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Abstract—With the popularity of cloud storage, how to verify
the integrity of data on the cloud has become a challenging
problem. Traditional verification framework involves the Third
Party Auditors (TPAs) which are not entirely credible. In
this paper, we present a framework for blockchain-based data
integrity verification in P2P cloud storage, making verification
more open, transparent, and auditable. In this framework, we
present Merkle tree for data integrity verification, and analyze
the system performance under different Merkle trees structures.
Furthermore, we develop rational sampling strategies to make
sampling verification more effective. Moreover, we discuss the
optimal sample size to tradeoff the conflict between verification
overhead and verification precision, and suggest two efficient
algorithms of order of verification. Finally, we conduct a series
of experiments to evaluate the schemes of our framework.
The experimental results show that our schemes can effectively
improve the performance of data integrity verification.

Keywords-P2P Cloud Storage, Blockchain, Data Integrity Ver-
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I. INTRODUCTION

Due to the rapid growth of information sharing and ex-
change, more and more companies and individual users choose
to store their data on the cloud. Traditional data privacy
and integrity is ensured through data encryption, multiple
signatures, anonymous mechanisms and so on. However, users
lose control of these data when these data are stored on
the cloud. Therefore, how to verify the integrity of the data
stored on the cloud becomes an important problem. The data
storage and integrity verification workflow framework under
traditional cloud storage is shown as Fig. 1. In this framework,
there are three objects: Clients, Cloud Storage Servers (CSS),
and Third Party Auditor (TPA) [17]. The client stores his own
data on the CSS, and sends relevant information to the TPA to
verify the integrity of the data. When data integrity verification
is performed, the CSS will submit the proofs to the TPA.
Finally, the TPA verifies the integrity of the cloud-stored data
based on these proofs and the user’s previously transmitted
useful information.

The rise of Peer-to-Peer (P2P) cloud storage, which ex-
ploiting a large amount of idle disk space, makes it possible
to rent cheap storage space. In a P2P cloud storage system,
each user can be either a client that rents storage space or a
lender that lends his own idle storage space. Users can obtain

cheap storage space, and lenders can benefit from lending their
idle space. Sia [15] and Storj [18] are two mature P2P cloud
storage platforms. Each user in these platforms can share its
own storage space and gain revenue from the sharing. The
redundant backup mechanism in these platforms makes the
data storage more reliable.

Starting from an article by Satoshi Nakamoto in 2008 [11],
Bitcoin has entered our horizon and triggered an upsurge
in blockchain technology. In a simple term, blockchain is a
distributed database that includes transactions, blocks, con-
sensus mechanisms, smart contracts, and so on. Each work
in the blockchain is recorded in the form of a transaction.
Multiple transactions form a block, and multiple blocks are
linked together to form a blockchain. The header field of each
block contains the hash of the previous block, thus forming
an ordered chain. The advantage of blockchain technology is
that it provides a decentralized, open, transparent, auditable,
and tamper-proof record. All blockchain participating nodes
can verify the transactions recorded on the chain. These
transactions are permanently recorded on the chain and cannot
be maliciously modified. The consensus mechanism in the
blockchain ensures that the state of the entire blockchain
is consistent without the participation of any third parties.
Smart contracts are contracts stored in the blockchain. When
the system meets the contract execution conditions, the con-
tract automatically executes the corresponding content. The
emergence of smart contracts makes the blockchain more
intelligent.
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Fig. 1. Data storage and integrity verification on the cloud under a traditional
architecture. There is only data flow between client and cloud storage servers.
Third party auditor assists clients in verifing data integrity.



In the traditional scenario where the TPA is introduced for
data integrity verification, the TPA may not be completely
trusted. However, there are also trust issues in verification s-
cenarios that do not involve TPA. From the perspective of CSS,
malicious Clients may intentionally claim that their data is not
completely preserved by CSS, thus extorting damages from
CSS. From the Clients perspective, the dishonest CSS may still
claim to guarantee the integrity of the data without saving the
complete data, thus harming the Clients interests. Therefore,
we can introduce blockchain for data integrity verification in
the case of mutual distrust between CSS and Clients. Sia [15]
is a P2P cloud storage platform that combines blockchain for
data integrity verification. On this platform, blockchain is used
to record relevant information for data integrity verification.
Such information will be stored permanently on the blockchain
and cannot be modified, which makes the verification results
more reliable. However, Sia [15] neither provided a complete
verification mechanism, nor considered how to select partial
data shards for verification. While in the case of limited
resources or high real-time requirements, it is necessary to
verify the integrity of the whole data by verifying partial
data shards. Therefore, how to select partial data shards and
guarantee the performance of data integrity verification is a
problem worth studying.

