
Social Access Control Language (SocACL)

Edward Caprin and Yan Zhang
School of Computing, Engineering and

Mathematics.
University of Western Sydney, Kingswood,

Australia.
[e.caprin][y.zhang]@uws.edu.au

Khaled M. Khan
Department of Computer Science and

Engineering.
Qatar University, Qatar.
k.khan@qu.edu.qa

ABSTRACT
Online Social Networks hold vast amounts of readily acces-
sible personal information leaving them particularly vulner-
able to privacy breach attacks [6]. With the impact these
breaches varying from simply embarrassing the user, to neg-
atively influencing the decision of potential employers, iden-
tity theft and even physical harm it is important that they
are addressed. In this research we approach privacy man-
agement in OSNs as an access control problem. We pro-
pose a formal Attribute-Based Access Control (ABAC) lan-
guage; SocACL. SocACL is based on Answer Set Program-
ming (ASP) and allows for policy specification using the
most abundant sources of information available in OSNs;
user attributes and relationships. This paper outlines So-
cACL’s core concepts, features, syntax and semantics.

Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: General - Security and Protec-
tion. D.4.6 [Operating Systems]: Security and protection -
Access controls. I.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving - Logic programming.

General Terms: Security, Languages.

Keywords: Answer Set Programming, Online Social Net-
works, Privacy, Attribute-Based Access Control.

1. INTRODUCTION
Online Social Networks (OSNs), such as Facebook, en-

courage their users to disclose significant amounts of per-
sonal information to facilitate connecting and sharing with
others. This has resulted in some OSNs holding vast amounts
of information about their users; all of which is readily avail-
able via their profile page. As a result, OSNs are particularly
vulnerable to privacy breach attacks [6]. With the impact
these breaches varying from simply embarrassing the user,
to negatively influencing the decision of potential employers,
identity theft and even physical harm it is important that
they are addressed. OSN operators have responded to grow-
ing privacy concern by providing their users with customis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIN’13, November 26 - 28, 2013, Aksaray, Turkey
Copyright 2013 ACM 978-1-4503-2498-4/13/11 ...$15.00.

able privacy settings. However, these have, in general, been
ineffective and often result in settings that do not reflect the
user’s intentions [9]. In part this is due to the coarse-grained
nature of the information on which these settings are based
and the lack of tools for the user to verify the correctness of
these settings [8].

In this research we approach privacy management in OSNs
as an access control problem. We propose a fine-grained,
formal Attribute-Based Access Control (ABAC) language
called SocACL (Social Access Control Language). SocACL
is based on Answer Set Programming (ASP) and utilises
model checking for policy evaluation.

This paper serves as a semantic foundation to SocACL
beginning with related work in section 2. Section 3 outlines
the syntax and semantics of SocACL. While in section 4 we
discuss queries. We conclude in section 5 with comments on
future work.

2. RELATED WORK
Relationships play an integral role in any OSN, as such

there have been numerous access control frameworks pro-
posed based on them [3, 5]. Dhia [3] propose a frame-
work based on node reachability by constructing a social
graph from relationships and user profile pages. By map-
ping permissions to sequences of relationships [3] reduce pol-
icy evaluation to finding paths in the social graph. While
Relationship-Based Access Control (ReBAC) [5] describes
access permissions in terms of the accessors relationship with
the owner. These relationships can be inverted to derive the
opposite direction, e.g. inverse of a “parent” relationship is
“child”. Furthermore, primitive relationships, such as “par-
ent”, can be combined to form complex ones, “parent parent”
is a “grandparent”.

In [3, 5] relationships are mutually agreed upon bidirec-
tional social links between two principals. In turn, making
them a shared resource of the two principals. With shared
resources in OSNs presenting their own issues [7] SocACL
takes a different approach. SocACL relationships are unidi-
rectional and are treated as an attribute of a principal de-
noting the relationship the believe they have with another.

Besides relationship based approaches, there has been a
trend towards more context centric models such as ABAC
for OSNs and other open web services [2, 10]. However,
ABAC itself is problematic as it requires the combining of a
wide array of potentially conflicting sources of security rel-
evant information into a coherent framework. As explained
by [2], this often results in ABAC languages being forced to
make a trade off between having either a rich set of features

or well defined semantics. Crampton et al. [2] address this
by separating policy target and permission specification into
two distinct problems, defining sub-languages for each. So-
cACL overcomes the need for this trade off by defining its
semantics as a translation to ASP.

