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In logic program-based updates, contradictory information elimination, conflict resolution, and

syntactic representation are three major issues that interfere with each other and significantly
influence the update result. We observe that existing approaches of logic program-based updates,
in one way or another, are problematic to deal with these issues. In this paper, we address all
these problems in a systematic manner. Our approach to the logic program-based update has
the following features: (1) a prioritized logic programming language is employed for providing
a formal basis of formalizing logic program-based updates, so that information conflict and its
related problems in updates can be handled properly; (2) our approach presents both semantic
characterization and syntactic representation for the underlying update procedure, and hence is
consistent with the nature of updates within the logic program extent - declarative semantics and
syntactic sensitivity; and (3) our approach also provides nontrivial solutions to simplify various
update evaluation procedures under certain conditions.

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving —logic programming ; nonmonotonic reasoning and belief revision; I.2.4 [Artificial In-

telligence]: Knowledge Representation Formalisms and Methods—representations (procedural
and rule-based)

General Terms: Languages, Theory

Additional Key Words and Phrases: Computational complexity, conflict resolution, logic program-
based update, prioritized logic programming

1. INTRODUCTION

Logic programming has been proved to be one of the most promising logic based
formulations for problem solving, knowledge representation and reasoning, and rea-
soning about changes. As one growing method, the logic program-based update pro-
vides a feasible framework for modeling agent’s activities in dynamic environments
[Eiter et al. 2002]. Comparing with other logic based revision/update formulations,
e.g. [Boutilier 1996; Herzig and Rifi 1999], it inherits great advantages from logic
programming for both declarative semantics (e.g. stable mode/answer set semantics
[Gelfond and Lifschitz 1991]) and efficient proving procedures (e.g. smodels, DLV

and XSB [Nemela and Simons 1996; Eiter et al. 1997; Rao et al. 1997]), which make
this method be more applicable in the real world problem domains, e.g. [Crescini
and Zhang 2004].
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1.1 Two Types of Logic Program Based Updates

Logic program-based updates can be viewed in two kinds: one is simple fact updates
and the other is program updates. In simple fact updates, a knowledge base is
represented as a finite set of ground atoms/literals. Such knowledge base may be
updated in order to integrate with new information/knowledge, which is represented
as a finite set of rules (called update rules).

One of the earliest formal work on simple fact updates (also called rule based
updates) was due to Marek and Truszczyński [Marek and Truszczyński 1994; 1998].
Basically, Marek and Truszczyński addressed the following problem: given an initial
knowledge base B which is a finite a set of ground atoms, and a set Π of update
rules of the forms1:

in(A)← in(B1), · · · , in(Bm), out(C1), · · · , out(Cn), (1)

out(A)← in(B1), · · · , in(Bm), out(C1), · · · , out(Cn), (2)

where A, B1, · · · , Bm, C1, · · · , Cn are ground atoms, what is the resulting knowledge
base B′ after updating B with Π? The intuitive meaning of (1) is that if B1, · · · , Bm

are in the current knowledge base, and C1, · · · , Cn are not, then A should be added
into the knowledge base (if it is not there already). A similar interpretation can be
given for (2) as well. For example, given a knowledge base B = {A, D} and a set
of update rules

Π:
in(C)← in(A), out(B),
out(D)← in(C), out(B),

where A, B, C and D are ground atoms, then after updating B with Π, Marek
and Truszczyński’s approach will give a resulting knowledge base B′ = {A, C}.
Obviously, this result is correct from the general principle of minimal change in
knowledge base updates, i.e. [Katsuno and Mendelzon 1991; Winslett 1988]

Marek and Truszczyński’s simple fact update procedure can be extended by al-
lowing a knowledge base to be incomplete or/and update rules to be generalized as
logic inference rules having both classical and weak negations (negation as failure),
i.e. [Baral 1994; Przymusinski and Turner 1997]. However, it is observed that the
requirement on minimal change turns out to be a difficult goal when the simple fact
update has such generalized forms (will be addressed in section 3).

In program updates, on the other hand, a knowledge base is usually represented
as a logic program, and this knowledge base may be updated in terms of a set of
update rules, which is also a logic program. Usually, we use extended logic programs
[Gelfond and Lifschitz 1991] to represent both the knowledge base and the set of
update rules. Generally speaking, an extended logic program is a finite set of rules:

L0 ← L1, · · · , Lm, notLm+1, · · · , notLn, (3)

where L0, L1, · · · , Ln are literals. In the body of rule (3), both classical negation ¬
and weak negation not are allowed to be presented. The meaning of (3) is as follows:
if L1, · · · , Lm hold, and there is no explicit evidence to show that Lm+1, · · · , Ln hold,

1Π was also called a revision program in [Marek and Truszczyński 1994; 1998].
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then L0 holds. Typically, the problem of a program update is as follows: given
two extended logic programs Π0 and Π1, where Π0 represents the agent’s initial
knowledge base and Π1 represents the agent’s new knowledge, how to update Π0 in
terms of Π1? Sometimes, the simple fact update may be viewed as a special case
of the program update because each fact (i.e. ground atom/literal) can be viewed
as a rule without body, i.e. L0 ←. But, as we will show in this paper, the simple
fact update plays a critical role in the formalization of program updates.

To illustrate key issues associated with program updates, we consider the follow-
ing example. Suppose that an access control policy base for a computer system is
represented by the following extended logic program Π0:

Member(A, G)←,
Member(B, G)←,
Access(A, F2)←,
Access(x, F1)←Member(x, G),
¬Access(x, F2)←Member(x, G),not Access(x, F2).

Under Gelfond and Lifschitz’s answer set semantics, it is clear that implicit facts
Access(A, F1), Access(B, F1) and ¬Access(B, F2) are entailed from Π0. Now sup-
pose we want to update this policy base Π0 with the following extended logic
program Π1:

Member(C, G)←,
¬Access(x, F1)←Member(x, G),
Access(x, F2)←Member(x, G),not ¬Access(x, F2).

Here the question is: what is the result after updating Π0 with Π1?
Intuitively, since program Π1 represents the agent’s new knowledge about the

domain, information represented by Π1 should be retained in the final result (in
some form) after the update. On the other hand, it appears that rule

r1 : Access(x, F1)←Member(x, G)

in Π0 represents a contradictory meaning compared to the rule

r2 : ¬Access(x, F1)←Member(x, G)

in Π1, and if both rules are retained, an inconsistency may be derived (together
with other information) under the answer set semantics. In this sense, rule r1

contradicts with rule r2 and should not be effective in the final result of the update.
Also, although rule

r3 : ¬Access(x, F2)←Member(x, G),not Access(x, F2)

in Π0 does not contradict any rules in Π1, it indeed conflicts with rule

r4 : Access(x, F2)←Member(x, G),not ¬Access(x, F2)

in Π1 because retaining r3 and r4 together will generate indefinite results on facts
Access(x, F2) (and ¬Access(x, F2), resp., where x = A, B, C). In this sense, we
would like to override r3 by using r4.

From the above discussion, we may conclude, in an intuitive way, that after the
update, the following set of facts holds:
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S = {¬Access(A, F1),¬Access(B, F1),¬Access(C, F1), Access(A, F2),
Access(B, F2), Access(C, F2)}.

However, this semantic characterization for an update result does not capture all rel-
evant information conducted in an update process. For instance, fact Access(B, F2)
in S is derived from a generic rule r4 in Π1, which is not reflected in S. This is
so-called information loss - one of the most distinguishing features between tradi-
tional knowledge base updates and logic program-based updates. Hence, a proper
syntactic representation for logic program updates is important. In this particular
example, we would prefer to generate a resulting program Π′ after updating Π0

with Π1 as follows:

Π′:
Member(A, G)←,
Member(B, G)←,
Member(C, G)←,
Access(A, F2)←,
¬Access(x, F1)←Member(x, G),
Access(x, F2)←Member(x, G),not ¬Access(x, F2),

which has a unique answer set S.

1.2 Contributions of This Paper

From the discussions in section 1.1, we can see that traditional minimal change
criterion is no longer a single issue in logic program-based updates. Instead, three
major issues must be considered in logic program-based updates:

(1) Contradictory information elimination. Clearly, this is also a basic requirement
for classical knowledge base updates. However, in logic program-based updates,
this requirement should be achieved with proper justifications and without
violating the underlying minimal change semantics.

(2) Conflict resolution. As in the general form of logic program-based updates,
both classical and weak negations are allowable in update rules (e.g. the sim-
ple fact update) or in both knowledge base and update rules (e.g. the program
update), information conflict will significantly influence the update result. Con-
flict resolution is essential not only for achieving a desirable update result but
also to guarantee a minimal elimination of contradictory information.

(3) Syntactic representation. It has been observed that semantic characterizations
are not enough to capture all information embedded in an update procedure.
Instead, a proper syntactic form is equally important to represent an update
result. Intuitively, it is expected that the syntactic representation of an up-
date result should contain as many as possible consistent rules from the initial
knowledge base and update program under the conditions of contradiction elim-
ination and conflict resolution.

Although logic program-based updates have been studied by many researchers
recently, e.g. [Alferes et al. 1998; Alferes et al. 2002; Alves et al. 1995; Guessoum
and Lloyd 1991], most current approaches only focused on the first issue - con-
tradictory information elimination and with different restrictions on other issues.
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These approaches were developed either on a semantic basis or a syntactic basis,
but without considering the influence on an update procedure from both aspects2.

This paper addresses all these three major issues of logic program-based updates
in a systematic manner. We observed that contradictory information elimination,
conflict resolution and syntactic representation are closely related, and they should
be studied within a unified formalism. For this purpose, we employ a prioritized
logic programming language to provide a formal basis of formulating both the simple
fact and program updates. Our approach integrates both semantic characterizations
and syntactic representations and hence meets the essential requirements of logic
program-based updates where none of existing approaches does at the same time.
This paper also investigates important theoretical properties of logic program-based
updates, provides detailed complexity analysis and useful computational strategies
for simplifying the underlying update procedure.

Some results presented in this paper have been previously published in IJCAI-97,
ECAI-98, ICLP-99 and AI-01 [Zhang and Foo 2001; 1998; Zhang 1999; 2001].

The paper is organized as follows. Section 2 gives an overview of the author’s
prioritized logic programming language which provides a formal basis for our for-
mulation of logic program-based updates. Section 3 develops an approach for the
simple fact update which overcomes major difficulties of Marek and Truszczyński’s
approach. Section 4 focuses on the study of the restricted monotonicity - one of the
most important issues in nonmonotonic system changes. We show how restricted
monotonicity properties can be used to simplify the evaluation procedure in a simple
fact update. Section 5 addresses the problem of program updates and propose an
approach which integrates both semantic and syntactic considerations in program
updates. Section 6 studies important properties of program updates. Specifically,
this section explores how the inference problem related to a program update may be
simplified. Section 7 analyzes the computational complexity of both simple fact and
program updates. Section 8 presents detailed comparisons between our approach
and other related work. In particular, we provide formal characterizations on the
relations between our approach and three typical existing logic program update
approaches respectively. Finally, section 9 concludes this paper with some further
discussions.

2. PRIORITIZED LOGIC PROGRAMS: AN OVERVIEW

In this section, we present a brief overview on prioritized logic programs proposed
initially by Zhang and Foo [Zhang and Foo 1997] and then refined by Zhang [Zhang
2003b]. Basically, a prioritized logic program is an extended logic program associ-
ating to a preference ordering on rules in the program. The semantics of prioritized
logic programs is defined based on Gelfond and Lifschitz’s answer set semantics for
extended logic programs [Gelfond and Lifschitz 1991].

A language L of extended logic programs is determined by its object constants,
function constants and predicate constants. Terms are built as in the corresponding
first order language; atoms have the form P (t1, · · · , tn), where ti (1 ≤ i ≤ n) is a
term and P is a predicate constant of arity n; a literal is either an atom P (t1, · · · , tn)
or a negative atom ¬P (t1, · · · , tn). A rule is an expression of the form (3):

2Detailed comparisons between our approach and others are referred to section 8.
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L0 ← L1, · · · , Lm, notLm+1, · · · , notLn,

where each Li (0 ≤ i ≤ n) is a literal. L0 is called the head of the rule, while
{L1, · · · , Lm, notLm+1, · · ·, notLn} is called the body of the rule. Obviously, the
body of a rule could be empty. We also allow the head of a rule to be empty. In
this case, the rule with an empty head is called constraint. A term, atom, literal, or
rule is ground if no variable occurs in it. An extended logic program Π is a collection
of rules. Π is ground if each rule in Π is ground.

Let r be a ground rule of the form (3), we use pos(r) to denote the set of literals
in the body of r without weak negation {L1, · · · , Lm}, and neg(r) the set of literals
in the body of r with weak negation in front {Lm+1, · · · , Ln}. We specify body(r)
to be pos(r) ∪ neg(r). We also use head(r) to denote the head of r: {L0}. Then
we use lit(r) to denote head(r) ∪ body(r). By extending these notations, we use
pos(Π), neg(Π), body(Π), head(Π), and lit(Π) to denote the unions of corresponding
components of all rules in the ground program Π, e.g. body(Π) =

⋃
r∈Π body(r). If

Π is a non-ground program, then notions pos(Π), neg(Π), body(Π), head(Π), and
lit(Π) are defined based on the ground instantiation of Π (see below definition).

Let Π be a ground extended logic program not containing not and Lit the set of
all ground literals in the language of Π. An answer set of Π is the smallest subset
S of Lit such that (i) for any rule L0 ← L1, · · · , Lm from Π, if L1, · · · , Lm ∈ S,
then L0 ∈ S; and (ii) if S contains a pair of complementary literals, then S = Lit.
Now let Π be a ground arbitrary extended logic program. For any subset S of Lit,
let ΠS be the logic program obtained from Π by deleting (i) each rule that has a
formula not L in its body with L ∈ S, and (ii) all formulas of the form not L in the
bodies of the remaining rules3. We define that S is an answer set of Π iff S is an
answer set of ΠS .

For a non-ground extended logic program Π, we usually view a rule in Π con-
taining variables to be the set of all ground instances of this rule formed from the
set of ground literals in the language. The collection of all these ground rules forms
the ground instantiation Π′ of Π. Then a set of ground literals is an answer set of
Π if and only if it is an answer set of Π′. It is easy to see that an extended logic
program may have one, more than one, or no answer set at all.

A prioritized logic program (PLP) P is a triple (Π,N , <), where Π is an extended
logic program, N is a naming function mapping each rule in Π to a name, and < is
a strict partial ordering on names. The partial ordering < in P plays an essential
role in the evaluation of P . We also use P(<) to denote the set of <-relations of
P . Intuitively < represents a preference of applying rules during the evaluation of
the program. In particular, if N (r) < N (r′) holds in P , rule r would be preferred
to apply over rule r′ during the evaluation of P (i.e. rule r is more preferred than
rule r′).

Definition 2.1. [Zhang 2003b] Let Π be a ground extended logic program and
r a ground rule of the form (3) (r does not necessarily belong to Π). Rule r is
defeated by Π iff Π has an answer set and for any answer set S of Π, there exists
some Li ∈ S, where m + 1 ≤ i ≤ n.

3We also call ΠS the Gelfond-Lifschitz transformation of Π in terms of S.
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Similarly to the case of extended logic programs, the evaluation of a PLP will
be based on its ground form. We say that a PLP P ′ = (Π′,N ′, <′) is the ground
instantiation of P = (Π,N , <) if (1) Π′ is the ground instantiation of Π; and (2)
<′ is a strict partial ordering and N ′(r′1) <′ N ′(r′2) ∈ P

′(<′) if and only if there
exist rules r1 and r2 in Π such that r′1 and r′2 are ground instances of r1 and r2

respectively and N (r1) < N (r2) ∈ P(<) (see [Zhang 2003b] for more details about
ground instantiation requirement).

In the rest of the paper, whenever there is no confusion, we will only consider
ground prioritized (extended) logic programs without explicit declaration.

Definition 2.2. [Zhang 2003b] Let P = (Π,N , <) be a prioritized logic program.
P< is a reduct of P with respect to < if and only if there exists a sequence of sets
Πi (i = 0, 1, · · ·) such that:

(1) Π0 = Π;

(2) Πi = Πi−1 − {r1, r2, · · · | (a) there exists r ∈ Πi−1 such that
for every j (j = 1, 2, · · ·), N (r) < N (rj) ∈ P(<) and
r1, r2, · · · are defeated by Πi−1 − {r1, r2, · · ·}, and (b) there
are no rules r′, r′′, · · · ∈ Πi−1 such that N(rj) < N(r′),
N(rj) < N(r′′), · · · for some j (j = 1, 2, · · ·) and r′, r′′, · · ·
are defeated by Πi−1 − {r′, r′′, · · ·}};

(3) P< =
⋂∞

i=0 Πi.

Definition 2.3. [Zhang 2003b] Let P = (Π,N , <) be a PLP and Lit the set of
all ground literals in the language of P . For any subset S of Lit, S is an answer
set of P iff S is an answer set for some reduct P< of P .

As the same for extended logic programs, a PLP may have one, more than one,
and no answer set at all. We call a PLP well defined if it has a consistent answer
set. Now we consider a program P :

N1 : A←,
N2 : B ← not C,
N3 : D ←,
N4 : C ← not B,
N1 < N2, N3 < N4.

