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Abstract

Circumscription is one of the most powerful nonmonotonic reasoning formalisms. Its classical model-
theoretic semantics serves as an effective mechanism to ensure minimality in commonsense reasoning.
However, as the lack of proof-theoretic feature, it is incapable of expressing derivation order that some-
times plays a crucial role in various reasoning tasks. On the other hand, the general theory of stable models
has a similar logic formulation to circumscription but takes supportedness into account, although it does
not satisfy the minimality criterion in general. In this paper, we introduce the notion of constructive circum-
scription. Unlike the original circumscription, constructive circumscription enforces both minimality and
derivation order. Such derivation order is achieved by strengthening the underlying circumscriptive theory
with a first-order formula called explicit construction formula. With constructive circumscription, minimal
models are only considered under an explicit constructibility. We study properties of constructive circum-
scription in details, and compare it with circumscription, the general theory of stable models, and the FLP
semantics.

1 Introduction

Circumscription (Lifschitz 1994; McCarthy 1980) is one of the most powerful nonmonotonic
reasoning formalisms that can handle incomplete and negative information. Among various rea-
soning features, one major advantage of circumscription over other approaches is its classical
model-theoretic semantics serving as an effective mechanism to ensure minimality in common-
sense reasoning. Circumscription at its core is a translation of a first-order theory into a stronger
second-order theory that circumscribes the models of the first-order theory to be “minimal” with
respect to a set of predicates. This minimality requirement models the commonsense reason-
ing that things are to be expected unless otherwise specified. Although powerful and with a
good grounding on the well-developed system of classical logic, circumscription has one inher-
ent restriction: it is incapable of expressing proof-theoretic concepts, and thus, is sometimes not
suitable for reasoning tasks explicitly associated with an embedded derivation path

In recent years, the general theory of stable models (Ferraris et al. 2011) has emerged as an
important nonmonotonic formalism for arbitrary first-order theories. The stable model semantics,
originally proposed in (Gelfond and Lifschitz 1988), has its root in logic programming and the se-
mantics of negation as failure (Clark 1987). Compared to circumscription, the original intended
meaning of logic programming is not defined through minimality, but through supportedness, in
the sense that a fact is derived to be true only if it is supported by other facts that are already true
under negation as failure. It is a fact that the stable model semantics for traditional normal and dis-
junctive logic programs enjoys the desirable anti-chain property (minimality) (Ferraris and Lifs-
chitz 2011), i.e., for any given program, its one stable model cannot be a strict subset of another
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stable model. But, the generalization of stable models to arbitrary theories and other constructs
(such as aggregates) has moved away from this property. For instance, formula (5) of Proposition
2 from (Ferraris and Lifschitz 2011): P (a) ∧ (Q(a) ↔ P (b)) ∧ ∃x(P (x) → Q(x)), has two
Herbrand stable models S1 = {p(a)} and S2 = {p(a), p(b), q(a)}, where S1 is a strict subset of
S2, which obviously violate the anti-chain property. The importance of the anti-chain property in
commonsense reasoning has been specifically addressed and justified in significant publications
(Gelfond and Lifschitz 1988; Faber et al. 2011; Ferraris and Lifschitz 2011; Truszczynski 2010).

The FLP semantics (standing for Faber, Leone, and Pfeifer) was initially proposed for the
purpose of defining a semantics for disjunctive programs with arbitrary aggregates that satisfies
the anti-chain property (Faber et al. 2011). Recently, this semantics has been further extended to
logic programs with first-order formulas (Bartholomew et al. 2011). Even though FLP satisfies
both the anti-chain and supportedness properties, it was recently observed by Shen and Wang
that the FLP semantics suffers from the so-called circular justification problem (Shen and Wang
2012). That is, under certain circumstances, a program may have a stable model containing a fact
that is solely justified by itself.1

In this paper, we introduce the notion of constructive circumscription. Unlike the original
form of circumscription, constructive circumscription enforces both derivation order and mini-
mality. Such derivation order is achieved by strengthening the underlying circumscriptive the-
ory with a first-order formula so-called explicit construction formula. Also unlike the first-order
stable model operator in (Ferraris et al. 2011) or the first-order FLP and FLPT operators in
(Bartholomew et al. 2011), constructive circumscription is a form of circumscription, in the sense
that it can simply be expressed as the minimal models of some first-order theory without any fur-
ther assertions. We compare constructive circumscription with traditional circumscription, the
general theory of stable models, and the FLP semantics, and show that constructive circumscrip-
tion satisfies all the three desirable reasoning properties, and hence, provides some new features
for first-order nonmonotonic reasoning.

