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The stable model semantics had been recently generalized to non-Herbrand structures by several

works, which provides a unified framework and solid logical foundations for answer set program-

ming. This paper focuses on the expressiveness of normal and disjunctive logic programs under
the general stable model semantics. A translation from disjunctive logic programs to normal logic

programs is proposed for infinite structures. Over finite structures, some disjunctive logic pro-

grams are proved to be intranslatable to normal logic programs if the arities of auxiliary predicates
and functions are bounded in a certain way. The equivalence of the expressiveness of normal logic

programs and disjunctive logic programs over arbitrary structures is also shown to coincide with
that over finite structures, and coincide with whether NP is closed under complement. Moreover,

to obtain a more explicit picture of the expressiveness, some intertranslatability results between

logic program classes and fragments of second-order logic are established.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic;
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving —logic programming and nonmonotonic rea-
soning; I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods—predicate logic,
representation languages
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1. INTRODUCTION

Logic programming with default negation is an elegant and efficient formalism for Knowl-
edge Representation and Reasoning, which incorporates the abilities of classical logic, in-
ductive definition and commonsense reasoning. Nowadays, the most prominent semantics
for this formalism is the stable model semantics proposed by Gelfond and Lifschitz [Gel-
fond and Lifschitz 1988]. Logic programming based on this semantics, which is known as
Answer Set Programming (ASP), has then emerged as a flourishing paradigm for declara-
tive programming in the last two decades.

The original stable model semantics focuses only on Herbrand structures in which the
unique name assumption is made. For a certain class of applications, this assumption
will simplify the representation. However, there are many applications where the knowl-
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edge can be more naturally represented over non-Herbrand structures including arithmeti-
cal structures. To overcome this limit, the general stable model semantics, which gener-
alizes the original semantics to arbitrary structures, was then proposed via second-order
logic [Ferraris et al. 2011], via circumscription [Lin and Zhou 2011], and via Gödel’s 3-
valued logic [Pearce and Valverde 2005], respectively. This new stable model semantics
provides us a unified framework for answer set programming, armed with powerful tools
from classical logic.

The main goal of this work is to identify the expressiveness of logic programs, which is
one of the central topics in Knowledge Representation and Reasoning. We will focus on
two important classes of logic programs – normal logic programs (NLP) and disjunctive
logic programs (DLP). Over Herbrand structures, the expressiveness of logic programs un-
der query equivalence has been thoroughly studied in last three decades. A comprehensive
survey for these works can be found in [Dantsin et al. 2001]. Our task described in this
paper, however, is quite different. On the one hand, we will work on the general stable
model semantics so that non-Herbrand structures will be considered. On the other hand,
instead of considering query equivalence, the expressiveness in our work will be based on
model equivalence. This setting is important since ASP solvers are usually used to generate
models. Note that model equivalence always implies query equivalence, but the converse
is in general false.

We also hope this work contributes to the effective implementation of answer set solvers.
Translating logic programs into classical logics is a usual approach to implement answer
set solvers. For example, in the propositional case, there have been a number of works that
implemented answer set solving by reducing the existence of answer sets to the satisfia-
bility of classical propositional logic, see, e.g., [Lin and Zhao 2004; Lierler and Maratea
2004]. In this work, we are interested in translating normal logic programs to first-order
sentences so that the state-of-the-art SMT solvers can be used for answer set solving. On
the other hand, our work also considers the optimization of logic programs. It is clear that a
language is simpler in the syntax, then it is more likely to have an efficient implementation.
Therefore, in this work, we will also investigate whether a rich language can be compiled
(translated) to a simple language or not. In particular, since the arity of auxiliary symbol is
the most important factor to introduce nondeterminism [Immerman 1999], we will try to
find translations in which the maximum arity of auxiliary symbols is as small as possible.