According to Definition 2.2, it is easy to see that P2 has two reducts:

{A←, D ←, C ← not B}, and
{A←, B ← not C, D ←}.

From Definition 2.3, it follows that P2 has two answer sets: {A, C, D} and {A, B, D}.
Now if we remove rule N3 from the above program P , and add preference relation

N2 < N4 into P , then the resulting program will have one answer set {A, B}, where
rule N4 is defeated.

The implementation detail of our prioritized logic programming language is re-
ferred to [Zhang et al. 2001].
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3. SIMPLE FACT UPDATE

In this section, we first discuss limitations of existing simple fact update approaches,
specifically, the limitation of Marek and Truszczyński’s approach. Then we propose
a framework of simple fact update which generalizes previous approaches and over-
comes the major limitation in these approaches.

3.1 Limitation of Marek and Truszczyński’s Approach

To simplify our presentation, we adopt the extended logic program based formu-
lation as shown in [Baral 1994; Przymusinski and Turner 1997] to discuss Marek
and Truszczyński’s simple fact update. In particular, by illustrating a simple ex-
ample here, we will see that Marek and Truszczyński’s approach is not suitable for
generalized simple fact updates as we mentioned in section 1.1.

Example 3.1. Suppose B = {¬A, B, C} is a knowledge base, and Π consists of
the following update rules:

¬B ← not B,
A← C.

Consider an update of B with Π. Obviously, fact ¬A should change to A by applying
the second rule of Π. Fact B, on the other hand, seems persistent because B is true
in the initial knowledge base, and ¬B can only be derived from the first rule of Π
if fact B is absent from the current knowledge base. Therefore, from our intuition,
the resulting knowledge base should be {A, B, C}.

Now we follow the formalism defined by Baral and Przymusinski and Turner
[Baral 1994; Przymusinski and Turner 1997], which is logically equivalent to Marek
and Truszczyński’s, to specify the above update procedure within an extended logic
program4. Firstly, we need to extend the language of our domain by adding new
propositional letters of the form New-L if L is a propositional letter in the original
language. In this example, the extended language will include propositional letters
A, B, C, New-A, New-B and New-C. Then an extended logic program Π∗ is formed
by the following rules:

Initial knowledge rules:
¬A←,
B ←,
C ←,

Inertia rules:
New-A← A,not ¬New-A,
New-B ← B,not ¬New-B,
New-C ← C,not ¬New-C,
¬New-A← ¬A,not New-A,
¬New-B ← ¬B,not New-B,
¬New-C ← ¬C,not New-C,

Update rules:

4The formalism used here, nevertheless, is slightly different from theirs for the purpose of simplic-
ity.
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¬New-B ← not New-B,
New-A← New-C.

Generally speaking, an answer set of program Π∗ represents a possible resulting
knowledge base after updating B with Π, where literal New-L in the answer set
denotes the persistence of literal L if L ∈ B, or a change of L if ¬L ∈ B or L 6∈ B
with respect to this update.

It is easy to see that the above Π∗ has two answer sets: in one New-B is true
where in the other New-B is false. This means that the truth value of B is indefinite
with respect to this update. This solution, however, seems not quite consistent with
our previous observation.

Observing program Π∗, it is not difficult to see that a conflict occurs between
inertia rule New-B ← B, not ¬New-B and update rule ¬New-B ← not New-B.
That is, applying New-B ← B, not ¬New-B will defeat ¬New-B ← not New-B,
and vice versa. This conflict leads Π∗ to have two different answer sets with an in-
definite truth value of New-B. This result also violates the requirement of minimal
change.

Taking a closer look, we know that the inertia rule New-B ← B, not ¬New-B
should be preferred over the update rule ¬New-B ← not New-B in order to meet
the minimal change principle. In this case, the inertia rule will defeat the corre-
sponding update rule during the evaluation of Π∗. But such preference information
cannot be expressed in Gelfond and Lifschitz’s extended logic programs.

While prioritized ligic programming has been recently studied by many researchers,
e.g. [Delgrande et al. 2000; Schaub and Wang 2001; Zhang 2003b], it seems a nat-
ural way to employ a kind of prioritized logic programming language to formalize
the generalized simple fact update where the information conflict can be explicitly
handled. This motivates our following formalization on generalized simple fact up-
date within the framework of prioritized logic programs proposed by the author
[Zhang and Foo 1997; Zhang 2003b].

3.2 Generalized Simple Fact Update

Consider a language L of prioritized logic programs. We specify that a knowledge
base B is a consistent set of ground literals of L and update program Π is an extended
logic program where each rule of the form (3) in Π is called an update rule. We
allow a knowledge base to be incomplete. That is, a literal not in a knowledge base
is treated as unknown.

We will use a prioritized logic program to specify an update of B with Π. For
this purpose, we first extend language L by the following way. We specify Lnew

to be a language of PLPs based on L with one more augment: for each predicate
symbol P in L, there is a corresponding predicate symbol New-P in Lnew with the
same arity of P .

To simplify our presentation, in Lnew we use notation New-L to denote the
corresponding literal L in L. For instance, if a literal L in L is ¬P (x), then notation
New-L simply means ¬New-P (x). We use Litnew to denote the set of all ground
literals of Lnew , i.e. Litnew = Lit ∪ {New-L | L ∈ Lit}.

Definition 3.1. Let B, Π, L, and Lnew be specified as above. The specification
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of updating B with Π is a PLP of Lnew, denoted as Update(B, Π) = (Π∗,N , <), as
follows:

(1) Π∗ consists of following rules:
Initial knowledge rules: for each L in B, there is a rule

L←;
Inertia rules: for each predicate symbol P in L, there are two rules:

New-P (x)← P (x), not¬New-P (x)5, and
¬New-P (x)← ¬P (x), notNew-P (x),

Update rules: for each rule
L0 ← L1, · · · , Lm, notLm+1, · · · , notLn in Π, there is a rule
New-L0 ← New-L1, · · · , New-Lm, notNew-Lm+1, · · · , notNew-Ln;

(2) Naming function N assigns a unique name N for each rule in Π∗;

(3) For any inertia rule r and update rule r′, N (r) < N (r′).

Comparing Definition 3.1 with the update specification described in Example
3.1, we can see that the difference between these two approaches is that in our
formulation preference relations between inertia and update rules are explicitly ex-
pressed. We specify inertia rules to have higher preferences than update rules in
Update(B, Π). The intuitive idea behind this is that a preference ordering between
an inertia rule and an update rule in Update(B, Π) will affect the evaluation of
Update(B, Π) only if these two rules conflict with each other, e.g. applying one rule
causes the other inapplicable. On the other hand, from the minimal change princi-
ple, a fact in the initial knowledge base B is always preferred to persist during an
update whenever there is no violation of update rules6. Therefore, when conflicts
occur between inertia and update rules, inertia rules should defeat the correspond-
ing update rules. Otherwise, the preference ordering does not play any role in the
evaluation of Update(B, Π). Note that in the case that B is finite and Π is a propo-
sitional finite program, there will be at most 2k · l <-relations in Update(B, Π),
where k is the number of predicate symbols of L and l is the number of update
rules in Π.

Definition 3.2. Let Update(B, Π) be specified as in Definition 3.1. A set B′

of ground literals is called a possible resulting knowledge base with respect to
Update(B, Π), iff B′ satisfies the following conditions:

(1) if Update(B, Π) has a consistent answer set, say S, then
B′ = {L | New-L ∈ S};

(2) if Update(B, Π) does not have a consistent answer set (i.e. Update(B, Π) is not
well defined), then B′ = B.

We use Res(Update(B, Π)) to denote the set of all resulting knowledge bases of
Update((B, Π).

Example 3.2. Example 3.1 continued. Let B = {¬A, B, C} and Π consist of
the following rules:

5x might be a tuple of variables.
6Note that an update rule in Update(B, Π) is defeasible if it contains a weak negation not in its
body.
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¬B ← not B,
A← C.

From Definition 3.2, the specification of updating B with Π, Update(B, Π), is as
follows:

Initial knowledge rules:
N1 : ¬A←,
N2 : B ←,
N3 : C ←,

Inertia rules:
N4 : New-A← A,not ¬New-A,
N5 : New-B ← B,not ¬New-B,
N6 : New-C ← C,not ¬New-C,
N7 : ¬New-A← ¬A,not New-A,
N8 : ¬New-B ← ¬B,not New-B,
N9 : ¬New-C ← ¬C,not New-C,

Update rules:
N10 : ¬New-B ← not New-B,
N11 : New-A← New-C,

<:
N4 < N10, N5 < N10, N6 < N10,
N7 < N10, N8 < N10, N9 < N10,
N4 < N11, N5 < N11, N6 < N11,
N7 < N11, N8 < N11, N9 < N11.

Now it is easy to see that Update(B, Π) has a unique answer set:

{¬A, B, C, New-A, New-B, New-C}.

Note that in Update(B, Π), only N5 < N10 is used in the evaluation of Update(B, Π),
while other <-relations are useless. Hence, from Definition 3.2, the only resulting
knowledge base B′ after updating B with Π is: {A, B, C}

Example 3.3. Let us consider the secure computer system domain described in
section 1 once again. Let

B = {Member(A, G), Member(B, G), Access(A, F ), ¬Access(B, F )}

and Π consists of the following rules:

Member(C, G)←,
Member(D, G)←,
Access(x, F )←Member(x, G),not ¬Access(x, F ).

Consider the update of B with Π. Ignoring the detail, using the approach presented
above, we get a unique resulting knowledge base

B′ = {Member(A, G), Member(B, G), Member(C, G), Member(D, G),
Access(A, F ), ¬Access(B, F ), Access(C, F ), Access(D, F )}.
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3.3 Basic Properties

In this subsection, we investigate basic semantic properties of the generalized simple
fact update. Firstly we show that the update specification Update(B, Π) in language
Lnew defined in Definition 3.1 can be simplified to a PLP in language L.

Lemma 3.3. Let Update(B, Π) be a well defined update specification as defined
in Definition 3.1. B′ is a resulting knowledge base with respec to Update(B, Π) if
and only if B′ is an answer set of prioritized logic program P = (Π ∪ {L← notL |
L ∈ B},N , <), where for each rule r : L ← notL with L ∈ B, and each rule r′ in
Π, N (r) < N (r′)7.

Proof. According to Definition 3.1, B′ is a resulting knowledge base with respect
to update specification Update(B, Π) if and only if B′ = {L | New-L ∈ S}, where S

is an answer set of Update(B, Π). Now we show that Update(B, Π) can be reduced
to another PLP, say P ′, such that each rule in P ′ only contains literals New-L
in Lnew and without including literals in L. Note that Update(B, Π) is a PLP in
language Lnew. Examining the construction of Update(B, Π), it is easy to see that
Π(B,P) consists of three types of rules:

(i) initial knowledge rules: L← iff L ∈ B;

(ii) inertia rules: for each literal L in L, New-L← L, not New-L;

(iii) update rules: for each rule of the form (3) in Π,
New-L0 ← New-L1, · · ·, New-Lm,

not New-Lm+1, · · ·, not New-Ln.

Since for each rule L← in Update(B, Π), L will always occur in each answer set of
Update(B, Π), this means that for any literal L in B, the corresponding inertia rule
New-L← L, not New-L can be simplified as New-L← not New-L. On the other
hand, for any literal L′ 6∈ B, the corresponding inertia rule r:

New-L′ ← L′, not New-L′

will never be used in the evaluation of Update(B, Π), so it can be omitted. There-
fore, Update(B, Π) can be reduced to a PLP P ′ = (Π′,N ′, <′), where Π′ consists
of two types of rules:

(i) inertia rules: for each L ∈ B, New-L← not New-L;

(ii) update rules: the same as in Update(B, Π);

and for each inertia rule r and update rule r′, N (r) < N (r′). Obviously, this
reduction does not have any effect on the evaluation of Update(B, Π).

Now we specify P = (Π ∪ {L ← notL | L ∈ B,N , <), where for each rule
r : L ← notL with L ∈ B and each rule r′ ∈ Π, N < N (r′). It is clear that there
exists an one-to-one mapping between P = (Π ∪ {L ← notL | L ∈ B},N , <), and
P ′ = (Π′,N ′, <′): each rule in P ′ can be obtained from the corresponding rule in
P by replacing each literal New-L occurring in the rule with literal L, and vice
versa. This follows that S is an answer set of P ′ if and only if B′ is an answer set
of P .

7L stands for the complement of literal L.
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Recall that B satisfies r iff for each ground instance r′ of r:

L′
0 ← L′

1, · · · , L
′
m, notL′

m+1, · · · , notL′
n,

if facts L′
1, · · · , L

′
m are in B and facts L′

m+1, · · ·, and L′
n are not in B, then fact L′

0 is
in B. Let Π be a set of rules of the form (3). B satisfies Π if B satisfies each rule in
Π. We will show next that after updating knowledge base B with Π, every possible
resulting knowledge base B′ satisfies Π as stated in the following proposition.

Proposition 3.4. Given a knowledge base B and an update program Π. Suppose
the update specification Update(B, Π) is well defined. Let B′ be a resulting knowledge
base with respect to Update(B, Π). Then B′ satisfies Π.

Proof. From Lemma 3.3, B′ is also an answer set of P = (Π∪{L← notL | L ∈
B},N , <), where for each rule r : L ← notL and each rule r′ in Π, N (r) < N (r′).
Let Π′ be an extended logic program that is a reduct of P and B′ is an answer
set of Π′. If a ground instance r of a rule in Π is in Π′, then from the answer set
definition for extended logic program, r is satisfied in B′.

Now suppose that a ground instance r of the rule in Π is not in Π′, i.e. r is
eliminated during the reduction of P . From Definition 2.2, there must exist a rule
r′ of the form L ← notL such that N (r′) < N (r), and literal L occurs in the
body of r with a week negation not in front. From the specification of preference
relations in P , there is no another rule r′′ in P such that N (r′′) < N (r′). From
here it follows L ∈ B′. In this case, r is still satisfied in B′.

Now we consider the minimal change in our simple fact update. Let B and B′ be
two knowledge bases. We use Diff(B,B′) to denote the symmetric set difference
on ground atoms between B and B′, i.e.

Diff(B,B′) = {|L| | L ∈ (B − B′) ∪ (B′ − B)},

where |L| indicates the corresponding ground atom of literal L, and Min(B, Π)
to denote the set of all consistent knowledge bases satisfying Π but with minimal
differences from B, i.e.

Min(B, Π) = {B′ | B′ satisfies Π and Diff(B,B′) is minimal in
terms of set inclusion}.

Then we have the following minimal change theorem.

Theorem 3.5. (Minimal Change) Let B be a knowledge base, Π be an update
program, and Update(B, Π) be a well defined update specification. If B ′ is a resulting
knowledge base with respect to Update(B, Π), then B′ ∈Min(B, Π).

Proof. From Proposition 3.4, each rule of Π is satisfied in B′. Now we prove
Diff(B,B′) is minimal. From the proof of Lemma 3.3, we can view B′ as an answer
set of P = (Π ∪ {L← notL | L ∈ B},N , <), where for each rule r : L← notL and
each rule r′ in Π, N (r) < N (r′). So B′ is an answer set of some reduct Π′ of P .
Observing the procedure of computing Π′ (i.e. Definition 2.2), it is clear that for
every L ∈ B, rule L ← notL in P ′ is retained in Π′, and any rule in Π which has
not L in its body is defeated and has been removed from Π′ if L ∈ B′. Then the
result is directly followed from the fact the each consistent answer set of Π′ is the
smallest set of ground literals in which each rule of Π′ is satisfied.
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4. RESTRICTED MONOTONICITY

An important characteristic for many formulations of knowledge representation and
reasoning is that they are nonmonotonic. It has been, however, illustrated that un-
der certain conditions, a formulation may satisfy some restricted monotonicity in
its reasoning. Restricted monotonicity is a desired property for nonmonotonic for-
mulations as it usually simplifies the reasoning procedure [Engelfreit 1998]. In this
section, we explore the restricted monotonicity property for the generalized simple
fact update. As we will show next, this property may significantly simplify the
evaluation of an update specification. To simplify our presentation, we assume that
all prioritized and extended logic programs considered in this section are ground.
But note that this assumption does not restrict our results to non-ground programs
since each non-ground program is evaluated based on its ground instantiation.

4.1 The Results

Given a set of ground literals B, we use B to denote the set of complement literals
of B with respect to classical negation ¬.

Theorem 4.1. (Restricted Monotonicity Theorem 1) Given two knowl-
edge bases B1 and B2 where B1 ⊆ B2 and an update program Π. Suppose that both
update specifications Update(B1, Π) and Update(B2, Π) are well defined. Let B′

1

be a resulting knowledge base with respect to Update(B1, Π). Then there exists a
resulting knowledge base B′

2 with respect to Update(B2, Π) such that B′
1 ⊆ B′

2 if
body(Π)∩ (B2−B1) = ∅. In this case, B′

2 = B′
1∪{L | L ∈ (B2−B1) and L 6∈ B′

1}.

