Pj a higher priority of persistence than Pi

where j > i since Pj represents the agent’s newly received knowledge comparing to Pi.
Therefore, after the performance of this update sequence, it is desirable to achieve a result
which maximally contains information represented by Pk, Pk−1, · · ·, P1 with progressively
decreasing priorities. In other words, we would like to have a minimal change principle
for performing an update sequence that is of progressively decreasing priority degrees on
Pk, Pk−1, · · ·, P1. Similarly to our previous update formulation, we will formalize this
principle for handling update sequence from both semantic and syntactic considerations.
The idea is illustrated by the following example.

Example 9 Consider an update sequence P = (P1,P2,P3), where

P1:
r1: b← Ka,
r2: ¬b← Ka,
P2:

r3: a←,
P3:

r4: ¬a or ¬b←.

14

To perform update sequence P, we first update P1 by P2, which, according to the ap-
proach developed earlier, will generate two resulting programs: P ′ = {r1, r3} and P ′′ =
{r2, r3}. Now we consider to update P ′ and P ′′ by P3 respectively. However, this time,
we cannot simply apply our previous update approach because both P ′ and P ′′ contain
rules from P1 and P2 where rules from P2 should have a higher priority to be main-
tained during the change. For instance, consider the update of P ′ by P3. P ′ has one
world view A′ = {{a, b}}. Then updating A′ by P3 will generate a new world view
A′′ = {{¬a, b}, {a,¬b}}. Clearly, both {r1} and {r3} are the maximal subsets of P ′ that
are coherent with P3 with respect toA′′. However, as we discussed above, we should only
have a final resulting program {r3}∪P3 because P2 has a higher priority than P1 to be per-
sistent during the update. Updating P ′′ by P3, on the other hand, will result in a program
P ′′ ∪ P3 as there is no conflict between P ′′ and P3. �

Let P = (P1, · · · ,Pk) be an update sequence and P ′ a subset of P1 ∪ · · · ∪ Pk. We
denote P ′[P, i] = {r | r ∈ Pi} (1 ≤ k). Note that P ′[P, i] ⊆ Pi. Now our ideas of
performing update sequences are formalized by the following definitions.

Definition 6 (Dominant subsets) Let P = (P1, · · · ,Pk) be an update sequence and P ′

andP ′′ two subsets ofP1∪· · ·∪Pk. We say thatP ′ dominatesP ′′ with respect to P, denoted
as P ′ �P P

′′, if (i) P ′′ ⊂ P ′; or (ii) there exist some i, j where 1 ≤ i < j ≤ k such that
for all l (j ≤ l ≤ k), P ′′[P, l] ⊆ P ′[P, l], for some l′ (j ≤ l′ ≤ k) P ′′[P, l′] ⊂ P ′[P, l′],
and P ′[P, i] ⊂ P ′′[P, i] (proper set inclusion).

Let P be the collection of all epistemic logic programs. For each i ≥ 1, we define πi to
be a i-ary update selection function if πi is a mapping:

πi : P× · · · × P
︸ ︷︷ ︸

i

−→ P

Definition 7 (Well formed update selection functions) For each i ≥ 1, πi is a well
formed update selection function iff the following conditions hold:

1. if i = 1, then for any update sequence P = (P1), π1(P) = P1;

2. if i = 2, then for any update sequence P = (P1,P2), π2(P) = P ′, where P ′ is a
resulting program as described in Definition 5;

3. if i = k and k > 2, then for any update sequence P = (P1, · · · ,Pk), πk(P) =
P∗ ∪ Pk, where P∗ is obtained as follows:

(a) let P1 = (P1, · · · ,Pk−1), πk−1 be a (k − 1)-ary well formed update selection
function, and πk−1(P1) = P ′;

(b) let A be a world view of P ′, and P∗ is a maximal subset of P ′ such that for all
A′ ∈ Res(A,Pk), P∗ is coherent with Pk with respect to A′;

15

(c) there does not exist another maximal subset P † of P ′ that satisfies condition (b)
and P† �P1

P∗7.

Example 10 Consider an irrigation system which has the following general rules to decide
whether the plants should be watered:

If it is likely to be raining next day, then we do not need to water the plants;
If there is no evidence showing that soil is dry, then we do not need to water
the plants.

