
A Formal Language for Specifying Complex
XML Authorisations with Temporal Constraints

Sean Policarpio and Yan Zhang

Intelligent Systems Laboratory
School of Computing and Mathematics

University of Western Sydney
Penrith South DC, NSW 1797, Australia

{spolicar, yan}@scm.uws.edu.au

Abstract. The Extensible Markup Language (XML) is utilised in many
Internet applications we are using today. However, as with many com-
puting technologies, vulnerabilities exist in XML that can allow for mali-
cious and unauthorised use. Applications that utilise XML are therefore
susceptible to security faults if they do not provide their own meth-
ods. Our research focuses on developing a formal language which can
provide access control to information stored in XML formatted docu-
ments. This formal language will have the capacity to reason if access
to an XML document should be allowed. Our language, Axml(T), allows
for the specification of authorisations on XML documents based on the
popular Role-based Access Control model. Temporal interval reasoning
is the study of logically representing time intervals and relationships be-
tween them. As part of our research, we have also included this aspect in
our language Axml(T) because we believe it will allow us to specify even
more powerful access control authorisations.

Keywords: AI in computer security, AI in database, logic programming,
knowledge representation and reasoning, access control, authorisations,
XML databases and security

1 Introduction

Many applications utilise the Extensible Markup Language [9] as a tool to store
and retrieve information. However, the guarantee that information stored in
XML documents is secure and is only accessible by authorised users is not possi-
ble unless an external method is used. XML does not have any inherent security
methods as part of its specification [9]. An XML document is essentially a for-
matted plain text file that can be freely viewed and edited. Therefore there is a
demand for methods in which access to XML documents can be controlled.

In this paper, we present our work on the development of a formal language
that will provide access control to XML documents. We incorporate the XML
query language, XPath [8], into our formal language so that we can define which
documents (or elements within a document) we would like to restrict access to.

An XPath is a string representation of traversing through an XML document to
return an element within the document. For example, the following is an XPath
that follows the tree-like structure of a document to return the element author :

/library/books/book/author

Our formal language uses the Role-based Access Control model [15] as a basis
for the structure of authorisations to subjects. This primarily means rather than
applying authorisations directly to subjects, we create “roles” that can have one
or more specified authorisations. This gives us better control over which subjects
have what authorisations. It also allows us to include features like separation of
duty and conflict resolution directly into the language [15].

Finally, we include Allen’s Temporal Interval Relationship logic [1]. Allen’s
temporal relationships cover all possible ways in which intervals can relate to one
another (such as before, meets, equal, etc.) and are incorporated into the syntax
of our formal language. We include this aspect of temporal reasoning in our
language so that we can specify time constraints on authorisations to designate
when they should be applied.

We utilise the formal language to produce a security policy base. The policy
base contains all the Axml(T) rules of authorisation for the XML documents
requiring access control. The policy base can be reasoned upon to determine
which authorisations should be followed.

The rest of this paper is organised as follows. Section 2 presents the formal
syntax of our language Axml(T), illustrates its expressive power through various
XML access control scenarios, and defines queries on XML policy bases. Section
3 describes the semantics of language Axml(T) based on its translation to a logic
program under answer set semantics. In section 4, an example is also presented
to show the application of Axml(T) in XML authorisation specification and rea-
soning. Section 5 briefly discusses the related work. Finally, Section 6 concludes
the paper with some remarks.

2 Formal Language Axml(T)

Our language, Axml(T), consists of a finite set of predicate statements. These
statements are used to create various rules in a security policy base. We present
the syntax of our language in Backus-Naur Form (Table 1) with a definition of
each element. The statements are written from the point of view of the policy
base writer or admin. This single subject represents the author of the access
control policies.

2.1 Syntax

A rule is a conditional statement that allows the policy writer to specify a
predicate statement to be validated based on the truth of other predicates. Rules
include nonmonotonic reasoning derived through the absence of predicates. Our
language also includes deny rule statements which are for specifiying conditional
states that should never be allowed.