Theorem 4.2. (Restricted Monotonicity Theorem 2) Given a knowledge
base B and two update programs Π1 and Π2 where Π1 ⊆ Π2. Suppose both up-
date specifications Update(B, Π1) and Update(B, Π2) are well defined. Let B′ be
a resulting knowledge base with respect to Update(B, Π1). Then there exists a
resulting knowledge base B′′ with respect to Update(B, Π2) such that B′ ⊆ B′′ if
head(Π2 −Π1) ∩ (B ∪ body(Π1)) = ∅. In this case, B′′ is an answer set of program
{L←| L ∈ B′} ∪ (Π2 −Π1).

The intuition behind Theorem 4.1 is described as follows. If a knowledge base
B1 is expanded to B2 by adding more facts and all these added facts do not occur
in the body of any rule in Π, then the result of updating B1 with Π is preserved in
the result of updating B2 with Π. Furthermore, the latter can be simply computed
from the result of updating B1 with Π. On the other hand, Theorem 4.2 says that
if an update program Π1 is expanded to Π2 by adding more rules and the head
of each added rule does not occur in the bodies of rules in update specification
Update(B, Π1) (see Lemma 3.3), then the result of updating B with Π1 is preserved
in the result of updating B with Π2, and the latter is reduced to an answer set of
a corresponding extended logic program.

Given a knowledge base B and an update program Π, we can apply the restricted
monotonicity theorems above to simplify the computation of Update(B, Π) when B
or Π can be split into parts. The following examples illustrate such applications.

Example 4.1. Let B = {A, B, C, D} and Π consist of the following rules:

¬A← B,
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¬C ← B,
¬B ← not B.

We consider the update of B with Π. Since body(Π)∩{A, C, D} = ∅, from Theorem
4.1, we can actually reduce the update of B with Π into the update of {B} with Π.
It is clear that the unique result of Update({B}, Π) is {¬A, B,¬C}. So according
to Theorem 4.1, the unique resulting knowledge base with respect to Update(B, Π)
is {¬A, B,¬C, D}.

Let us consider another situation. Let B = {A, B} and Π be a program consisting
of the following rules:

¬B ← not C,
¬C ← A.

Consider rule r : ¬C ← A in Π. Since head(r) ∩ (B ∪ body(¬B ← not C)) =
{¬C}∩{¬A,¬B, C} = ∅, from Theorem 4.2, the update of B with Π can be reduced
to the update of B with {¬B ← not C}, which has the unique result {A,¬B}. So
the result of Update(B, Π) is an answer set of program {A ←,¬B ←,¬C ← A},
which has the unique answer set {A,¬B,¬C}.

In general, given an update specification Update(B, Π), two restricted monotonic-
ity theorems can be applied alternatively and sequentially to split both B and Π
into smaller parts such that the evaluation of Update(B, Π) can be significantly
simplified.

Example 4.2. Let B = {¬A, B, C} and Π be a program consisting of the fol-
lowing rules:

¬B ← not B,
A← C.

Consider the update of B with Π. Firstly, since body(Π) ∩ {¬A} = ∅, according to
Theorem 4.1, we can split B into B1 = {B, C} and B2 = {¬A}, and the resulting
knowledge base B′ with respect to Update(B, Π) is then represented as

B′ = B′
1 ∪ {¬A | if A 6∈ B′

1}, (4)

where B′
1 is a resulting knowledge base with respect to Update({B, C}, Π). There-

fore, the evaluation of Update(B, Π) is reduced to the evaluation of Update({B, C}, Π).
It is then observed that head(A← C)∩{¬B,¬C, B} = ∅, according to Theorem

4.2, Π can be split into Π1 = {¬B ← not B} and Π2 = {A← C}, and B′
1 is then

represented as an answer set of the following program:

{L | L ∈ B′
2} ∪ {A← C}, (5)

where B′
2 is a resulting knowledge base with respect to Update({B, C}, {¬B ← not

B}).
Since body(¬B ← not B) ∩ {C} = ∅, from Theorem 4.1 again, the update spec-

ification Update({B, C}, {¬B ← not B}) can be further split. That is, B′
2 can be

represented as

B′
2 = B′′

2 ∪ {C | if ¬C 6∈ B′′
2}, (6)
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where B′′
2 is the resulting knowledge base with respect to Update({B}, {¬B ← not

B}). Now it is easy to see that the unique result of B′′
2 is {B}. Then from (6), (5)

and (4), we have

B′
2 = {B, C},
B′

1 = {A, B, C}, and
B′ = {A, B, C}

respectively.
From the above reduction, we can see that the evaluation of update specification

Update(B, Π) is finally reduced to the evaluation of update specification
Update({B}, {¬B ← not B}), where the sizes of knowledge base and update pro-
gram from initially three facts and two rules are reduced to one fact and one rule
respectively.

4.2 Proofs of Restricted Monotonicity Theorems

In order to prove Theorems 4.1 and 4.2 described previously, we need a result about
splitting extended logic programs. In particular, our proofs of Theorems 4.1 and
4.2 are based on a special case of a splitting theorem on PLPs proved in [Zhang
2003b], which we state as follows. We first introduce a notion. Given a set of
ground literals S, we use e(Π, S) to denote the program obtained from program Π
by deleting: (1) each rule in Π that has a formula notL in its body with L ∈ S;
and (2) all formulas of form L in the bodies of the remaining rules with L ∈ S.
Intuitively, e(Π, S) can be viewed as a simplicity of Π giving those literals in S to
be true.

Theorem 4.3. [Zhang 2003b] Let Π = Π1 ∪ Π2 be an extended logic program
and body(Π1) ∩ head(Π2) = ∅. Then a set of literals S is a consistent answer set
of Π if and only if S = S1 ∪ S′, where S1 is an answer set of Π1, S′ is an answer
set of e(Π2, S1), and S1 ∪ S′ is consistent.

Note that the above splitting result is more general than Lifschitz-Turner’s Split-
ting Set Theorem on extended logic programs [Lifschitz and Turner 1994]. This
can be demonstrated by the following example.

Example 4.3. Let Π be a program consisting of the following rules:

A← not C,
A← not B,
B ← not A.

It is not difficult to see that this program does not have any nontrivial splitting set.
Therefore, the above splitting set theorem cannot be used to compute the answer
set of Π. However, Π can be split into Π1 and Π2 as follows:

Π1: Π2:
A← not C, A← not B,

B ← not A,

such that body(Π1) ∩ head(Π2) = ∅. It is observed that {A} is the unique answer
set of Π1, and the unique answer set of Π is then obtained from Π1’s answer set
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{A} and the answer set of e(Π2, {A}), which is also {A}. So we get the unique
answer set of Π {A}.

Now based on Theorem 4.3, we are already to give complete proofs of the two
restricted monotonicity theorems presented in subsection 4.1. We first prove the
following lemmas.

Lemma 4.4. Let Π1 and Π2 be two extended logic programs, where each rule in
Π2 is of the form L← notL, head(Π2)∩body(Π2) = ∅ and body(Π1)∩head(Π2) = ∅.
Suppose both Π1 and Π1 ∪ Π2 have consistent answer sets. Then S is a consistent
answer set of Π1 ∪ Π2 if and only if S = S′ ∪ {L | L ← notL ∈ Π2 and L 6∈ S′},
where S′ is a consistent answer set of Π1.

Proof. From the Theorem 4.3, it concludes that S is a consistent answer set
of Π1 ∪ Π2 if and only if S = S′ ∪ S′′, where S′ is an answer set of Π1, and S′′ is
an answer set of e(Π2, S

′). Since e(Π2, S
′) = {L ← not L | L ← not L ∈ Π2 and

L 6∈ S′} and head(Π2) ∩ body(Π2) = ∅, it is clear that {L | L ← not L ∈ Π2 and
L 6∈ S′} is an answer set of e(Π2, S

′). So the result holds.

Lemma 4.5. Let S be a consistent answer set of an extended logic program Π,
and Π = Π′ − {r1, · · · , rk} where rules r1, · · · , rk are defeated by Π. Then S is also
an answer set of Π′.

The proof of Lemma 4.5 is trivial.

Proof of Restricted Monotonicity Theorem 1 (Theorem 4.1)
From Lemma 3.3, Update(B1, Π) and Update(B2, Π) are equivalent to the following
two PLPs respectively: P1 = (Π ∪ {L ← notL | L ∈ B1},N , <) and P2 = (Π ∪
{L ← notL | L ∈ B2},N , <), where < relations in P1 are specified as stated in
Lemma 3.3 respectively. Let B′

1 be a consistent answer set of P1. We assume
B1 = {L1, · · · , Lk}, and B2 = B1 ∪ {Lk+1, · · · , Lm}. Observing the construction of
P2, besides rules in P1, P2 also contains following rules:

rk+1 : Lk+1 ← notLk+1,
· · ·,
rm : Lm ← notLm.

Let Π′ ∪ Π′′ be a reduct of P2, where each rule in Π′ is also in P1, and Π′′ =
{rk+1, · · · , rm}. Note that since for each rule r ∈ Π′′, there is no other rule r∗ such
that N (r∗) < N (r), all rules rk+1, · · · , rm will be included in each reduct of P2.
Now we show B′

2 is an answer set of Π′ ∪ Π′′. If Π′ is a reduct of P1, then B′
1 is

an answer set of Π′ and the result is true from Lemma 4.4.
Now suppose Π′ is a proper subset of some reduct Π∗ of P1, where Π′ = Π∗ −

{rp, · · · , rq}. Clearly, all rules rp, · · · , rq are eliminated from Π∗ due to additional
rules rk+1, · · · , rm are added into P1 to form P2. Therefore, we can assume that in
the evaluation of reduct Π′ ∪ Π′′ of P2, there exists some integer h such that

Π0 = Π ∪ {L← notL | L ∈ B2},
· · ·,

Πh = Π∗ ∪ Π′′,
Πh+1 = Πh − {ri, · · · , r′i | there exists some r ∈ Π′′ such that
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N (r) < N (ri, · · · , r′i) and ri, · · · , r′i
are defeated by Πh − {ri, · · · , r′i}}

8,
· · ·,

Πh+l = Πh+l−1 − {r′j , · · · , rj | there exists some r ∈ Π′′ such that
N (r) < N (r′j , · · · , rj) and r′j , · · · , rj

are defeated by Πh+l−1 − {r
′
j , · · · , rj}},

· · ·,

where ri, · · · , r′i, · · · , r
′
j , · · · , rj are the rules eliminated from the reduct Π∗ of P1 due

to the preferences N (r) < N (ri), · · ·, N (r) < N (rj) for some r ∈ Π′′. Note that
since Π∗ is a reduct of P1, no any other rules in Π∗ can be further eliminated from
preferences between rules in {L← notL | L ∈ B1} and rules in Π.

On the other hand, since for any rule r′ ∈ {L← not L | L ∈ B1}, N (r′) < N (ri),
· · ·, N (r′) < N (rj), Πh+1, · · ·, Πh+l can be also specified as

Πh+1 = Πh − {ri, · · · , r′i | there exists some r′ ∈ {L← notL | L ∈ B1}
such that N (r′) < N (ri, · · · , r′i), and
ri, · · · , r′i are defeated by Πh − {ri, · · · , r′i}},

· · ·,
Πh+l = Πh+l−1 − {r′j , · · · , rj | there exists some

r′ ∈ {L← notL | L ∈ B1}
such that N (r′) < N (r′j , · · · , rj) and
r′j , · · · , rj are defeated by Πh+l−1−{r′j , · · · , rj}}.

But this contradicts the fact that Π∗ is a reduct of P1 where no any other rules can
be further eliminated from preferences between rule r′ and rules ri, · · · , rj . So Π′

must be a reduct of P1. 2

Proof of Restricted Monotonicity Theorem 2 (Theorem 4.2)
From Lemma 3.3, we know that Update(B, Π2) is equivalent to a PLP P = ({L←
notL | L ∈ B} ∪ Π2, N , <), where for each rule r ∈ {L ← notL | L ∈ B} and
each rule r′ in Π2, N(r) < N(r′). Then from Theorem 1 in [Zhang 2003b], we
know that each answer set of P is also an answer set of extended logic program
{L← notL | L ∈ B}∪Π2. Again from Lemma 3.3 and Theorem 1 in [Zhang 2003b],
a resulting knowledge base with respect to Update(B, Π1) can be viewed as an
answer set of program {L← notL | L ∈ B}∪Π1. Therefore, it is sufficient to prove
that each consistent answer set B′′ of Π′, where Π′ = {L ← notL | L ∈ B} ∪ Π2,
is also an answer set of {L ←| L ∈ B′} ∪ (Π2 − Π1), where B′ is an answer set of
{L ← notL | L ∈ B} ∪ Π1. From condition head(Π2 − Π1) ∩ (B ∪ body(Π1)) = ∅,
this is simply followed from Theorem 4.3. 2

5. PROGRAM UPDATE

From this section, we consider program updates, where a knowledge base is rep-
resented by an extended logic program and can be updated in terms of another
extended logic program.

8Note that condition (b) of Definition 2.2 does not apply in this case. Also note that the notion
N (r) < N (ri, · · · , r′i) means N (r) < N (ri), · · ·, N (r) < N (r′

i
).
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5.1 The Approach

From discussions in section 1, we can see that there are two essential steps to
perform an update on Π0 with Π1: eliminating contradictory rules from Π0 with
respect to Π1; and solving conflicts between the remaining rules in Π0 and Π1.
Furthermore, we should also have an explicit syntactic representation for the result
of updating Π0 with Π1. Before we describe our ideas of dealing with program
updates, we first introduce a useful concept. Let S be a consistent set of ground
literals. We say S is coherent with an extended logic program Π if for any an-
swer set S′ of e(Π, S) of Π with respect to S, S ∪ S ′ is consistent. Recall that
e(Π, S) is viewed as a simplified program of Π providing that all ground literals
in S are true. Therefore, the intuitive meaning of S’s coherence with Π is that
given all ground literals of S to be true, no inconsistent fact can be derived from
Π. For example, given S = {A,¬B} and Π = {C ← A,¬D ← notA}, the only
answer set of e(Π, S) is {C}, from which it is concluded that S is coherent with Π.
However, if we change S to S ′ = {A,¬B,¬C}, then S′ is no longer coherent with Π.

Eliminating contradictory rules

To eliminate contradictory rules from Π0 with respect to Π1, it cannot be simply
to extract a maximal subset Π of Π0 by requiring Π ∪ Π1 to be well defined. For
instance, suppose Π0 = {A ←, B ← C} and Π1 = {C ← A,¬B ← C}. Clearly,
both Π = {A←} and Π′ = {B ← C} are maximal subsets of Π0 such that Π ∪ Π1

and Π′∪Π1 are well defined. But intuitively, rule B ← C represents a contradictory
semantics comparing with rule ¬B ← C in Π1, and hence we would like to delete
B ← C instead of deleting A← from Π0.

To achieve this purpose, proper semantic justification for contradiction elimina-
tion must be taken into account. We first update an answer set SΠ0

of Π0 with
Π1. This is achieved by our simple fact update specification Update(SΠ0

, Π1). The
result, as we have described previously, is a consistent set of ground literals, de-
noted as S(Π0,Π1). If Update(SΠ0

, Π1) is well defined, then S(Π0,Π1) has minimal
difference from SΠ0

and satisfies each rule in Π1. We then extract a maximal subset
Π(Π0,Π1) of Π0 such that S(Π0,Π1) is coherent with Π(Π0,Π1). The intuitive idea be-
hind this is as follows. By updating the answer set of Π0 with Π1, we can eliminate
the contradictory information implied by Π0 with respect to rules of Π1, and the
result S(Π0,Π1) presents consistent information with respect to Π1. Then by requir-
ing S(Π0,Π1) to be coherent with a maximal subset Π(Π0,Π1) of Π0, it is guaranteed
that Π(Π0,Π1) maximally retains rules of Π0 that do not imply any contradictory
information with respect to rules of Π1. Program Π(Π0,Π1) is called a transformed
program from Π0 with respect to Π1. It should be noted that Π(Π0,Π1) could be an
empty set sometimes.

Example 5.1. Consider extended logic programs Π0 consisting of the following
rules:

A←,
C ← B,
D ← not E,

and Π1 consisting of the following rules:
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B ← A,
¬C ← B,
E ← not D.

Clearly, Π0 has a unique answer set SΠ0
= {A, D}. Updating SΠ0

with Π1,
according to our generalized simple fact update, we have the result S(Π0,Π1) =
{A, B,¬C, D}, which has a minimal difference from SΠ0

and satisfies each rule in
Π1. Then it is easy to see that Π(Π0,Π1) = {A←, D ← not E} is the unique maxi-
mal subset of Π0 such that S(Π0,Π1) is coherent with Π(Π0,Π1). Therefore, Π(Π0,Π1)

is the transformed program from Π0 with respect to Π1.