It is also assumed that currently the soil is dry or it will not be raining next day. This
scenario can be represented by the following program P1:

P1:
r1: ¬watering ← not ¬to be raining,
r2: ¬watering ← not dry,
r3: dry or ¬to be raining ←.

P1 has one world view:

{{dry,¬watering}, {¬to be raining,¬watering}},

from which it is concluded that we do not need to water the plants. However, from a
conservative viewpoint for plants’ growth, this result is rather optimistic because r3 does
not represent an exclusive disjunctive information. Therefore, we consider to update P1 by
P2:

P2:
r4: watering ← ¬K¬dry, M¬to be raining,
r5: ¬watering ← ¬dry,
r6: ¬watering ← to be raining,

which says that if it is not known that the soil is moist (not dry) and it is believed that it
will not be raining the next day, then we water the plants; we do not need to water the
plants if the soil is moist or it will be raining next day. After a period of time, suppose new
information is further received that is represented by P3 as follows:

P3:
r7: ¬dry or to be raining ←.

7Note that here we refer to the same world view A of P ′ as in (b) when we say P† is coherent with Pk

with respect to all A′ in Res(A,Pk).

16

Now we consider the update sequence P = (P1,P2,P3). Let P1 = (P1,P2). Then
according to Definition 7, the unique well formed update selection function π2 gives the re-
sult: π2(P1) = P ′ = {r3, r4, r5, r6}, where rules r1 and r2 are removed from the initial pro-
gramP1. It is noted thatP ′ has one world view {{dry, watering}, {¬to be raining, watering}},
from which it is concluded that we need to water the plants. Finally, we obtain a unique
resulting program π3(P) = {r4, r5, r6, r7}, from which it is concluded that we no longer
need to water the plants, i.e. π3(P) |= ¬watering. �

5 Semantic Characterizations

In this section, we study important semantic properties of our approach for epistemic logic
program update. Without specific declaration, in the rest of this section we will only con-
sider consistent programs, and the update sequences consisting of consistent programs.
Also, when we mention two arbitrary update selection functions πk and πk+1, we always
mean that πk+1 is an arbitrary extension of an arbitrary selection function πk, i.e. πk+1 is
formed based on πk.

Let P = (P1, · · · ,Pk) be an update sequence and P a program, by (P,P) we denote
the update sequence (P1, · · · ,Pk,P). By Body(P) and Head(P) we denote the sets of all
objective literals occurring in bodies and heads of rules in P respectively8.

Theorem 1 Let P = (P1, · · · ,Pk) be an update sequence, P a program, and πk and πk+1

two k-ary and (k + 1)-ary well formed update selection functions respectively. Then the
following properties hold:

1. V(πk+1(P,P)) ⊆ V(P);

2. if V(πk(P)) ⊆ V(P), then πk+1(P,P) = πk(P) ∪ P .

Proof: We prove Result 1. Since P ⊆ πk+1(P,P), this follows that for each A ∈
V(πk+1(P,P)), A |= P . So A ∈ V(P). That is, V(πk+1(P,P)) ⊆ V(P).

Now we prove Result 2. According to Definition 7, πk+1(P,P) = P∗ ∪ P , where P∗

is a maximal subset of πk(P) satisfying conditions (b) and (c) in Definition 7. We show
P∗ = πk(P). Since V(πk(P)) ⊆ V(P), it is clear that for each world view A of πk(P),
πk(P) is coherent with P with respect to all A′ ∈ Res(A,P). That is, πk(P) itself is the
maximal subset of πk(P) satisfying condition (b). On the other hand, it is easy to see that
there does not exist any other subset P ′ of πk(P) such that P ′ �P πk(P). So πk(P) also
satisfies condition (c). This follows that πk+1(P,P) = πk(P) ∪ P . �

Theorem 1 presents two essential properties of our update approach. Property 1 simply
says that after update, the set of collections of belief sets that satisfy the resulting program

8Recall that all such literals are ground since we restrict to a propositional language.

17

shrinks, just like other knowledge base update and logic program update approaches, e.g.
[9, 23, 26]. Property 2, on the other hand, provides a conditional syntactic expression for
the result of an update sequence. The following theorem provides a sufficient condition
under which the computation of a (k + 1)-length update sequence can be reduced to the
computation on a k-length update sequence.