2 Preliminaries

2.1 Logical Preliminaries

We assume a general familiarity with both first-order (FO) and second-order (SO) logic. We
consider signature of the form τ = C ∪ P ∪ F such that C, P , and F are its sets of con-
stants, predicates, and function symbols, respectively. For clarity, we refer to a signature of a
formula ϕ by τ(ϕ). By Pext and Pint, we denote the subsets of predicate symbols τ(ϕ) called
the extensional and intensional predicates, respectively. Let ϕ be an FO or SO formula, we use
Mod(ϕ) to denote the set of all models of ϕ. In the spirit of Answer Set Programming (ASP),
the extensional predicates are viewed as the input knowledge database and the intensional as
the “intended” extension of the input database. Following (Ferraris et al. 2011), this extends the
notion of extensional and intensional predicates to arbitrary FO theories.

In this paper, our formalization will rely on the notions of subformulas and maximal formulas.

1 It is worth mentioning that although the recent work proposed by Shen and Wang ((2012)) has overcome the non-
circular justification issue in the FLP semantics, their formalism, however, is rather restricted in general because not
all non-circular derivation programs can be correctly captured by their approach, e.g., for the program {→ p∨ q, p→
q, q → p}, it is observed that {p, q} cannot be a stable model in terms of Shen and Wang’s although clearly, neither
p nor q complies with a circular derivation in this program due to the rule → p ∨ q.
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Let ϕ be an FO formula. A subformula of ϕ is a well-formed formula that has at least one
occurrence in ϕ. We use SUBF[ϕ] to denote the set of all subformulas of ϕ.

We further assume that each subformula is associated with a unique integer that would enable
us to differentiate between the different occurrences of a subformula within the whole formula.
Note that under this notion, elements of SUBF[ϕ] should be of the form (ψ,N) for some integer
N . We omit this for simplicity and assume that it is clear from the context.

Definition 1 (Nearest maximal formula)
For an FO formula ϕ and ψ ∈ SUBF[ϕ], if ψ 6= ϕ then the nearest maximal formula (NMF) of ψ
under ϕ, denoted as ϕ↑ψ (or just ↑ψ when clear from the context), is the minimal subformula of
ϕ that properly contains ψ; otherwise ↑ψ = ϕ if ψ = ϕ. �

Example 1
Assume ϕ = ∃y∀x(P (x, y) → ∃zQ(x, z)) and let ψ be its atomic subformula “Q(x, z)”. Then
we get the following sequence of NMF:

1. ↑Q(x, z) = ∃zQ(x, z);
2. ↑∃zQ(x, z) = (P (x, y)→ ∃zQ(x, z));
3. ↑(P (x, y)→ ∃zQ(x, z))

= ∀x(P (x, y)→ ∃zQ(x, z));
4. ↑∀x(P (x, y)→ ∃zQ(x, z))

= ∃y∀x(P (x, y)→ ∃zQ(x, z)) = ϕ. �

Definition 2 (Iterative maximal formulas)
Let ϕ be a formula and ψ ∈ SUBF[ϕ]. Then the iterative maximal formulas of ψ under ϕ, denoted
as ↑k ψ, is defined inductively as follows:

1. ↑0 ψ = ψ;
2. ↑k+1 ψ =↑ (↑k ψ) if ↑k ψ 6= ϕ, otherwise ↑k+1 ψ =↑k ψ (i.e., if ↑k ψ = ϕ). �

Note that for any ϕ and ψ, we have ↑∞ ψ = ϕ, which denotes the fixpoint of ↑k ψ. In Example
1, we have ↑∞ Q(x, z) =↑3 Q(x, z) = ϕ.