Solving conflicts

After transforming Π0 to Π(Π0,Π1), we need to solve possible conflicts between
rules in Π(Π0,Π1) and Π1. To do so, we specify a prioritized logic program P(Π0,Π1)

= (Π(Π0,Π1) ∪ Π1,N , <), where for each rule r in Π1 and rule r′ in Π(Π0,Π1), we
specify N (r) < N (r′) because Π1 expresses the agent’s latest knowledge. Whenever
there is a conflict between rules r and r′ where r ∈ Π1 and r′ ∈ Π(Π0,Π1) respectively,
r will override r′, otherwise r′ will be remained. Finally, we specify the possible
resulting program Π′

0 after updating Π0 with Π1 to be a reduct of P(Π0,Π1) =
(Π(Π0,Π1) ∪Π1,N , <), i.e. P<

(Π0,Π1)
(see Definition 2.2).

Example 5.2. (Example 5.1 continued). Consider the same Π0 and Π1 as in
Example 5.1. From the previous step of eliminating contradictory rules in Π0,
Π0 is transformed to Π(Π0,Π1) = {A ←, D ← not E}. Now we specify P(Π0,Π1)

= (Π(Π0,Π1) ∪ Π1,N , <) as follows:

N1 : A←,
N2 : D ← not E,
N3 : B ← A,
N4 : ¬C ← B,
N5 : E ← not D,
N3 < N1, N3 < N2, N4 < N1, N4 < N2, N5 < N1, N5 < N2.

From Definition 2.2, it is not difficult to see that P(Π0,Π1) has a unique reduct:

A←,
B ← A,
¬C ← B,
E ← not D,

which, as we expect, is the resulting program Π′
0 after updating Π0 with Π1.

5.2 Formal Descriptions

The next two definitions specify the transformed program from Π0, which eliminates
all contradictory rules from Π0 with respect to Π1, and the final resulting program
after updating Π0 with Π1 respectively.

Definition 5.1. Given two consistent programs Π0 and Π1 and let SΠ0
be an

answer set of Π0. Suppose S(Π0,Π1) ∈ Res(Update(SΠ0
, Π1)) (see section 3.2). An

extended logic program Π(Π0,Π1) is called a transformed program from Π0 with
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respect to Π1, if Π(Π0,Π1) is a maximal subset of the ground instantiation of Π0

such that SΠ0
is coherent with Π(Π0,Π1).

Definition 5.2. Let Π(Π0,Π1) be defined as in Definition 5.1. A specification of up-
dating Π0 with Π1 is specified as a PLP P -Update(Π0, Π1) = (Π(Π0,Π1)∪Π1,N , <),
where for each rule r in Π1 and each rule r′ in Π(Π0,Π1), there is a preference
relation N (r) < N (r′). A program Π′

0 is called a possible resulting program of
P -Update(Π0, Π1) after updating Π0 with Π1 if Π′

0 is a reduct of the ground in-
stantiation of P -Update(Π0, Π1).

From Definitions 5.1 and 5.2, it is obvious that given Π0 and Π1, both the trans-
formed program Π(Π0,Π1) and resulting program Π′

0 may not be unique. Ignoring
details, it will not be difficult to verify that applying our formal approach described
here to problems presented in Examples 5.1 and Example 5.2, we get desired solu-
tions as proposed respectively.

Example 5.3. Given two programs Π0:

A←,
C ← not B,
B ← not C,

and Π1:

¬A←.

Consider an update of Π0 with Π1. Firstly, to find out the contradictory rule in
Π0 with respect to Π1, we update every answer set of Π0 with Π1. Clearly, Π0

has two answer sets {A, B} and {A, C}. Updating these two answer sets with Π1,
we get {¬A, B} and {¬A, C} respectively. From Definition 5.1, it is not difficult
to conclude that program Π(Π0,Π1) = {C ← not B, B ← not C} is the unique
transformed program from Π0 with respect to Π1. Secondly, to solve possible
conflicts between rules in Π(Π0,Π1) and Π1, we specify a PLP P -Update(Π0, Π1) =
(Π(Π0,Π1) ∪Π1,N , <) as follows:

N1 : C ← not B,
N2 : B ← not C,
N3 : ¬A←,
N3 < N1, N3 < N2.

Finally, it is concluded that {¬A←, C ← not B} and {¬A←, B ← not C} are the
two possible resulting programs after updating Π0 with Π1.

Example 5.4. Consider to update Π0:

A←,
C ← B,
¬C ← B

with Π1:

B ← A.
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Π0 has a unique answer set SΠ0
= {A}. Updating SΠ0

with Π1, we obtain a unique
result S(Π0,Π1) = {A, B}. From Definition 5.1, there are two different transformed
programs from Π0 with respect to Π1 named Π′

(Π0,Π1) = {A ←, C ← B} and

Π′′
(Π0,Π1)

= {A←, ¬C ← B}. Then we specify two PLPs:

P -Update(Π0, Π1)
′ = (Π′

(Π0,Π1)
∪ Π1,N , <) and

P -Update(Π0, Π1)
′′ = (Π′′

(Π0,Π1)
∪ Π1,N , <) as follows respectively:

N1 : A←, N1 : A←,
N2 : C ← B, N2 : ¬C ← B,
N3 : B ← A, N3 : B ← A,
N3 < N1, N3 < N2. N3 < N1, N3 < N2.

Obviously, P -Update(Π0, Π1)
′ and P -Update(Π0, Π1)

′′ have reducts:

P ←,
C ← B,
B ← A,

and

A←,
¬C ← B,
B ← A,

respectively, which are the possible resulting programs after updating Π0 with Π1.

Example 5.5. Consider to update Π0:

A←,
¬C ← A,
¬B ← ¬C

with Π1:

C ← A.

Π0 has a unique answer set {A,¬B,¬C}. By updating {A,¬B,¬C} with Π1, we
obtain the result {A,¬B, C}. Now it is clear that the transformed program from
Π0 with respect to Π1 is {A ←,¬B ← ¬C}. Then finally, we have the resulting
program

A←,
C ← A,
¬B ← ¬C,

after updating Π0 with Π1. The interesting point of this example is that during
the update, rule ¬B ← ¬C in Π0 will not be affected by eliminating rule ¬C ← A

from Π0.

6. CHARACTERIZING PROGRAM UPDATE

6.1 Basic Properties

Now we investigate properties of the program update. Firstly, it is easy to observe
that our previous simple fact update actually is a special case of our logic program
update.
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Proposition 6.1. Given two extended logic programs Π0 and Π1 where each
rule in Π0 has the form L ← and L is a ground literal. Let P -Update(Π0, Π1)
be an update specification as defined in Definition 5.2 and Π′

0 a resulting program
of P -Update(Π0, Π1). Then each answer set of Π′

0 is also a result with respect to
simple fact update specification Update(SΠ0

, Π1), where SΠ0
= {L | L← ∈ Π0}.

Proof. Program Π0 has a unique answer set SΠ0
= {L | L← ∈ Π0}. Suppose

S′ is a result of Update(SΠ0
, Π1). Then from Definition 5.1, we need to specify a

transformed program Π(Π0,Π1) of Π0. From the special form of rules in Π0, obviously
Π(Π0,Π1) must be defined as {L← | L← ∈ Π0 and L ∈ S′}. So P -Update(Π0, Π1)
is specified as (Π(Π0,Π1) ∪ Π1,N , <).

On the other hand, as there does not exist a rule in Π(Π0,Π1) including weak
negation in its body, during the computation of the reduct of P -Update(Π0, Π1),
no rule in Π(Π0,Π1) will be deleted. Furthermore, from the <-relation definition in
P -Update(Π0, Π1), no any rule in Π1 can be eliminated either. So P -Update(Π0, Π1)
will have a unique reduct - the resulting program Π′

0 = Π(Π0,Π1) ∪Π1. This follows
that for each answer set SΠ′

0
of Π′

0, S′ ⊆ SΠ′

0
. Again, since S′ is also a result of

Update(SΠ0
, Π1), it follows that each rule of Π1 is satisfied in S′. From the answer

set property that each answer set of Π′
0 is a smallest set of ground literals in which

each rule of Π′
0 is satisfied, it concludes that SΠ′

0
⊆ S′. So S′ = SΠ′

0
. The result

holds.

Given programs Π0 and Π1, sometimes we would like to know under what con-
dition(s) a literal derived (entailed) from Π1 is still derivable from each resulting
program Π′

0 after updating Π0 with Π1. This is so called persistence property. Per-
sistence is an interesting property for knowledge base update because it in some
sense simplifies the inference problem from the resulting knowledge base. Under
our context, persistence property can be formally described as follows: for any an-
swer set S1 of Π1, there exists some answer set S ′

0 of resulting program Π′
0 such

that S1 ⊆ S′
0. However, due to the defeasibility of rules in extended logic pro-

grams, this property does not hold in general. For instance, let Π0 = {P ←} and
Π1 = {Q ← notP}. After updating Π0 with Π1, there is a unique resulting pro-
gram Π0 = {P ←, Q← notP}, whose answer set {P}, obviously, does not include
Π1’s answer set {Q}. Nevertheless, by applying Theorem 4.3, we have the following
result.

Theorem 6.2. Let P -Update(Π0, Π1) be an update specification and Π′
0 a re-

sulting program of P -Update(Π0, Π1). If head(Π0) ∩ body(Π1) = ∅, then for each
answer set S′

0 of Π′
0, we have S1 ⊆ S′

0, where S1 is an answer set of Π1.

Proof. According to Definition 5.2, Π′
0 is a reduct of P -Update(Π0, Π1) =

(Π(Π0,Π1) ∪ Π1,N , <). From the fact that Π(Π0,Π1) ∪ Π1 ⊆ Π0 ∪ Π1 and Π′
0 ⊆

Π(Π0,Π1)∪Π1, it follows that Π1 ⊆ Π′
0 ⊆ Π0∪Π1. Let Π′

0 = X∪Π1, where X ⊆ Π0.
Then from the condition head(Π0)∩body(Π1) = ∅, we have head(X)∩body(Π1) = ∅.
From Theorem 4.3, it follows that each answer set S ′

0 of X ∪ Π1 can be expressed
as the form S′

0 = S1 ∪ S, where S1 is an answer set of Π1. So the result holds.

The following theorem further shows that under some conditions, we can also
decide which rules in the initial program Π0 will not be included in the resulting
program Π′

0 after updating Π0 with Π1.

ACM Transactions on Computational Logic, Vol. 7, No. 3, July 2006.



24 · Yan Zhang

Theorem 6.3. Let P -Update(Π0, Π1) be an update specification and Π′
0 be a

resulting program of P -Update(Π0, Π1). If head(Π0) ∩ body(Π1) = ∅, then Π′
0 does

not include any ground rules, which are ground instances of some rules in Π0, of
the form L← · · · , notL′, · · ·, where L′ is included in every answer set Π1.

Proof. Let P -Update(Π0, Π1) = (Π(Π0,Π1) ∪ Π1,N , <), where Π(Π0,Π1) ⊆ Π0

and for any rules r ∈ Π1 and r′ ∈ Π(Π0,Π1), N (r) < N (r′). We prove that each
ground rule, that is a ground instance of some rule in Π(Π0,Π1), of the form L ←
· · · , notL′, · · ·, where L′ is in each answer set of Π1, will be eliminated from the
computation of the reduct of P -Update(Π0, Π1).

Firstly, it is clear that in the computation of the result of P -Update(Π0, Π1), no
ground instance of some rule in Π1 can be deleted according the the <-relation
specification in P -Update(Π0, Π1). In each iteration of computing the sequence
{Πi} (i = 0, 1, · · ·) (See Definition 2.2)9, Πi is obtained from Πi−1 by eliminating
some rule in Πi (note that this rule is in Π0):

Π0 = the ground instantiation of Π(Π0,Π1) ∪Π1,
Πi = Πi−1 − {r1, r2, · · · | r1, r2, · · · satisfy conditions

(a) and (b) stated in Definition 2.2}.

We can also express Πi as Πi = X∪ the ground instantiation of Π1, where X ⊆ the
ground instantiation of Π0. As head(X) ∩ body(Π1) = ∅, from the Theorem 4.3, it
concludes that each answer set Si of Πi must include an answer set of Π1.

If there is some rule r′, that is a ground instance of a rule in Π(Π0,Π1), of the
form L← · · · , notL′, · · ·, where L′ is in every answer set of Π1, then in the sequence
{Πi} (i = 0, 1, · · ·), there must exist some h, such that Πh = Πh−1 − {r′, · · ·} since
for any ground instance r of Π1, N (r) < N (r′), and L′ is in every answer set of
Πh. Therefore, the reduct Π′

0 of P -Update(Π0, Π1) does not include any this type
of rules in Π0.

Directly from Theorem 6.3, we have the following corollary.

Corollary 6.4. Let P -Update(Π0, Π1) be an update specification. If head(Π0)∩
body(Π1) = ∅ and each rule in Π0 has a ground instance of the form
L← · · · , notL′, · · ·, where L′ is in every answer set of Π1, then P -Update(Π0, Π1)
has a unique resulting program Π′

0 such that Π′
0 is the ground instantiation of Π1.

Example 6.1. Consider programs Π0 and Π1 as follows:

Π0:
E ← notA,
F ← notD,

Π1:
A←,
B ← notC,
C ← notB,
D ← not¬D.

9To distinguish from Π0 and Π1, here we use superscript Πi to denote the program generated in
each iteration of computing the sequence.
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Since head(Π0)∩ body(Π1) = ∅, according to the above corollary, updating Π0 with
Π1 will have a unique result Π′

0 = Π1. This is also easy to verify from Definitions
5.1 and 5.2. Now we augment Π0 by adding rule D ← notC into Π0. In this case,
condition head(Π0) ∩ body(Π1) = ∅ still holds, but in rule D ← notC, C is only in
one of the two answer sets of Π1, so the resulting program is no longer the same as
Π1. Instead, we obtain the unique resulting program {D← notC} ∪ Π1.

6.2 Simplifying the Inference in Program Update

An important issue associated with the program update is the inference problem.
That is, for a given program update specification P -Update(Π0, Π1) and a ground
literal L, whether L is entailed from every resulting program with respect to this
update specification, i.e. P -Update(Π0, Π1) |= L. To simplify this inference process,
we will need a new splitting theorem for prioritized logic programs that the author
has studied in [Zhang 2003b]. Given an extended logic program Π and a set X of
ground literals. For a rule r ∈ e(Π, X), we use original(r) to denote r’s original
form in Π. For instance, if Π consists of the following two rules:

A← B, notC,
B ← C, notA,

and X = {C}, then e(Π, X) = {r : B ← notA}, where original(r) = B ← C, notA.
Now we define a split of a PLP as follows.

Definition 6.5. [Zhang 2003b] Let P = (Π,N , <). We say that (P1,P2) is a
split of P , if there exist two disjoint subsets Π1 and Π2 of Π, where Π = Π1 ∪ Π2,
such that

(1) head(Π2) ∩ body(Π1) = ∅,

(2) P1 = (Π1 ∪{N0 : First←},N , <)10, where for any r, r′ ∈ Π1, N (r) < N (r′) ∈
P(<) implies N (r) < N (r′) ∈ P1(<), and if there exists some r′′ ∈ Π2 and
first<(r) = r′′, then N0 < N (r) ∈ P1(<);

(3) P2 = (e(Π2, S1) ∪ {N0 : First ←},N , <), where S1 is an answer set of P1,
for any r, r′ ∈ e(Π2, S1), N (original(r)) < N (original(r′)) ∈ P(<) implies
N (r) < N (r′) ∈ P2(<), and if there exists some r′′ ∈ Π1 and first<(original(r))
= r′′, then N0 < N (r) ∈ P2(<).

A split (P1,P2) is called S-dependent if S is an answer set of P1 and P2 is formed
based on S as described in condition 3 above, i.e. P2 = (e(Π2, S) ∪ {N0 : First←
},N , <).

Theorem 6.6. [Zhang 2003b] Let (P1,P2) be a S1-dependent split of P as de-
fined in Definition 6.5. A set of ground literals S is a consistent answer set of P if
and only if S = S1 ∪ S2 − {First}, where S2 is an answer set of P2, and S1 ∪ S2

is consistent.

The above result can be extended to a general case.

10Here we assume that First is a ground literal not occurring in P .
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Definition 6.7. [Zhang 2003b] Let P = (Π,N , <). We say that (P1, · · · ,Pk) is

a split of P , if there exist k disjoint subsets Π1, · · · , Πk of Π, where Π =
⋃k

i=1 Πi,
such that

(1) head(Πi) ∩ body(
⋃i−1

j=1 Πj) = ∅, (i = 2, · · · , k),

(2) P1 = (Π1 ∪ {N0 : First ←},N , <), where for any r, r′ ∈ Π1, N (r) < N (r′) ∈
P(<) implies N (r) < N (r′) ∈ P1(<), and if there exists some r′′ 6∈ Π1 and
first<(r) = r′′, then N0 < N (r) ∈ P ′(<);

(3) P i = (e(Πi,
⋃i−1

j=1 Sj) ∪{N0 : First ←},N , <), where Sj is an answer set

of Pj , for any r, r′ ∈ e(Πi,
⋃i−1

j=1 Sj), N (original(r)) < N (original(r′)) ∈

P(<) implies N (r) < N (r′) ∈ P i(<), and if there exists some r′′ 6∈ Πi and
first<(original(r)) = r′′, then N0 < N (r) ∈ P i(<).