Our contribution in this paper is fourfold. Firstly, we show that, over infinite structures,
every disjunctive program can be equivalently translated to a normal one. Secondly, we
prove that, if only finite structures are considered, for each integer n greater than 1 there is
a disjunctive program with intensional predicates of arities less than n that cannot be equiv-
alently translated to any normal program with auxiliary predicates of arities less than 2n.
Thirdly, we show that disjunctive and normal programs are of the same expressiveness over
arbitrary structures if, and only if, they are of the same expressiveness over finite structures,
if, and only if, the complexity class NP is closed under complement. Lastly, to understand
the exact expressiveness of logic programs, we also prove that the intertranslatability holds
between some classes of logic programs and some fragments of second-order logic.

The rest of this paper is organized as follows. Section 2 presents necessary concepts,
notions, definitions and background knowledge that we will need through out this paper.
Section 3 studies the expressiveness of logic programs over infinite structures where we
propose a translation from DLP to NLP. Section 4 then focuses the expressiveness over
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finite structures. In particular, we show that over finite structures, DLP and NLP have
the same expressiveness if, and only if, NP is closed under complement. A more subtle
intranslatability property from DLP to NLP is also proved in this section. Based on the
results from Sections 3 and 4, Section 5 compares the expressiveness of NLP and DLP
over arbitrary structures. Finally, Section 6 concludes the paper with some remarks.

2. PRELIMINARIES

A vocabulary consists of a finite set of predicate constants and a finite set of function con-
stants. Logical symbols are as usual, including a countable set of predicate variables and
a countable set of function variables. Every constant or variable is equipped with a natu-
ral number, called its arity. Nullary function constants and variables are called individual
constants and variables, respectively. Nullary predicate constants are called propositional
constants. Sometimes we do not distinguish between predicate constants and predicate
variables, and simply call them predicates; and likewise we sometimes refer to function
constants and function variables as functions if no confusion occurs. Atoms, formulas,
sentences and theories of a vocabulary υ (or shortly, υ-atoms, υ-formulas, υ-sentences and
υ-theories) are built from constants in υ, variables, equality =, connectives ⊥,>,∧,∨,→,
and quantifiers ∃,∀ in a standard way. Every positive clause of υ is a finite disjunction of
υ-atoms. Given a sentence ϕ and a theory Σ, let υ(ϕ) and υ(Σ) denote the sets of predicate
and function constants that occur in ϕ and Σ, respectively.

Suppose Q ∈ {∀,∃}, τ = {X1, . . . , Xn}, and ~x = x1 · · ·xm, where Xi ranges over
predicate and function variables, and xj ranges over individual variables. We let Qτ and
Q~x be shorthands of the quantifier blocks QX1 · · ·QXn and Qx1 · · ·Qxm, respectively.
A quantifier is called second-order if it involves either a predicate variable or a function
variable of a positive arity. Let Σ1F

n,k be the class of sentences of the form Q1τ1 · · ·Qnτnϕ,
where Qi is ∃ if i is odd, and ∀ otherwise; τi is a finite set of variables of arities ≤ k;
and no second-order quantifier appears in ϕ. Let Σ1

n,k denote the class defined the same as
Σ1F
n,k except no function variable allowed in any τi. Let Σ1F

n (respectively, Σ1
n) be the union

of Σ1F
n,k (respectively, Σ1

n,k) for all k ≥ 0. Given a class Λ defined as above, let Λ[∀∗∃∗]
(respectively, Λ[∀∗]) be the class of sentences in Λ with first-order part of the form ∀~x∃~yϑ
(respectively, ∀~xϑ), where ~x, ~y are tuples of individual variables, and ϑ is quantifier-free.

EXAMPLE 1. Let ϕ denote the second-order formula

∃X∀xy(X(a) ∧ (X(x) ∧ E(x, y)→ X(y)) ∧ ¬X(b)) (1)

where E is a binary predicate constant, X is a unary predicate variable, and a, b are two
individual constants. As defined, it is clear that ϕ is a Σ1

1-sentence and, moreover, it is also
in Σ1F

1 . Towards a more explicit classification, ϕ is also a Σ1
1,1[∀∗∃∗]-sentence because the

first-order part is universal, and only one unary predicate variable is quantified.