<rule> ::= <head-statement> [if [<body-statements>] [with absence
<body-statements>]]

<deny-rule> ::= admin will deny [if [<body-statements>] [with absence
<body-statements>]]

<head-statement> ::= <relationship-statement> | <grant-statement> |
<request-statement> | <auth-statement> |
<role-statement>

<body-statements> ::= <body-statement> | <body-statement>, <body-statements>
<body-statement> ::= <relationship-statement> | <grant-statement> |

<request-statement> | <auth-statement> |
<role-statement>

<relationship-statement> ::= admin says <relationship-atom>
<grant-statement> ::= admin grants <role-name> to <subject> during

<temporal-interval>
<relationship-atom> ::= below(<role-name>, <role-name>) |

separate(<role-name>, <role-name>) |
during(<temporal-interval>, <temporal-interval>) |
starts(<temporal-interval>, <temporal-interval>) |
finishes(<temporal-interval>, <temporal-interval>) |
before(<temporal-interval>, <temporal-interval>) |
overlap(<temporal-interval>, <temporal-interval>) |
meets(<temporal-interval>, <temporal-interval>) |
equal(<temporal-interval>, <temporal-interval>)

<subject> ::= <subject-constant> | <subject-variable>
<role-name> ::= <role-name-constant> | <role-name-variable>

<temporal-interval> ::= <temporal-interval-constant> | <temporal-interval-variable>
<request-statement> ::= admin asks is <subject> a member of <role-name>

during <temporal-interval>
<auth-statement> ::= admin says that <subject> can use the <role-atom>

during <temporal-interval>
<role-statement> ::= admin creates <role-atom>

<role-atom> ::= role(<role-name>, <sign>, <xpath-statement>, <privilege>)
<sign> ::= + | -

<xpath-statement> ::= in <document-name>, return <xpath-expressions>
<document-name> ::= <document-name-constant> | <document-name-variable>

<xpath-expressions> ::= <xpath-node> | <xpath-node>, <xpath-expressions>
<xpath-node> ::= [/] <node-name> [<xpath-predicate>] /
<node-name> ::= <node-name-constant> | <node-name-variable> | * | //

<xpath-predicate> ::= <child-node-name> <predicate-relationship> <variable-value> |
<attribute-name> <predicate-relationship> <variable-value>

<child-node-name> ::= <child-node-name-constant> | <child-node-name-variable>
<attribute-name> ::= <attribute-name-constant> | <attribute-name-variable>

<predicate-relationship> ::= < | > | =
<privilege> ::= read | write

Table 1. BNF for Axml(T)

The head-statement from a rule consists of the predicate statements that will
be validated true if the rules conditions are true as well. The head-statement itself
can either be one of five statements; a relationship-statement, grant-statement,
request-statement, auth-statement, or role-statement.

The body-statement(s) of a rule are the conditions that are reasoned upon to
validate the head-statement. These are also made up of the same five statements
used in the head-statement.

A relationship-statement confirms that some relationship between two ob-
jects in the security policy base is true. These relationships are represented by
those predicate symbols found under the relationship-atom. There are a few
relationship-atoms available that can be used in relationship-statements. Rela-
tionships for example could be hierarchical (below), mutually exclusive (separate),

or be based on Allen’s Temporal Interval relationships (during, starts, meets, etc.)
[1].

The role-statement creates an access control role. The role-atom used in
the statement includes a role-name, a sign which represents either positive or
negative access to the object in question, an xpath-statement to identify an XML
object, and finally the privilege that can be performed on the object.

An xpath-statement in Axml(T) is a formal representation of an XPath ex-
pression. These expressions include the primary features of the syntax of XPath,
such as single node queries, tree-like structured queries, wildcard queries, and
predicate filters on nodes and attributes [8].

Grant-statements serve the purpose of assigning an access control role to a
subject (a person requiring authorisation). This statement also includes a tem-
poral argument to specify when the roles authorisation should be applied.

A request-statement is used when a query for subject authorisation is made.
It represents the policy writers attempt to discover if a particular subject is a
member of a role at a specific temporal-interval.

Auth-statements specify that a subject who has been previously granted a
role now has authorisation to access an object. We create rules in the policy
base that will validate these statements by checking if a subject has positive
authorisation to a role and that there are no conflicting rules. If these are true,
then an auth-statement is created.

2.2 Expression Examples with Axml(T)

In this section, we demonstrate utilising our formal language to express some
common relationships and rules for a security policy base.

Creating a temporal interval relationship The policy base writer speci-
fies that the interval morning tea is before afternoon tea and that the interval
play time meets nap time:
admin says before(morning tea, afternoon tea).
admin says meets(play time, nap time).