A split (P1, · · · ,Pk) is called
⋃k−1

i=1 Si-dependent if Si is an answer set of P i (i =

1, · · · , k− 1) and each P i+1 is formed based on
⋃i

j=1 Sj as described in condition 3
above.

Theorem 6.8. [Zhang 2003b] Let (P1, · · · ,Pk) be a
⋃k−1

i=1 Si-dependent split of
P as defined in Definition 6.7. A set of ground literals S is a consistent answer set
of P if and only if S =

⋃k

i=1 Si − {First}, where Sk is an answer set of Pk, and
⋃k

i=1 Si is consistent.

Now based on the above splitting theorem for PLPs, we can prove the following
result that simplifies the inference problem in program updates.

Theorem 6.9. Let P -Update(Π0, Π1) be an update specification and L be a
ground literal. If P -Update(Π0, Π1) has a S-dependent split (P1,P2), then
P -Update(Π0, Π1) |= L if and only if X ∪ Y |= L, where X ∪ {First ←} and
Y ∪ {First←} are reducts of P1 and P2 respectively.

Proof. We only need to prove that S is an answer set of Π′
0 iff S is an answer

set of X ∪ Y . Since Π′
0 is a reduct of P -Update(Π0, Π1), S is certainly an answer

set of P -Update(Π0, Π1) as well. From Theorem 6.6, it shows that S is an answer
set of P -Update(Π0, Π1) iff S = S1 ∪ S2 − {First}, where S1 is an answer set of
P1 and S2 is an answer set of P2 (as here we only consider well defined update
specification, the consistency condition of S1 ∪S2 is omitted). Let S1 be an answer
set of X ∪{First←} and S2 be an answer set of Y ∪{First←}. So it follows that
S is an answer set of Π′

0 iff S is an answer set of X ∪ Y . The result holds.

As mentioned earlier, to decide whether a literal is entailed from every resulting
program with respect to an update specification, we need to evaluate the underlying
update specification. The result stated in Theorem 6.9 simplifies such evaluation
procedure. For instance, under the condition of Theorem 6.9, the evaluation of
P -Update(Π0, Π1) is reduced to the evaluation of two smaller prioritized logic pro-
grams P1 and P2. It should be noted that under the splitting condition, although
the answer set of a resulting program Π′

0 is characterized by the answer sets of two
smaller PLPs X and Y , the syntactic form of X∪Y , however, may not be the same
as Π′

0. To illustrate this property, consider the following example.

Example 6.2. Let Π0 and Π1 be the following programs:
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Π0:
A← notB,

Π1:
C ← notA,
D ← not¬D.

Consider the update of Π0 with Π1. From Definitions 5.1 and 5.2, it is easy to see
that there is a unique update specification P -Update(Π0, Π1):

N1 : A← notB,
N2 : C ← notA,
N3 : D ← not¬D,
N2 < N1, N3 < N1.

It is clear that P -Update(Π0, Π1) has a unique reduct Π0 ∪ Π1.
On the other hand, it is also observed that since head(Π1) ∩ body(Π0) = ∅, a

S-dependent split (P1,P2) can be defined for P -Update(Π0, Π1):

P1 = (Π0 ∪ {First←},N , <):
N0 : First←,
N1 : A← notB,
N0 < N1,

P2 = (e(Π1, {A, F irst}) ∪ {First←},N , <):
N0 : First←,
N1 : D ← not¬D.

Then we obtain the unique reduct of P1:

X ∪ {First←} = {A← notB, First←},

and the unique reduct of P2:

Y ∪ {First←} = {D ← not¬D, First←}.

Obviously, X ∪ Y 6= Π0 ∪ Π1 although X ∪ Y and Π0 ∪ Π1 have the same unique
answer set {A, D}.

Corollary 6.10. Let P -Update(Π0, Π1) be an update specification and L be

a ground literal. If P -Update(Π0, Π1) has a
⋃k−1

i=1 Si-dependent split (P1, · · · ,Pk),
then P -Update(Π0, Π1) |= L if and only if X1∪· · ·∪Xk |= L, where Xi∪{First←}
is a reduct of P i (1 ≤ i ≤ k).

7. ANALYSIS OF COMPUTATIONAL COMPLEXITY

In this section, we address the issue of computational complexity of simple fact and
program updates. In general, for both simple fact and logic program updates, we
will consider two complexity problems: model checking and inference - the former
says that for a given update problem, deciding whether a set of literals is an answer
set for a simple fact or program update specification, while the inference problem
is that deciding whether a given literal is entailed from the result of the underlying
simple fact or program update. In addition, since contradiction elimination is the
first step in a program update, we will also consider the complexity for the check of
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contradiction elimination in terms of a program update. In the rest of this section,
we assume that all programs in the context are finite propositional programs.

We first introduce some basic notions of the complexity theory, where further
descriptions are referred to [Garey and Johnson 1979; Papadimitriou 1994]. Two
important complexity classes are P and NP . The class of P includes those deci-
sion problems solvable by a polynomial-time deterministic Turing machine. The
class of NP , on the other hand, consists of those decision problems solvable by a
polynomial-time nondeterministic Turing machine.

The class P C consists of the problems solvable by a polynomial-time deterministic
Turing machine with an oracle for a problem from C, where the class NP C includes
the problems solvable by a nondeterministic Turing machine with an oracle for a
problem in C. Let C be a class of decision problems, by co-C we mean the class
consisting of the complements of the problems in C.

The classes ΣP
k and ΠP

k of the polynomial hierarchy are defined as follows:

ΣP
0 = ΠP

0 = P and

ΣP
k = NPΣP

k−1 , ΠP
k =co-ΣP

k for all k > 1.

It is easy to see that NP = ΣP
1 , co-NP = ΠP

1 , and ΣP
2 = NP NP . A problem A is

complete for a class C if A ∈ C and for every problem B in C there is a polynomial
transformation of B to A.

7.1 Complexity Results for Simple Fact Update

Now we consider the simple fact update. Given a knowledge base, i.e. a consistent
set B of ground literals and an extended logic program Π, the update of B with Π
is specified by the corresponding update specification Update(B, Π) which is a PLP
as defined in Definition 3.1. From Lemma 3.3 in section 3.3, we know that any set
B′ is a resulting knowledge base with respect to a well defined Update(B, Π) if and
only if B′ is an answer set of a PLP

P = (Π ∪ {L← notL | L ∈ B},N , <), (7)

where for each r : L ← notL with L ∈ B and each r′ ∈ Π, N (r) < N (r′). So
we call this P the equivalent PLP of update specification Update(B, Π). From
this result, it is clear that to evaluate a resulting knowledge base with respect to
Update(B, Π), we only need to compute the answer set of P . So the computational
complexity of evaluating an update specification Update(B, Π) is equivalent to the
the computational complexity of computing the answer set of P .

Proposition 7.1. Let Π be a well defined program and r a rule. Deciding
whether r is defeated by Π is co-NP-complete.

Proof. Let r have the form: L ← L1, · · · , Lm, notLm+1, · · · , notLn. According
to Definition 2.1, r is defeated by Π if and only if Π has an answer set and for every
answer set S of Π, there exists some Li ∈ S, where m + 1 ≤ i ≤ n. Since Π is well
defined, that is, it has consistent answer set(s), deciding whether r is defeated by Π
is the same as the problem of deciding whether Π |= Li for some i (m+1 ≤ i ≤ n).
Now it is well known that deciding whether Π |= Li is co-NP-complete [Ben-Eliyahu
and Dechter 1994].
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To investigate the complexity with respect to the evaluation of a simple fact up-
date specification, we need to provide a characterization on the answer sets of a
particular class of prioritized logic programs that is related to our update formula-
tion. For this purpose, we need a concept called mutual defeasibility that was first
defined by the author in [Zhang 2003b].

Definition 7.2. [Zhang 2003b] Let Π be a ground extended logic program and
rp and rq be two rules in Π. We define a set D(rp) of literals with respect to rp as
follows:

D0 = {head(rp)};
Di = Di−1 ∪ {head(r) | head(r′) ∈ pos(r) where r ∈ Π and r′ are those

rules such that head(r′) ∈ Di−1};
D(rp) =

⋃∞

i=1Di.

We say that rq is defeasible through rp in Π if and only if neg(rq) ∩ D(rp) 6= ∅.
rp and rq are called mutually defeasible in Π, denoted as mutual(rp, rq), if rq is
defeasible through rp and rp is defeasible through rq in Π.

Intuitively, if rq is defeasible through rp in Π, then there exists a sequence of rules
r1, r2, · · · , rl, · · · such that head(rp) occurs in pos(r1), head(ri) occurs in pos(ri+1)
for all i = 1, · · ·, and for some k, head(rk) occurs in neg(rq). Under this condition,
it is clear that by triggering rule rp in Π, it is possible to defeat rule rq if rules
r1, · · · , rk are triggered as well. As a special case that D(rp) = {head(rp)}, rq is
defeasible through rp iff head(rp) ∈ neg(rq). Given an answer set S of Π, rq is
defeasible through rp, and S indeed defeats rq but does not defeat rp and rp is
effective in S (i.e. pos(rp) ∪ head(rp) ⊆ S), we then say that S defeats rq through
rp. From Definition 7.2, it is also easy to verify that checking whether two rules in
Π are mutually defeasible and whether S defeats rq through rp can be achieved in
polynomial time.

Given a PLP P = (Π1 ∪ Π2,N , <), where for each <-relation N (r) < N (r′) in
P , r ∈ Π1 and r′ ∈ Π2. We specify R<(S) to be a subset of Π1 in which each rule
is not defeated by S. Now we define the maximal <-consistency as follows.

Definition 7.3. Given a PLP P = (Π1∪Π2,N , <), where for each N (r) < N (r′)
in P , r ∈ Π1 and r′ ∈ Π2, and S and S′ two answer sets of Π1 ∪ Π2. We say that
S is as <-consistent as S ′ with respect to P(<), denoted as R<(S′) v R<(S), iff
(1) R<(S′) ⊆ R<(S), and (2) there do not exist rules rs ∈ Π1, rp, rq ∈ Π2 such
that (i) S defeats rq through rp (not through rs) and S does not defeat rs, and
(ii) S′ defeats rs and rp through rq

11. R<(S′) < R<(S) if R<(S′) v R<(S) and
R<(S) 6v R<(S′). S is maximally <-consistent with respect to P(<) if there does
not exist another S′′ such that R<(S) < R<(S′′).

The intuitive meaning of the above definition is as follows. A maximal <-
consistent answer set S of Π1 ∪Π2 with respect to P(<) defeats a minimal number
of rules in Π1, or a non-minimal number of rules in Π1 is defeated by S due to the
conflict between rules in Π2. Consider the following example.

11Note that Conditions (i) and (ii) imply that mutual(rp , rq).
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Π1:
r1 : A← notB,

Π2:
r2 : C ← notB,
r3 : B ← notA, notC.

We specify P = (Π1 ∪ Π2,N , <), where N (r1) < N (r2, r3). It is easy to see that
Π1 ∪ Π2 has two answer sets S = {A, C} and S ′ = {B}. From Definition 7.3,
we know that S is the maximal <-consistent answer set of Π1 ∪ Π2 and S′ is not
because R<(S′) < R<(S). It is observed that S is also an answer set of P where
S′ is not. Now if we change r1 in Π1 to r′1 : D ← notB, and all other parts of P
remain the same. Then S = {C, D} and S ′ = {B} are both maximal <-consistent
answer sets of Π1 ∪Π2 with respect to P(<). Again, we can verify that both S and
S′ are also answer sets of P . This example leads us to gain the following general
result.

Lemma 7.4. let P = (Π1 ∪ Π2,N , <) be a PLP, where for each <-relation
N (r) < N (r′) in P, r ∈ Π1 and r′ ∈ Π2. A set of ground literals S is an an-
swer set of P if and only if S is a maximal <-consistent answer set of Π1∪Π2 with
respect to P(<).

Proof. (⇒) Let S be a maximal <-consistent answer set of Π1∪Π2 with respect
to P(<). We prove that S is also an answer set of P . According to Theorem 1
in [Zhang 2003b], S is an answer set of P if and only if there exists some reduct
chain {Π′

i} (i = 0, 1, · · ·) such that S is an answer set of each Π′
i. On the other

hand, from the <-relations specified in P , we know that any rule in Π1 must be
included in every reduct of P . So in fact we can represent a reduct chain as the
form {Π1∪Π′

i} (i = 0, 1, , · · ·). We prove our result by induction on i. Firstly, since
Π1 ∪ Π′

0 = Π1 ∪ Π2, S is an answer set of Π1 ∪ Π′
0. Assume that S is an answer

set of Π1 ∪ Π′
p. We need to show that S is also an answer set of Π1 ∪ Π′

p+1. From
Definition 2.2, Π′

p+1 is obtained from Π′
p as follows:

Π1 ∪ Π′
p+1 = Π1 ∪ Π′

p − {r1, · · · , rl},

where there exists a rule r in Π1 such that N (r) < N (rj) (j = 1, · · · , l), and
r1, · · · , rl are defeated by Π1 ∪ Π′

p+1.
Now assume S is not an answer set of Π1∪Π′

p+1. Then from Theorem 1 in [Zhang
2003b], S cannot be an answer set for any Π1 ∪ Π′

j for all j > p + 1. Therefore,
there must exist another answer set S ′ of Π1 ∪ Π2, which is an answer set of each
Π1∪Π′

i in the reduct chain {Π1∪Π′
i} and hence S′ is an answer set of P . Note that

S′ must defeat each rule in {r1, · · · , rl}. Since S is not an answer set of Π1 ∪Π′
p+1,

there must exist some rule r∗ ∈ {r1, · · · , rl} such that S does not defeat r∗, where
S′ defeats r∗, otherwise S becomes an answer set of Π1 ∪Π′

p+1. Accordingly, there
must exist a rule r ∈ Π1 such that r is defeated by S through r∗ ∈ Π′

p.
On the other hand, since each rule of Π1 cannot be eliminated from the generation

of the reduct chain, it implies that each rule in Π1 defeated by S′ is due to (1)
some conflict rule(s) in Π1 itself, or (2) through rule r∗ in Π2. For case (1), it
is always possible to select a particular S ′ such that R<(S) ⊂ R<(S′). It is also
concluded that there does not exist another rule rq ∈ Π′

p such that the rule in Π1
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defeated by S′ is through rq . Therefore, from Definition 7.3, R<(S) < R<(S′).
But this contradicts the fact that S is maximally <-consistent. So S must be an
answer set of Π ∪ Π′

p+1. For case (2), there must exist some rule rq ∈ Π′
p such

that S defeats rq through r∗. Therefore, we can always construct another reduct
chain {Π1 ∪ Π′′

i } (i = 0, 1, · · ·) such that for i ≤ p, Π′′
i = Π′

i, and for i = p + 1,
Π1 ∪ Π′′

p+1 = Π ∪ Π′
p − {rq , · · ·} where S is an answer set of Π1 ∪ Π′′

p+1. This also
prove that S is an answer set of P .

(⇐) Suppose that S is not a maximal <-consistent answer set of Π1 ∪ Π2 with
respect to P(<). We will show that S is not an answer set of P . Let S ′ be a maximal
<-consistent answer set of Π1∪Π2 with respect to P(<) such that R<(S) < R<(S′)
and condition (2) in Definition 7.3 also holds. From the above, we know that S ′ is
an answer set of P . Again from Theorem 1 in [Zhang 2003b], to prove S is not an
answer set of P , we only need to show that for some reduct chain {Πi} (i = 0, 1, · · ·),
S is not an answer set for some Πk.

Without loss of generality, we assume that S ′ is an answer set of each Πi from
the reduct chain {Πi} = {Π1 ∪ Π′

i} (i = 0, 1, · · ·) and prove that S cannot be an
answer set for some Π1 ∪ Π′

p+1 in the reduce chain {Π1 ∪ Π′
i} (i = 0, 1, · · ·). From

R<(S) < R<(S′), it follows that there is some i ≤ p: Π1 ∪ Π′
i (i = 0, · · · , p) such

that R<(S) = R<(S′) for all Π1 ∪ Π′
i but R<(S) ⊂ R<(S′) for Π1 ∪ Π′

p+1, where

Π1 ∪ Π′
p+1 = Π1 ∪ Π′

p − {r1, · · · , rl}.

This means that S must defeat some rule rs in Π1 where S′ does not. From
Definition 7.3, it is clear that there does not exist rules rp, rq ∈ Π2 such that S′

defeats rq through rp (not through rs) and S′ does not rs; and S defeats rs and rp

through rq . This implies that rule rs defeated by S is due to a conflict rule r′ ∈ Π′
p

which is not defeated from Π′
p+1. That is, r′ 6∈ {r1, · · · , rl}. Therefore, S cannot

be an answer set of Π1 ∪Π′
p+1. Consequently, S is not an answer set of P .

Theorem 7.5. Let P be the corresponding PLP of Update(B, Π) as specified
by (7) (see the beginning of section 7.1) and S a set of ground literals. Deciding
whether S is an answer set of P is co-NP-complete.

Proof. According to our previous description, P is a PLP of the form P =
(Π ∪ {L ← L | L ∈ B},N , <), where for each r : L ← L with L ∈ B and each
r′ ∈ Π, N (r) < N (r′). So P satisfies the condition of Lemma 7.4.

