
Computational Properties of Epistemic Logic Programs

Yan Zhang
Intelligent Systems Laboratory

School of Computing and Mathematics
University of Western Sydney

Penrith South DC NSW 1797, Australia
E-mail: yan@cit.uws.edu.au

Abstract

Gelfond’s epistemic logic programs are not only an exten-
sion of disjunctive extended logic programs for handling dif-
ficulties in reasoning with incomplete information, but also an
effective formalism to represent agents’ epistemic reasoning
under a logic programming setting. Recently there is an in-
creasing research in this direction. However, for many years
the complexity of epistemic logic programs remains unclear.
This paper provides a precise answer to this problem. We
prove that consistency check for epistemic logic programs is
in PSPACE and this upper bound is also tight. The approach
developed in our proof is of interest on its own: it immedi-
ately yields an algorithm to compute world views of an epis-
temic logic program, and it can also be used to study com-
putational properties of nested epistemic logic programs - a
significant generalization of Gelfond’s formalism.

Introduction
Gelfond’s epistemic logic programs are an extension of dis-
junctive extended logic programs to overcome the difficulty
in reasoning about incomplete information with the present
of multiple extensions (Gelfond 1994). Since epistemic
logic programs integrate the answer set semantics and classi-
cal Kripke possible worlds semantics on knowledge and be-
lief, they are also an effective formalism to represent agents’
epistemic reasoning under a logic programming setting. Re-
cently there is an increasing research in this direction, e.g.
(Lobo, Mendez, & Taylor 2001; Wang & Zhang 2005;
Watson 2000; Zhang 2003).

However, for many years the complexity of epistemic
logic programs remains unclear. For instance, it is unknown
what is the complexity class that consistency check for epis-
temic logic programs belongs to. The main difficulty in this
study seems that many common techniques developed in
complexity study for logic programming and modal logics
appear hard to apply in the case of epistemic logic programs.

Let us take a closer look at this aspect. As each disjunctive
extended logic program is a special epistemic logic program,
we immediately conclude that consistency check for epis-
temic logic programs is ΣP

2 -hard (Eiter & Gottlob 1995).
But this lower bound seems not tight, because it is easy to
think of an epistemic logic program that has an exponential

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

number of world views (models) and each world view con-
tains an exponential number of belief sets. For example, the
following program is of this property:

xi; x
′
i ←,

yi ← ¬My′
i,

y′
i ← ¬Myi,

where i = 1, · · · , n.
A straightforward checking on the existence of the world
view of an arbitrary epistemic logic program would take ex-
ponential time and use exponential space. Then we may
consider to employ some traditional complexity proof tech-
niques in modal logics. But this seems difficult too. First,
our above sample program shows that epistemic logic pro-
grams do not have a polysize model property like some
modal logics have (e.g. single agent S5 modal logic)
(Halpern & Moses 1992). Second, it will not be feasible
to find an efficient way to transform an epistemic logic pro-
gram into some standard modal logic formula and then apply
existing techniques suitable in that modal logic, because as
pointed by Lifschitz and Razborov in (Lifschitz & Razborov
2006), under answer set semantics, it is unlikely to have any
transformation that ensures a polysize translated formula
generally. Finally we observe that other well known proof
techniques for modal logics such as Witness and Tableau
methods (Blackburn, de Rijke, & Venema 2001) cannot be
directly applicable to epistemic logic programs due to their
nonmonotonicity.

Therefore, it is clear that we need some new approach to
study the complexity of epistemic logic programs. In this
paper, we provide a precise answer to the complexity prob-
lem of epistemic logic programs. We prove that consistency
check for epistemic logic programs is in PSPACE and this
upper bound is also tight. The key technique used in our
proof is: instead of checking a collection of belief sets, as the
world view semantics defines and obviously which needs ex-
ponential space, we generate every epistemic valuation one
by one which reduces an epistemic logic program into a dis-
junctive extended logic program, and then we generate all
answer sets of this disjunctive extended logic program, also
one at a time, to check if such epistemic valuation is co-
herent with the original program. The generation of epis-
temic valuations becomes automatic by encoding such val-
uations as binary strings which are of polynomial sizes, and
the whole process only uses polynomial space although it

runs in exponential time. The approach developed in our
proof is of interest on its own: it immediately yields an al-
gorithm to compute world views of an epistemic logic pro-
gram, and it can also be used to study computational proper-
ties of nested epistemic logic programs - a generalization of
Gelfond’s epistemic logic programs with a richer expressive
power (Wang & Zhang 2005).

The paper is organized as follows. Section 2 gives an
overview on epistemic logic programs. Section 3 describes
the main complexity results with details of the upper bound
proof for the consistency check problem. Based on the ap-
proach developed in section 3, section 4 proposes an algo-
rithm to compute world views of an epistemic logic pro-
gram, and considers under what conditions the algorithm
can be improved. Section 5 presents the complexity results
for nested epistemic logic programs. Finally section 6 con-
cludes this paper with some remarks.

Epistemic Logic Programs: An Overview
In this section, we present a general overview on epistemic
logic programs. Gelfond extended the syntax and semantics
of disjunctive extended logic programs to allow the correct
representation of incomplete information (knowledge) in the
presence of multiple extensions (Gelfond 1994). Consider
the following disjunctive program about the policy of offer-
ing scholarships in some university1:

Π:
r1: eligible(x)← highGPA(x),
r2: eligible(x)← minority(x), fairGPA(x),
r3: ¬eligible(x)← ¬fairGPA(x),

¬highGPA(x),
r4: interview(x)← not eligible(x),

not ¬eligible(x),
r5: fairGPA(mike); highGPA(mike)←,

while rule r4 can be viewed as a formalization of the
statement: “the students whose eligibility is not de-
cided by rules r1, r2 and r3 should be interviewed
by the committee”. It is easy to see that P has
two answer sets {highGPA(mike), eligible(mike)} and
{fairGPA(mike), interview(mike)}. Therefore the an-
swer to query interview(mike) is unknown, which seems
too weak from our intuition. Epistemic logic programs will
overcome this kind of difficulties in reasoning with incom-
plete information.