EXAMPLE 2. Let ψ denote the second-order formula

∃f(∀xy(f(x) = f(y)→ x = y) ∧ ∃x∀y¬(x = f(y))) (2)

where f is a unary function variable. Clearly, ψ is a Σ1F
1 -sentence, but it is not in Σ1

1.

Every structure A of υ (or shortly, υ-structure A) is accompanied by a nonempty set
A, called the domain of A, and interprets each n-ary predicate constant P in υ as an n-
ary relation, denoted PA, on A, and interprets each n-ary function constant f in υ as an
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n-ary function, denoted fA, on A. A structure is finite if its domain is finite, and infinite
otherwise. Let FIN denote the class of finite structures, and INF denote the class of infinite
structures. A restriction of a structure A to a vocabulary σ is the structure obtained from
A by discarding all interpretations for constants which are not in σ. Given a vocabulary
υ ⊃ σ and a σ-structure B, every υ-expansion of B is a structure A of υ such that B is a
restriction of A to σ. Given a structure A and a set τ of predicates, let INS(A, τ) denote
the set of ground atoms P (~a) for all tuples ~a ∈ PA and all predicate constants P in τ .

Every assignment in a structure A is a function that maps each individual variable to an
element of A and that maps each predicate (respectively, function) variable to a relation
(respectively, function) on A of the same arity. For convenience, we assume that the def-
inition of assignments extends to terms natually. Given a formula ϕ and an assignment α
in A, we write A |= ϕ[α] if α satisfies ϕ in A in the standard way. In particular, if ϕ is a
sentence, we simply write A |= ϕ and say that A is a model of ϕ, or in other words, ϕ is
true in A. We use Mod(ϕ) to denote the set of all models of ϕ. Given formulas ϕ,ψ and a
class C of structures, we say ϕ is equivalent to ψ over C, or write ϕ ≡C ψ for short, if for
every A in C and every assignment α in A, α satisfies ϕ in A if, and only if, α satisfies ψ
in A. In particular, if C is the class of arbitrary structures, the words “over C” and the sub-
script C can be dropped. Given a quantifier-free formula ϕ and an assignment α in A, let
ϕ[α] denote the ground formula obtained from ϕ by (i) substituting P (α(t1), . . . , α(tk))
for P (t1, . . . , tk) if P (t1, . . . , tk) is an atomic formula and P is a predicate constant of ar-
ity k, followed by (ii) substituting > for t1 = t2 if α(t1) = α(t2), and by (iii) substituting
⊥ for t1 = t2 otherwise.

A class of structures is also called a property. Let C and D be any two properties. We
say that D is defined by a sentence ϕ over C, or equivalently, ϕ defines D over C, if each
structure A from C is in D if, and only if, A is a model of ϕ; that is, D = Mod(ϕ) ∩ C.
D is definable in a class Σ of sentences over C if there is a sentence in Σ that defines D
over C. Given two classes Σ,Λ of sentences, we write Σ ≤C Λ if each property definable
in Σ over C is also definable in Λ over C; we write Σ 'C Λ if both Σ ≤C Λ and Λ ≤C Σ
hold. Intuitively, Σ ≤C Λ asserts that, over the structure class C, the fragment Λ is at least
as expressive as Σ; and Σ 'C Λ asserts that, over the structure class C, Σ and Λ are of the
same expressiveness. Again, in above definitions, if C is the class of arbitrary structures,
the words “over C” and the subscript C might be omitted.

EXAMPLE 3 (EXAMPLE 1 CONTINUED). Let ϕ be the same as in Example 1, that is,

ϕ = ∃X∀xy(X(a) ∧ (X(x) ∧ E(x, y)→ X(y)) ∧ ¬X(b)). (3)

Let υ denote the vocabulary {E, a, b}. It is clear that every finite υ-structure A can be
regarded as a directed graph GA with two distinguished nodes aA and bA such that the
node set of GA is the domain A and the edge set of GA is the binary relation EA.