Answer Set Programming (ASP) is a form of declarative
programming based on the stable model semantics [1]. It
is well suited to representing domain specific knowledge [1],
such as user information in OSNs. Yuan and Tong [10] sug-
gest the evaluation of first order logic or variant expressions,
such as ASP, for ABAC policy evaluation. Our translation
allows us to do this. By translating a SocACL policy base
to a representative ASP program we are able to utilise infer-
ence engines, such as DLV [4], as the basis of the language’s
policy evaluation system.

3. SOCACL

Prin says Head if Body; (1)

Head′Prin ← Body′. (2)

SocACL Policy Bases (PBs) are a set of statements which
describes a principals’ attributes, privacy preferences and
opinions of others. These statements, generally, take the
form (1). Where principal Prin is making a statement on
Head, which can be an attribute (section 3.1), relationship
(section 3.2) or authorisation (section 3.5). This statement
is true if and only if Body is true. Body is a conjunction
of decision criteria which can include attributes, relation-
ships, constraints on variables, aggregates (section 3.3) and
descriptions (section 3.4). We define the semantics of (1) by
its transformation to the ASP rule shown in (2). Head′Prin

is a Head translated w.r.t. Prin, which we clarify in later
sections. Body′ is all the decision criterion in Body trans-
lated.

Figure 1 shows an EBNF of SocACL where NAME starts
with a lowercase letter and can contain letters, numbers
and underscores, while VAR starts with an uppercase let-
ter. OBN, RCN and DN are, respectively, the obligation,
relationship chain and description name.

3.1 Attributes

Prin says P ·Attr · Fields : S · Pr if Body; (3)

Attr(Prin, P, F ields′, S, Pr)← Body′. (4)

Attributes are facts about a principal which can have val-
ues associated with it, e.g. hair colour has the value“brown”.
In SocACL, principals make statements about principals’ at-
tributes and infer attributes from other information using
the form (3). Prin states principal P has some attribute
called Attr. Fields = f1 · ... · fn, where fi is some value
associated with this attribute. When n = 0 the attribute
has no associated values, allowing ·Fields to be omitted,
e.g. alice says alice ·married : ns · np. S ∈ {s,ns} is the
Sensitivity Flag (SF), indicating if the attribute is sensitive
or not. Pr ∈ {p,np} is the Primary Instance Flag (PIF),
denoting whether this is the primary instance of a this at-
tribute, e.g. an individual may have many phone numbers,
but one is their primary number. Both these flags are used
during the SocACL negotiation process which is not covered

Query = NAME ‘asks’ NAME · ACT ·OBJ · PU‘;’

Policy = {NAME ‘says’ (Rule | Definition) ‘;’}
Rule = Head [‘if’ Body]

Definition = Def-Obli | Def-RelC | Def-Desc

Head = Auth | Attr ‘:’ SF · PIF | Rel-Dir ‘:’ SF

Body = (BTerm | Aggr | Cons)[‘,’ Body]

BTerm = [‘not’] [PRIN ‘says’](Attr | Desc | Rel)

Auth = (‘allow’ | ‘deny’) · PRIN · ACT ·OBJ · PU ·OBN

Attr = Prin · ATTR-NAME [{·Val}]

Def-Obli = ‘define’ · ‘obligation’ ·OBN · ACT · Prin

Def-RelC = ‘define’ · ‘relchain’ · RCN · ‘(’Body‘)’

Def-Desc = ‘define’ · ‘description’ · DN · VAR · ‘(’Body‘)’

Aggr = VAR ‘=’ Aggr-Op · VAR · ‘(’Body‘)’

| Aggr-Op · VAR · ‘(’Body‘)’ · Aggr-Cmp

Aggr-Cmp = (‘exactly’ | ‘atleast’ | ‘atmost’) · Val

| ‘between’ · Val · Val

Aggr-Op = ‘count’ | ‘sum’ | ‘min’ | ‘max’