XML elements and attributes Using the xpath-statement, an arbitrary ele-
ment named cleaning log with the child element cleaning area from the document
“database.xml” can be represented like this:

in database.xml, return cleaning log/cleaning area

The policy writer can also specify more in the XPath by using predicates or
wildcards. This xpath-statement uses the wildcard (*) to specify a single step
between the elements cleaning information and cleaning log. The policy writer
also uses a predicate expression to filter cleaning area’s that have the attribute
type equal to office.

in database.xml, return /janitor logs/cleaning information/*/cleaning log/

cleaning area[@type=“office”]

Role Creation, Role Relationships, and Granting Authorisations The
policy writer creates the janitor role. This role is allowed to read the element
specified in our XPath from the previous example.
admin creates role(janitor, +, in database.xml, return /janitor logs/

cleaning information/*/cleaning log/cleaning area[@type=“office”], read).

The policy writer specifies relationship statements between roles. They can
state that the role staff is below the role manager, or in other words, is a child
role, and that they also be mutually exclusive by specifying that they be separate.
admin says below(staff, manager).

admin says separate(staff, manager).

The policy writer adds a subject to a roles membership. They add the subject
tyler to the role janitor. He will be able to access this role only during the
afternoon temporal interval.
admin grants janitor to tyler during afternoon.

Here, the policy writer creates a complex rule stating that if any subject is a
member of the role janitor during any time, then they should also be a member
of the role window washers during the same interval. The interval must also finish

at the same time as maintenance time. They add the condition that the subject
also not be a member of the electrician role.
admin grants window washer to SubX during TimeY

if admin grants janitor to SubX during TimeY,
admin says finishes(TimeY, maintenance time),
with absence admin grants electrician to SubX during TimeZ.

The deny rule is useful for specifying rules where the validity of the body-
statements are not desired. A deny rule can be written to indicate that patrick
should never be a member of the role janitor during any interval.
admin will deny if admin grants janitor to patrick during TimeY.

Request Statements The policy writer can query if a subject is a member of
a role at a specific time. They will check if taro is a member of the musician role
during rehearsals.
admin asks is taro a member of musicians during rehearsals.

2.3 Producing Authorisations and Querying the XML Policy Base

With a security policy base written in Axml(T), it is possible to find which
subjects have authorisations to what objects based on the roles they have been
granted membership to. To do this, we reason upon statements that have been
written in the policy base. The subject authorisations are found with a rule we
refer to as the authorisation rule.
admin says that SUBJECT can use role(ROLE-NAME, +, XPATH, PRIVILEGE) during INTERVAL

if admin grants ROLE-NAME to SUBJECT during INTERVAL,
admin asks is SUBJECT a member of ROLE-NAME during INTERVAL,
admin creates role(ROLE-NAME, +, XPATH, PRIVILEGE),
with absence role(ROLE-NAME, -, XPATH, PRIVILEGE)

This rule is written to pertain to all grant-statements. It ensures that a role
be postively authorised for use by a subject only if it does not conflict with a

possible negative role with the same privileges and temporal interval (conflict
resolution [15]). If this rule produces an auth-statement, that is the indication
that the subject in question does in fact have authorisation based on those
specified in the role-statement.

There are other defined rules like this that apply to many aspects of our
formal language that must also be reasoned upon before authorisation is given
to a subject. We refer to these as language rules within Axml(T). They are
discussed in more depth in the formal semantics of our language and are defined
in two groups:

– Role-based Access Control Rules are included to ensure that features
of the model are present (ie. separation of duty, conflict resolution, role
propagation) and that authorisations are generated when querying the policy
base (ie. the authorisation rule).

– Temporal Interval Relationship Reasoning Rules allow for defined
temporal intervals to adhere to the relationships defined in Allen’s work [1].

By usingAxml(T) to define a security policy base, we now have a determinable
way to reason who has authorisation to what XML objects based on facts about
subject privileges. However, to produce these authorisations and to also prove
that our policy base written in Axml(T) is satisfiable, we need a method to
compute a result. To do this, we provide the semantics of our language in the
form of an answer set program.

3 Semantics

We chose answer set programming [4] as the basis for our semantics because it
provides the reasoning capabilities to compute the authorisations defined using
our formal language. If properly translated, we can use an ASP solver (such as
smodels [18]) to find which authorisations will be validated true. What we want
to produce is an answer set that will have the same results as those produced
from our formal language Axml(T). We first present the alphabet of our ASP
based language ALP and then its formal semantics.