Let Unreach denote the class of finite υ-structures A such that bA is unreachable from
aA in the directed graph GA. It is easy to see that every finite υ-structure is in Unreach if,
and only if, it is a model of ϕ; that is, ϕ defines Unreach over the class of finite structures.

EXAMPLE 4 (EXAMPLE 2 CONTINUED). Let ψ be the same as in Example 2, that is,

ψ = ∃f(∀xy(f(x) = f(y)→ x = y) ∧ ∃x∀y¬(x = f(y))). (4)

Let σ denote the empty vocabulary ∅. One can check that every σ-structure A is a model
of ψ if, and only if, A is infinite. Thus, ψ defines INF over the class of arbitrary structures.
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2.1 Logic Programs and Stable Models

Every disjunctive logic program (or simply called disjunctive program) consists of a set of
rules, each of which is a first-order formula of the following form1:

θ1 ∧ · · · ∧ θm → θm+1 ∨ · · · ∨ θn (5)

where 0 ≤ m ≤ n and n > 0; θi is an atom without involving any equality if m < i ≤ n;
θi is a literal (i.e., an atom or the negation of an atom) if 1 ≤ i ≤ m. Given a rule,
the disjunctive part is called its head, and the conjunctive part is called its body. Given a
disjunctive program Π, a predicate is called intensional (w.r.t. Π) if it appears in the head
of some rule in Π, and extensional otherwise. A formula is called intensional (w.r.t. Π) if it
does not involve any extensional predicate of Π. Let υ(Π) denote the set of predicate and
function constants that appear in Π. Note that, in this paper, all negations in intensional
literals w.r.t. Π will be assumed as default negations.

Let Π be a disjunctive program. Then Π is called normal if the head of each rule contains
at most one atom, Π is plain if the negation of any intensional atom does not appear in the
body of any rule, Π is propositional if it does not involve any predicate of a positive arity,
and Π is finite if it contains only a finite set of rules. In general, we will assume that all
disjunctive programs in this paper are finite when they involve predicates with positive
arities, while propositional logic programs may contain infinite sets of rules.

EXAMPLE 5. Let Π be a disjunctive program consisting of the following rules

P (a), (6)
P (x) ∧ E(x, y)→ P (y), (7)

¬P (b)→ P (b), (8)

where P and E are unary and binary predicates, respectively, and both a, b are individual
constants. Clearly, Π is normal, and P is the only intensional predicate of Π. Note that
the body of the rule (6) is empty. In this case, we usually omit the connective→.

Given any disjunctive program Π, let SM(Π) denote the second-order sentence

Π̂ ∧ ∀τ∗(τ∗ < τ → ¬Π̂∗) (9)

where:

(1) τ is the set of all intensional predicates w.r.t. Π;
(2) τ∗ is the set of predicate variables P ∗ for all predicates P ∈ τ , where for each predi-

cate constant Q ∈ τ we introduce a fresh predicate variable Q∗;
(3) τ∗ < τ denotes the formula∧

P∈τ
∀~x(P ∗(~x)→ P (~x)) ∧ ¬

∧
P∈τ
∀~x(P (~x)→ P ∗(~x)); (10)

(4) Π̂ is the conjunction of sentences γ∀ for all rules γ ∈ Π where ψ∀ denotes the first-
order universal closure of ψ whenever ψ is a rule;

1Note that, in this paper, we do not require the rules to be safe. The main reason is as follows: The general stable
model semantics does not rely on the grounding technique, and an intended domain will be always specified;
thus, the termination of the computation on a logic program does not depend on the safety of this program.
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(5) Π̂∗ denotes the conjunction of γ∗∀ for all γ ∈ Π where each γ∗∀ is the formula obtained
from γ∀ by substituting P ∗ for all positive occurrences of P in the head or in the body.