Desc = SUB · ‘description’ · DN

Rel = Rel-Dir | Rel-Sind | Rel-Rind

Rel-Dir = SUB · ‘relationship’ · REL-TYPE · SUB

Rel-Sind = SUB · ‘sindRelationship’ · RCN · SUB

Rel-Rind = SUB · ‘rindRelationship’ · NUM · SUB

Cons = Val (‘<’ | ‘>’ | ‘≤’ | ‘≥’ | ‘=’ | ‘6=’) Val

Prin = SUB | OBJ

Val = NAME | VAR | NUM

Figure 1: EBNF of SocACL.

in this paper. Equation (4) is the translation, and thus the
semantics, of (3), where Fields′ = f1, ..., fn.

For the rest of this paper we use the running example of
a principal Alice in a hypothetical OSN. Alice has organised
her uploaded content in the folders shown in Figure 2, where
“public” and “private” are sub-folders of “gallery”, and so on.

Figure 2: Alice’s Gallery Folders

Example 1. Figure 2 can be represented using attributes
where an object A has an attribute representing which folder
it is in.

alice says A · isIn · public : ns · np if A · isIn · animal;

alice says A · isIn · public : ns · np if A · isIn · plant;

The above SocACL statements denote the folder “animal”
and “plant” are sub-folders of “public”. This translates to:

isIn(alice, A, public,ns,np)← isIn(, A, animal, ,).

isIn(alice, A, public,ns,np)← isIn(, A, plant, ,).

We see as a result of the translation, the principal mak-
ing the statement has become the first arity (alice), while
the principal the attribute relates to is the second (A), fol-
lowed by the attributes values (public,animal,plant,etc). For
attributes the last two arities are always the SF and PIF.
When attributes are used in Body the form (5) is used.

P ·Attr · Fields (5)

Attr(Prin, P, F ields′, ,) (6)

Where (5) and its translation (6) are consistent with (3)
and (4) respectively. Referring to Figure 1, attributes used
in Body can have Prin says proceed them. This restricts
which principals the policy specifier trusts on that attribute,
acting as a form of delegation. When Prin says is not
present in Body, Prin is substituted by an underscore dur-
ing translation. Also, in (6) the last two arities, the SF and
PIF, are underscores, the anonymous variable of DLV.

3.2 Relationships
SocACL provides three different types of relationships; Di-

rect, Strict-Indirect and Relaxed-Indirect. For the continua-
tion of this paper our examples will be in consideration to
the social graph shown in Figure 3.

Figure 3: Social Graph.

Prin says P · relationship · rt · Sub : S if Body; (7)

relationship(Prin, P, Sub, rt, S)← Body′, P 6= Sub. (8)

Direct relationships (7) are an attribute denoting a 1st-
degree relationship a principal believes they hold with an-
other, which may or may not be mirrored. Similar to at-
tributes, direct relationships can be inferred from other in-
formation. In (7) Prin is stating principal P believes they
have a 1st-degree relationship of the type rt with principal
Sub. Its semantics, given in (8), prevents a principal from
being in a relationship with itself.

Example 2. Alice considers Bob a “close-friend”, while Bob
considers Alice his “girlfriend”:

alice says alice · relationship · close friend · bob : ns;

bob says bob · relationship · girlfriend · alice : s;

Translation of the above would result in:

relationship(alice, alice, bob, close friend,ns).

relationship(bob,bob, alice, girlfriend, s).

In this case both Alice and Bob agree that there is a rela-
tionship between them, but they do not agree on its extent.
Similar to attributes, relationships take on a different form
when used in Body. Besides direct relationships, Body can
contain indirect relationships, such as “friend-of-a-friend”.