2.2 Circumscription, Stable Models and FLP: Overview

Let ϕ be an FO sentence with a tuple P = P1 . . . Pn of intensional predicate symbols occurring
in ϕ (note that ϕmay also contain extensional predicate symbols). Assume U = U1 . . . Un where
U1, . . . , Un are fresh predicate symbols not mentioned in ϕ and each Ui has the same arity of Pi
for 1 ≤ i ≤ n. By SMP[ϕ], we denote the SO formula

ϕ ∧ ¬∃U[U < P ∧ ϕ∗(U)], (1)

where U < P is the shorthand for the formula∧
1≤i≤n

∀x(Ui(x)→ Pi(x)) ∧ ¬
∧

1≤i≤n

∀x(Pi(x)→ Ui(x)),

and ϕ∗(U) is recursively defined as follow:

1. ⊥∗ = ⊥;
2. Pi(x)∗ = Ui(x) (for 1 ≤ i ≤ n);
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3. (�xϕ)∗ = �xϕ∗ (for � ∈ {∃,∀});
4. (ϕ� ψ)∗ = ϕ∗ � ψ∗ (for � ∈ {∨,∧});
5. (ϕ→ ψ)∗ = (ϕ∗ → ψ∗) ∧ (ϕ→ ψ),

and where ¬ϕ is viewed as ϕ→ ⊥. Then we have that a τ(ϕ)-structureM is a P-stable model
of ϕ (or simply called a stable model if there is no confusion) iffM |= SMP[ϕ] (Ferraris et al.
2011).

If we simply define the case for (ϕ→ ψ)∗ as (ϕ∗ → ψ∗) (i.e., omitted the (ϕ→ ψ) part), then
SMP[ϕ] becomes CIRCP[ϕ], where CIRC is the circumscription operator as originally defined
by McCarthy (1980) and further developed by Lifschitz (1994).

Recently, Bartholomew et al. (2011) proposed an FO counterpart of the FLP semantics, as pre-
sented in (Faber et al. 2011), via the so-called “modified circumscription” 2. This FO counterpart
of FLP is only applicable to a certain class of FO theories called “general logic programs”. A
general logic program is a set of FO formulas called rules of the form B → H , where B and
H are arbitrary FO formulas called the rule’s body and head, respectively. Similarly to the FO
stable model, the FO FLP is also defined via “FO reducts.” Indeed, given a general logic program
Π, the FO FLP semantics is defined via the SO sentence FLPP[Π̂] as follows:

Π̂ ∧ ¬∃U[U < P ∧ Π̂4(U)], (2)

where: Π̂ is the conjunctions of all the universal closures of the rules B → H ∈ Π; Π̂4(U)

denotes all the universal closures of the formulas of the form B ∧ B(U)→ H(U); and B(U)

(similarly for H(U)) denotes the formula obtained from B by replacing all the occurrences of
predicates from P by those corresponding ones from U. Then we say that a τ(Π)-structureM
is an FLP stable model of Π iffM |= FLPP[Π̂].

3 Constructive Circumscription

The basic idea of constructive circumscription is to circumscribe only those extents of predicates
that can be “explicitly constructed” or justified within the underlying formula. As an example,
let ϕ be the following sentence:

∀x(R(x)→ Q(x)) (3)

∧∀x(S(x)→ R(x) ∨ P (x)) (4)

∧∀x¬¬P (x) (5)

∧∀x¬¬Q(x), (6)

where S is the only extensional predicate. Then since ∀x¬¬P (x) and ∀x¬¬Q(x) are classi-
cally equivalent to ∀xP (x) and ∀xQ(x), respectively, CIRCPQR[ϕ] will entail both ∀xP (x)

and ∀xQ(x). However, if “¬” is explained as negation as failure, the intended extents of PQR
should only be those ones of P that are contained in S (via (4)), and those ones of Q that are
contained in R (via (3)), while R in turn is contained in S (via (4)). In other words, (5) and (6)
here are treated as constraints when negation as failure is considered. Thus, in contrast with tradi-
tional circumscription, constructive circumscription aims to circumscribe subject to the intended
extents of P and Q.

2 Note that the SM operator is also viewed as a form of modified circumscription.
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Before we formally introduce the notion of constructive circumscription, we will need some
useful notions from (Ferraris et al. 2011). We say that an atom P (x) has a positive occurrence
in a formula ϕ if it is within a scope of an antecedent of an even number of implications. If the
number of such implications are odd, then we say it has a negative occurrence. In addition, if the
number of such implications are zero, then we say it is strictly positive.