Theorem 2 Let P be an update sequence with a length of k, P and P ′ two programs, πk,
πk+1 two k-ary and (k + 2)-ary arbitrary well formed update selection functions respec-
tively. If V(πk(P)) ⊆ V(P) ⊆ V(P ′), then πk+2(P,P,P ′) = πk+1(P,P ∪ P ′).

Proof: From the condition, we have V(πk(P)) ⊆ V(P ∪ P ′). Then from Theorem 1,
πk+1(P,P ∪ P ′) = πk(P) ∪ P ∪ P ′. On the other hand, from V(πk(P)) ⊆ V(P)
and Theorem 1, we have πk+1(P,P) = πk(P) ∪ P . Now we consider πk+2(P,P,P ′).
From Definition 7, we have πk+2(P,P,P ′) = P∗ ∪ P ′, where P∗ ⊆ πk(P) ∪ P and
P∗ satisfies conditions (b) and (c) in Definition 7. That is, for some world view A of
πk(P) ∪ P , P∗ is the maximal subset of πk(P) ∪ P that is coherent with P ′ with respect
to all A′ ∈ Res(A,P ′). Note that since A ∈ V(πk(P) ∪ P), it follows that A ∈ V(P ′) as
well. Therefore, Res(A,P ′) = {A}. This follows that P∗ = πk(P) ∪ P . Clearly, there is
no any other subset of πk(P) ∪ P dominates πk(P) ∪ P itself. So πk(P) ∪ P also satisfies
condition (c). Hence, we have πk+2(P,P,P ′) = πk(P) ∪ P ∪ P ′. This proves our result.
�

Now we investigate two important properties called persistence and preservation for
epistemic logic program update. Informally, the persistence property ensures that if a literal
is derivable from a program, then after updating this program, this literal is still derivable
from the resulting program. The preservation property, on the other hand, says that if a
literal is derivable from a program, then updating other program by this program will still
preserve this literal’s inference from the resulting program. While the persistence property
is usually not valid for classical belief revision and update due to their nonmonotonicity,
the preservation property, on the other hand, does hold for classical belief revision and
update. It is easy to see that neither of these two properties holds for logic program update.
Although persistence and preservation properties do not hold generally for epistemic logic
program update, it is always worthwhile to explore their restricted forms because under
certain conditions, these properties may significantly reduce the computational cost for
answering a query to the update result. We first present the following lemma.

Lemma 1 Let P be a program and L a ground literal. Suppose P ′ is a subset of P such
that P ′ |= L and Body(P ′) ∩Head(P \ P ′) = ∅. Then P |= L.

Proof: The proof for this lemma is involved in proving a result called splitting theorem
for epistemic logic programs which inherits a similar feature of the splitting theorem for
extended logic programs [17]. We first state the result as follows:

18

Result 1: Let P be a program and P ′ ⊆ P . If Body(P ′)∩Head(P \P ′) = ∅,
then for any world view A of P and every belief set W in A, there exists a
belief set W ′ that is in some world view A′ of P ′ such that W ′ ⊆ W .

Now we prove this result. Suppose A is a world view of P . Then by performing Step 3
transformation of the world view definition (see section 2), PA is a disjunctive extended
logic program. Let P ′

A be the part obtained from the transformation on P ′. So we have
Body(P ′

A)∩Head(PA\P
′
A) = ∅. Then from Theorem 4.3 in [26], we know that for each

belief set W inA, W = WP ′
A
∪W ′, where WP ′

A
is a belief set of P ′

A, and W ′ is a belief
set of program e(PA \P

′
A, WP ′

A
), where e(P, X) is a disjunctive extended logic program

obtained from a disjunctive extended logic program P by deleting (1) all rules with not L

occurring in the body and L ∈ X; and (2) L in the remaining rules with L ∈ X . So for
each W ∈ A, there is a corresponding WP ′

A
such that WP ′

A
⊆ W .

On the other hand, from the condition that Body(P ′) ∩ Head(P \ P ′) = ∅, we know
that program P ′ must have a world view, otherwise it will conclude P has no world view
that contradicts the consistency of P . Now we show that the collectionA′ of all such WP ′

A

must be a world view of P ′. This is easy to see. Since each WP ′
A

in A′ is generated from
program P ′

A, it simply follows that P ′
A′ = P ′

A. Then asA′ is the collection of all answer
sets (belief sets) of program P ′

A′ , A′ is a world view of P ′ according to the definition (see
section 2).