P · relationship · rt · Sub (9)

P · sindRelationship ·RCN · Sub (10)

P · rindRelationship ·Depth · Sub (11)

In the above we have the various Body forms for rela-
tionships, where (9), (10) and (11) are direct, strict-indirect
(sind) and relaxed-indirect (rind) relationships, respectively.
Below, (12), (13) and (14) show their respective translations.

relationship(Prin, P, Sub, rt,) (12)

sindRelationship(Prin, P, Sub,RCN,) (13)

rindRelationship(Prin, P, Sub,Depth,) (14)

Sind relationships are indirect relationships expressed as
a sequence of direct relationships, which is defined using a
Relationship Chain Definition, shown in (15). RCN is the
Relationship Chain Name and rti, 1 ≤ i ≤ n, is the relation-
ship type that must exist at the ith-degree of separation.
Equation (16) shows the definition’s semantics. The intu-
ition is that the sind relationship holds when each direct
relationship exists at each intermediary principal, and all of
these principals are unique. The principal uniqueness is to
prevent unexpected access control decisions resulting from
relationship “backtracking”.

Prin says define · relchain ·RCN · (rt1, ..., rtn); (15)

sindRelationship(Prin, P, Subn, RCN, s)←
relationship(Prin, P, Sub1, rt1,), . . . ,

relationship(Subn−1, Subn−1, Subn, rtn,),

P 6= Sub1, . . . , Subn−1 6= Subn.

(16)

Rind relationships define a indirect relationship in terms
of distance (Depth) between two principals’ and are calcu-
lated by the below ASP rules which are included as part of
every translated SocACL PB. They find the shortest path
between two nodes in a graph, while also ensuring the par-
ticipating principals are unique. For both sind and rind
relationships evaluation is similar to the node reachability
checks of [3].

path(X,Y, 1)← relationship(X,X, Y,R,).

path(X,Z,D)← path(X,Y,D1),path(Y,Z, 1),

+ (D1, 1, D), X 6= Y, Y 6= Z,X 6= Z.

rindRelationship(X,X, Y,D, s)← path(X,Y,),

D = #min{D1 : path(X,Y,D1)}.

3.3 Aggregates

Aggr · (Tar) · (Body) ·ACmp · LB · UB (17)

V = Aggr · (Tar) · (Body) (18)

SocACL supports the use of the aggregate operations count,
sum, min and max. These can be applied by either compar-
ing the operation result to other values to get a boolean
answer or assign the result to a variable. In (17), Aggr ∈
{count, sum,min,max} is the aggregate operation applied
to Tar in Body. The result of this operation is then com-
pared with number LB and UB depending on ACmp ∈
{exactly, atleast, atmost, between}. Note that UB is
only needed for between. Alternatively, using (18) the re-
sult can be assigned to some variable V .

L #Aggr{Tar : Body′} U,Body′Tar (19)

V = #Aggr{Tar : Body′}, Body′Tar (20)

Equation (19) is the translation of (17), while (20) is the
translation of (18). L and U are substituted depending on
ACmp from (17). When ACmp = exactly; L is omitted
and U = “ = LB”, minus the quotations. ACmp = atleast;
L = “LB ≤ ” and U is omitted. ACmp = atmost; L is
omitted and U = “ ≤ LB”. ACmp = between; L =
“LB ≤ ” and U = “ ≤ UB”. Body′Tar is a special trans-
lation of Body where instances of Tar are replaced with
Tar1, Tar followed by the number 1. This is to accom-
modate DLV’s aggregate implementation where Tar cannot
occur outside of the curly braces.

3.4 Descriptions

Prin says define · description ·DN · P · (Body); (21)

description(Prin, P,DN)← Body′. (22)

These allow the policy specifier to group decision crite-
ria to form a description of a principal, creating a reusable
Body. Similar sind relationships, descriptions need to be
defined using the form (21), translation (22). DN is the
Description Name and P is a principal that occurs in Body.
Once a description is defined it is then referenced by its
name in Body using the (23), translation (24).

P · description ·DN (23)

description(Prin, P,DN) (24)

Example 3. Alice describes an Object as a “animalPhoto”
if it is in the folder “animal” and is of the type “photo” is
shown below.

alice says define · description · animalPhoto ·Object · (
Object · isIn · animal,Object · type · photo);

Which translates to:

description(alice,Object, animalPhoto)←
isIn(,Object, animal, ,), type(,Object,photo, ,).