In epistemic logic programs, the language of (disjunctive)
extended logic programs is expanded with two modal oper-
ators K and M . KF is read as “F is known to be true”
and MF is read as “F may be believed to be true”. For our
purpose, in this paper we will only consider propositional
epistemic logic programs where rules containing variables
are viewed as the set of all ground rules by replacing these
variables with all constants occurring in the language. The
semantics for epistemic logic programs is defined by pairs
(A, W), where A is a collection of sets of ground literals
called the set of possible beliefs of certain agent, while W is
a set inA called the agent’s working set of beliefs. The truth

1This example was due to Gelfond (Gelfond 1994)

of a formula F in (A, W) is denoted by (A, W) |= F and
the falsity by (A, W) =|F , and are defined as follows.
(A, W) |= F iff F ∈W where F is a ground atom.
(A, W) |= KF iff (A, Wi) |= F for all Wi ∈ A.
(A, W) |= MF iff (A, Wi) |= F for some Wi ∈ A.
(A, W) |= F ∧G iff (A, W) |= F and (A, W) |= G.
(A, W) |= F ; G iff (A, W) |= ¬(¬F ∧ ¬G).
(A, W) |= ¬F iff (A, W) =|F .
(A, W) =|F iff ¬F ∈W where F is a ground atom.
(A, W) =|KF iff (A, W) 6|= KF 2.
(A, W) =|MF iff (A, W) 6|= ¬MF .
(A, W) =|F ∧G iff (A, W) =|F or (A, W) =|G.
(A, W) =|F ; G iff (A, W) =|F and (A, W) =|G.

It is clear that if a formula G is of the form KF , ¬KF ,
MF or ¬MF where F is a propositional literal, then its
truth value in (A, W) will not depend on W and we call G
a subjective literal. On the other hand, if G does not contain
K or M , then its truth value in (A, W) will only depend
on W and we call G an objective formula. In the case that
G is subjective, we write A |= G instead of (A, W) |= G,
and W |= G instead of (A, W) |= G in the case that G is
objective. From the above semantic definition, we should
note that subjective literals ¬KL and M¬L (here L is a
literal) are not semantically equivalent. This is because even
if there is some W ∈ A such that L 6∈ W , i.e. A |= ¬KL,
we cannot conclude that there is a W ′ ∈ A satisfying ¬L ∈
W ′3.

An epistemic logic program is a finite set of rules of the
form:

F ← G1, · · · , Gm, not Gm+1, · · · , not Gn. (1)

In (1) F is of the form F1; · · · ; Fk and F1, · · · , Fk are objec-
tive literals, G1, · · · , Gm are objective or subjective literals,
and Gm+1, · · · , Gn are objective literals. For an epistemic
logic program Π, its semantics is given by its world view
which is defined in the following steps:
Step 1. Let Π be an epistemic logic program not contain-
ing modal operators K and M and negation as failure not.
A set W of ground literals is called a belief set of Π iff W
is a minimal set of satisfying conditions: (i) for each rule
F ← G1, · · · , Gm from Π such that W |= G1 ∧ · · · ∧ Gm

we have W |= F ; and (ii) if W contains a pair of comple-
mentary literals then we write W = Lit, here Lit denotes
an inconsistent belief set.
Step 2. Let Π be an epistemic logic program not containing
modal operators K and M and W be a set of ground literals
in the language of Π. By ΠW we denote the result of (i) re-
moving from Π all the rules containing formulas of the form
not G such that W |= G and (ii) removing from the rules in
Π all other occurrences of formulas of the form notG. We
call W a belief set of Π if it is belief set of ΠW .
Step 3. Finally, let Π be an arbitrary epistemic logic pro-
gram and A a collection of sets of ground literals in its
language. By ΠA we denote the epistemic logic program

2We use (A, W) 6|= ϕ to denote that (A, W) |= ϕ does not
hold.

3If L is ¬F where F is an atom, then we write ¬L = ¬¬F =
F

obtained from Π by (i) removing from Π all rules contain-
ing formulas of the form G such that G is subjective and
A 6|= G, and (ii) removing from rules in Π all other occur-
rences of subjective formulas.

Now we define that a collection A of sets of ground lit-
erals is a world view of Π if A is the collection of all belief
sets of ΠA. Consider the program Π about the eligibility of
scholarship discussed at the beginning of this section, if we
replace rule r4 with the following rule:

r′4: interview(x)← ¬Keligible(x),
¬K¬eligible(x),

then the epistemic logic program that consists of rules
r1, r2, r3, r′4, and r5 will have a unique world views
{{highGPA(mike), eligible(mike), interview(mike)},
{fairGPA(mike), interview(mike)}}, which will result
in a yes answer to the query interview(mike).

Main Complexity Results
Let Π be an epistemic logic program, and LΠ the set
of all literals of the underlying program Π. We specify
KM(LΠ) = {KL, ML | L ∈ LΠ}. Clearly |KM(LΠ)| =
2|LΠ|. Now we define an epistemic valuation E over
KM(LΠ) as follows:

E : KM(LΠ) −→ {T, F}.

We also specify E(¬KL) = ¬E(KL) and E(¬ML) =
¬E(ML).

By applying an epistemic valuation to an epistemic logic
program Π, we may eventually remove all subjective literals
from Π. Formally, we define the epistemic reduction of Π
under E , denoted as eReduct(Π, E), to be a disjunctive ex-
tended logic program obtained from Π by (1) removing all
rules where G is a subjective literal occurring in the rules
and E(G) = F, and (2) removing all other occurrences of
subjective literals in the remaining rules (i.e. replacing those
G with T due to E(G) = T). Now we can define the concept
of epistemic coherence which plays an important role in our
following investigation.

Definition 1 (Epistemic coherence) Let E be an epistemic
valuation and eReduct(Π, E) the program defined as above.
We say that E is epistemically coherent with Π (or say that E
is Π’s an epistemically coherent valuation) if the following
conditions hold:

1. for each rule in Π that has been removed from
eReduct(Π, E), there is some subjective literal G occur-
ring in this rule satisfying A 6|= G, where A is the collec-
tion of all answer sets of eReduct(Π, E); and

2. for each rule in eReduct(Π, E) where its each subjective
literal G has been removed, A |= G.