3.1 The Language Alphabet ALP

Entities Subjects, temporal intervals, role names, role properties, XPaths, and
XPath properties make up the types of entities allowed in the language. These
can either be constant or variable entities, distinguished by a lowercase or up-
percase first letter respectively.

Function symbols

– role(role-name, sign, xpath(), priv), where role-name is the name of this role,
sign is a + or − depending on if the role is allowing or disallowing a priv-
ilege, xpath is an xpath function representing an element(s) from an XML

document, and priv is the privilege that can be performed on the object (ie.
read or write).

– node(name, id, level, doc), represents a node in an XML document, where
name is the name of that node (element), id is a distinct key in the document,
level represents its hierarchical placement, and doc the document it originates
from.

– xpred(axis, query), represents an XPath predicate, where axis is the location
of the node to apply the predicate query on.

– xpath(node(), xpred()), represents an XPath, consisting of a node() and xpred().

Predicate symbols The first set of symbols are used for representing relation-
ships between roles and temporal intervals. Their definitions are taken directly
from Axml(T).

below(role-name2, role-name1)
separate(role-name2, role-name1)
during(tempint2, tempint1)
starts(tempint2, tempint1)
finishes(tempint2, tempint1)
before(tempint2, tempint1)
overlap(tempint2, tempint1)
meets(tempint2, tempint1)
equal(tempint2, tempint1)

These next set of symbols are used for defining and querying authorisations
in the policy base and are also similar to their Axml(T) equivalents.

grant(subject, role-name, tempint)
request(subject, role-name, tempint)
auth(subject, xpath(), priv, tempint)

A new predicate symbol is introduced in ALP for conflict resolution reasoning
on subject authorisations.

– exist neg(subject, xpath(), priv, tempint) states that at least one negative
grant for a subject exists.

And finally, four predicates are also introduced for providing relationships
between XML nodes.

– isNode(node()), indicates that the node() function exists.
– isParent(node2(), node1()), means node2 is the parent or is hierarchically

above node1, where both are node functions.
– isLinked(node2(), node1()), means node2 can be reached directly (is descended)

from node1, where both are node functions.
– isAttr(attr name, node()), means attr name is an XML attribute of the node

function

In most cases, with an understanding of Axml(T), the transformations and
meanings of symbols and rules from ALP are self explanatory. However, extra
consideration must be given to the method in which XPaths are handled in ALP .

3.2 Handling XPaths in ALP

There was a problem handling particular XPaths in ALP because our formal
language implements features and syntax of XPath that are difficult to translate
and use in answer set programming. Specifically, this is the use of wildcards and
predicate queries. We refer to these problematic XPaths as dynamic XPaths be-
cause they can represent zero to many XML nodes, as opposed to static XPaths
which can only refer to zero or one node. When dynamic XPaths are used in
a logic program, it is difficult to specify which nodes should have authorisation
rules applied to them. This is because the nodes that are meant to be represented
by the XPath are not yet known. With static XPaths, it is clearly stated what
node requires authorisation.

We consider the approach by Almendros-Jimenez et al. [2] which described
a method to represent the structure and data of an XML document as a logic
program. Using a similar technique, we provide new rules that rewrite dynamic
XPaths into static ones. The idea of query rewriting is to use the structure of
XML documents to understand and define what dynamic XPaths might mean
[13, 14].

These concepts are what make up the majority of the language rules for
XPath Translation in the policy base. We introduced the functions node, xpred,
and xpath, and the predicate symbols isNode, isParent, isLinked and isAttr into
ALP for this reason. These various new functions and predicates allow us to
write rules to satisfy different kinds of dynamic XPaths. However, due to space
constraints, we will show only one example of an XPath transformation rule.

XPath Tranformation Rule For this example, we will assume that the struc-
ture (schema) of the XML documents are already defined using the node function
and predicate statements introduced earlier.

This rule will determine the meaning of a wildcard (*) in an XPath like this
/A/*/C. It will produce an xpath that will return the element C which can only be
reached from the parent element A.
xpath(node(C, ID3, 3, DOC), xpred(self, ‘‘’’)) ←

isParent(
node(X, ID2, 2, DOC),
node(C, ID3, 3, DOC)),
isParent(
node(A, ID1, 1, DOC),
node(X, ID2, 2, DOC)).