In this paper, we firstly propose a general data integrity
verification framework to solve this problem for blockchain
based P2P cloud storage. Then we analyze the performance of
Merkle trees with different structures, and propose a sampling
strategy to select shards for validation. The main contributions
of this paper are summarized as follows.

• We propose a general data integrity verification frame-
work for blockchain based P2P cloud storage. This frame-
work solves the problem of untrustworthy in traditional
verification mechanism. In this framework, clients and
cloud servers that do not trust each other can interact.

• Based on the proposed framework, we use Merkle trees
for data integrity verification based on blockchain and
analyze the performance of Merkle trees under different
structures. Then, we present a sampling strategy and
discover an optimum sample size to verify data integrity.
These make it more effective to verify the integrity of
data when only a part of data can be verified because of
limited computation resources.

• We conduct extensive simulations to evaluate the per-
formance of the proposed framework by implementing
a prototype system. Simulation results demonstrate the
feasibility of the proposed framework and validates our
theoretical analysis.

The rest of this paper is organized as follows. In Section
II, we discuss the related work from three aspects. Then,
Section III describes the detailed design of our framework.
Experimental studies are presented in Section IV. Finally,
Section V concludes the paper with some remarks.

II. RELATED WORK

This section firstly reviews the P2P cloud storage. Then,
we introduce how data integrity verification works in tradi-
tional cloud storage. Finally, the research work on applying
blockchain to verify data integrity is elaborated.

A. P2P Cloud Storage

The mainstream cloud storage systems, such as Google’s
GFS (Google File System) [3], Amazon’s elastic cloud, and
open source HDFS (Hadoop Distributed File System), have
adopted a similar centralized architecture, in which there is a
huge risk of single point failure. The central server is easy to
become the bottleneck of the system. Once the central server
collapses, it may cause the whole cloud storage service to
be unavailable. Many features of P2P systems, such as non
centralization, scalability, robustness, high performance and
load balancing, can solve this kind of problem. Ji-Yi et al.
proposed a general model of P2P based cloud storage system,
which can provide higher quality of cloud storage services [8].

Some other researchers work on data management in P2P
cloud storage. As cloud computing is generally regarded as
the technology enabler for Internet of Things, Teing et al. tried
to ensure the most effective collection of evidence from P2P
cloud enabled IoT infrastructure [14]. Since cloud severs and
users usually locate outside the trusted domain of data owners,
P2P storage cloud brings new challenges for data integrity and
access control when data owners store data on it. To address
this issue, He et al. designed a ciphertext-policy attribute-
based encryption scheme and a proxy re-encryption scheme
[7]. Based on these schemes, they further proposed a secure,
efficient and fine-grained data access control mechanism for
P2P storage cloud. However, there is little work on data
integrity verification in P2P cloud storage.

B. Data Integrity Verification in the Traditional Cloud Storage

There are mainly two types of traditional data integrity
verification mechanisms. One is Provable Data Possession
(PDP); the other is Proofs of Retrievability (POR). PDP can
quickly verify whether the data stored on the cloud is intact,
while POR can restore the damaged data when the data in-
tegrity is compromised. The basic PDP authentication method
is proposed by Deswarte et al [6]. Before the user uploads
his own data, he uses the Hash-based Message Authentication
Code (HMAC) to calculate the Message Authentication Code
(MAC) value of the data and saves it at local. When verifying
these data, the user first downloads the data stored on the
cloud, then calculates the MAC value of the downloaded file,
and compares it with the MAC value previously saved to
determine whether the data integrity is guaranteed.