Example 1 Consider an epistemic logic program Π consists
of the following rules:

a; b←,
c← ¬Ka,
d← ¬Kb.

If we define an epistemic valuation over KM(LΠ) as

E = {¬Ka,¬Kb, Kc, Kd, K¬a,¬K¬b, K¬c, K¬d,
Ma, M¬a,¬Mb, M¬b, Mc, M¬c,¬Md, M¬d}4,

then eReduct(Π, E) is the following program:

a; b←,
c←,
d←,

which has two answer sets {a, c, d} and {b, c, d}. In fact we
can verify that E is Π’s epistemically coherent valuation. �

We should indicate that an epistemic valuation may con-
tain conflict truth values on some subjective literals. For
instance, the above E contains both Kc and M¬c which are
not satisfiable together. However, as long as these conflict
subjective literals do not occur in the program at the same
time (e.g. Kc and M¬c are not in Π), the epistemic valua-
tion can still be coherent with respect to this program. The-
orem 3 in section 4 actually considers this case.

The following lemma establishes an important relation-
ship between the world view semantics and the epistemic
valuation.

Lemma 1 Let Π be an epistemic logic program. Π has a
world view if and only if Π has an epistemically coherent
valuation. Moreover, if E is an epistemically coherent valu-
ation of Π, then the collection of all answer sets of program
eReduct(Π, E) is a world view of Π.

Proof: (⇒) Suppose A is a world view of Π. Then we
can easily define an epistemic valuation based on A. For
each αL ∈ KM(LΠ) (α is a modality K or M), we specify
E(αL) = T iff A |= αL. Then according to Definition
1, it is easy to show that E is epistemically coherent with
Π. Furthermore, we have eReduct(Π, E) = ΠA. So the
collection of all eReduct(Π, E)’s answer sets is exactlyA.
(⇐) Now suppose that there is an epistemic valuation
E that is coherent with Π. Let A be the collection of
eReduct(Π, E)’s all answer sets (note that eReduct(Π, E)
must have an answer set). Then we do transformation
ΠA (Step 3 in the world view definition presented in
section 2). From Definition 1, quite obviously, we have
ΠA = eReduct(Π, E). This proves our result. �

The key feature of Lemma 1 is: it will allow us to de-
sign a deterministic algorithm to check the existence of the
world view for an epistemic logic program through the test-
ing of the coherence of an epistemic valuation. The algo-
rithm takes an exponential amount of time to terminate, but
as we will show, it only uses space efficiently. Towards this
end, we will describe a function called Coherence which
takes an epistemic logic program Π and an epistemic val-
uation E as input, and returns True if E is epistemically co-
herent with Π, otherwise it returns False.

Before we can formally describe function Coherence, we
need some technical preparations. Consider the set LΠ of
all literals of program Π. If we list all literals in LΠ with
certain order (note that LΠ is finite), then we can encode
each subset (i.e. belief set) of LΠ as a binary string of length

4For simplicity, we use this notion to represent E(Ka) = F,
E(Kb) = F, etc.. In this way, we can simply view E as a set.

|LΠ|. For instance, if LΠ = {L1, L2, L3, L4} with the order
L1L2L3L4, then a binary string 0011 represents the belief
set {L3, L4}. Therefore, we can enumerate all belief sets of
LΠ according to the order by generating the corresponding
binary strings from 000 · · ·0 to 111 · · ·1 one by one. We use
B iString(LΠ, i) to denote the ith binary string generated
as above according to a certain order. In the above exam-
ple, we may have B iString({L1, L2, L3, L4}, 3) = 0011
which represents the belief set {L3, L4}.

In a similar way, we also encode an epistemic valua-
tion as a binary string. In particular, each epistemic valu-
ation E over KM(LΠ) is represented as a binary string of
length 2|LΠ|. Again, if we give an order on set KM(LΠ),
then all epistemic valuations over KM(LΠ) can be gen-
erated as binary strings one at a time. We use notion
B iString(KM(LΠ), i) to denote the ith generated binary
string in this way.

Example 2 Suppose KM(LΠ) = {Ka, K¬a,
Kb, K¬b, Ma, M¬a, Mb, M¬b}. Then we
have B iString(KM(LΠ), 10) = 00001001,
which represents an epistemic valuation: E =
{¬Ka,¬K¬a,¬Kb,¬K¬b, Ma,¬M¬a,¬Mb, M¬b}. �

Encoding belief sets and epistemic valuations as binary
strings is an important step in our following proof because
this will make it possible to automatically generate all can-
didate belief sets and epistemic valuations for testing one by
one while we only use polynomial space.

We also need a sub-function named Testing to test the co-
herence of an answer set of program eReduct(Π, E) with
respect to E . Recall that program eReduct(Π, E) is obtained
from Π by applying epistemic valuation E to subjective lit-
erals in all rules of Π. Once we generate an answer set of
eReduct(Π, E), we need to check if this answer set can be
part of a world view of the original Π (see Lemma 1).

Function Testing manipulates a collection of lists of sub-
jective literals, denoted as SubList(Π), for program Π. For
each rule r in Π, there is a list in SubList(Π) of form
(G1, ε1) · · · (Gk , εk) where G1, · · · , Gk are all subjective lit-
erals occurring in rule r, and each εi is a boolean variable to
record the coherent status of Gi under the current answer
set to against the given epistemic valuation E . εi changes
its value during the testing process. For each run, Testing
checks one answer set of eReduct(Π, E). Testing returns 1
if this answer set is coherent with the underlying epistemic
valuation E . Otherwise, Testing returns 0 and the checking
process stops. If all answer sets of eReduct(Π, E) are co-
herent with E , then Testing will set each εi’s value to be 1
when it terminates.

function Testing(S, Π, E) returns δ ∈ {0, 1}
input: S, Π, and E ;
output: δ ∈ {0, 1};
SubList(Π) = {Listr : (G1, ε1) · · · (Gk , εk) | G1, · · ·Gk

occur in r};
Compute eReduct(Π, E);
Initialize SubList(Π): ∀Listr : (G1, ε1) · · · (Gk , εk) ∈
SubList(Π), εi = 0 if rule r is retained in eReduct(Π, E),

otherwise εi = 1;