3.1 Atomic Construction Formulas

An atomic construction formula encodes how a particular occurrence of an atom might explain
(or construct) the inclusion of a predicate’s extent in a model. As a motivating example, consider
the following sentence:

∀y(S(y)→ ∃x(Q(x, y)→ P (x))).

Then an explanation for some extent, for instance, P (a) of P , is that: (1) there exists some x
such that P (x) holds with x = a; (2) Q(x, y) also holds for some y given x = a; and (3) S(y)

also holds. That is, we backtrack the derivation along the chain of implications that lead to the
atom P (x).

For a pair of predicates (P,Q), we introduce a new predicate ≤PQ, called the comparison
predicate, whose arity is the sum of the arities of P and Q. Then for two atoms P (x) and Q(y),
by P (x)̂ < Q(y), we denote the conjunction≤QP (x,y)∧¬ ≤PQ (y,x), such that its intuitive
meaning is that P (x) is used for deriving Q(y) and not the other way around.

Now for a given formula ϕ and atom P (x), let ϕ<P (x) denote the formula obtained from ϕ

defined inductively as follows (where in the following, � ∈ {∃,∀} and ⊕ ∈ {→ ∧,∨}):

1. (�yϕ)<P (x) = �y(ϕ<P (x)) (move into quantifiers);
2. (ϕ⊕ ψ)<P (x) = (ϕ<P (x) ⊕ ψ<P (x)) (commute on connectives);

3. Q(y)<P (x) =Q(y) ∧Q(y)̂ < P (x) ifQ(y) is a positive occurrence in ϕ, andQ(y)<P (x)

= Q(y) otherwise;
4. ⊥<P (y) = ⊥,

Intuitively, ϕ<P (x) encodes how ϕ can be established (derived) without using P (x) by also
enforcing Q(y)̂ < P (x) for each positively occurring atom Q(y) of ϕ.

Definition 3 (Atomic construction formula)

For a formula ϕ, let P (x) ∈ SUBF[ϕ] and y a fresh tuple of distinct variables of arity x. We
define the atomic construction formula of P (x) under ϕ, denoted as ⇑k P (x)[y] 3, inductively
as follows:

1. ⇑0 P (x)[y] is defined as y = x.
2. assuming ⇑k P (x)[y] = φ and ↑k P (x) = ψ, we define ⇑k+1 P (x)[y] based on

3 Note that we replaced ‘↑’ by ‘⇑’ to differentiate the two different kinds.
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the following cases about ↑k+1 P (x), such that

⇑k+1 P (x)[y] =



∃xφ, if ↑k+1 P (x) = ∃xψ
∀xψ ∧ ∃xφ, if ↑k+1 P (x) = ∀xψ
φ, if ↑k+1 P (x) = (ξ ∨ ψ)

ξ ∧ φ, if ↑k+1 P (x) = (ξ ∧ ψ)

⊥, if ↑k+1 P (x) = (ψ → ξ)

φ ∧ ξ<P (y), if ↑k+1 P (x) = (ξ → ψ),

where we view ¬ϕ as ϕ→ ⊥.
For the case where ↑k+1 P (x) = ↑k P (x) (i.e., the fixpoint of ↑k P (x)), we define ⇑k+1

P (x)[y] also as ⇑k P (x)[y] (i.e., its fixpoint), denoted as ⇑∞ P (x)[y]. �

Definition 3 defines the expression of an explicit construction of an extent P (a) of P via the
occurrence of an atom P (x) in ϕ. That expression of the “explicit construction” via P (x) will
eventually be the fixpoint of ⇑∞ P (x)[y]. Also note that since the length of formula ϕ is finite,
so is that of ⇑∞ P (x)[y].

