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Introduction

Under the language of TGDs, queries are answered against
an ontology represented by a set of TGDs and an input
database. In particular, given a database instance D, a finite
set 2 of TGDs, and a query ¢, we want to decide whether
D UY = q. However, this problem is undecidable gen-
erally, due to the potential cyclic applications of TGDs in
X

In recent years, considerable research has been carried out
to identify various expressive decidable classes of TGDs.
Among all these decidable classes, some are of special in-
terests for OBDA, i.e., the classes of first-order rewritable
TGDs, where conjunctive query answering can be reduced
to the evaluation of a first-order query over the database.
So far, several useful first-order rewritable classes of TGDs
have been discovered: acyclic (AC), domain restricted (DR)
(Baget et al. 2011), aGRD (Baget et al. 2011), linear and
multi-linear (ML), sticky and sticky-join (SJ), while multi-
linear and sticky-join generalise linear TGDs and sticky
TGDs, respectively (Cali, Gottlob, and Pieris 2012)). Civili
and Rosati (Civili and Rosati 2012)) further identified another
first-order rewritable class called weakly recursive TGDs,
and showed that by restricting to simple TGDs, weakly re-
cursive class contains all other first-order rewritable classes.
Unfortunately, there are still real life scenarios that are sim-
ple and intuitive but not syntactically recognisable by any of
the existing first-order rewritable TGDs classes, which this
work on loop restricted TGDs tries to address.

Then main contributions of this paper are summarised
here:

1. We define notations of derivation paths and derivation
trees for query answering over TGDs (existential rules),
and provide a precise characterisation for the traditional
TGDs chase procedure through the corresponding deriva-
tion tree.

2. Based on the concept of derivation paths, we introduce
a new class called loop restricted (LR) TGDs, which are
TGDs with certain restrictions on the loops embedded in
the underlying rule set.

3. Under our derivation tree framework, we show that the
conjunctive query answering (CQA) under LR TGDs sat-
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isfies a property called bounded derivation tree depth
property (BDTDP). We further prove that BDTDP im-
plies the well-known bounded derivation-depth property
(BDDP). This result implies that conjunctive query an-
swering under LR TGDs is not only decidable but also
first-order rewritable.

4. We further extend LR TGDs to generalised loop restricted

(GLR) TGDs, and prove that the class of GLR TGDs is
also first-order rewritable and contains most of other first-
order rewritable TGD classes discovered in the literature
so far.

Preliminaries

A tuple-generating dependency (TGD) o, also called exis-
tential rule, over a schema R is a first-order formula of the
form

o :VXYp(X,Y) —» JZ¢v(X, Z), (1)
where X UY UZ C I' UTy, ¢ and 7 are conjunctions
of atoms over R. When there is no confusion, we usually
omit the universal quantifiers from (I). In this case, we also
use head(o) and body(o) to denote formulas 3Z« (X, Z)
and p(X,Y) respectively. In this case, we also use head(c)
and body(o) to denote formulas 3Z (X, Z) and ¢(X,Y)
respectively.

Definition 1 (Derivation path). Let X be a set of TGDs.
A derivation path P of X is a finite sequence of pairs of an
atom and a rule: (a1, p1), -+, (Qn, pn), such that

e foreach 1 <i<mn, a; = head(p;);

e foreach 1 < i < n, p; = 0;0; for some o; € X and
substitution 0;;

e foreach 1l <i <mn, a;11 € body(p;);

e foreach 1 < i <n,ifanulln € head(w;) is introduced
due to the elimination of existentially quantified variable,
then this n must not occur in pj, forall j € {i+1,...,n}

A conjunctive query (CQ) q of arity n over a schema R
has the form p(X) < IY¢(X,Y), where ¢(X,Y) is a
conjunction of atoms with the variables X and Y from I'y
and constants from I', but without nulls, and p is an n-ary
predicate not occurring in R. We allow ¢(X,Y) to contain
equalities but no inequalities. When ¢ (X,Y) is just a sin-
gle atom, then we say that the CQ ¢ is atomic. A Boolean
Conjunctive Query (BCQ) over R is a CQ of zero arity. In



this case, we can simply write a BCQ ¢ as IYp(Y). A
CQ answering problem, or called CQA problem, defined to
be the answer to a CQ ¢ with n arity over an instance I, de-
noted as ¢([I), is the set of all n-tuples t € I'"" for which
there exists a homomorphism A : X UY — I' UT'y such
that h(o(X,Y)) C I and h(X) = t. The answer to a BCQ
is positive over I, denoted as I |= ¢, if ) € q(I).

Generalised Loop Restricted TGDs

First we introduce the notion of the bounded derivation
depth property [ﬂ

Definition 2 (BDDP). A class C of TGDs satisfies the
bounded derivation-depth property (BDDP) if for each BCQ
q over a schema R, for every input database D for R and
for every set ¥ € C over R, DU X |= q implies that there
exists some k > 0 which only depends on q and ¥ such that
chase® (D, %) = q.