01 begin
02 for each Listr ∈ SubList(Π) do
03 if r is retained in eReduct(Π, E) and

(Gi, εi) = (KL, 0),
04 then εi = 1 if i = 1 and L ∈ S,
06 if r is retained in eReduct(Π, E) and

(Gi, εi) = (KL, 1),
07 then εi = 0 if L 6∈ S; return 0;
08 if r is retained in eReduct(Π, E) and

(Gi, εi) = (¬KL, 0),
09 then εi = 1 if L 6∈ S;
10 if r is retained in eReduct(Π, E) and

(Gi, εi) = (ML, 0),
11 then εi = 1 if L ∈ S;
12 if r is retained in eReduct(Π, E) and

(Gi, εi) = (¬ML, 0),
13 then εi = 1 if i = 1 and L 6∈ S;
14 if r is retained in eReduct(Π, E) and

(Gi, εi) = (¬ML, 1),
15 then εi = 0 if L ∈ S; return 0;
16 if r is removed from eReduct(Π, E) and

(Gi, εi) = (KL, 1),
17 then εi = 0 if i = 1 and L ∈ S;
18 if r is removed from eReduct(Π, E) and

(Gi, εi) = (KL, 0);
19 then εi = 1 if L 6∈ S;
20 if r is removed from eReduct(Π, E) and

(Gi, εi) = (¬KL, 1);
21 then εi = 0 if L 6∈ S; return 0;
22 if r is removed from eReduct(Π, E) and

(Gi, εi) = (ML, 1);
23 then εi = 0 if L ∈ S; return 0;
24 if r is removed from eReduct(Π, E) and

(Gi, εi) = (¬ML, 1);
25 then εi = 0 if L 6∈ S;
26 if r is removed from eReduct(Π, E) and

(Gi, εi) = (¬ML, 0);
27 then εi = 1 if L ∈ S;
28 return 1;
28 end

It is easy to see that Testing runs in polynomial time (and
uses polynomial space of course). Although Testing looks a
bit tedious, its checking procedure is quite simple. The fol-
lowing example illustrates the detail of how Testing works.

Example 3 We consider program Π:
r1 : a; b←,
r2 : c← ¬Md,
r3 : d← ¬Mc,
r4 : e← Kc,
r5 : f ← Kd.

For program Π, we define a structure named SubList(Π)
which consists of the following collection of lists - each cor-
responds to a rule in Π (in this case, each list only has one
element):

Listr1
: ∅,

Listr2
: (¬Md, ε),

Listr3
: (¬Mc, ε),

Listr4
: (Kc, ε),

Listr5
: (Kd, ε).

Now we specify an epistemic valuation as follows:
E = {Ka,¬K¬a, Kb,¬K¬b, Kc,¬K¬c,¬Kd,

¬K¬d,¬Ke,¬K¬e,¬Kf,¬K¬f, Ma, M¬a,
Mb, M¬b, Mc, M¬c,¬Md,¬M¬d, Me,
M¬e, Mf, M¬f}.

Then we have eReduct(Π, E):
r1 : a; b←,
r′2 : c←,
r′4 : e←,

which has two answer sets {a, c, e} and {b, c, e}.
Having eReduct(Π, E), we initialize the values of those

ε as follows: (1) for those retained rules in eReduct(Π, E),
we set ε = 0; and (2) for those removed rules from
eReduct(Π, E), we set ε = 1. So the initial state of
SubList(Π) is as follows:

Listr1
: ∅,

Listr2
: (¬Md, 0),

Listr3
: (¬Mc, 1),

Listr4
: (Kc, 0),

Listr5
: (Kd, 1).

To check whether these two answer sets are in some world
view of Π, we check the coherence between these answer
sets and E by manipulating structure SubList(Π). First, we
consider answer set S1 = {a, c, e}. Since ¬Md occurs in
Π and d 6∈ S1, it means the subjective literal ¬Md in rule
r1 is coherent with the answer set S1 under E . In this case,
we change the value of the corresponding ε in (Md, ε) to
1, i.e. Listr2

: (Md, 1). On the other hand, since rule r3

is removed from eReduct(Π, E) and c ∈ S1, it means that
S1 is already coherent with ¬Mc. So we do not make any
change on ε in Listr3

: (¬Mc, ε) where ε = 1. Similarly,
we have Listr4

: (Kc, 1) and Listr5
: (Kd, 1) after the

first run of Testing. In the second run, answer set S2 =
{b, c, e} is used to check the coherence. We can verify that
there will have no any further change on ε values. Therefore,
the collection of S1 and S2 is a world view of the original
program Π. �

Now we are ready to give the formal description of func-
tion Coherence which plays a key role in the upper bound
proof.

function C oherence(Π, E) returns Boolean
input: Π and E ;
output: Boolean;
01 begin
02 Compute eReduct(Π, E);
03 i = 0;
04 while i < 2|LΠ| do
05 Generate a S = B iString(LΠ, i);
06 i = i + 1;
07 Testing whether S is an answer set of

eReduct(Π, E);
08 if S is an answer set of eReduct(Π, E)
09 then F lag = Testing(S, E , Π);
10 if F lag = 0 then return False;

12 if ∀(G, ε) ∈ SubList(Π), ε = 1 then return True
13 else return False;
14 end
Theorem 1 Given an arbitrary epistemic logic program Π.
Deciding whether Π has a world view is in PSPACE.
Proof: To prove this result, we design an algorithm called
Consistency that takes an epistemic logic program Π as input
and returns True if Π has a world view and False otherwise.
Then we will show Consistency runs in exponential time but
only uses polynomial space.

algorithm C onsistency(Π) returns Boolean
input: Π;
output: Boolean;
01 begin
02 i = 0;
03 while i < 22|LΠ| do
04 Generate a E = B iString(KM(LΠ), i);
05 i = i + 1;
06 V = Coherence(Π, E);
07 if V = True

08 then return True;
09 return False;
10 end

Now we prove two results of C onsistency(Π): (1) Π
has a world view if and only if C onsistency(Π) returns
True (note that C onsistency(Π) always terminates), and
(2) C onsistency(Π) runs in exponential time but only uses
polynomial space. Result (1) can be proved directly from
Lemma 1. Here we give the proof of Result (2).