In a nutshell, we achieve this by looking at an occurrence of an atom P (x) in ϕ, and then
working our way “upwards” (backtracking), or bottom-up through the formula, starting from the
atom P (x). Indeed, for the base case, we have that ⇑0 P (x)[y] is just y = x. Then, assuming
we already have ⇑k P (x)[y] = φ and ↑k P (x) = ψ, we now define ⇑k+1 P (x)[y] based on the
following cases about ↑k+1 P (x), such that if ↑k+1 P (x) is:

• ∃xψ, then for a valid justification of φ, there must be some a in the domain of the under-
lying structure to establish φ[x/a]. Hence, we must have that ⇑k+1 P (x)[y] = ∃xφ;

• ∀xψ, then for a valid justification of φ, in addition to the requirement that ∃xφ must hold,
we must also have that ∀xψ holds as well, i.e., ∀xψ ∧ ∃xφ;

• (ψ ∨ ξ) for some ξ, then it must be that φ is at least true. Hence, we just retain φ so that
⇑k+1 P (x)[y] = φ;

• (ψ ∧ ξ) for some ξ, then in addition to the requirement that φ itself must hold, ξ must also
hold as well, i.e., ξ ∧ φ (similarly to the case of the universal quantifier “∀xψ”);

• (ψ → ξ) (i.e., ψ is in the antecedent), then there is no constructive reason to assume the
existence of ψ, therefore, we must have that ⇑k+1 P (x)[y] = ⊥;

• (ξ → ψ) (i.e., ψ is in the consequent), then in the spirit of constructivism, it must be that
ψ exists (or constructed) due to ξ and such that P (y) is not used in the establishment ξ,
therefore we must have that φ ∧ ξ<P (y).

Example 2

Assume ϕ to be the formula as follows:

ϕ = ∀x(P (x)→ ∃y[P (x) ∨ ∀z(Q(x, z) ∧R(x, y))]).
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Then for the atom R(x, y) ∈ SUBF[ϕ] and tuple y1y2 of fresh distinct variables, we have:

⇑0 R(x, y)[y1, y2] = y1 = x ∧ y2 = y;

⇑1 R(x, y)[y1, y2] = Q(x, z)∧ ⇑0 R(x, y)[y1, y2];

⇑2 R(x, y)[y1, y2] = ∀z(Q(x, z) ∧R(x, y)) ∧ ∃z(⇑1 R(x, y)[y1, y2]);

⇑3 R(x, y)[y1, y2] =⇑2 R(x, y)[y1, y2] (i.e., since we encountered an “ ∨ ”);

⇑4 R(x, y)[y1, y2] = ∃y(⇑3 R(x, y)[y1, y2]);

⇑5 R(x, y)[y1, y2] = P (x) ∧ P ( ̂x) < R(y1, y2)∧ ⇑4 R(x, y)[y1, y2]

⇑6 R(x, y)[y1, y2] = ϕ ∧ ∃x(⇑5 R(x, y)[y1, y2])

= ϕ ∧ ∃x[P (x) ∧ P ( ̂x) < R(y1, y2)

∧ ∃y(∀z(Q(x, z) ∧R(x, y)) ∧ ∃z(Q(x, z) ∧ y1 = x ∧ y2 = y))],

where P ( ̂x) < R(y1, y2) denotes the formula ≤PR (x, y1, y2) ∧ ¬ ≤RP (y1, y2, x) and ⇑∞
R(x, y)[y1, y2] = ⇑6 R(x, y)[y1, y2] is the fixpoint. Then ∀y1y2(R(y1, y2)→⇑∞ R(x, y)[y1, y2] )

now expresses the explicit constructor for all extents of R under ϕ. �

3.2 Constructive Models

We now show how the notion of explicit construction is used in constructive circumscription and
where the main idea follows in the lines of the ordered completion (Asuncion et al. 2012).

Definition 4 (Explicit construction formula)
Let ϕ be an FO sentence and P = P1 . . . Pn its tuple of distinctive intensional predicates from
the set Pint. In addition, let T be the tuple of distinctive comparison predicates from the set
{≤PQ| P,Q ∈ Pint}. Then by ϕEC

P (“EC” for explicit construction), we denote the following
FO sentence: ∧

1≤i≤n

∀y(Pi(y)→
∨

Pi(x)∈SUBF[ϕ]

⇑∞ Pi(x)[y] ) ∧ TRANS(T) (7)

where TRANS(T) denotes the sentence∧
1≤i,j,k≤n

∀xyz(≤PiPj
(x,y)∧ ≤PjPk

(y, z)→≤PiPk
(x, z) ), (8)

which encodes that the comparison atoms satisfy a notion of transitivity. �

Definition 5 (Constructive circumscription formula)
Let ϕ be an FO sentence, P be the tuple of its distinctive intensional predicates, and U and T

be two disjoint tuples of predicate variables of the same length as P and comparison predicates
respectively. Then by C-CIRCP[ϕ] (“C-CIRC” for constructive circumscription), we denote the
following SO sentence:

ϕ ∧ ϕEC
P ∧ ¬∃UT[U < P ∧ (ϕ ∧ ϕEC

P )(UT)], (9)

where (ϕ ∧ ϕEC
P )(UT) denotes the formula obtained from ϕ ∧ ϕEC

P by replacing all predicates
from P and all comparison predicates by those corresponding ones from U and T respectively.
�
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Definition 6 (Constructive models)
For an FO formula ϕ with tuple P of intensional predicates Pint, a τ(ϕ)-structureM is a con-
structive model of ϕ iffM can be expanded to a model of C-CIRCP[ϕ]. �

Intuitively, in Definition 5, formula ϕ ∧ ϕEC
P captures the explicit derivation order for the un-

derlying reasoning in ϕwhile formula ¬∃UT[U < P∧(ϕ∧ϕEC
P )(UT)] imposes the minimality

requirement on all intensional predicates P. Therefore, constructive models in Definition 6, i.e.,
models of C-CIRCP[ϕ], are the P-minimal models of ϕ ∧ ϕEC

P with the comparison predicates
allowed to vary.

Example 3
Let ϕ be the following propositional formula: [((p→ q)→ r)→ p]∧ (q → r)∧ (r → q). Then
it can be shown that ϕ has the two stable models {} and {p}, while {} is its only constructive
model. Indeed, since ϕEC

pqr from Definition 4 is 4:

[p→ ((p ∧ p̂ < p→ q)→ (r ∧ r̂ < p))] ∧ [q → r ∧ r̂ < q] ∧ [r → q ∧ q̂ < r] (10)

∧
∧

t1,t2,t3∈{p,q,r}

(≤t1t2 ∧ ≤t2t3→≤t1t3), (11)

then through the transitivity axioms (11), ϕEC
pqr would imply that p, q and r are all circularly

justified. Hence, none of them can be in any model of ϕEC
pqr. Incidentally, if we conjunct ϕ with

¬¬p, then ϕ ∧ ¬¬pwill have {p} as both its only minimal and stable models, which still happens
to be circularly justified. �

4 Properties of Constructive Models

Now we show that constructive models satisfies the following three desirable properties: anti-
chain, supportedness, and non-circular derivation. Given a structureM and a tuple of predicate
symbols P,M�P denotes the restriction ofM to those predicates whose symbols are mentioned
in P. We also denoteM′�P ⊂M�P if PM

′ ⊂ PM for each predicate symbol P of P.

Theorem 1
The constructive models have the anti-chain property with respect to P. That is, ifM is a con-
structive model of ϕ, then there does not exists anM′ whereM′�P ⊂ M�P such thatM′ is
also a constructive model of ϕ. �

Now we try to provide a logical characterization on the anti-chain property. Given an SO
formula Φ with a tuple of intensional predicates P, we define ΦAC

P (AC for anti-chain) as follows:
∀UV(U < P→ ¬Φ(UV)), where U is a tuple of fresh predicate variables of the same length
as P, and V is the tuple of predicate variables corresponding to the tuple of predicates in Φ that
are allowed to vary 5. Then ΦAC

P captures those models of Φ that are P-minimal with respect to
the varying and the fixed extensional predicates.

Proposition 1
C-CIRCP[ϕ] |= [C-CIRCP[ϕ]]AC

P . �

4 We simplified for the fact that ϕEC
pqr will be conjuncted with ϕ.

5 In the case of constructive circumscription, V will correspond to those newly introduced auxiliary comparison pred-
icates, while for circumscription, stable models and FLP, V is empty, as no new predicate was introduced in their
semantics definitions.
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Definition 7 (Supportedness formula)
For an FO formula ϕ, we define a formula, denoted by ϕSUP

P (“SUP” for “support”), as follows
6: ∧

1≤i≤n

∀y(Pi(y)→
∨

Pi(x)∈SUBF[ϕ]