It has been shown that the BDDP implies the first-
order rewritability (Cali, Gottlob, and Lukasiewicz 2012
Cali, Gottlob, and Pieris 2012). Formally, the BCQA prob-
lem is first-order rewritable for a class C of sets of TGDs if
for each ¥ € C, and each BCQ ¢, there exists a first-order
query gs. such that D U X |= ¢ iff D = ¢y, for every input
database D. In this case, we also simply say that the class C
of TGDs is first-order rewritable.

Definition 3 (BDTDP). A class C of TGDs satisfies the
bounded derivation tree depth property (BDTDP) if for each
3, € C, there exists some k > 0 such that for every BCQ
query 3Zp(Z) and every database D, D U Y. = 3Zp(Z)
iff T(D,Y) | p(n) for some instantiated derivation tree
T(D,Y) and atom p(n), where depth(T'(D,X)) < k and
h(Z) = n for some homomorphism h.

Basically, Definition [3] says that if a class of TGDs satis-
fies BDTDP, then its every BCQ query answering problem
can be always decided within a fixed number & of derivation
steps with respect to the corresponding instantiated deriva-
tion trees.

Now we are ready to formally define the notion of gener-
alised loop restricted patterns. Let A be a set of atoms, we
use var(A) (resp., nulls(A)) to denote the set of all variables
(resp., nulls) occurring in A.

Definition 4 (Generalised loop restricted (GLR) pat-

terns). Let 3 be a set of TGDs. % is generalised loop

restricted (GLR), if each loop pattern L = (ay,p1) -

(any pr) of X falls into one of the following four types:

Type I For each pair (o, p;) in L (1 < i < n), body(p;)
can be separated into two disjoint parts body(p;) =
bodyn(p;) U bodyy(p;) such that the following three con-
ditions holds:

1. bodyn(p;) N bodys(p;) = 0,

2. ajy1 € bodyy(p;),

3. var({ai} U bodyn(pi)) N

M= var(a;);
'For space reasons, the full notions of the BDDP, BDTDP and

loop patterns can be found in our archived conference version of
the paper: https://arxiv.org/abs/1804.07099,

var (bodys(p)) =

Type II There exists a pair (o, p;) in L (1 < i < n) such
that body(p;) can be separated into two disjoint parts
body(p;) = bodyn(p;) U bodyy(p;), where the following
three conditions hold:

1. bodyn(p;) N bodys(pi) = 0,
2. a1 € bodyp(pi),
3. var({a;} Ubodyn(p;)) N var(bodys(p;)) = 0;

Type III For each pair («;, p;) in L (1 < i < n) and each
B € body(p;), var(p;) C var(8);

Type IV For each pair («;, p;) in L (1 < i < n)and each
€ body(p;) \ {41}, (var(ai1) Nvar(B)) # 0 implies
(var(aig1) Nvar(B)) C N, var(ay);

Type V There exists a pair (a;, p;) in L (1 < i < n), such
that body(p;) can be separated into two disjoint parts
body(p;) = bodyn(p;) U bodyy(p;), where the following
three conditions hold:

1. bodyn(p;) N bodys(pi) = 0,
2. (U?:Hl(aj)) Nbodyn(p;) =0,
3. null(bodyn(pi)) # 0.

Main Results

Theorem 1. If a class C of TGDs satisfies BDTDP then C
also satisfies BDDP. Therefore, since we can also prove that
the class GLR of TGDs satisfies BDTDP, then it follows that
the class GLR is also first-order rewritable.

Theorem 2. Consider the BCQA problem for a given set of
GLR TDGs. Its data complexity is in AC°, and its combined
complexity is EXPTIME complete.

Theorem 3. Deciding whether a set of TGDs is generalised
loop restricted is PSPACE complete.

GLR actually captures a large class of first-order
rewritable TGDs. In fact, we have the following result.

Proposition 1. Let GLR be the class of generalised loop
restricted TGDs defined in Definition 4] Then we have that:
(1) AC C GLR; (2) ML C GLR; (3) SJ € GLR; (4) aGRD
C GLR; (5) DR C GLR.

References

[Baget et al. 2011] Baget, J.; Leclere, M.; Mugnier, M.; and
Salvat, E. 2011. On rules with existential variables: Walk-
ing the decidability line. Artifificial Intelligence 175(9-
10):1620-1654.

[Cali, Gottlob, and Lukasiewicz 2012] Cali, A.; Gottlob, G.;
and Lukasiewicz, T. 2012. A general datalog-based frame-
work for tractable query answering over ontologies. J. Web
Sem. 14:57-83.

[Cali, Gottlob, and Pieris 2012] Cali, A.; Gottlob, G.; and
Pieris, A. 2012. Towards more expressive ontology lan-
guages: The query answering problem. Artif. Intell. 193:87—
128.

[Civili and Rosati 2012] Civili, C., and Rosati, R. 2012. A
broad class of first-order rewritable tuple-generating depen-
dencies. In Proceedings of the 2nd International Conference
on Datalog in Academia and Industry (Datalog-2012), 68—
80.


https://arxiv.org/abs/1804.07099

	Introduction
	Preliminaries
	Generalised Loop Restricted TGDs
	Main Results