3.5 Authorisations

Prin says Perm · P ·Act ·Obj · Pu ·ObN if Body; (25)

Perm(Prin, P,Act,Obj, Pu,ObN)← Body′,

acceptOb(P, Prin,ObN).
(26)

SocACL provides positive and negative authorisations with
deny override behaviour, taking the form (25). Perm ∈
{allow,deny} is the permission type, allowing or denying
principal P from performing action Act on object Obj for the
purpose Pu. ObN identifies the obligation this authorisation
is associated with, in the case of no obligation; ObN = none.
An obligation is some action to be performed after P has
acted on this permission. As seen by its translation in (26),
to be granted an authorisation, P must accept the obligation
and all other criteria in Body must be met. Authorisations
are then mapped to actions by the below ASP rule which
forms part of every translated SocACL PB.

action(P, Prin,Act,Obj, Pu)←
allow(Prin, P,Act,Obj, Pu,ObN),

not deny(Prin, P,Act,Obj, Pu,ObN).

Example 4. Alice wants to allow people in at least a 2nd-
degree relationship with her to view Objects that fit the “an-
imalPhoto” description for social purposes is shown below,
followed by its translation.

alice says allow ·Other · view ·Object · social · none if

alice · rindRelationship ·A ·Other, A ≤ 2,

Object · description · animalPhoto;

allow(alice,Other, view,Object, social,none)←
rindRelationship(alice, alice,Other, A,), A ≤ 2

description(alice,Object, animalPhoto).

As previously mentioned, obligations define some action
to be performed in response to acting on some permission.
For instance, before a parent agrees to give their child an ice
cream the child agrees to clean their room. In order to use
an obligation one must first define one using the form (27),
translation (28).

Prin says define · obligation ·ObN ·OAct · Tar; (27)

obligation(Prin,ObN,OAct, Tar). (28)

ObN is the obligation name. OAct is the action to be per-
formed to fulfill the obligation and Tar is what this action
is to be performed on. There is currently no feature in So-
cACL that allows a principal to specify when they reject an
obligation and no mechanism that allows for the fulfilment
of obligations. As such, both are noted as future work.

4. QUERIES

Prin asks P ·Act ·Obj · Pu; (29)

action(Prin, P,Act,Obj, Pu)? (30)

A query is a request from one principal Prin to another, P ,
asking to perform action Act on Obj for the purpose Pu. In
SocACL, queries take the form (29), translation (30). Query
answering in SocACL is an assignment of truth values to
a query with respect to a PB. With SocACL’s semantics
defined as a translation to ASP, query answering is done
through model checking using inference engines to perform
the computations.

For a SocACL query φ and PB P. P |= φ iff Π |= ψ.
Meaning that P satisfies query φ, answers yes, if and only
if ψ is satisfied in every answer set of Π, where ψ is the
translation of φ, as shown in (30) and program Π is the
translation of P, as shown in section 3.

Programs resulting from our translation are Normal Logic
Programs (NLPs) with arbitrary nonmonotonic negation,
and may include aggregates. Since the complexity results
of reasoning over these of programs are already know we
reference the results of [4] who show that the complexity of
this problem is co-NP when the program does not contain
aggregates raises to ΠP

2 -complete when it does.

Example 5. In this example we consider the PB of Al-
ice which contains all of the SocACL statements from the
previous examples in addition to attributes for the photos
“cats.jpg” and “dogs.jpg”, both of which are in the “animal”
folder. Running DLV with the“-filter=action”option results
in the output of all actions that can be performed as a result
of the authorisations in the translation of Alice’s PB.

{ ac t i on (bob , a l i c e , view , ”ca t s . jpg ” , s o c i a l) ,
a c t i on (bob , a l i c e , view , ”dogs . jpg ” , s o c i a l) ,
a c t i on (ca r l , a l i c e , view , ”ca t s . jpg ” , s o c i a l) ,
a c t i on (ca r l , a l i c e , view , ”dogs . jpg ” , s o c i a l) ,
a c t i on (dan , a l i c e , view , ”ca t s . jpg ” , s o c i a l) ,
a c t i on (dan , a l i c e , view , ”dogs . jpg ” , s o c i a l) }

We see in the above answer set that Bob, Carl, and Dan
can view both photos for social purposes. Ellen on the other
hand cannot since she is not in atleast a 2nd-degree relation-
ship with Alice. To further demonstrate this we apply two
queries to the policy, one for Carl and another for Ellen
asking for permission to view “cats.jpg” for social purposes.
Below we show the query for Carl followed by its translation.
For Ellen, the query along with its translation would be the
same except “carl” is replaced with “ellen”.

carl asks alice · view ·“cats.jpg” · social;

action(carl,alice,view,“cats.jpg”,social)?