Membership proof. From Lemma 7.4, S is not an answer set of P iff there exists
some S′ which is an answer set of Π ∪ {L← L | L ∈ B}, and R<(S) < R<(S′). A
guess of such S′ and check whether R<(S) < R<(S′) can be done in polynomial
time. So the problem is in NP. Consequently, the complement of the problem is in
co-NP.

Hardness proof. We reduce the well known NP-complete satisfiability problem to
the complement of our problem. In particular, for a given collection of nonempty
propositional clauses C = {C1, · · · , Cm} on propositional letters P1, · · · , Pn, we con-
struct a PLP P = (Π1 ∪Π2,N , <), where each rule in Π1 has the form L← notL,
and P(<) is defined to be the set N (r) < N (r′) for any r ∈ Π1 and r′ ∈ Π2, such
that an answer set S of Π1 ∪ Π2 is not maximally <-consistent with respect to
P(<) iff C is satisfiable. Since our construction is in polynomial time, this proves
co-NP-hardness.

ACM Transactions on Computational Logic, Vol. 7, No. 3, July 2006.



32 · Yan Zhang

The program P = (Π1 ∪ Π2,N , <) involves the following different propositional
letters P1, · · · , Pn, X, Y, Sat, Unsat. Firstly, we define Π1 just includes one rule:

r1 : X ← not¬X .

Π2, on the other hand, consists of three groups of rules as follows.

G1:
Pi ← not¬Pi,
¬Pi ← notPi, for i = 1, · · · , n.

For each clause Ci = {Li,1, · · · , Li,k}, we specify

G2;
Unsat← Li,1, · · · , Li,k.

Finally, we specify a group of rules:

G3:
Sat← notUnsat,
¬X ← Sat,
Y ← notX .

Therefore, Π2 = G1 ∪G2 ∪G3.
Now we consider the extended logic program Π1 ∪Π2. Due to rules in group G1,

it is easy to see that the answer sets of Π1 ∪Π2 correspond one-to-one to the truth
assignments φ to propositional letters P1, · · · , Pn. For each φ, the corresponding
answer set S includes those Pi such that φ(Pi) = true, and ¬Pi such that φ(Pi) =
false. Furthermore, if φ satisfies C, then S contains Sat,¬X and Y ; and if φ does
not satisfy C, then S contains Unsat and X .

Program P is then specified as (Π1∪Π2,N , <), where N (r1) < N (r) for any rule
r ∈ Π2. It is clear that for each answer set S of Π1 ∪Π2, if C is satisfied, S defeats
rule r1 : X ← not¬X ; and if C is not satisfied, S defeats rule Y ← notX . This
follows that S is not maximally <-consistent with respect to P(<) if C is satisfiable
and S is maximally <-consistent with respect to P(<) if C is not satisfiable. Since
P can be constructed in polynomial time, this proves our result.

Now we characterize the complexity of the inference problem problem for simple
fact update specifications. Let Update(B, Π) be a simple fact update specification
and P = (Π ∪ {L← notL},N , <) be the equivalence PLP of Update(B, Π), where
P(<) is defined as follows: for each rule r : L ← notL with L ∈ B and each rule
r′ ∈ Π, N (r) < N (r′). Clearly, if P has a unique reduct, say Π∗, then for a give
ground literal L, the problem of deciding whether P |= L is reduced to the problem
of deciding whether Π∗ |= L. As Π∗ is an extended logic program, and we know that
the inference problem for extended logic program is co-NP-complete [Ben-Eliyahu
and Dechter 1994]. This observation motivates this following result.

Theorem 7.6. Let Update(B, Π) be a simple fact update specification, and P =
(Π ∪ {L ← notL | L ∈ B},N , <) be the equivalence PLP of Update(B, Π), where
P(<) is specified as before. If B ∩ body(Π) = ∅ and Π is locally stratified, then for
a given ground literal L, deciding whether P |= L is co-NP-complete.
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Proof. Since B∩body(Π) = ∅, from Definition 6.5, it is easy to see that P has a
split (P1,P2): P1 = (Π∪{N0 : First←},N , <), where N0 < N (r) for each r ∈ Π;
P2 = (e(Π′, S∪{First})∪{N0 : First←},N , <), where Π′ = {L← notL | L ∈ B},
S is an answer set of Π, and P(<) = ∅. Clearly, P1 has a unique reduct Π ∪ {N0 :
First←}, and P2 has a unique reduct e(Π′, S ∪ {First})∪ {N0 : First←}. From
the given condition, since Π is locally stratified, S is the unique answer set of Π
and hence S ∪ {First} is the unique answer set of Π ∪ {N0 : First←}.

Now we show that S∗ is an answer set of P iff S∗ is an answer set of Π∪e(Π′, S).
From the Unique Answer Set Theorem - Theorem 4 in [Zhang 2003b], we know
that P has a unique reduct, say Π∗. So it follows that S∗ is an answer set of P iff
S∗ is an answer set of Π∗. Therefore, we only need to prove that S∗ is an answer
set of Π∗ iff S∗ is an answer set of Π ∪ e(Π′, S). From Theorem 6.6, it is easy to
see that S∗ is an answer set of Π∗ iff S∗ = S ∪ S′, where S ∪ {First} is the unique
answer set of P1 and S′ ∪ {First} is an answer set of P2. So S∗ is an answer set
of Π∗ iff S∗ = S ∪ S′, where S is an answer set of Π and S ′ is an answer set of
e(Π′, S). Since head(e(Π′, S))∩body(Π) = ∅, from Theorem 4.3, S∪S ′ is an answer
set Π ∪ e(Π′, S). So it follows that S∗ is an answer set of Π∗ iff S∗ is an answer of
Π ∪ e(Π′, S).

So far, we have showed that for a given ground literal L, deciding whether P |= L

is equivalent to deciding whether Π ∪ e(Π′, S) |= L, where S is the unique answer
set of Π.

Now we prove the membership. A guess for an answer set S of Π and testing
whether S is an answer set of Π can be done in polynomial time, and the compu-
tation of Π ∪ e(Π′, S)’s answer set S∗ (i.e. S∗ = S ∪ {L | L ∈ B and L 6∈ S}) and
testing L not in S∗ can be done in polynomial time. So the complement of the prob-
lem is in co-NP. The hardness follows from the result Corollary 4.3 in [Ben-Eliyahu
and Dechter 1994].

Corollary 7.7. Let Update(B, Π) be a simple fact update specification. If B ∩
body(Π) = ∅ and Π has a unique answer set S. Then the resulting knowledge
base B′ with respect to Update(B, Π) can be computed in O(|m| · |n|) time, i.e. in
polynomial time, where |m| and |n| are cardinalities of sets B and S respectively.

Proof. From the proof of Theorem 7.6, we know that Update(B, Π) has a unique
resulting knowledge B′ = S ∪ {L | L ∈ B and L 6∈ B}. Clearly, B′ can be computed
in O(|m| · |n|) time.

7.2 Complexity Results for Program Update

Now we consider the complexity of program update. Given extended logic programs
Π0 and Π1, updating Π0 with Π1 consists of two steps: the first step is to obtain
a subset Π(Π0,Π1) with respect to some answer set of Π0, which is to eliminate
those contradictory rules from Π0, and then to specify the update specification
P -Update(Π0, Π1), which is to solve the conflict between Π(Π0,Π1) and Π1. Now
we first analyze the computational complexity for the first step - contradiction
elimination.

Lemma 7.8. Given an extended logic program Π and a set of ground literals S.
S is coherent with Π if and only if program Π ∪ {L←| L ∈ S} is well defined.
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Proof. Let Π′ = Π ∪ {L ←| L ∈ S}. We only need to prove that each answer
set of Π′ can be expressed as S ′ ∪ S, where S′ is an answer set of e(Π, S).

As for each rule L ← where L ∈ S, L is in every answer set of Π′, so any rule
in Π of the form L′ ← · · · , notL, · · · can be eliminated from Π′ without affecting
any answer set of Π′. Also, each rule in Π′ of the form L′ ← · · · , L, · · · can be
simplified by omitting L from its body as L is always true in every answer set of Π′.
Therefore, Π′ can be simplified as Π′ = e(Π, S) ∪ {L ←| L ∈ S}. Let Π′′ = {L ←
| L ∈ S}. Since head(e(Π, S)) ∩ body(Π′′) = ∅ and head(Π′′) ∩ body(e(Π, S)) = ∅,
from Theorem 4.3, we conclude that each answer set of Π′ can be expressed as
S′ ∪ S, where S′ is an answer set of e(Π, S).

Theorem 7.9. Let S be a consistent set of ground literals and Π a program.
Deciding whether S is coherent with Π is NP-complete.

Proof. From Lemma 7.8, this problem is equivalent to the problem of deciding
whether Π ∪ {L ←| L ∈ S} is well defined. This problem can be equivalently
interpreted to be the problem of deciding whether a corresponding propositional
normal logic program has a stable model, which is known to be NP-complete [Marek
and Truszczyński ].

Theorem 7.10. Let S be a consistent set of ground literals, Π a program, and
Π′ a subset of Π. Deciding whether Π′ is a maximal subset of Π such that S is
coherent with Π′ is co-NP-complete.

Proof. Membership proof. If Π′ is not such a subset of Π, then there must exist
a Π′′ including Π′ such that S is coherent with Π′′. From Theorem 7.9, it is clear
that such Π′′ can be guessed and verified in polynomial time. So the problem is in
NP. Consequently, the complement of the problem is in co-NP.

Hardness proof. From Lemma 7.8, the statement that Π′ is a maximal subset
of Π such that S is coherent with Π′ can be equivalently expressed that Π′ is a
maximal subset of Π such that Π′ ∪ {L←| L ∈ S} is well defined. We will reduce
the well known NP-complete 3-satisfiability problem to the complement of our
problem. In particular, for a given collect of nonempty propositional clauses C =
{C1, C2, · · · , Cm} on propositional letters P1, · · · , Cn, where Ci = {Li,1, Li,2, Li,3}
and Li,j is a literal over P1, · · · , Pn, we construct extended logic programs Π and Π∗

over propositional letters P1, · · · , Pn, and Sat, Unsat, X1, · · · , Xk. Then we prove
that C is not satisfiable iff a subset Π′ of Π, where Π′ ∪Π∗ has a consistent answer
set, is maximal.

Firstly, we specify Π to include the following group of rules:

G1:
Pi ← not¬Pi,
¬Pi ← notPi, for each i = 1, · · · , n.

For each clause Ci = {Li,1, Li,2, Li,3}, we specify:

G2:
Unsat← Li,1, Li,2, Li,3.

Finally, we specifythe following group of rule:
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G3:
Sat← notUnsat,
¬X1 ← Unsat.

So far, we have Π = G1 ∪ G2 ∪ G3. It is easy to observe that the answer sets
of Π correspond one-to-one the the truth assignments φ to propositional letters
P1, · · · , Pn. For each φ, the corresponding answer set S of Π includes those Pi such
that φ(Pi) = true and ¬Pi such that φ(Pi) = false. Furthermore, if C is satisfiable,
then S includes Sat and otherwise S includes Unsat and ¬X1. Let Π′ be a subset
of Π by setting

Π′ = Π− {¬X1 ← Unsat}.

We specify Π∗ to only include rules of the following form:

Xj ←, for each j = 1, · · · , k.

Now we consider program Π′ ∪ Π∗. Clearly, Π′ ∪ Π∗ has consistent answer sets. If
C is not satisfiable, then we can verified that Π′ is the unique maximal subset of
Π such that Π′ ∪ Π∗ has a consistent answer set. This is because that if C is not
satisfiable, Unsat will be included in the corresponding answer set of Π′ ∪ Π∗. As
rule ¬X1 ← Unsat is not included in Π′, this ensures that the answer set of Π′∪Π∗

is still consistent. If add rule ¬X1 ← Unsat into Π′, the consistency of the answer
set of ¬X1 ← Unsat will no longer remain. Since Π, Π′ and Π∗ are constructed in
polynomial time, this proves the hardness of the problem.

The following theorem states that the check for contradiction elimination in the
first step of a program update is co-NP-complete.

Theorem 7.11. Let P -Update(Π0, Π1) be a logic program update specification.
Deciding whether a set of ground literals S is an answer set of some resulting
program of P -Update(Π0, Π1) is co-NP-complete.

Proof. The hardness can be proved in a similar way described in the proof of
Theorem 7.5. Now we show that membership. Suppose S is not an answer set of
P -Update(Π0, Π1). Then according to Lemma 7.4, there must exist an answer set
S′ of Π(Π0,Π1) such that R<(S) < R<(S′). Obviously, a guess for an answer set S ′

of Π and testing R<(S) < R<(S′) can be done in polynomial time. So the problem
is in NP. Consequently, the complement of the problem is in co-NP.

Similarly to the case of the simple fact update, we can also characterize a partic-
ular class of program update specifications where the inference problem associated
to these update problems is reduced to co-NP-complete.

Theorem 7.12. Let P -Update(Π0, Π1) = (Π(Π0,Π1) ∪ Π1, N , <) be a program
update specification. If head(Π1) ∩ body(Π0) = ∅ and Π0 is locally stratified, then
for a given L, deciding whether P -Update(Π0, Π1) |= L is co-NP-complete.

Proof. Since head(Π1) ∩ body(Π0) = ∅, according to Definition 6.5,
P -Update(Π0, Π1) has a split (P1,P2): P1 = (Π(Π0,Π1) ∪ {N0 : First ←},N , <),
where N0 < N (r) for all r ∈ Π(Π0,Π1); P

1 = (e(Π1, S ∪ {First}) ∪ {N0 : First ←
},N , <), where S is an answer set of Π(Π0,Π1), and P2(<) = ∅. Obviously, P1

ACM Transactions on Computational Logic, Vol. 7, No. 3, July 2006.



36 · Yan Zhang

has a unique reduct Π(Π0,Π1) ∪ {N0 : First ←}, where P2 has a unique reduct
e(Π1, S ∪ {First}) ∪ {N0 : First ←}. Since Π0 is locally stratified, it follows that
Π(Π0,Π1) is also locally stratified. So S is the unique answer set of Π(Π0,Π1).

Now we show that S∗ is an answer set of P -Update(Π0, Π1) iff S∗ is an answer set
of Π(Π0,Π1) ∪ e(Π1, S). Since Π(Π0,Π1) is locally stratified, from Proposition 7.1 and
the Unique Answer Set Theorem (Theorem 4) in [Zhang 2003b], P -Update(Π0, Π1)
has a unique reduct, say Π∗. Hence we only need to show that S∗ is an answer set
of Π∗ iff S∗ is an answer set of Π(Π0,Π1) ∪ e(Π1, S). From Theorem 6.6, S∗ is an
answer set of Π∗ iff S∗ = S ∪ S′, where S is an answer set of Π(Π0,Π1) and S′ is an
answer set of e(Π1, S). On the other hand, as head(e(Π1, S))∩ body(Π(Π0,Π1)) = ∅,
from Theorem 4.3, S ∪ S′ is an answer set of Π(Π0,Π1) ∪ e(Π1, S).

Therefore, for a given literal L, deciding whether P -Update(Π0, Π1) |= L is equiv-
alent to deciding whether Π(Π0,Π1)∪e(Π1, S) |= L. This, from the proof of Theorem
7.10, is co-NP-complete.

8. COMPARISONS WITH RELATED WORK

As we mentioned earlier, problems of logic program based updates have been exten-
sively studied in recent years, e.g. [Alferes et al. 1998; Alferes et al. 2002; Dekhtyar
et al. 1998; Guessoum and Lloyd 1991; Kakas and Mancarella 1990]. In general,
we can classify most of current approaches into two major categories: model based
and syntax based. A logic program update formulation is model based if an update
is achieved by considering the underlying semantics of logic programs and the final
update result is usually characterized in terms of the corresponding semantics of
the logic programs, e.g. stable model/answer set semantics, e.g. [Alferes et al.
1998; Eiter et al. 2002]. On the other hand, a logic program update formulation
is syntax based if an update is performed in a syntactic way and the update result
is characterized by one or more specific resulting logic programs, e.g. [Kakas and
Mancarella 1990; Sakama and Inoue 1999].

It has been argued that neither of these two methodologies could precisely express
the nature of logic program based updates. On one hand, model based approaches
usually provide proper semantic justification for an update procedure, they, how-
ever, may also lose significant information that is only expressible in the form of a
logic program; on the other hand, syntax based approaches can achieve syntactic
results for updates but may not be able to provide semantic justification for the
results. Our approach developed in this paper is actually an integration of model
and syntax based methodologies, which, as has been shown in previous sections,
reflects both semantics and syntax features for logic program based updates.

In the rest of this section, we will focus our comparisons with three typical
approaches - Eiter et al.’s approach [Eiter et al. 2002], Sakama and Inoue’s approach,
and Alferes, Leite, Pereira et al.’s approach [Alferes et al. 1998; Alferes and Pereira
2000]. The first and third approaches are model based, and the second is syntax
based. We provide formal characterizations between our approach and these three
approaches.

8.1 Relations to Eiter et al.’s Approach

Eiter et al. recently proposed an approach for handling (extended) logic program
updates where a sequence of logic program updates is allowed [Eiter et al. 2002].
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As our approach only deals with one-step update12, we will restrict Eiter et al.’s
formulation to the one-step update form as follows.