Although this mechanism is simple, directly downloading
complete data requires a lot of resources and may lead to
leakage of data privacy. Then Seb et al. proposed a block-
based scheme to reduce the computational overhead [12].
Due to the deterministic verification method, the verification
result may not be completely correct. Then Ateniese et al.



proposed using probabilistic strategies to complete the in-
tegrity verification. They used the homomorphic properties of
RSA signature mechanism, gathered evidence in a very small
value, which greatly reduced the communication overhead [1].
Subsequently, Curtmola et al. implemented the data integrity
verification mechanism in the case of multiple copies, but it
didn’t support the dynamic operation of data [5]. Ateniese et
al. first considered the dynamic operation of data. They pre-
sented simple modified mechanism of the PDP based on their
previous work [1], making it support dynamic data manipu-
lation [2]. However, this mechanism does not support insert
data. In response to this problem, Wang et al. implemented
a PDP mechanism that supports full dynamic operation. This
mechanism uses the Merkle tree to guarantee the correctness
of the data block, and uses the Boneh-Lynn-Shacham (BLS)
signature to guarantee the correctness of the data block value
[17]. Later, they also proposed a privacy protection verification
scheme that uses random masking techniques to make TPA
unable to know the data information provided by cloud service
providers.

Although the PDP authentication mechanism can efficiently
verify the integrity of data, it cannot recover invalid data.
Juels et al. proposed a sentinel-based POR mechanism [9].
Nevertheless, it can only conduct a limited number of veri-
fications. Subsequently, Shacham et al. used the BLS short
message signature mechanism to construct homomorphic ver-
ification tags, which can reduce the communication overhead
for verification [13]. However, it is difficult to be implemented.
Wang et al. proposed using the linear features of the error
correction code to support partial dynamic operations, while
it could not support the dynamic insertion of data [16]. Chen et
al. optimized Wang’s mechanism and used the Reed-Solomon
erasure code technique to recover the failed data, which can
improve the recovery efficiency, but increase the computational
cost [4].

C. Blockchain based Data Integrity Verification

The problems of incomplete trust caused by traditional data
integrity verification make it an inevitable trend to integrate
blockchain technology into data integrity verification of cloud
storage. Liu et al. applied the blockchain technology to the
Internet of Things (IoT) and proposed a blockchain-based
data integrity service framework. Without relying on TPA
in this framework, data owners and data consumers can be
provided with more reliable data integrity verification [10].
However, their work is to target at IoT and is not applicable
to scenarios with P2P cloud storage. How to design a universal
data integrity verification framework in P2P cloud storage is
a worthy research issue. It is because that each node can
be either a storage provider or a storage renter under the
combination of P2P cloud storage and blockchain. Therefore,
this paper focuses on proposing a general and practical data
integrity verification framework combined with the blockchain
under the P2P cloud storage scenario.

III. THE PROPOSED METHOD

In this section, we firstly introduce our framework for
data integrity verification. Then, we describe the structure of
the Merkle trees. The performance of different structures of
Merkle trees are analyzed in terms of computation overhead
and communication overhead. Finally, we detailedly illustrate
some strategies of sampling verification and propose the
method about calculating the best sample size.

A. Data Integrity Verification Framework

The framework of data storage and integrity verification
under blockchain based P2P cloud storage is shown as Fig.
2. In this framework, there are three entites: Clients, Cloud
Storage Servers (CSS), and Blockchain (BC). Clients upload
their own data to the CSS and use BC to verify data integrity.
The overall workflow is divided into two stages. As shown
in Fig. 2(a), there are five steps in the preparation stage. In
the first step, the client will slice his data into several shards,
then uses these shards to construct a hash Merkle trees. In the
second step, the client and CSS will agree on the hash Merkle
trees. In the third step, the client will store the root of this hash
tree denoted as root1 on the blockchain. In the fourth step, the
client uploads his data and public Merkle trees to CSS. In the
fifth step, CSS return the address that stores the client’s data
to client. As shown in Fig. 2(b), there are also five steps in
the verification phase. In the first step, the client will send an
challenge number si to CSS, which selects shard i to verify.
In the second step, CSS use hash function to calculate a hash
Digest i′, according to si and shard i. In the third step, CSS
send Digest i′ and the corresponding auxiliary information to
BC. In the fourth step, the smart contract on the blockchain
will calculate a new hash root denoted as root2, and compare
root1 with root2. If they are equal, the data integrity has been
guaranteed; otherwise, the data integrity has been corrupted.
In the last step, the BC will return the verify result to the
client.

In this framework, clients will place the root of the Merkle
trees on the blockchain before uploading the data. Due to
the non tamperability property in blockchain, any client or
CSS cannot modify the root stored on the blockchain, which
makes integrity verification more credible. At the same time,
due to the distributed nature of the blockchain, there is little
possibility that the data on the blockchain will be damaged.
Hence, the data integrity verification is more reliable.