The rule determines if an arbitrary node, X, is the parent of node C and is
the child of node A. In each node, we specify the level and use variables for the
id and document. This allows for the rule to determine all possible XPaths that
satisfy the relationship conditions. For those nodes that satisify the rule, we can
produce an XPath function for C that we can guarantee is meant to be produced
from the XPath /A/*/C.

Remarks It is important to note that these rules are not part of our semantics,
which will be presented in the next section. This is because the process of trans-
forming the XPaths occur at an intermediate level that is not concerned with

the reasoning of the security policy base. Also, because these rules are written
specific to varying XPaths, it is not possible to give a formal definition of their
translation. We consider the transformations of XPaths as happening before the
translation of an Axml(T) policy base into ALP .

3.3 Formal Definitions

We define the semantics of our formal language by translating Axml(T) into an
answer set logic program. We refer to this translation as Trans. A policy base,
DA, is a finite set of rules and/or deny rules, ψ, written in Axml(T) as specified in
Table 1. The generic rules, or language rules, for the same policy base, DA, are
a finite set of statements, α, written in Axml(T).

α contains statements to provide:

– conflict resolution,
– separation of duty,
– role propagation,
– temporal interval relationship reasoning, and
– authorisation reasoning

Definition 1. Let DA be a policy base. We define Trans(DA) to be a logic
program translated from DA as follows:

1. for each rule or deny rule, ψ, in DA, Trans(ψ) is in Trans(DA)
2. for each statement α in DA, Trans(α) is in Trans(DA)

A translated rule or deny rule, Trans(ψ), has the same form as those defined
in Gelfond’s Stable Model Semantics [17] and answer set programming [4]. A
translated rule has the following form:
Trans(head-statement)k ←

Trans(body-statement)k+1,...,
Trans(body-statement)m,
not Trans(body-statements)m+1,...,
not Trans(body-statements)n.

A translated deny rule has the same form except for the dismissal of the
head-statement.

The conflict resolution rules in α are located in the authorisation rule (Section
2.3). In Trans(α), conflict resolution rules are transformed into a new rule that
checks if a subject has at least one negative grant for a role. We use this to reason
if a conflict with a positive grant is possible. In ALP , exist neg was introduced
for this purpose. The translated rule is as follows:
exist neg(S, xpath(node(N, I, L, D), xpred(A, Q)), P, T) ←

grant(S, R, T),
role(R, -, xpath(node(N, I, L, D),
xpred(A, Q)), P).

Separation of duty in α is translated with a simple deny rule:
← grant(S, R1, T1), grant(S, R2, T2), separate(R2, R1).

If grant predicates are giving a subject membership to roles that are stated
as being separate, then the statement should be denied and the logic program
faulted.

Role propagation in α is also translated similarily in Trans(α) with two
generic rules. The original rules were (1.) to do with transitivity between roles
and (2.) for propagation of role properties. The propagation rule searches for
roles that are hierarchically related (using below) and copies the authorisation
properties from the parent role to the descendent role. Their translation is as
follows:

1. below(R1, R3) ← below(R1, R2), below(R2, R3).

2. role(R1, Si, xpath(node(N, I, L, D), xpred(A, Q)), P) ←
below(R1, R2), role(R2, Si,
xpath(node(N, I, L, D), xpred(A, Q)), P)

α contains numerous rules that pertain to temporal interval relationship rea-
soning. Again, many of these rules are transformed from Axml(T) to ALP triv-
ially. We show some of these rules from Trans(α) 1:
Temporal Interval Bounded Rule:

This rule searches for an interval that is contained within another but does
not overlap the beginning or end of the outer interval.
during(T4, T1) ←

starts(T2, T1), finishes(T3, T1),
before(T2, T4), before(T4, T3).

Temporal Interval Containment Rule:
If the temporal interval used in a grant predicate is found to have an interval

contained within it, then a similar grant will be applied to the subject for that
contained interval.
grant(S, R, T2) ←

grant(S, R, T1), during(T2, T1).

Implicit Temporal Interval Relationships:
These rules apply some implied temporal relationships we have choosen to

implement for our own purposes. Namely, that starts and finishes should imply
during and that meets should imply before.
during(T2, T1) ← starts(T2, T1).
during(T2, T1) ← finishes(T2, T1).
before(T2, T1) ← meets(T2, T1).