We first consider function Coherence. It is easy to see that
line 02 computing eReduct(Π, E) only takes linear time,
and eReduct(Π, E) only needs a polynomial space. Within
while loop, line 05 to line 10 take polynomial time noting
that S is a binary string of length |LΠ|, and there are at most
2|LΠ| loops. So the time complexity for while loop is at most
O(2|LΠ|) and the whole execution of while loop only uses
polynomial space.

Now let us at look algorithm Consistency. Within
the while loop from line 04 to line 08, each time E is
generated as a binary string of length 2|LΠ|, and the call
of function Coherence takes at most O(2|LΠ|) time with
polynomial space. As there are at most 22|LΠ| loops, the
time complexity of Consistency is at most O(23|LΠ|), but
the space use remains in polynomial. �

The following result shows that the PSPACE upper bound
for the consistency problem of epistemic logic programs is
also tight.
Theorem 2 Given an arbitrary epistemic logic program Π.
Deciding whether Π has a world view is PSPACE-hard.
Proof: We take a quantified boolean formula (QBF) of the
form A = ∃a1∀a2 · · ·QnanA′, where Qn = ∀ if n is an
even number, otherwise Qn = ∃, and A′ is in CNF whose
all propositional variables are among {a1, · · · , an}. It is
well known that deciding whether A is valid is PSPACE-
complete (Papadimitriou 1995). Based on this result, we

construct a nontrivial epistemic logic program ΠA from the
given formula A and show that A is valid if and only if ΠA

has a world view. Since the construction of ΠA can be done
in polynomial time, this proves the result.

Our approach is inspired from the PSPACE lower bound
proof for modal logic K (Blackburn, de Rijke, & Venema
2001). The intuitive idea is described as follows: for any
QBF Φ, we can build so called quantifier trees, each of such
trees captures a collection of assignments that make Φ true.
As an example, let us consider formula ∃p∀q∃r(¬p ∨ q) ∧
¬r. This formula is valid and has a unique quantifier tree as
shown in Figure 1.

- p

- r

q - q

- r

Figure 1: A quantifier tree.

The tree starts at level 0 and generates one branch to reach
level 1 to represent p’s one possible truth value (i.e. ∃p).
Then the node at level 1 forces two branches to represent q’s
all possible truth values at level 2 (i.e. ∀q). Again, each node
at this level generates one branch to represent one possible
truth value of r at level 3 respectively (i.e. ∃r). Also note
that all variables’ truth values at a higher level are carried
over to the lower levels (from root to leaves). Therefore,
each leaf (i.e. node at level 3) represents an assignment on
variables {p, q, r} that evaluates formula (¬p ∨ q) ∧ ¬r to
be true, and the collection of all leaves forms one evaluation
to make ∃p∀p∃r(¬p∨ q)∧¬r true (in this example, there is
only one such evaluation).

Based on this idea, we will construct a program ΠA to
simulates the quantifier trees of formula A such that A is
valid iff ΠA has a world view which corresponds to the col-
lection of all leaves of a quantifier tree, and hence represents
one possible evaluation to make A true. Furthermore, all
world views of ΠA will represent all different evaluations
that make A true.

Now we are ready to construct program ΠA. Let VA =
{a1, · · · , an}. we introduce new variables

Vnew = {ai | for ai ∈ VA, i = 1, · · · , n} ∪

{aj
1, a

j
1 | for a1 ∈ V (A), j = 1, · · · , n} ∪ · · · ∪

{aj
k, a

j
k | for ak ∈ VA, and j = k, · · · , n}∪· · ·∪

{an
n, an

n | for an ∈ VA} ∪ {neg, invalid}.

It is easy to see that |Vnew | is bounded by O(n2). We ex-
plain the intuitive meaning of these newly introduced vari-
able. Variable ai is used to represent the negation of ai. For
each variable ak that is universally quantified in A, i.e. k is
an even number, we introduce variables a

j
k and a

j
k where

j = k, · · · , n to represent ak’s values breaking into two
branches at level k in the quantifier tree, and then carry over
these values all the way down to the leaves. On the other
hand, for each variable ak that is existentially quantified in
A, i.e. k is an odd number, we need to generate new quan-
tifier trees in which variable ak is assigned a different truth
value. For this purpose, we also introduce variables a

j
k and

a
j
k and j = k, · · · , n to represent ak’s two different possible

values at different quantifier trees starting at level k, and then
carry over these truth values down to the leaves respectively.
We first specify groups of rules that simulate the quantifier
tree.

Group G1:

a1
1 ← ¬Ma1

1,
a1
1 ← ¬Ma1

1,

ai+1
1 ← ai

1,
ai+1
1 ← ai

1, i = 1, · · · , (n− 1),
a1 ← an

1 ,
a1 ← an

1 ,

Group G2:

a2
2; a

2
2 ← a2

1,
a2
2; a

2
2 ← a2

1,

ai+1
2 ← ai

2,
ai+1
2 ← ai

2, i = 2, · · · , (n− 1),
a2 ← an

2 ,
a2 ← an

2 ,

· · ·,

Group Gk (k is an odd number):

ak
k ← ak

k−1,¬Mak
k,

ak
k ← ak

k−1,¬Mak
k,

ak
k ← ak

k−1,¬Mak
k,

ak
k ← ak

k−1,¬Mak
k,

ai+1
k ← ai

k,
ai+1
1 ← ai

1, i = k, · · · , (n− 1),
ak ← an

k ,
ak ← an

1 ,

ai+1
k ← ai

k,
ai+1

k ← ai
k, i = k, · · · , (n− 1),

ak ← an
k ,

ak ← an
k ,

Group Gk+1:

ak+1
k+1; a

k+1
k+1 ← ak+1

k ,

ak+1
k+1; a

k+1
k+1 ← ak+1

k ,

ai+1
k+1 ← ai

k+1,

ai+1
k+1 ← ai

k+1, i = (k + 1), · · · , (n− 1),
ak+1 ← an

k+1,
ak+1 ← an

k+1,

Group Gn:
if n is an odd number, rules in this group are of the
forms as in Gk, otherwise, they are of the forms as in
Gk+1.