Having Result 1, the lemma is proved as follows. Consider program P ′. Since P ′ |= L,
for each world view A′ of P ′, A′ |= L. That is, for each W ′ ∈ A′, L ∈ W ′. Suppose
P 6|= L. Then there exists a world viewA of P such thatA 6|= L. Then there must be some
belief set W ∈ A such that L 6∈ W . However, since Body(P ′) ∩Head(P \ P ′) = ∅, from
the above result, there exists a world viewA∗ of P ′ such that W ∗ ⊆ W for some W ∗ ∈ A∗.
Obviously this contradicts the fact L 6∈ W . So we have P |= L. �

Form Lemma 1, we can prove the following two useful properties.

Theorem 3 (Persistence property) Let P be an update sequence with a length of k, P a
program, L a ground literal, and πk and πk+1 two arbitrary k-ary and (k + 1)-ary well
formed update selection functions respectively. Suppose πk(P) |= L. Then πk+1(P,P) |=
L if V(πk(P)) ⊆ V(P) and Body(πk(P)) ∩Head(P) = ∅.

Proof: Since V(πk(P)) ⊆ V(P), from Theorem 1, we have πk+1(P,P) = πk(P) ∪ P .
On the other hand, from condition Body(πk(P))∩Head(P) = ∅ and Lemma 1, it follows
πk+1(P,P) |= L. �

Theorem 4 (Preservation property) Let P = (P1, · · · ,Pk) be an update sequence with
a length of k, P a program, L a ground literal, and πk and πk+1 two arbitrary k-ary and
(k + 1)-ary well formed update selection functions respectively. Suppose P |= L. Then
πk+1(P,P) |= L if Head(

⋃k

i=1
Pi) ∩Body(P) = ∅.

19

Proof: Clearly P ⊆ Πk+1(P,P). On the other hand, we have πk+1(P,P) = P∗ ∪ P ,
where P∗ ⊆ πk(P) ⊆

⋃k

i=1
Pi and satisfies conditions (b) and (c) in Definition 7. So we

have Head(P∗)∩Body(P) = ∅. Then directly from Lemma 1, we have πk+1(P,P) |= L.
�

6 Related Work and Conclusions

As we indicated in Section 1, in recent years many formulations for (extended) logic pro-
gram update have been proposed. Basically, there are three different types of approaches
for logic program update: model based approach [2, 3, 4, 9], syntax based approach [21]
and integrating both model and syntax based approach [25, 26]. Relations between these
different approaches have been also thoroughly studied in [9, 16, 25, 26]. Since all these
approaches were based on answer set semantics, they are generally not applicable for spec-
ifying epistemic logic program update. It is also not clear yet how these approaches can be
extended to capture the precise semantics of program changes when knowledge and belief
are explicitly presented. This is worth to studying further.

In this paper, we proposed a formulation for epistemic logic program update. Our
update formalization was developed based on the principle of minimal change and maximal
coherence. By using our approach, not only a minimal change semantics is embedded into
the underlying update procedure, but also a maximal syntactic coherence is achieved after
the update. We also investigated important semantic properties of our update approach.

Several interesting issues remain for our future work. As knowledge plays an important
role in action theories, and epistemic logic programs may be used as a main component in
such knowledge based action theories, e.g. [19, 22], we expect that these action theories
could be enhanced by integrating our update approach on epistemic logic programs. An-
other interesting topic is that we can further generalize our current update framework to
model dynamic behaviors of a multi-agent knowledge system. Suppose we have a number
of epistemic logic programs where each program represents one agent’s knowledge base. It
is then an important question how these agents communicate with each other and make de-
cisions. This problem involves conflict resolution, knowledge (belief) update and merging.
One possible way to handle this problem is to develop a formulation of mutual epistemic
logic program update: each agent uses his knowledge base to update the other’s, and de-
cisions could be made by merging all these resulting programs. We expect that research
on this direction would lead to the development of a computational framework for model-
ing complex agents’ activities involving epistemic representations such as negotiations and
games [11, 14].