B. Structure of the Merkle Tree

The advantage of using Merkle trees to verify the data
integrity is that the entire data file can be verified by a small
segment of the entire data shards, which is relatively small
regardless of the size of the original file. The structure of
Merkle trees is shown as Fig. 3. The public part of this tree
needs to be uploaded to the P2P CSS to assist in validating
each data shard of the private part. The private part of this
tree is composed of data shards shardi and random challenges
ri. The random challenges can only be sent to the P2P CSS
when the client needs to verify the corresponding data shards.



Therefore, the private part is locally saved by the clients.
The data uploaded by clients to P2P CSS are the data shards
after data slicing. Since it is a tree structure, we can study
the Merkle trees with different branches. This paper analyzes
the different structures of Merkle trees, then discusses the
communication overhead and computational overhead of the
system under these structures.

Blockchain

Smart 

contract

Lender2

Lender1

Lender3

Cloud Storage 

Servers

5.address

1.data->Merkle tree

Client

2.agreement on  public Merkle tree

4.data,public Merkle tree

(a) Preparation stage

Lender2

Lender1

1.si
2.compute

Digest i’

Client

Lender3

Cloud Storage

Servers

Blockchain

4.check

(b) Verification stage

Fig. 2. Illustration of blockchain based data integrity verification framework.
(a) shows the workflow of user uploading data to P2P cloud storage servers.
(b) shows the workflow of verifying data integrity in P2P cloud storage servers
combined with blockchain.

1) Communicational Cost: Since the public tree needs to be
passed from the user to the cloud servers, the size of the public
tree is proportional to the communication cost. Assuming that
the output degree of each node of the tree is m, and the total
number of leaf nodes, namely the total number of shards, is
n, then the total number of nodes of the public tree is:

sum(m) = m0 +m1 +m2 + · · ·+mlogmn

= m0 +m1 +m2 + · · ·+ n.
(1)

To explore the relationship between m and sum(m), we
assume that the number of branches of the two types of Merkle
trees are m1, m2 respectively, which is satisfied with m1 =
(m2)

2.
When m1 = (m2)

2 and n is fixed, the statement that
sum(m1) < sum(m2) is true. So we can get the conclusion
that when m (the branching of the Merkle tree) increases,
the size of public tree decreases, the communication cost
decreases.
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Fig. 3. The structure of Multi-Branch Tree. There are two parts of this Merkle
Trees, public and private. The arrows in this figure represent performing a hash
function. The bottom layer of the private part consists of shards shardi and
random challenging numbers ri. The second layer of the private part is the
hash result Digesti of the bottom layer. Leafmn in the public part of the
Merkle tree is the nth leaf node of the m layer. The top of the tree is the
hash root of this Merkle Trees, denoted as R. The public part is uploaded to
cloud storage servers, and the private part is stored by the client.

2) Computational Cost: We measure the computational
cost by calculating the delay in completing the computation,
because the computational cost is proportional to the compu-
tational latency.

(i) Verify Shards - The latency of verifying shards = calcu-
lation times × time cost of each calculation, and the
calculation times of each shard is F1(m) = logmn.
When n is fixed, F1(m) decreases as m increases. So
the latency of verifying shards decreases as m increases.

(ii) Generate Merkle Trees - The latency of generating
Merkle trees is proportional to the size of public tree.
From previous we know that the total number of nodes
of the public tree decreases as m increases. So the latency
of generating Merkle trees decreases as m increases.

(iii) Generate Auxiliary Path - The latency of generating the
auxiliary path is proportional to the size of the auxiliary
path. The size of the auxiliary path is F2(m).

F2(m) = (m− 1)logmn = (m− 1)
lnn

lnm

= lnn(
m

lnm
− 1

lnm
)(m ≥ 2). (2)

F2(m) increases as m increases. But each element in
the auxiliary path is a hash string, so that it takes up
little memory overhead. It is also very quick to get the
auxiliary path through the Merkle trees (as shown in the
experiment), the cost of calculation is small. Therefore,
the additional communication and computational costs
of the auxiliary path caused by the multi-branch Merkle
trees structure are negligible.

C. Sampling Verification

Due to the limitation of real-time requirement, there is no
need to verify all data shards to confirm the data integrity.
In these cases, we need to choose a part of shards to verify.