Finally, the authorisation rule (Section 2.3) inAxml(T) is translated in Trans(α)
as follows:
auth(S, xpath(node(N, I, L, D), xpred(A, Q)), P, T) ←

request(S, R, T), grant(S, R, T),
role(R, +, xpath(node(N, I, L, D),
xpred(A, Q)), P),
not exist neg(S, xpath(node(N, I, L, D),
xpred(A, Q)), P, T).

A query on DA, φ, written in Axml(T) is a request statement, as specified in
Table 1, and its translation, Trans(φ), is a request predicate from ALP .

1 All rules can be found in original manuscript

Definition 2. Let φ be a query on a policy base DA written in Axml(T). We
define Trans(φ) as the translation of the request statement from Axml(T) to
ALP .

An answer from a query φ is denoted as π and has the form of an authorisa-

tion statement, specified in Table 1, while its translation, Trans(π), is an auth

predicate from ALP .

Definition 3. Let π be the answer from a query φ on policy base DA written in
Axml(T). We define Trans(π) as the translation of the authorisation statement
from Axml(T) to ALP .

We define the relationship between our formal language and its translation
into the semantics of answer set programming.

Definition 4. Let DA be a policy base, φ a query on it, and π the answer from
that query. We say DA entails π, or DA |= π, iff for every answer set, S, of the
logic program Trans(DA) with the query Trans(φ), Trans(π) is in S.

DA |= π iff Trans(DA) |= Trans(π)

4 An Example

We will demonstrate the creation of a security policy for a scenario requiring
access control to XML documents. Due to space constraints, we will only have
a very small example and also forgo XPath’s utilising predicates.

Scenario Description A hospital requires the implementation of an access
control model to protect sensitive information it stores in a number of XML
documents. We will discuss roles created for two particular subjects at the hos-
pital.

Hospital Roles An administration role in the hospital will have access to read
two nodes named board minutes and financial info from a document named
board db. Roles that are below the administration role will also inherit this rule.
For example, a role named board member will inherit these privileges. However,
we will also include within the board member role the privilege to write to the
document.

The role admin doctor will be able to write to the board minutes section of
the board db document.

In our policy base, we will allow the admin doctor role to read and write
to a few other documents. They will have access to read a staff contact info
document and both read and write to the patient db and doctor db documents.

Table 2 shows these roles written in Axml(T).

Policy Base Subjects and Rules Within our case scenario, we will focus on
two subjects, Lucy and Rita, both administrative doctors. Lucy will utilize the

Administration
admin creates role(administration, +, in board db, return /, read).
admin says below(board member, administration).
admin creates role(board member, +, in board db, return /, write).

Administrative doctors
admin says below(admin doctor, administration).
admin creates role(admin doctor, +, in board db, return /board minutes, write).
admin creates role(admin doctor, +, in staff contact info, return /, read).
admin creates role(admin doctor, +, in patient db, return /, read).
admin creates role(admin doctor, +, in patient db, return /, write).
admin creates role(admin doctor, +, in doctor db, return /, read).
admin creates role(admin doctor, +, in doctor db, return /, write).

Table 2. Hospital Roles

privileges of the admin doctor role for a single specific interval while Rita must
be active in that same role at any other time.

The XML access control rules in which these subjects must abide to in the
hospital are as follows.

For Lucy, we can specify that she has the admin doctor role on some arbitary
interval tuesday. We could state some relationships for this interval like so:
admin says meets(monday, tuesday).
admin says meets(tuesday, wednesday).

Now we can make a rule that states that Lucy be active with the admin doctor
role on tuesday and Rita be active during any other time. In this case, possibly
monday and wednesday or any other interval defined in the policy base.
admin grants admin doctor to lucy during tuesday.
admin grants admin doctor to rita during INT I

if with absence admin grants admin doctor to lucy during INT I.

4.1 Logic Program Translation

With a completed policy base, we can translate all of the Axml(T) rules into an
ALP answer set program. For our case study, we will demonstrate the translation
of our policies for Lucy and Rita.

Role Translations From the defined roles, we will show the translation of one
of the Axml(T) rules for the admin doctor.