Let P = (Π0, Π1), where Π0 and Π1 are extended logic programs, be an update
sequence and A a set of atoms. We say that P is over A iff A represents the set of all
atoms occurring in the rules in Π0 and Π1. We assume a set A∗ of atoms extending
A by new and pairwise distinct atoms rej(r) and Ai, for each rule r occurring in Π0

or Π1 and each atom A ∈ A. Given a rule r, we use B(r) to denote the body part of
r and H(r) denote the literal occurring in the head of r (note that B(r) and H(r)
are different from body(r) and head(r) which are sets of literals occurring in the
body and head of r respectively). Then Eiter et al’s update process is defined by
the following two definitions (for simplicity, here we only consider ground extended
logic programs in our investigation).

Definition 8.1. Given an update sequence P = (Π0, Π1) over a set of atoms A,
the update program P/ = Π0 / Π1 over A∗ consisting of the following items:

(1) all constraints in Π0 and Π1 (recall that constraint is a rule with an empty
head);

(2) for each r in Πi (i = 0, 1):

Li ← B(r), not rej(r) if H(r) = L;

(3) for each r ∈ Π0:

rej(r) ← B(r),¬L1 if H(r) = L;

(4) for each literal L occurring in Π0 ∪Π1:

L0 ← L1;
L← L0.

Intuitively, this program expresses the derivability of a literal L, beginning at
Π1 downwards to Π0. A rule in Π1 is always applicable where a rule in Π0 can
only be applicable if it is not refuted by a literal derived at Π1 that is incompatible
with head(r). Persistence of a literal L propagates a locally derived value for L

downwards to Π0, where the local value of L is made global.

Definition 8.2. Let P = (Π0, Π1) be an update sequence over A. Then S ⊂
LitA

13 is an update answer set of P iff S = S ′ ∩LitA for some answer set S ′ of P/.
The collection of all update answer sets of P is denoted by U(P).

As an example, consider the update of Π0 by Π1, where Π0 and Π1 consist of the
following rules respectively [Eiter et al. 2002],

Π0:
r1 : sleep← not tv on,
r2 : night←,
r3 : tv on←,
r4 : watch tv ← tv on;

Π1:

12Readers may refer to the author’s recent work for a generalization of this approach to handle
epistemic logic programs and sequence updates [Zhang 2003a].
13LitA is the set of literals whose corresponding atoms occur in A.
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r5 : ¬tv on← power failure,
r6 : power failure←.

According to Definitions 8.1 and 8.2, it is easy to see that P = (Π0, Π1) has a unique
update answer set S = {power failure,¬tv on, sleep, night}, which is desired from
our intuition.

It is quite easy to observe the difference between Eiter et al.’s approach and
ours by noting that no conflict resolution is considered in Eiter et al.’s approach.
For instance, updating program {A ← notB} by {B ← notA} will have a unique
semantic result {B} by using our approach, but two possible results {A} and {B}
by using Eiter et al.’s approach. Also, Eiter et al.’s approach characterizes an
update result through the answer set semantics only. However, apart from such
superficial difference between two approaches, the fundamental issue of minimal
change in updates is handled in very different ways in these two approaches. To
reveal this fact, we restrict out attention to the simple fact update in which no
conflict resolution is explicitly considered.

Proposition 8.3. There exists some update sequence P = (Π0, Π1) where each
rule in Π0 is of the form L ←, such that for some update answer set S of P,
S 6∈Min(S′, Π1), where S′ is the answer set of Π0, i.e. S′ = {L | L← is in Π0}.

Proof. Consider an update sequence P = (Π0, Π1) where Π0 = {r1 : A ←,
r2 : B ←} and Π1 = {r3 : ¬A ← not A}. By Definition 8.2, P/ consists of the
following rules:

¬A2 ← not A, not rej(r3),
A1 ← not rej(r1),
B1 ← not rej(r2),
rej(r1)← ¬A2,
rej(r2)← ¬B2,
A1 ← A2, ¬A1 ← ¬A2,
B1 ← B2, ¬B1 ← ¬B2,
A← A1, ¬A← ¬A1,
B ← B1, ¬B ← ¬B1.

It is easy to see that P/ has two answer sets {¬A,¬A1,¬A2, rej(r1), B, B1, B2}
and {A, A1, B, B1, B2}, from which we know that S1 = {¬A, B} and S2 = {A, B}
are the two update answer sets of P. As S ′ = {A, B} is the only answer set of Π0,
it is obvious that S1 6∈Min(S′, Π1).

Now we give a sufficient and necessary condition under which our approach and
Eiter et al.’s coincide for simple fact updates. Given an update sequence P =
(Π0, Π1), where each rule in Π0 is of the form L ←, the corresponding simple fact
update in our formulation is represented as Update(S, Π1), where S = {L | L← is
in Π0}. For Π0 in P, we also define a corresponding program Π′

0 as follows:

Π′
0 = {L← notL | L← is in Π0}.

Clearly, S is consistent iff Π0 is consistent, from which it follows that there is no pair
of mutual defeasible rules in Π′

0. In the following, we will only consider consistent
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update sequence, that is, both Π0 and Π1 are consistent in P = (Π0, Π1), and also
assume that the corresponding simple fact update Update(S, Π1) is well defined
(see Definition 3.2).

Theorem 8.4. Let P = (Π0, Π1) be a consistent update sequence where each
rule in Π0 is of the form L ←, and U(P) be the set of all update answer sets of
P. Given S = {L | L ← is in Π0} and Π′

0 = { L ← notL | L ← is in Π0}. Then
U(P) = Res(Update(S, Π1)) iff one of the following conditions holds:

(1 ) there do not exist rules rp, rq such that rp ∈ Π′
0 and rq ∈ Π1 and mutual(rp, rq);

(2 ) for any rules rp, rq such that rp ∈ Π′
0 and rq ∈ Π1 and mutual(rp, rq), and for

any S′ ∈ U(P), S′ 6|= pos(rq).

Proof. We only prove one direction and the other direction can be proved in
a similar way. Consider U(P) = Res(Update(S, Π1)). In this case, each result of
Update(S, Π1) is also an answer set in U(P). Note that from Lemma 3.3 (section
3.3), Res(Update(S, Π)) is the set of all answer sets of program P = (Π′

0∪Π1,N , <),
where for each rule r ∈ Π′

0 and rule r′ ∈ Π1, N (r) < N (r′). Then from Theorem 3.5
(section 3.3), we know that each answer set in U(P) represents a minimal change
with respect to the answer set of Π0, i.e. S, under the condition of satisfying Π1.
From Definitions 8.1 and 8.2, we can see that the only way to ensure such minimal
change is that there is no conflict between Π′

0 and Π1 under any S′ ∈ U(P). That
is, there is no pair of mutual defeasible rules between Π′

0 and Π1, say rp ∈ Π′
0 and

rq ∈ Π1 such that for one answer set S ′ ∈ U(P), S′ |= pos(rp), and for another
answer set S∗ ∈ U(P), S∗ |= pos(rq). This implies that either no any mutual
defeasible rules exists between Π′

0 and Π1; or for any pair of mutual defeasible
rules mutual(rp, rq) where rp ∈ Π′

0 and rq ∈ Π1, no S′ ∈ U(P) satisfies the relation
S′ |= pos(rq). Note that if S |= pos(rq), rule rp in Π′

0 will be defeated by S′ and then
S′ 6∈Min(B, Π1). This contradicts the condition U(P) = Res(Update(S, Π1))

Corollary 8.5. Let P = (Π0, Π1) be a consistent update sequence where each
rule in Π0 is of the form L ←, and S = {L | L ← is in Π0}. Then U(P) 6=
Res(Update(S, Π1)) iff there exists some S ′ ∈ U(P) such that S′ 6∈Min(S, Π1).

Proof. Directly from Theorem 8.4.

8.2 Relations to Sakama and Inoue’s Approach

Sakama and Inoue recently proposed an approach for the logic program update
through abduction [Sakama and Inoue 1999]. In particular, they considered three
types of updates: view updates, theory updates and inconsistency removal. In the
view update, Sakama and Inoue distinguished a knowledge base, i.e. an extended
logic program, to consist of variable and invariant knowledge. Basically, variable
knowledge is viewed as the basic observation about the current state and is change-
able, where invariable knowledge is viewed as constraints of the domain and hence
is unchangeable. Nevertheless, view update only deals with the case of inserting
or deleting literals. The theory update, on the other hand, is the general case of
logic program update where the entire knowledge is variable and can be updated
via another logic program. Finally, the inconsistency removal is to deal with the
problem of revising an inconsistent program to be consistent. In the rest of this
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subsection, we will focus on the theory update which has the same setting as other
logic program update approaches.

Definition 8.6. Given extended logic programs Π0 and Π1, Π′accomplishes a
theory update of Π0 by Π1 if

(1) Π′ is consistent,

(2) Π1 ⊆ Π′ ⊆ Π0 ∪ Π1, and

(3) there is no any other consistent program Π′′ such that Π′ ⊂ Π′′ ⊆ Π0 ∪ Π1.

The following proposition shows the connection between Sakama and Inoue’s
theory update and abduction14.

Proposition 8.7. [Sakama and Inoue 1999] Let (Π0 ∪ Π1, Π0 − Π1) be an ab-
ductive program. Then Π′ accomplishes a theory update of Π0 by Π1 iff Π′ =
(Π0 ∪ Π1) − Π∗, where (∅, Π∗) is a minimal anti-explanation of the observation
G = F with respect to (Π0 ∪ Π1, Π0 −Π1).

According to Definition 8.6, by using Sakama and Inoue’s approach, the resulting
program Π′ can be expressed as Π∗ ∪Π1, where Π∗ is a maximal subset of Π0 such
that Π∗ ∪ Π1 is consistent. We use SI-Update(Π0, Π1) to denote the set of all
resulting programs, and

⋃
S(SI-Update(Π0, Π1)) to denote the set of answer sets

of all resulting programs.
Basic differences between Sakama and Inoue’s approach and ours are quite obvi-

ous. Like Eiter et al.’s approach, Sakama and Inoue’s approach does not consider
any conflict resolution issue, while our approach does. Furthermore, since changes
are not based on any semantic considerations, by applying Sakama and Inoue’s
approach, an update result may not be properly justified from a semantic view-
point. Consider a simple example as follows. Let Π0 = {A ←, B ← A} and
Π1 = {¬B ← A}. Both our approach and Eiter et al.’s approach will produce a
unique result {A,¬B}, while Sakama and Inoue’s approach will generate two pos-
sible results {A,¬B} and ∅, which are answer sets of resulting programs {A ←,
¬B ← A} and {B ← A,¬B ← A} respectively. Intuitively, we would reject the
second result since there is no semantic justification on the fact that both truth
values of A and B become unknow after the update.

Though these differences, surprisingly, Sakama and Inoue’s approach coincides
with our approach for simple fact updates.

Theorem 8.8. Let Π0 and Π1 be two consistent programs where each rule in Π0

is of the form L ← and S = {L | L ← is in Π0}. Suppose Update(S, Π1) is well
defined. Then

⋃
S(SI-Update(Π0, Π1)) = Res(Update(S, Π1)).

Proof. From Lemma 3.3, we know that a result of Update(S, Π1) can be viewed
as an answer set of program P = (Π∗∪Π1,N , <), where Π∗ = {L← notL | L ∈ S},
and for each rule r ∈ Π∗ and each rule r′ ∈ Π1, N (r) < N (r′). Let S′ be an answer
set of P . Then S′ is an answer set of P ’s reduct: Π∗ ∪ Π′

1, where Π′
1 ⊆ Π1.

From answer set S′, we can generate an extended logic program of the form
Π′

0 ∪ Π1 where Π′
0 ⊆ Π0 such that L ← is in Π′

0 iff L ∈ S′. Clearly, each rule of

14Readers may refer to [Eiter et al. 1997; Sakama and Inoue 1999] for the detail of abductive logic
programming.
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Π′
0 ∪ Π1 is satisfied in S′. Furthermore, it also can be verify that S ′ is an answer

set of Π′
0 ∪ Π1. Now we show that Π′

0 is a maximal subset of Π0 to make Π′
0 ∪ Π1

consistent. Suppose that Π′
0 is not such a maximal subset of Π0. Then without loss

of generality, we assume that there is a rule L← from Π0 such that Π′
0∪{L←}∪Π1

is consistent. Firstly, S′∪{L} cannot be an answer set of Π′
0 ∪{L←}∪Π1 because

L ∈ S′ (otherwise L ∈ S′ and this implies S′ is not an answer set of Π′
0 ∪ Π1).

Therefore, there is a rule of the form r′ : L ← · · · is in Π1. Also, it is observed
that r′ and rule r : L← notL in Π∗ must be mutually defeasible, i.e. mutual(r, r′),
otherwise Π′

0 ∪ {L ←} ∪ Π1 cannot be consistent. Since N (r) < N (r′) in P , from
the construction of P ’s reduct, we know that rule r′ should be defeated during the
generation of the reduct Π∗ ∪ Π′

1. This follows that L ∈ S′ and L 6∈ S′. But this
contradicts the fact that L 6∈ S ′ and L ∈ S′. So Π′

0 ∪ {L ←} ∪ Π1 cannot be
consistent. Thus, we prove Res(Update(S, Π1)) ⊆

⋃
S(SI-Update(Π0, Π1)).

Now we prove
⋃
S(SI-Update(Π0, Π1)) ⊆ Res(Update(S, Π1)). Suppose Π′

0∪Π1

is a resulting program after the update of Π0 by Π1, i.e. Π′
0∪Π1 ∈ SI-Update(Π0, Π1).

Let S′ be an answer set of Π′
0 ∪Π1. We need to show that S ′ is also an answer set

of program P = (Π∗ ∪ Π1,N , <), where Π∗ = {L ← notL | L ∈ S}, and for each
rule r ∈ Π∗ and each rule r′ ∈ Π1, N (r) < N (r′).

Let Π∗ ∪Π′
1 be a reduct of P . We will show that S ′ is an answer set of Π∗ ∪Π′

1.
According to Definition 2.2, suppose the reduct Π∗ ∪Π′

1 of P is generated from the
following reduct chain:

Π(1) = Π∗ ∪ Π1,
· · ·,
Π(i+1) = Π(i) − {rp, · · · , rq | there exists a rule r ∈ Π(i) such that

N (r) < N (rp, · · · , rq) and rp, · · · , rq

are defeated by Π(i) − {rp, · · · , rq}},
· · ·

From Theorem 1 in [Zhang 2003b], we know that a set of ground literals is an
answer set of P iff it is an answer set of each Π(i) (i = 1, 2, · · ·) in a reduct chain of
P . Now we prove that S ′ is answer set of each Π(i) by induction on i.

Consider i = 1. In this case, we show that S ′ is an answer set of Π∗ ∪ Π1. Let
(Π∗∪Π1)

S′

be Π∗∪Π1’s Gelfond -Lifschitz transformation with respect to S ′. Since
S′ is an answer set of Π′

0 ∪ Π1, where Π′
0 ⊆ Π0 is a maximal consistent subset of

Π0 with Π1, this follows that each rule in Π1 and each rule of Π′
0 are satisfied in

S′. Note that rules from Π′
0 are of the form L ←, where rules from Π∗ are of the

form L ← notL. Therefore, for each rule r : L ← in Π0 but not in Π′
0, it must

be the case that there is a rule L ← · · · in Π1 and L ∈ S′ (note that Π′
0 is the

maximal subset of Π0 with Π1). In this case, the rule in Π∗ r′ : L ← notL - that
corresponds to rule r : L← in Π′

0, is defeated by S′. So we conclude that each rule
from (Π∗ ∪ Π1)

S′

is satisfied in S′. Then we need to show that S ′ is the smallest
such set. Suppose S′ is not the smallest set. In this case, we assume that S ′−{L∗}
still satisfies each rule of (Π∗ ∪ Π1)

S′

. Since S′ is an answer set of Π′
0 ∪ Π1 and

L∗ ∈ S′, there must be some rule of the form r : L∗ ← · · · in Π′
0 ∪ Π1. If r is in

Π′
0, then r is of the form L∗ ←, and accordingly, there is a rule r′ : L∗ ← notL∗

in Π∗. It is easy to observe that the only way that the answer set of (Π∗ ∪ Π1)
S′

does not contain literal L∗ is that there must be a rule of the form L∗ ← · · · in Π1
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which makes rule r′ be defeated by S′. However, this implies that literal L∗ should
be in S′. This contradicts the fact that S ′ is a consistent set. On the other hand,
if r is in Π1, then from the fact that S ′ is an answer set of Π′

0 ∪ Π1 and L∗ ∈ S′,
we have S′ |= pos(r). However, this implies that S ′ − {L∗} cannot satisfy the rule
L∗ ← pos(r) in (Π∗ ∪ Π1)

S′

(the corresponding rule of r after Gelfond-Lifschitz
transformation with respect to S ′. That is, S′ − {L∗} cannot satisfy all rules in
(Π∗ ∪Π1)

S′

. So S′ must be the smallest set that satisfies each rule of (Π∗ ∪Π1)
S′

.
Now assume that S′ is an answer set for all Π(i) (i = 1, · · · , k). We show S′ is also

an answer set of Π(k+1) Firstly, since Π(k+1) ⊆ Π∗∪Π1, and Π(k+1)S′

⊆ (Π∗∪Π1)
S′

,
it follows that each rule in Π(k+1)S′

is satisfied in S′.
Then we need to show that S ′ is the smallest set that satisfies Π(k+1)S′

. Again,
suppose that S′ is not the smallest set of literals that satisfies program Π(k+1)S′

.
Without loss of generality, we assume that S ′ − {L′} still satisfies all rules of
Π(k+1)S′

. However, since S′ is an answer set of Π(k), there must be a rule of
the form r : L′ ← · · · in Π(k), where S′ |= pos(r). On the other hand, because
S′ − {L′} satisfies all rules in Π(k+1)S′

, it implies that rule r : L′ ← · · · is defeated
during the generation of Π(k+1). That is, r ∈ {rp, · · · , rq}, and r is defeated from
each answer set of Π(k+1). So we can rewrite r as the form: r : L′ ← · · · , notL∗.
On the other hand, a rule of the form r′ : L∗ ← · · · should be in Π(k) and not
triggered so that L′ is derived in S′. In Π(k+1), as r is defeated by Π(k+1), L∗ is in
each answer set of Π(k+1). This follows that rules r and r′ are mutually defeasible,
i.e. mutual(r, r′). To simplify our discussion, we may assume r′ has the form:
L∗ ← L1, · · · , Lh, notL′ and all L1, · · · , Lh are in S′ (this assumption allows our to
only consider the non-trivial situation that r′ is defeated from Π(k) because of r.
Otherwise, r must be defeated by other rule(s)).