Selecting a portion of the shards from the overall data shards
for validation is regarded as a sampling problem. In our
scenario, we choose random sampling strategy because the
difference between each data shard is very small. Then,
we adopt repeated sampling (sampling with replacement) to
ensure that the probability of each shard to be chosen is the
same, which guarantees the fairness.

1) Sampling Strategy: We adopt two sampling strategies:
simple random sampling and stratified sampling. Firstly, sim-
ple random sampling is to generate sampling data through
random functions. Secondly, stratified sampling is to stratify
the overall data according to certain characteristics and then
perform simple random sampling in each layer.

(i) Simple Random Sampling - The random function is
used to randomly select shards for verification. Simple
random sampling was first adopted at the beginning of
the operation of the system, because we knew little about
the service providers at this time.

(ii) Stratified Sampling - After a period of simple random
sampling, we would get the service providers’ ability to
guarantee data integrity. Higher ability means a higher
probability of preserving complete data. According to
the grade of service providers’ ability, we can divide
the providers into several layers. Then perform random
sampling over each layer. Assuming that providers are
divided into three layers, denoted as R1, R2, R3 respec-
tively, the sample sizes for each layer are N1, N2, N3
respectively, and the sample size of sampling is N . We
need to ensure N = N1 + N2 + N3. The sample size
for each layer decreases proportionately to the grade of
the service providers’ ability to guarantee data integrity.

These two sampling strategies are combined to perform
sampling. At the beginning of the system, Simple Random
Sampling will be performed to get these service providers’
credit rating. Higher credit rating means the ability to ensure
higher data integrity. Then, according to these credit rating,
we can divide the providers into several layers, and perform
Stratified Sampling. After a while, we will rerun the Simple
Random Sampling to update the providers at each layer, then
perform Stratified Sampling continue.

2) Sample Size: The total number of validated shards is
called sample size. Sample size of sampling will affect the
cost and precision of verification. For the verification cost,
the larger the sample size, the more pieces of shards need to
be verified, and the higher the verification cost. That is the
verification cost is positively correlated with the sample size.
For the verification precision, the larger the sample size, the
more representative it is of the overall data, and the higher the
verification precision. It is means that the verification precision
is also positively correlated with the sample size.

(i) Verification Cost - A simple linear function can be used
to express the relationship between sample size N and
verification cost C:

C = c0 + c1N, (3)

where c0 > 0, c1 > 0. c0 represents the basic cost, and
c1 represents the influence degree of sample size. The
values of c0 and c1 are not of direct interest, but used to
establish a linear relationship between C and N .

(ii) Verification Precision - Suppose the total number of
data shards is n, where there are f invalid (lost or
tampered) shards, and the sample size of sampling is
N . The variable V is used to represent the number of
invalid shards detected in the sampled data, then the
probability PV represents at least one invalid shard has
been detected, which is:

PV = P {V >= 1} = 1− P {V = 0}

= 1− (
n− f
n

)N .
(4)

Since we used repeated sampling, the probability that a
shard selected randomly was valid is n−f

n . So when the
sample size is N , the probability that no invalid shard is

detected is P {V = 0} = n− f
n
∗ n− f

n
∗ · · · ∗ n− f

n︸ ︷︷ ︸
N

.

(iii) Overall Consideration - The ideal situation is to spend as
little verification cost as possible and obtain as high ver-
ification precision as possible. However, the verification
cost and the verification precision are in contradictory
relationship. What we need to do is finding an optimal
sample size to tradeoff the contradiction between the
verification cost and the verification precision. Therefore,
we propose a Loss Function L(N) to comprehensively
consider the impact of sample size on verification cost
and verification precision, which is:

L(N) = C + λ
1

PV

= c0 + c1N + λ(
1

1− (n−fn )N
),

(5)

where N ∈ (0, n], c1 > 0, c0 > 0. The relationship
among loss, cost and precision reflected by the loss
function should conform to the actual situation. That is,
the higher the cost, the greater the loss, i.e. the loss
is proportional to the cost. The higher the precision,
the smaller the loss, i.e. loss and precision are inverse-
ly proportional. Therefore, we adopted Equation. 5 to
express the relationship among loss, cost and precision
in a simplified way. λ balances the importance between
verification cost and verification precision. In practice,
if we have a different emphasis on validation precision
and validation overhead, we can change the value of λ.
In order to simplify the analysis, we set λ = 1 in our
paper. As c0, c1, n, f can be obtained as constants, L(N)
can be regarded as a function of variable N . Our goal is
to find an optimal N to make L(N) minimum, we could
get the following theorem to calculate the optimal N .
Theorem 1: When N ∈ (0, n], there exists the optimal
N = N2 to make L(N) minimum, where N2 =

loga
(2c1−lna)−

√
lna2−4c1lna

2c1
.