Applying both queries to the translated PB using DLV’s
built in query system yields the below output. We see that
Ellen cannot view the photo while Carl can. These results
are based on the answer sets DLV was able to generate based
on Alice’s PB. For Ellen’s query DLV concludes it is false
since not all of the answer sets of Alice’s policy based can
satisfy the query. Whereas, Carl’s query can be satisfied by
them, and is therefore true.

ac t i on (ca r l , a l i c e , view , ”ca t s . jpg ” , s o c i a l) i s
c au t i ou s l y true .

a c t i on (e l l e n , a l i c e , view , ”ca t s . jpg ” , s o c i a l) i s
c au t i ou s l y f a l s e .

5. CONCLUSION AND FUTURE WORK
SocACL serves as an implementation of ABAC which in-

tegrates the privacy management concepts of purpose and

obligations into its permissions. Through its arbitrary at-
tribute and relationship types, SocACL can accommodate
the wide range of features found in various OSNs. Further-
more, with SocACL’s semantics a translation to ASP we
have been able to exploit model checking for policy evalua-
tion.

Continued work on SocACL will involve further develop-
ment of obligations, obligation enforcement, and negotiation
based queries to maximise privacy outcomes. Since policies
at some point have to be updated to reflect the user’s ever
changing privacy preferences an update framework for So-
cACL policies is also noted for our future work.

6. ACKNOWLEDGMENTS
This publication was made possible by the support of an

NPRP grant (NPRP 09-079-1-013) from the Qatar National
Research Fund (QNRF). The statements made herein are
solely the responsibility of the authors.

7. REFERENCES
[1] C. Baral. Knowledge Representation, Reasoning and

Declartive Problem Solving. Cambridge University
Press, 1st edition, 2010.

[2] J. Crampton and C. Morisset. PTaCL: A Language
for Attribute-Based Access Control in Open Systems.
Lecture Notes in Computer Science, 7215
LNCS:390–409, 2012.

[3] I. B. Dhia. Access control in social networks: a
reachability-based approach. In Proc. of the 2012
Joint EDBT/ICDT Workshops, EDBT-ICDT ’12,
pages 227–232, New York, NY, USA, 2012. ACM.

[4] W. Faber, G. Pfeifer, N. Leone, T. Dell’Armi, and
G. Ielpa. Design and implementation of aggregate
functions in the DLV system. Theory and Practice of
Logic Programming, 8:545–580, 10 2008.

[5] P. W. Fong. Relationship-based access control:
protection model and policy language. In Proc. of the
1st ACM Conf. on Data and Application Sec. and
Pri., CODASPY ’11, pages 191–202, New York, NY,
USA, 2011. ACM.

[6] H. Gao, J. Hu, T. Huang, J. Wang, and Y. Chen.
Security Issues in Online Social Networks. Internet
Computing, IEEE, 15(4):56–63, July-Aug. 2011.

[7] H. Hu, G. Ahn, and J. Jorgensen. Multiparty access
control for online social networks: Model and
mechanisms. Knowledge and Data Engineering, IEEE
Trans. on, 25(7):1614–1627, 2013.

[8] H. R. Lipford, A. Besmer, and J. Watson.
Understanding Privacy Settings in Facebook with an
Audience View. In Proc. of the 1st Conf. on Usability,
Psychology, and Sec., UPSEC’08, pages 2:1–2:8,
Berkeley, CA, USA, 2008. USENIX Association.

[9] M. Madejski, M. Johnson, and S. Bellovin. A Study of
Privacy Settings Errors in an Online Social Network.
In Proc. of Pervasive Computing and Comm.
Workshops (PERCOM Workshops), 2012 IEEE Int.
Conf. on, pages 340 –345, March 2012.

[10] E. Yuan and J. Tong. Attributed based access control
(ABAC) for web services. In Web Services, 2005.
ICWS 2005. Proc. 2005 IEEE Int. Conf. on. IEEE,
2005.