Note that L′ ∈ S′ and L∗ 6∈ S′. However, as we show earlier, since S ′ satisfies
each rule of Π(k+1) where r : L′ ← · · ·notL∗ has been removed, S′ should satisfy
the transformed form of r′: L∗ ← L1, · · · , Lh. Since L1, · · · , Lh are in S′, we have
L∗ ∈ S′. But this is a contradiction from our previous argument that L∗ 6∈ S′. So
S′ must be an answer set of Π(k+1).

8.3 Relations to Dynamic Logic Programming (DLP)

Dynamic logic programming (DLP), proposed by Alferes et al. [Alferes et al. 1998],
is one of the earliest efforts to generalize Marek and Truszczyński’s approach of
revision programs, in which a knowledge base is represented as a logic program,
and it can be updated iteratively by a sequence of logic programs. DLP is also a
model based approach. In the framework of DLP, the concept of generalized logic
programs is developed where negation as failure is allowed to occur in the head of
a rule, and accordingly, the stable model definition is also extended to capture the
semantics of generalized logic programs.

Formally, given a set K of propositional atoms, the propositional language LK

of generalized logic programs contains propositional atoms from the set {A | A ∈
K} ∪ {notA | A ∈ K}, where A is called objective atom and not A is called default
atom. Therefore, the interpretation of LK will contain two types of atoms: objective
and default. By given an interpretation M , let M+ = {A | A ∈ M} and M− =
{not A | not A ∈ M}. Then a generalized logic program in LK is a set of rules of
the following form:
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L← L1, · · · , Ln,

where each L and Li are objective or default atoms of LK.

Definition 8.9. [Alferes et al. 1998] Given a generalized logic program Π in LK,
an interpretation M of LK is a stable model of Π if M is the least model of the
Horn theory Π ∪M−15.

Consider the following program:

A← not B, C ← B,
E ← not D,
not D ← A, not C,
D ← not E.

According to Definition 8.9, this program has one stable model {A, not B, not C, not D, E}.
Now we can introduce the approach of DLP as follows. Given two generalized

logic programs Π0 and Π1 in the language LK, we define

K = K ∪ {A− | A ∈ K} ∪{AΠ0
, A−

Π0
| A ∈ K} ∪{AΠ1

, A−

Π1
| A ∈ K}.

Then the update of Π0 by Π1 is a generalized logic program, denoted as Π0 ⊕Π1,
consists of the following rules:

(1) Rewritten rules for Π0 and Π1: for each rule r ∈ Πi (i = 0, 1), with
head(r)← B1, · · · , Bm, not C1, · · · , not Cn:

AΠi
← B1, · · · , Bm, C−

1 , · · · , C−
n if head(r) = {A};

A−

Πi
← B1, · · · , Bm, C−

1 , · · · , C−
n if head(r) = {not A};

(2) Update rules: for all objective atoms A occurring in Π0 and Π1:

A← AΠ1
;

A− ← A−

Π1
;

(3) Inertia rules: for all objective atoms A occurring in Π0 and Π1:

A← AΠ0
, not A−

Π1
;

A− ← A−

Π0
, not AΠ1

;

(4) Default rules: for all objective atoms A occurring in Π0 and Π1:

A− ← not AΠ0
, not AΠ1

;
not A← A−.

Finally, the semantics of the update of Π0 by Π1 is characterized by the stable model
of Π0⊕Π1. If S is a stable model of Π0⊕Π1, we also define S′ = S ∩ (K∪not K)16

to be a dynamic stable model of the update sequence P = (Π0, Π1). Clearly, S′

contains all objective and default atoms that should be true after the update. This
approach can be easily generalized to a sequence of updates as shown in [Alferes
et al. 1998].

15Note that here we view each default atom not A as a new atom in the Horn theory.
16Here not K denotes the set {not A | A ∈ K}.
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8.3.1 Comparison with the Simple Fact Update. As before, we first consider the
comparison between our approach and DLP in the case of simple fact updates.

Definition 8.10. Given a simple fact update specification Update(B, Π) as de-
fined in Definition 3.2, we construct an update sequence P = (Π0, Π1) in DLP as
follows:

(i) For each propositional atom A occurring in Update(B, Π), we introduce a new
atom AN , which is used to replace the classical negation of A;

(ii) program Π0 consists of rules as follows: for each L ∈ B, (1) if L is A, then A←
is in Π0, and (2) if L is ¬A, then AN ← is in Π0;

(iii) for each rule r in Π, forming a new rule r′ by replacing every classical negation
atom ¬A occurring in r with AN , and include r′ into Π1;

(iv) For each propositional atom A occurring in Update(B, Π), Π1 also contains
rules of the form: not A← AN , and not AN ← A.

Proposition 8.11. Given a simple fact update specification Update(B, Π) and
its resulting knowledge base B′. Let P = (Π0, Π1) be the corresponding DLP update
sequence as defined in Definition 8.10. Then a literal L ∈ B′ iff there is a dynamic
stable model S of P such that if L is A, then A ∈ S, if L is ¬A then AN is in S.

Proposition 8.11 simply states that our approach coincides with DLP for the sim-
ple fact update. The proof of Proposition 8.11 is based on an investigation of one-to-
one relationship between the answer set of prioritized logic program Update(B, Π)
and the stable model of generalized logic program Π0 ⊕Π1. As the proof is rather
tedious, here we only briefly address the intuition behind Proposition 8.11.

By observing Update(B, Π), it is clear that the key factor of our simple fact
update approach is to solve the possible conflict between the inertia rules and
update rules when both are defeasible. To achieve the minimal change criterion
during the update, we specify that inertia rules have higher priorities than update
rules (see Definition 3.1 in section 3.2). Therefore, when conflicts occur between
these two types of rules, inertia rules will override the corresponding update rules.
In DLP, this idea is implemented by transforming update rules into a form of

AU ← B1, · · · , Bm, C−
1 , · · · , C−

n or
A−

U ← B1, · · · , Bm, C−
1 , · · · , C−

n ,

where the negation as failure atoms {not C1, · · · , not Cn} in the original update
rule’s body are replaced by atoms {C−

1 , · · · , C−
n }. In this way, the inertia rules of

the form

A← AΠ0
, not A−

Π1
,

A− ← A−

Π0
, not AΠ1

will no longer conflict with the rewritten update rules. Furthermore, since these
inertia rules are defeasible, their heads will be derived under a higher priority than
those heads of rewritten rules.

From Theorem 3.5 and Proposition 8.11, it also implies that DLP satisfies the
minimal change for the simple fact update. It is quite interesting to note that
without employing preferences, DLP also solves the main difficulty of the simple fact
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update that most model based approaches have. In this sense, it concludes that the
information conflict in update problems usually can be handled by both prioritized
and non-prioritized logic programs. But we should indicate that in prioritized logic
programming approach, such conflict is solved in an explicit manner while in DLP
it is implicitly handled by using transforming update rules.

8.3.2 Comparison with the Program Update. Although our approach coincides
with DLP for the simple fact update, the difference between these two approaches
for the program update are quite obvious - our approach considers the conflict
resolution while DLP does not. However, probably the most important difference
is the way of handling contradictions (we will discuss the issue of conflict resolution
in next subsection). For example, given two programs Π0 = {A ← B,¬A ← B}
and Π1 = {B ←}, consider the update of Π0 by Π1. In our approach, we get two
possible results {A← B, B ←} and {¬A← B, B ←}, while DLP will conclude an
inconsistent result.

For the above example, people may argue that our approach gives less intuitive
result as it seems to undertake both update and revision. We note that not only
DLP but also other model based update approaches i.e. Eiter et al.’s approach
[Eiter et al. 2002], have adapted similar strategies for contradiction removal, which,
without explicitly considering the syntactic forms of the update result, may be
inevitable to result in inconsistency in some situations as illustrated in the above
example. This, as argued by some researchers, may be more intuitive from a model
theoretic viewpoint.

8.3.3 Preference and Conflict Resolution. One of the other major difference be-
tween our update approach and others is that we use prioritized logic programming
to specify an update procedure while conflict between the original program and the
update program is solvable by using preferences. Although it is arguable whether
it is always necessary to solve the conflict between the original program and up-
date program, it should be noted that in our approach, preference is not just used
for solving this type of conflict, instead it plays a key role in achieving a minimal
change in the stage of contradiction elimination. As we will address in next sec-
tion, our approach can be easily extended to deal with domain-dependent conflict
resolution in which only certain type of conflict may be considered in deriving an
update result.

DLP has been extended by Alferes and Pereira to combine the reasoning about
preference and updating into a unified framework [Alferes and Pereira 2000]. In
particular, Alferes and Pereira proposed a formulation which combines Brewka
and Eiter’s prioritized logic programming [Brewka and Eiter 1999] and DLP such
that the Dynamic Prioritized Programming (DPP) can deal with prioritized logic
program update which includes to update the preference relation itself.

The detailed comparison between our prioritized logic programs and Brewka and
Eiter’s is beyond the scope of this paper. However, it is worth to highlighting
the major difference between these two prioritized logic program formalisms. In
Brewka and Eiter’s preferred answer set semantics, the preference is not defeasible,
while in our answer set semantics, the preference is treated defeasible. By viewing
the preference defeasible, in our formulation, every prioritized logic program has an
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answer set if and only if the underlying extended logic program has an answer set.
This is not always true in Brewka and Eiter’s preferred answer set semantics. Such
semantic difference implies the major differentiation between our approach and the
DPP for program updates with preference.

Let us consider a scenario about employment and pension. If no evidence showing
that someone is receiving pension, then it is believed that the person is currently
employed. Now suppose we want to add a new rule into the domain saying that if
no evidence indicating a person is employed, then it is believed that this person is
unemployed. We represent these two statements as the following rules:

r1 : Employed← not Receiving-pension,
r2 : ¬Employed← not Employed,

Let Π0 = {r1} and Π1 = {r2}. Then in our update framework, the above problem
is represented as the update of Π0 by Π1, i.e. P -Update(Π0, Π1) (note that the
preference relation r2 < r1 is embedded in the specification of P -Update(Π0, Π1).
See Definition 5.2 in section 5.2). The resulting program is simply Π0∪Π1, which has
a unique answer set {Employed}. This result seems reasonable from our intuition.

It is not difficult to show that we will get the same result by using DLP to
specify this update problem without considering the preference relation r2 < r1.
However, the situation changes when we use DPP to specify it. Consider the
dynamic prioritized program (Π0, R0) ⊕ (Π1, R1), where R0 = ∅, and R1 = {r2 <

r1}17. This program has no preferred stable model at state 1. That means, updating
Π0 by Π1, by taking the rule of Π1 as a higher preference, will not get any result.
Such solution seems not quite intuitive. Because r1 and r2 actually do not conflict
with each other, and in this case we would expect the preference relation r2 < r1

does not play a role in the program evaluation. Nevertheless, this property was not
considered in Brewka and Eiter’s preferred answer set semantics, and therefore in
DPP neither.

9. CONCLUSION

In this paper, we developed an approach for logic program based updates. We also
investigated various desirable properties for logic program based updates and their
computational complexity.

We observed that information conflict is a complex and important issue in logic
program based updates and was not considerably studied by existing approaches.
To deal with this problem and its related issues, we used a prioritized logic pro-
gramming as a basis to specify our update problems. Due to the nature of logic
programs, we believe that both declarative semantics and syntax sensitivity must be
carefully taken into account in logic program based updates. Previous approaches
only focused on one side or another and the link between them was missing. For the
first time, our update formulation was developed by integrating these two aspects
into a unified framework and presented the most distinguishing feature between

17Readers are referred to [Alferes and Pereira 2000] for the detailed definition of dynamic priori-
tized programs and their associated semantics. Also, for a reason of simplicity, here we omit the
process of converting an extended logic program to a generalized logic program.
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our approach and other relevant approaches. We also analyzed the computational
complexity of our approach in detail and provided nontrivial solutions to simplify
various update evaluation procedures under certain conditions.

Our work can be further extended in several directions. First, our update for-
mulation can be enhanced to handle update sequences where more than two logic
programs are involved. Although some other approaches can deal with update se-
quences, like Eiter et al.’s approach and DLP [Eiter et al. 2002; Alferes et al. 1998],
their approaches do not meet the requirement of minimality of change for update
sequences [Eiter et al. 2002]18. By omitting the issue of conflict solving, the author
recently extended the approach presented in this paper to handle epistemic logic
program updates in which update sequences are considered and the requirement of
the minimality of change for update sequences is satisfied [Zhang 2003a]. It would
be an interesting topic to consider the conflict solving problem in the extent of
sequence updates on epistemic logic programs.

The other important issue that was not addressed in this paper is dynamic con-
tradiction elimination and conflict solving in logic program based updates. In our
current approach, contradictory rules are removed from the final resulting program
when a program update takes place. It appears that a more flexible way to deal
with contradictory information is to weaken the contradictory rules when new added
update rules are effective. Consider two programs as follows:

Π0:
r1 : A←,
r2 : B ← A, notC,

Π1:
r3 : ¬B ←, A, notD.

Now updating Π0 with Π1, by using our approach, we will have a resulting program
Π3 = {r1, r3}. Suppose we further update Π3 with Π4 = {r4 : D ←}. Then the
final result will be Π5 = {r1, r3, r4}, from which we can derive A and D. However,
we may have a more flexible way to perform such updates. For instance, when we
update Π0 with Π1, since rule r2 contradicts rule r3 in Π1, instead of eliminating
r2 from Π3, we can weaken it:

r′2 : B ← A, notC, not¬B,

and include r′2 into Π′
3 = {r1, r

′
2, r3}. Then after updating Π′

3 with Π4, we will have
Π′

5 = {r1, r
′
2, r3, r4}. Thus, from Π′

5, we can derive A, B and D. This result seems
plausible because r3 now is not effective and r′2 provides justification for deriving
B. It would be an interesting issue how this dynamic contradiction elimination can
be formalized in program updates19.

On the other hand, in terms of conflict solving, in our current approach domain-
independent preference was specified through a prioritized logic program to solve

18Intuitively, this means that to perform an update sequence, it is always preferred to remove
those conflict (or/and) contradictory rules appeared earlier in the sequence.
19It should be also noted that without discarding any contradictory rules, the final program will
be getting bigger and bigger. From an implementation point of view, a proper boundary about
this should be carefully defined.
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different types of information conflict. However, in many applications, domain-
dependent preference - which may vary through different instances [Brewka 1996;
Zhang and Foo 1997], could substantially influence the way of an update perfor-
mance. In this case, a mechanism of handling dynamic conflict solving is essential.
This will be a major challenge in the further research on logic program based up-
dates.

Finally, mutual updates on logic programs is an important topic for reasoning
about logic program based multiagent systems [de Vos and Vermeir 2000]. Con-
sider a multiagent system where each agent’s knowledge base is represented as an
extended logic program. To achieve an agreement among all agents, each agent
receives other agents’ knowledge and tries to maximally maintain her own knowl-
edge if contradictions or/and conflicts exist between this agent’s knowledge and
others’. This is so-called mutual update - each agent uses her knowledge base to
update other agents’ knowledge bases. The process continues until all agents reach
a common knowledge base. To formalize this task, conflict solving is one of the
most essential issues we should consider. Furthermore, since an agent’s knowledge
base may constantly change before a common knowledge base is reached, maintain-
ing an explicitly syntactic representation of the agent’s update result at each stage
is important in order to avoid too much information loose from the entire update
procedure. We expect our work presented in this paper to provide a foundational
basis for this study.
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