3) Order of Verification: After getting the samples, appro-
priate strategies can be used to determine the order, in which
the samples are verified. We can abstract this issue as follows.
Given the sample size N , assuming there exists an invalid
shard, denoted as i, to discover invalid shard i, which kind of
validation strategies should be adopted so we can verify the
least amount of shards, namely the verification cost is minimal.

Here we apply several basic algorithms, which are sequen-
tial verification, block verification, exponential verification,
binary verification and fibonacci verification, to our new
scenario. Due to the space limitation, we do not elaborate on
the implementation steps of each algorithms in this paper.

IV. EXPERIMENTS

In this section, we firstly describe the implementation of
a prototype system of the proposed framework. Then, we
conduct some experiments about the structure of Merkle
trees and sampling verification, and analyze their performance
through the experimental results.To simplify the description,
symbols used in this paper are shown in Table I.

TABLE I
NOTATIONS IN THIS PAPER

Notation Description
CSS Cloud Storage Servers
TPA Third Party Auditor
BC Blockchain
n the total number of shards
m the branch number of the Merkle trees

BBT Binary-Branching Merkle trees
FBT Four-Branching Merkle trees
EBT Eight-Branching Merkle trees

Blockchain

Cloud Storage 

Servers

P2P 

Storage

Client

Ethereum

IPFS

Ubuntu 16.04 Ubuntu 16.04

Fig. 4. The implementation of data integrity verification framework. In this
fig, solid lines represent logical relationships and dotted lines represent actual
interactions.

A. Framework Implementation

Fig. 4 shows the structure of the data integrity verifica-
tion framework. The blockchain system is implemented by
Ethereum as it is the most mature blockchain platform that
supports smart contract. Clients and CSS are emulated through
Ubuntu 16.04. The P2P cloud storage servers is implemented
by IPFS, standing for Inter-Planetary File system, which is
an attempt to share files in an HTTP manner. This paper
focuses on how to select a part of data shards for data integrity
verification and guarantee high performance. As for the impact

of blockchain on the throughput of the system, this is the
other issue deserves further study, which is not discussed in
the experimental part of this paper. The implementation steps
of this framework is illustrated in Table II.

TABLE II
IMPLEMENTATION STEPS OF DATA INTEGRITY VERIFICATION FRAMEWORK

Step Entities Operation
Preparation Stage

1 Client data → Merkle trees
2 Client ←→ CSS agreement on Merkle trees
3 Client → IPFS upload root1
4 IPFS → Client return ipfs-address-root1
5 Client → BC upload ipfs-address-root1
6 Client → IPFS upload data, Merkle trees
7 IPFS → Client return ipfs address of each shard

Verification Stage
1 Client → IPFS send ipfs address of shard i
2 IPFS compute new root2
3 IPFS → BC send ipfs-address-root2
4 BC compare(ipfs-address-root1, ipfs-address-root2)
5 BC → Client send verification result

B. The Structure of Merkle Trees

we conduct the experiments under three different Merkle
trees structures, which are Binary Branching tree (BBT),
Four-Branching tree (FBT), Eight-Branching tree (EBT). Then
assuming the total number of shards is from 16 to 16384
(16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384). The
performance of the three Merkle trees structures was compared
in terms of the time cost of verifying shards, the time cost of
building Merkle trees, and the time cost of generating auxiliary
path.
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Fig. 5. The relationship between the verification latency and the total number
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Since n and m need to satisfy the relationship n = mk(k =
0, 1, 2, ..., ) to form a full tree, the n that different m can take
is not completely the same. In the figure, the total number
of shards that BBT, FBT, EBT can obtain is not exactly the
same. Fig. 5 shows that EBT performs best and BBT performs
worst in terms of the time cost of verifying shards. From Fig.
6, we can see that FBT and EBT are significantly better than
BBT. This is mainly reflected in the following two aspects
: (1) the latency of generating the Merkle Tree of FBT and
EBT is always smaller than BBT and (2) as shards grow, the
FBT’s and EBT’s latency growth rate are significantly smaller