Let us take a closer look at rules specified above. Starting
from the root, different truth values of variable a1 are forced
to be represented in different quantifier trees at level 1 due
to the fact that a1 is existentially quantified. Note that rules
a1
1 ← ¬Ma1

1 and a1
1 ← ¬Ma1

1 force a1
1 and a1

1 can only
be represented in different quantifier trees. Other rules in
G1 simply carry a1

1 and a1
1 all the way down to the leaves

(in different trees). On the other hand, since variable a2 is
universally quantified, the first two rules in G2 force two
branches in the quantifier tree where each branch represents
one possible truth value of a2. Similarly, other rules in G2

are just to carry these truth values all the way down to the
leaves. Other groups of rules have similar effects as G1 and
G2 alternatively. Let Πtree

A = G1 ∪ · · · ∪ Gn. It is easy to
observe that |Πtree

A | is bounded by O(n2).
Now we consider formula A′ = {C1, · · · , Cm}. Suppose

each C ∈ A′ is of the form L1 ∨ · · · ∨ Lh, where the corre-
sponding propositional variables of L1, · · · , Lh are among
VA. For each C = L1 ∨ · · · ∨ Lh, we specify a rule:

rc : neg ← ρ(L1), · · · , ρ(Lh)5, where

ρ(Li) =

{

a if Li = ¬a where a ∈ VA

Li otherwise

We denote the collection of all such rules as Πclause
A . Finally

we define a rule

Πinvalid
A :

invalid← neg, not invalid.

We define ΠA = Πtree
A ∪ Πclause

A ∪ Πinvalid
A . We will

show that A is valid iff ΠA has a world view. In fact, this
is quite obvious. Since there is one-to-one correspondence
between the world views of Πtree

A and the collection of
assignments under quantification ∃a1∀a2 · · ·Qnan, we
know that if A is valid, then in any case, variable neg will
not be derived from ΠA, and therefore, the rule in Πinvalid

A

will never be triggered in ΠA. So program ΠA can be
reduced to Πtree

A , which has a world view. On the other
hand, if ΠA has a world view, it concludes that all rules in
Πclause

A and the rule in Πinvalid
A cannot be triggered. This

implies that each world view of ΠA corresponds a collection
of assignments on {a1, · · · , an} which evaluates A to be
true. �

5Li stands for the negation of Li.

Given an epistemic logic program Π and a (ground) literal
L, we say that L is entailed from Π, if for Π’s each world
view A and ∀W ∈ A, we have L ∈ W . From Theorems
1 and 2 and the fact that PSPACE=co-PSPACE (Blackburn,
de Rijke, & Venema 2001), we have the following result.

Proposition 1 Let Π be an epistemic logic program and L
a literal. Deciding whether Π |= L is PSPACE-complete.

Computing World Views of Epistemic Logic
Programs

With a slight modification on algorithm Consistency, we ac-
tually obtain an algorithm to compute world views of an
epistemic logic program.

algorithm W V iew(Π) returns a world view or Failed
input: Π;
output: A world view of Π, or Failed;
01 begin
02 i = 0;
03 while i < 22|LΠ| do
04 Generate E = B iString(KM(LΠ), i);
05 i = i + 1;
06 Compute eReduct(Π, E);
07 ComputeA = collection of all

eReduct(Π, E)’s answer sets;
08 if A = ∅ then return Failed;
09 Test whether E is epistemically coherent with Π;
10 if yes then returnA;
11 return Failed;
12 end

Algorithm WView can also be made to compute all world
views of Π. Note that line 07 can be simply implemented
by calling some answer set solver for disjunctive logic pro-
grams such as dlv (Leone, Rullo, & Scarcello 1996). We
observe that in the worst case, the while statements from line
03 to line 10 contains 22|LΠ| loops. So in general, WView
is quite expensive.

But as we will show next, under some conditions, the ef-
ficiency of WView can be significantly improved. We first
present a useful definition. If E is an epistemic valuation
over KM(LΠ), we define E|Π to be a restriction of E on Π,
if E|Π is a subset of E only containing truth values on those
KL and ML occurring in Π.

Proposition 2 Let Π be an epistemic logic program, E an
epistemic valuation over KM(LΠ), and E|Π a restriction of
E on Π. Then E is epistemically coherent with Π if and only
if E|Π is epistemically coherent with Π.

Proof: The result directly follows from Definition 1. �

With Proposition 2, WView can significantly improve its
efficiency sometimes, because usually an epistemic logic
program only contains a small number of subjective liter-
als in its rules. Consider Example 1 presented in section 3,
where we have |E| = 16. However, since only Ka and Kb
occur in Π, we have E|Π = {¬Ka,¬Kb}. Hence by ap-
plying Proposition 2, WView reduces its 216 loops to only 4
loops in the worst case!

Now we consider other conditions under which WView’s
efficiency can be improved as well. We can see that in
WView another most expensive computation for generating
a world view of Π is line 09 - testing the E’s (or E|Π’s) epis-
temic coherence with Π6. This is becauseA (computed from
line 07) may contain exponential number of answer sets.
Consequently testing the epistemic coherence may have to
go through all these answer sets. So necessary optimization
on this step is important.
Theorem 3 Let Π be an epistemic logic program, E an epis-
temic valuation over KM(LΠ). Then the following results
hold:

1. Suppose that KL, M¬L ∈ E and both occur in some
rules in Π (maybe in different rules) as the only subjec-
tive literals (i.e. no ¬ sign in front). Then E is not epis-
temically coherent with Π or Π only has the inconsistent
world view {Lit};

2. Suppose that αL (α is K or M) occurs in some rules in
Π as a subjective literal (i.e. no ¬ sign in front) and is in
E , and E ′ is another epistemic valuation that only differs
with E on αL (i.e. ¬αL in E ′). If all rules containing αL
also contains some subjective literal G where ¬G ∈ E ,
then E is not epistemically coherent with Π iff E ′ is not
epistemically coherent with Π.