This rule was orignally written in Axml(T) to specify that the admin doctor
role be allowed to write to the board minutes node in the board database. In
ALP it is written as:
role(admin doctor, +, xpath(node(/board minutes, ID, 0, board db), xpred(self, ‘‘’’)),
write).

As mentioned earlier, we will forgo the explanation of the translation of
XPaths. However, briefly, this XPath represents the /board minutes node, with
any ID, at the top-level (0) of the board db document.

Grant Translations We will now translate some rules granting subjects mem-
bership to roles. We take a look at the rule that specified that Lucy be granted

the admin doctor on the interval tuesday and that Rita have it at any other
interval. In ALP , they are translated as:
meets(monday, tuesday).
meets(tuesday, wednesday).
grant(lucy, admin doctor, tuesday).
grant(rita, admin doctor, I) ← not grant(lucy, admin doctor, I).

4.2 Experimenting with Queries on the ALP program

We now present authorisation queries on our policies. We will show the queries
and results in Axml(T) and ALP .

We first create requests of authorisation for Lucy and Rita to obtain the role
admin doctor during the temporal interval tuesday.

In Axml(T), we would write request-statements like so:
admin asks is lucy a member of admin doctor during tuesday.
admin asks is rita a member of admin doctor during tuesday.

InALP , those statements are translated into the following request statements:
request(lucy, admin doctor, tuesday).
request(rita, admin doctor, tuesday).

If we were to logically reason upon our Axml(T) policy base with the previous
request-statements, the following statements would be produced by the authorisa-
tion rule (Section 2.3).
admin says that lucy can use role(admin doctor, +, in board db, return /, read) during tuesday.

admin says that lucy can use role(admin doctor, +, in board db, return /board minutes, write)
during tuesday.

admin says that lucy can use role(admin doctor, +, in staff contact info, return /, read) during
tuesday.

admin says that lucy can use role(admin doctor, +, in patient db, return /, read) during tuesday.
admin says that lucy can use role(admin doctor, +, in patient db, return /, write) during tuesday.
admin says that lucy can use role(admin doctor, +, in doctor db, return /, read) during tuesday.
admin says that lucy can use role(admin doctor, +, in doctor db, return /, write) during tuesday.

When our translated policy base and request predicates are computed in a
stable model solver, an answer set containing the following equivalent facts is
generated.
auth(lucy, xpath(node(/, idbdb00, 0, board db), xpred(self, ‘‘’’), read, tuesday).

auth(lucy, xpath(node(/board minutes, idbdb01, 0, board db),
xpred(self, ‘‘’’), write, tuesday).

auth(lucy, xpath(node(/, idscidb00, 0, staff contact info),
xpred(self, ‘‘’’), read, tuesday).

auth(lucy, xpath(node(/, idpdb00, 0, patient db), xpred(self, ‘‘’’), read, tuesday).
auth(lucy, xpath(node(/, idpdb00, 0, patient db), xpred(self, ‘‘’’), write, tuesday).
auth(lucy, xpath(node(/, idddb00, 0, doctor db), xpred(self, ‘‘’’), read, tuesday).
auth(lucy, xpath(node(/, idddb00, 0, doctor db), xpred(self, ‘‘’’), write, tuesday).

Because Rita’s rule specifies that she cannot be a member of admin doctor
at any interval that Lucy is, her requests for authorisation do not generate
any results. Lucy however retrieves all the authorisations that an admin doctor
should. Referring to Table 2, we can identify all the admin doctor roles that are
used to create the auth-statements and auth predicates above.

5 Related Work

Damiani et al. [11, 12] provided some essential work in the field of XML access
control. In [12], a fine-grained access control model is discussed. This model
takes an XML document and designates access rights on each element. They
provide implementations of rule propagation and also include features such as
both positive and negative authorisations and conflict resolution in the model.
Through their algorithm, a source XML document can be processed by remov-
ing all objects of negative authorisation and returning a document with only
elements that are allowed to be viewed [12].

Crampton [10] utilised the role-based access control model for specific use
with XML documents. He utilises the same object-based approach by using the
XPath query language. However, Crampton points out that his work only focuses
on reading XML documents [10].