than BBT’s. As the computation cost is positively related to
the computation delay, FBT and EBT are better than BBT
in computation overhead. In terms of the auxiliary path, the
previous theoretical analysis has concluded that the auxiliary
path size will increase with the number of branches. However,
each additional element of the auxiliary path is a hashed string,
the increased storage space is small. At the same time, it can be
seen through Fig. 7 that the time delay for generating auxiliary
paths does not significantly increase with branches. Therefore,
the additional communication and computation costs of the
auxiliary path caused by the multiple branching tree structure
are negligible. In summary, the performance of FBT and EBT
are better than BBT.
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Fig. 7. The relationship between the latency of generating auxiliary path
latency and the total number of shards.

C. Sample Size

In Section III, we have introduced the Loss Function
L(N), which involves c0, c1, n, f, N , to decide the suitable
sample size. To simplify the calculation, we set c0 = 0
, then conduct two sets of experiments. In the first set of
experiments, we assume the total number of shards n = 10000,
c1 = 0.053 and take four different value of f , that is
f/n = 0.001, f/n = 0.002, f/n = 0.01, f/n = 0.05. In
the second set of experiments, we assume the total number of
shards n = 10000, f/n = 0.002 and take four different value
of c1, that is c1 = 0.7, c1 = 0.4, c1 = 0.1, c1 = 0.01. Then
describe the general direction of L(N) as N changes.

Fig. 8 and Fig. 9 show that as the sample size N increases,
the value of the Loss Function L(N) decreases from a value

firstly, after reaching a minimum value, it starts to increase
continuously. Thus, there exits a most approprite value of N
leading to the minimum value of L(N). From Fig. 8, we can
see that when f/n is larger, the minimum value of L(N) is
closer to the Y-axis and X-axis. That means the more shards
fail, the smaller the optimal sample size. As f/n increases,
the minimum value of the Loss Function L(N) decreases. This
means that the overall validation performance of this system
increases as the number of failed shards increases. From Fig.
9, we can see that when c1 increases, the optimal sample size
decreases while the minimum value of the Loss Function in-
creases. It means that when the weight of verification overhead
increases, the optimal sample size decreases, while the overall
validation performance of this system decreases.
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Fig. 8. The relationship between Loss Function L(N) and the sample size
N when f/n changes.
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D. Order of Verification

In order to compare the verification performance of different
algorithms, we set the sample size from 16 to 4096 (16,
256, 1024, 4096), and use sequential validations’ cost as a
benchmark. We make the sample data shard one invalid at a
time, then count the number of verification costs higher or
lower than the baseline at the failure location using different
algorithms.

Fig. 10-11 show that the proportion of verification cost
higher than the benchmark increases with the increase of
sample size N . From Fig. 10a we know that when N is
small, almost each algorithm works better than the benchmark.
Comparing Fig. 10b, Fig. 11a and Fig. 11b, we can see that
with the increases of sample size N , the performance of Binary
verification is getting worse and worse, while the performance



(a) N=16 (b) N=256

Fig. 10. Statistics on validation overhead when N=16 and N=256.

(a) N=1024 (b) N=4096

Fig. 11. Statistics on validation overhead when N=1024 and N=4096.

of other algorithms remain stable. Fibonacci verification and
Random verification are work better than the baseline when
N = 16. Exponent verification and Block verification always
work better than the baseline no matter how N increase. Thus,
we can get the conclusion that although the verification costs
of these algorithms are increasing, Exponential verification and
Block verification work better than others.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a general verification
framework in P2P cloud storage. It solves the problem of
untrustworthy in traditional verification mechanism by utiliz-
ing blockchain. As the data integrity verification method in
blockchain, we also analyze the verification performance under
various Merkle trees structures. To improve the verification
performance while also to keep a high verification precision,
we further design rational sampling strategies and calculating
the optimal sample size. Finally, we demonstrate the feasibility
of the proposed framework by implementing a prototype sys-
tem and validating our analysis of Merkle trees and sampling
strategy through extensive experiments. In the future work, we
will further improve the presentation of equations, elaborate
our experiments and evaluate the performance of the system
with real Blockchain systems.
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