Proof: We first prove Result 1. Without loss of generality,
we assume that there two rules are of the following forms in
Π:

r1 : head(r1)← · · · , KL, · · ·,
r2 : head(r2)← · · · , M¬L, · · ·.

Since KL and M¬L are the only subjective literal occur-
rences in r1 and r2 respectively, both rules are retained in
eReduct(Π, E) by removing KL and M¬L respectively.
Then from Definition 1, we can see that E must be not epis-
temically coherent with Π since for the collection of all con-
sistent answer sets of eReduct(Π, E), A |= KL implies
A 6|= M¬L and vice versa. On the other hand, if A 6|= KL
andA 6|= M¬L, it also concludes that E is not epistemically
coherent with Π. The only case that E becomes epistemi-
cally coherent with Π is that Π has the inconsistent world
view A = {Lit} so that A |= G for any subjective literals.

Now we prove Result 2. Suppose any rule containing αL
in Π is of the form:

r : head(r)← · · · , G, αL, · · ·.
Since αL ∈ E and ¬G ∈ E , it is easy to observe that
eReduct(Π, E ′) = eReduct(Π, E), from which we know
that the collection A of all answer sets of eReduct(Π, E)
is also the collection of all answer sets of eReduct(Π, E ′).
Therefore, according to Definition 1, E is not epistemically
coherent with Π iff E ′ is not epistemically coherent with Π.
�

Theorem 3 provides two major conditions that can be used
to simplify the process of epistemic coherence testing. Con-
dition 1 simply says that any E epistemically coherent with

6According to Proposition 2, it is easy to show that
eReduct(Π, E) is identical to eReduct(Π, E|Π).

Π cannot have both KL and M¬L to be true at the same
time. Condition 2, on the other hand, presents a case that
some αL’s truth value does not have impact to the coher-
ence of an epistemic valuation even if αL occurs in Π. This
is particularly useful since E and E ′ are generated succes-
sively in WView. So if one valuation has been identified to
be not epistemically coherent, there is no need to test the
other one.

We should also mention that the efficiency for computing
a world view of an epistemic logic program may also be
improved if we revise the algorithm to be nondeterministic
with proper optimization strategies for guessing epistemic
valuations.

Computational Properties of Nested Epistemic
Logic Programs

Wang and Zhang’s nested epistemic logic programs
(NELPs) (Wang & Zhang 2005) is a generalization of nested
logic programs (Lifschitz, Tang, & Turner 1999) and Gel-
fond’s epistemic logic programs under a unified language,
in which nested expressions of formulas with knowledge
and belief modal operators are allowed in both the head
and body of rules in a logic program. Such general-
ization is important because it provides a logic program-
ming framework to represent complex nonmonotonic epis-
temic reasoning that usually can only be represented in
other nonmonotonic epistemic logics (Baral & Zhang 2005;
Meyer & van der Hoek 1995).

Now we present key concepts and definitions of NELPs.
Readers are referred to (Wang & Zhang 2005) for details.
The semantics of NELPs, named equilibrium views, is de-
fined on the basis of the epistemic HT-logic. Let A be
a collection of sets of (ground) atoms7 An epistemic HT-
interpretation is defined as an ordered tuple (A, IH , IT)
where IH , IT are sets of atoms with IH ⊆ IT . (H, T are
called tense to represent here and there (Lifschitz, Pearce,
& Valverde 2001)). If IH = IT , we say (A, IH , IT)
is total. Also note that we do not force IH ∈ A or
IT ∈ A (i.e. IH , IT may or may not be in A). Then for
t ∈ {H, T}, (A, IH , IT , t) satisfies a formula F , denoted as
(A, IH , IT , t) |= F , is defined as follows:

- for any atom F , (A, IH , IT , t) |= F if F ∈ It.
- (A, IH , IT , t) 6|= ⊥.
- (A, IH , IT , t) |= KF if ∀JH , JT ∈ A (JH ⊆ JT),

(A, JH , JT , t) |= F .
- (A, IH , IT , t) |= MF if ∃JH , JT ∈ A

(JH ⊆ JT), (A, JH , JT , t) |= F .
- (A, IH , IT , t) |= F ∧G if (A, IH , IT , t) |= F and

(A, IH , IT , t) |= G.
- (A, IH , IT , t) |= F ∨G if (A, IH , IT , t) |= F or

(A, IH , IT , t) |= G.
- (A, IH , IT , t) |= ¬(¬F ∧ ¬G).
- (A, IH , IT , t) |= F → G if for every t′ with t ≤ t′,

7NELPs are first defined without considering strong negation,
and then they are extended to the case of strong negation. For sim-
plicity, here we do not consider such extension because this does
not affect our results.

(A, IH , IT , t′) 6|= F or (A, IH , IT , t′) |= G.
- (A, IH , IT , t) |= ¬F if (A, IH , IT , t) |= F → ⊥.

Note that if F does not contain knowledge or belief oper-
ators, (A, IH , IT , t) |= F is irrelevant to A, while if F is a
subjective literal, (A, IH , IT , t) |= F is irrelevant to IH and
IT . A model of an epistemic theory Γ is an epistemic HT-
interpretation (A, IH , IT) by which every formula in Γ is
satisfied. A total HT-interpretation (A, I, I) is an epistemic
equilibrium model of Γ if it is a model of Γ and for each
proper J ⊂ I , (A, J, I) is not a model of Γ. Now let Π be
a nested epistemic logic program. We use E(Π) to denote
the epistemic theory obtained from Π by translating “;” to
“∨”, “,” to “∧” and “not” to “¬”. Then we define a collec-
tion A of sets of atoms to be an equilibrium view of Π if A
is a maximal such collection satisfying A = {I | (A, I, I)
is an epistemic equilibrium model of E(Π)}. From these
definitions, we have the following result.

Lemma 2 A nested epistemic logic program Π has an equi-
librium view if and only if the epistemic theory E(Π) has an
epistemic equilibrium model.