In [5, 7], Bertino et al. discussed their own implementation of an access control
system for XML documents. Their work does follow the role-based access control
model to a certain extent (however, we did not see methods for role propagation
or separation of duty). Subjects are granted authorisation through credentials
and objects are specified through XPath’s [5, 7]. The implementation includes
features such as the propagation of policy rules and conflict resolution. Bertino
et al. include in their formalisation temporal constraints based on their previous
work in [6]. However, their approach seems restricted in terms of handling XPath
expressions in authorisation reasoning.

Besides Bertino et al., only a small group of other researchers have produced
research utilising logic programming for XML policy base descriptions [3, 16]. To
the best of our knowledge, a logic-based formal language for XML authorisations
has not yet been developed with the inclusion of temporal constraints, the com-
plete role-based access control model, and nonmonotonic reasoning capabilities
of answer set programming.

6 Conclusion

In this paper, we presented a formal language of authorisation for XML docu-
ments. We demonstrated its expressive power to provide role-based access control
with temporal constraints. We provided a semantic definition through the trans-
lation of the high level language into an answer set program. Finally, we gave
a brief example of defining a security policy base in Axml(T), translating it into
an ALP logic program, and then computing the authorisations from it.

Acknowledgement This research is supported in part by an Australian Re-
search Council Linkage grant LP0883646.

References

1. J. F. Allen. Towards a general theory of action and time. Artif. Intell., 23(2):123–
154, 1984.

2. J. M. Almendros-Jiménez, A. Becerra-Terón, and F. J. Enciso-ba Nos. Querying
xml documents in logic programming*. Theory Pract. Log. Program., 8(3):323–361,
2008.

3. Chutiporn Anutariya, Somchai Chatvichienchai, Mizuho Iwaihara, Vilas Wu-
wongse, and Yahiko Kambayashi. A rule-based xml access control model. In
RuleML, pages 35–48, 2003.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

5. E. Bertino, M. Braun, S. Castano, E. Ferrari, and M. Mesiti. Author-x: A java-
based system for xml data protection. In In IFIP Workshop on Database Security,
pages 15–26, 2000.

6. Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela Samarati. An access
control model supporting periodicity constraints and temporal reasoning. ACM
Trans. Database Syst., 23(3):231–285, 1998.

7. Elisa Bertino, Barbara Carminati, and Elena Ferrari. Access control for xml
documents and data. Information Security Technical Report, 9(3):19–34, July-
September 2004.

8. The WWW Consortium. Xml path language (xpath) version 1.0.
http://www.w3.org/TR/xpath, 1999.

9. The WWW Consortium. Extensible markup language (xml) 1.0 (fifth edition).
http://www.w3.org/TR/REC-xml/, November 2008.

10. Jason Crampton. Applying hierarchical and role-based access control to xml docu-
ments. In SWS ’04: Proceedings of the 2004 workshop on Secure web service, pages
37–46, New York, NY, USA, 2004. ACM.

11. E. Damiani, S. De, Capitani Vimercati, S. Paraboschi, and P. Sarnarati. Securing
xml documents. In In Proc. of the 2000 International Conference on Extending
Database Technology (EDBT2000, pages 121–135. Springer, 2000.

12. Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and
Pierangela Samarati. A fine-grained access control system for xml documents.
ACM Trans. Inf. Syst. Secur., 5(2):169–202, 2002.

13. Sabrina De Capitani di Vimercati, Stefania Marrara, and Pierangela Samarati. An
access control model for querying xml data. In SWS ’05: Proceedings of the 2005
workshop on Secure web services, pages 36–42, New York, NY, USA, 2005. ACM.

14. W. Fan, C. Chan, and M. Garofalakis. Secure xml querying with security views. In
SIGMOD, 2004: Proceedings of the 2004 ACM SIGMOD international conference
on Management Data. ACM Press, 2004.

15. D. F. Ferraiolo, J. A. Cugini, and D. Richard Kuhn. Role-based access control
(rbac): Features and motivations. In 11th Annual Computer Security Applications
Proceedings, 1995.

16. Alban Gabillon. A formal access control model for xml databases. In Lecture notes
in computer science, 3674, pages 86–103, 2005.

17. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the Fifth In-
ternational Conference on Logic Programming, pages 1070–1080, Cambridge, Mas-
sachusetts, 1988. The MIT Press.

18. I. Niemelä, P. Simons, and T. Syrjänen. Smodels: a system for answer set pro-
gramming. In Proceedingsof the 8th International Workshop on Non-Monotonic
Reasoning, April 2000.