20

References

[1] C.E. Alchourron, P. Gardenfors and D. Makinson, On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic. 50 (1985)
510-530.

[2] J. Alferes, L. Pereira, H. Przymusinski, and T. Przymusinski, Dynamic updates of
non-monotonic knowledge bases. Journal of Logic Programming 45(1-3) (2000) 43-
70.

[3] J.J Alferes, L.M. Pereira, H. Przymusinska, and T. Przymusinski, LUPS - A language
for updating logic programs. Artificial Intelligence 138 (2002) 87-116.

[4] J.J. Alferes and L.M. Pereira, Updates plus preference. In Proceedings of JELIA2000,
2000.

[5] A. Baltag, A logic for suspicious players: Epistemic actions and belief-updates in
games. Bulletin of Economic Research 54 (2002) 1-45.

[6] C. Baral and Y. Zhang, Knowledge updates: Semantic and complexity issues. Artifi-
cial Intelligence 164 (2005) 209-243.

[7] R. Booth, T. Meyer and K. Wong, A bad day surfing is better than a good day working.
In Proceedings of the 10th International Conference on Knowledge Representation
and Reasoning (KR 2006), pp 230-238. AAAI Press, 2006.

[8] J. Delgrande, J. Long and T. Schaub, Belief change based on global minimisation.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pp 2462-2476. AAAI Press 2007.

[9] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits, On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming 2 (2002) 711-
767.

[10] R. Fagin, J.Y. Halpern, Y. Moses and M.Y. Vardi, Reasoning about Knowledge. MIT
Press, 1995.

[11] N.Y. Foo, T. Meyer, Y. Zhang and D. Zhang, Negotiating logic programs. In Proceed-
ings of the 6th Workshop on Nonmonotonic Reasoning, Action and Change (NRAC
2005), pp 39-44, 2005.

[12] M. Gelfond, Logic programming and reasoning with incomplete information. Annals
of Mathematics and Artificial Intelligence 12 (1994) 98-116.

[13] J.D. Gerbrandy, Dynamic epistemic logic. In Proceedings of STASS Workshop on
Logic, Language and Computation, 1997.

21

[14] P. Harrenstein, W. van der Hoek, J.-J. Meyer and C. Witteveen, On modal logic in-
terpretations of games. In Proceedings of the 15th European Conference on Artificial
Intelligence (ECAI 2002), pp 28-32. IOS Press 2002.

[15] H. Katsuno and A. Mendelzon, On the difference between updating a knowledge base
and revising it. In Proceedings of of KR-91, pp387-394, 1991.

[16] J.A. Leite, Evolving Knowledge Bases. IOP Press, 2003.

[17] V. Lifschitz and H. Turner, Splitting a logic program. In Proceedings of Eleventh
International Conference on Logic Programming, pp 23-37. MIT Press, 1994.

[18] P. Liberatore and M. Schaerf, Belief revision and update: Complexity of model check-
ing. Journal of Computer and System Sciences. 62 (2001) 43-72.

[19] J. Lobo, G. Mendez, and S.R. Taylor Knowledge and the action description language
A. Theory and Practice of Logic Programming 1 (2001) 129-184.

[20] J.-J.Ch. Meyer and W. van der Hoek, Epistemic Logic for AI and Computer Science.
Cambridge University Press, 1995.

[21] C. Sakama and K. Inoue, Updating extended logic programs through abduction. In
Proceedings of the 5th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’99), LNAI, Vol. 1730, pp 147-161. Springer, 1999.

[22] R. Scherl and H. Levesque, Knowledge, action, and the frame problem. Artificial
Intelligence 114 (2003) 1-40.

[23] M. Winslett, Reasoning about action using a possible models approach. In Proceed-
ings of AAAI-88, pp 89-93, 1988.

[24] Y. Zhang, Minimal change and maximal coherence for epistemic logic program up-
dates. In Proceedings of the 18th International Joint Conference on Artificial Intelli-
gence (IJCAI-03), pp 112-117. Morgan Kaufmann Publishers, Inc., 2003.

[25] Y. Zhang and N. Foo, A unified framework for representing logic program updates. In
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-2005),
pp 707-712. AAAI Press, Inc., 2005.

[26] Y. Zhang, Logic program based updates. ACM Transaction on Computational Logic.
7 (2006) 421-472.

22