Proof: Suppose Π has an equilibrium view A. Then ac-
cording to the definition, there exists at least one epistemic
equilibrium model of E(Π) that has the form (A, I, I).
On other hand, if E(Π) has an epistemic equilibrium
model (A, I, I), then A will be an equilibrium view of
Π if A satisfies the condition mentioned in the definition.
Otherwise, there must be another epistemic equilibrium
model (A′, I ′, I ′) of E(Π) such that A′ is an equilibrium
view of Π. �

Example 4 Consider the following nested epistemic logic
program Π:

Ka; Kb←,
c← Ka, not Mb,
d← Kb, not Ma.

From above definitions, Π has two equilibrium views
{{a, c}} and {{b, d}}. �

Theorem 4 Given a nested epistemic logic program Π. De-
ciding whether Π has an equilibrium view is in PSPACE.

Proof: According to Lemma 2, we only need to check
whether E(Π) has an epistemic equilibrium model. Given
an epistemic HT-interpretation of the form (A, I, I), we
know that the truth value of a formula not containing knowl-
edge and belief operators will only depend on I , while the
truth value of a subjective literal only depends onA. So as in
section 3, we can use the same way to simulate A by defin-
ing an epistemic valuation E . However, since nested expres-
sions are allowed in NELPs, this time, we define E not only
over the set KM(LΠ), but also over the set KM(ϕΠ) of sub
subjective formulas occurring in Π that are not in KM(LΠ)
(e.g. K(a∨b)). Note that |KM(ϕΠ)| is bound by the size of
Π, i.e. the number of rules and the maximal length of these
rules in Π. Let KM(Π) = KM(LΠ) ∪ KM(ϕΠ). Then
E is defined over KM(Π). In this way, a candidate equi-
librium model of E(Π) can be simulated as (E , I, I), where
I ⊆ LΠ.

As before, we encode E and I as binary strings so that
both of them can be generated in some automatic way. Ac-
cording to the above definition, checking whether (E , I, I)
is an equilibrium model of E(Π) consists of two steps: (1)
checking whether (E , I, I) is a model of E(Π), which can be
achieved in polynomial time; and (2) if yes, then checking
whether for each J ⊂ I , (E , J, I) is not a model of E(Π).
Step (2) will takeO(2|I|) amount of time, but each checking
only uses polynomial space.

So by fixing an E , for all possible I ⊂ LΠ, checking
whether (E , I, I) is an epistemic equilibrium models of
E(Π) will take O(22|LΠ|) amount of time in the worst
case, but only uses polynomial space. Since each E can be
generated one by one, the whole process will terminate in
timeO(22|LΠ| · 2|KM(Π)|) via only using polynomial space.
�

It is interesting to note that the problem of consistency
check for NELPs has the same upper bound as that of epis-
temic logic programs has, although the expressive power of
NELPs has been significantly increased.

Theorem 5 Given a nested epistemic logic program Π. De-
ciding whether Π has an equilibrium view is PSPACE-hard.

Proof: Note that epistemic logic programs are a syntactic
restriction of nested epistemic logic programs. Also in
(Wang & Zhang 2005), it was proved that the equilib-
rium view semantics for NELPs coincides with the world
view semantics for epistemic logic programs under this
restriction. So the result directly follows from Theorem 2. �

Conclusion
We proved major complexity results for epistemic logic pro-
grams. The approach developed from our proof also yielded
an algorithm for computing world views of epistemic logic
programs, and can be used in proving the complexity results
of nested epistemic logic programs. The results presented in
this paper are important for us to understand the computa-
tional issues of epistemic reasoning under a logic program-
ming setting.

Our work presented in this paper provides an answer to
the initial computational problem of epistemic logic pro-
grams. Many related topics are worth our further study. We
conclude this paper with an open problem: whether can we
identify non-trivial subclasses of epistemic logic programs
with lower complexity bounds?

References
Baral, C., and Zhang, Y. 2005. Knowledge updates: Se-
mantics and complexity issues. Artificial Intelligence 164
(1-2):209–243.
Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal
Logic. Cambridge University Press.
Eiter, T., and Gottlob, G. 1995. On the complexity cost of
disjunctive logic programming: Propositional case. Annals
of Mathematics and Artificial Intelligence 15:289–323.

Gelfond, M. 1994. Logic programming and reasoning with
incomplete information. Annals of Mathematics and Arti-
ficial Intelligence 12:98–116.
Halpern, J., and Moses, Y. 1992. A guide to completeness
and complexity for modal logics of knowledge and belief.
Artificial Intelligence 54:311–379.
Leone, N.; Rullo, P.; and Scarcello, F. 1996. On the com-
putation of disjunctive stable models. In Proceedings of
DEXA’96, 654–666.
Lifschitz, V., and Razborov, A. 2006. Why are there so
many loop formulas? ACM Transactions on Computa-
tional Logic 7.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Compu-
tational Logic 2(4):426–541.
Lifschitz, V.; Tang, L.; and Turner, H. 1999. Nested ex-
pressions in logic programs. Annals of Mathematics and
Artificial Intelligence 25:369–389.
Lobo, J.; Mendez, G.; and Taylor, S. 2001. Knowledge and
the action description language a. Theory and Practice of
Logic Programming 1:129–184.
Meyer, J.-J. C., and van der Hoek, W. 1995. Epistemic
Logic for AI and Computer Science. Cambridge University
Press.
Papadimitriou, C. 1995. Computational Complexity. Ad-
dison Wesley.
Wang, K., and Zhang, Y. 2005. Nested epistemic logic
programs. In Proceedings of the 8th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR05), 279–290. Springer.
Watson, R. 2000. A splitting set theorem for epistemic
specifications. In Proceedings of the 8th International
Workshop on Non-Monotonic Reasoning (NMR-2000).
Zhang, Y. 2003. Minimal change and maximal coherence
for epistemic logic program updates. In Proceedings of
the 18th International Joint Conference on Artificial Intel-
ligence (IJCAI-03), 112–117. Morgan Kaufmann Publish-
ers, Inc.