⇑SUP
∞ Pi(x)[y] ), (12)

where ⇑SUP
∞ Pi(x)[y] is defined as in ⇑∞ Pi(x)[y] via Definition 3 except that, we do not

enforce the comparison atoms in the case of the implication (ξ → ψ) into ξ (hence, no need
for the transitivity axioms), i.e., while we have ⇑k+1 P (x)[y] = φ ∧ ξ<P (y) in Definition 3, we
simply have ⇑SUP

k+1 P (x)[y] = φ ∧ ξ for ⇑SUP
k+1 P (x)[y]. �

Generally speaking, we can view ϕ ∧ ϕSUP
P as a generalization of the notion of Clark’s com-

pletion to arbitrary FO formulas. In fact, ϕSUP
P captures the notion of a “supported model,” i.e.,

there is an explanation for an extent of a predicate in a model of ϕ.

Proposition 2
C-CIRCP[ϕ] |= ϕ ∧ ϕSUP

P . �

As we mentioned in the previous section, formula ϕ ∧ ϕEC
P captures the explicit derivation

order for the reasoning in ϕ given P as the tuple of intensional predicates. Furthermore, from
the construction of ϕEC

P (i.e., Definitions 3 and 4), it is observed that ϕ ∧ ϕEC
P precisely captures

non-circular derivation order in the sense that an extent P (a) of P will never be used to establish
the truth of itself.

Now let ∃TϕEC
P be the formula obtained from ϕEC

P by replacing all comparison predicates
with the tuple T of comparison predicate variables accordingly. Then ϕ ∧ ∃TϕEC

P encodes the
non-circular derivation order under τ(ϕ).

Proposition 3
C-CIRCP[ϕ] |= ϕ ∧ ∃TϕEC

P . �

5 Comparisons with Circumscription, Stable Models and FLP

In this section, we provide some detailed comparisons of C-CIRC with CIRC, SM, and FLP.
Firstly, we have the following result showing that C-CIRC,CIRC, and SM coincide on impli-
cation free formulas.

Proposition 4
Let ϕ be an implication free FO sentence and P a tuple of intensional predicates of ϕ, we have
Mod(C-CIRCP[ϕ])�τ(ϕ)= Mod(CIRCP[ϕ]) = Mod(SMP[ϕ]) 7. �

In the following, we will assume that ϕ is an arbitrary FO sentence, and P is the tuple of
intensional predicates of ϕ.

Theorem 2
CIRCP[ϕ] |= [CIRCP[ϕ]]AC

P , CIRCP[ϕ] 6|= ϕ ∧ ϕSUP
P , and CIRCP[ϕ] 6|= ϕ ∧ ∃TϕEC

P . �

6 Note that the following formula is similar to ϕEC
P apart from where we have ⇑∗∞ Pi(x)[y] instead of ⇑∞ Pi(x)[y],

and where we do not conjunct it with TRANS(T).
7 Here Mod(C-CIRCP[ϕ])�τ(ϕ) denotes the set of all models of C-CIRCP[ϕ] restricted on τ(ϕ).
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Theorem 3
SMP[ϕ] 6|= [SMP[ϕ]]AC

P , SMP[ϕ] |= ϕ ∧ ϕSUP
P , and SMP[ϕ] 6|= ϕ ∧ ∃TϕEC

P . �

Theorem 3 indicates that in general, the stable model semantics does not enforce non-circular
derivation order as compared to constructive models, although it does embed “supportedness”.
This is also evident from Example 3 where ϕ has the two stable models {} and {p}, and where
the stable model {p} complies with the circular derivation through [((p→ q)→ r)→ p].

Theorem 4
Let Π be a general logic program and assume for all rules B→H ∈ Π that H contains no impli-
cations 8. Then we have that FLPP[Π̂] |= [FLPP[Π̂]]AC

P , FLPP[Π̂] |= Π̂ ∧ Π̂SUP
P , and FLPP[Π̂]

6|= Π̂ ∧ ∃TΠ̂EC
P . �

6 Concluding Remarks

In this paper, with the anti-chain, supportedness, and non-circular derivation being three impor-
tant and desirable properties for most nonmonotonic reasoning tasks, we showed that among
circumscription, the general theory of stable models, and the FLP semantics, our constructive
circumscription is the only one that satisfies all these rational properties. In our full paper, we
further show that our constructive circumscription may be extended to aggregates and choice
rules 9 without compromising its reasoning features.
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