A structure A is called a stable model of Π if it is a model of SM(Π). For more details
about the transformational semantics, please refer to [Ferraris et al. 2011]. Note that,
since we only consider disjunctive programs, the transformation presented here is slightly
simpler than the transformation in [Ferraris et al. 2011] where first-order sentences are
focused. For the class of disjunctive programs, the equivalence of both transformations
can be easily proved.

Given two properties C and D, we say D is defined by a disjunctive program Π over C
via the set τ of auxiliary constants if the formula ∃τSM(Π) defines D over C, where τ is
a set of predicates and functions occurring in Π.2 Given n ≥ 0, let DLPn (respectively,
DLPF

n) be the class of sentences ∃τSM(Π) for all disjunctive programs Π and all finite
sets τ of predicate (respectively, predicate and function) constants of arities ≤ n. Let
DLP (respectively, DLPF) be the union of DLPn (respectively, DLPF

n) for all integers
n ≥ 0. Furthermore, in above definitions, if Π is restricted to be normal, we then obtain
the notations NLPn,NLPF

n,NLP and NLPF, respectively.

EXAMPLE 6 (EXAMPLE 5 CONTINUED). Let Π be the logic program that is presented
in Example 5. Then Π̂ denotes the first-order formula

P (a) ∧ ∀xy(P (x) ∧ E(x, y)→ P (y)) ∧ (¬P (b)→ P (b)), (11)

and Π̂∗ denotes the formula

P ∗(a) ∧ ∀xy(P ∗(x) ∧ E(x, y)→ P ∗(y)) ∧ (¬P (b)→ P ∗(b)). (12)

By definition, we know that SM(Π) is the second-order sentence

Π̂ ∧ ∀P ∗(∀x(P ∗(x)→ P (x)) ∧ ¬∀x(P (x)→ P ∗(x))→ ¬Π̂∗). (13)

Let τ be the set {P}, and let υ denote the vocabulary {E, a, b}. Then it is easy to see
that every finite υ-structure A is a model of ∃P SM(Π) if, and only if, A ∈ Unreach does
not hold (which is defined in Example 3). Let Reach denote the complement of Unreach.
Therefore, the class Reach is defined by Π via τ (as the set of auxiliary constants).

Given a rule γ, let γ−B be the set of conjuncts in the body of γ in which no intensional
predicate positively occurs, and let γ+ be the rule obtained from γ by removing all literals
in γ−B . Given a disjunctive program Π and a structure A, let ΠA be the set of rules γ+[α]
for all assignments α in A and all rules γ in Π such that α satisfies γ−B in A. Now, ΠA

can be regarded as a propositional program where each ground atom as a proposition. This
procedure is called the first-order Gelfond-Lifschitz reduction due to the following result.

PROPOSITION 1 (PROPOSITION 4 IN [ZHANG AND ZHANG 2013B]). Let Π be a dis-
junctive program and τ be the set of intensional predicates. Then an υ(Π)-structure A is
a stable model of Π iff INS(A, τ) is a minimal (w.r.t. the set inclusion) model of ΠA.

To make the logic program more readable, now let us present a splitting lemma. Note
that it directly follows from the first splitting lemma presented in [Ferraris et al. 2009].

2To simplify the presentation, we slightly abuse the notion without confusion: Each predicate (function) constant
that appears in τ in the formula ∃τSM(Π) is now regarded as a predicate (function) variable of the same airty.
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PROPOSITION 2 (SPLITTING LEMMA IN [FERRARIS ET AL. 2009]). Let Π be a dis-
junctive program, and let {Π1,Π2} be a partition of Π such that all intensional predicates
of Π1 is extensional w.r.t. Π2 and that no extensional predicate of Π1 has any occurrence
in Π2. Then we have that SM(Π) is equivalent to SM(Π1) ∧ SM(Π2).

2.2 Progression Semantics

In this subsection, we review a progression semantics proposed by Zhang and Zhang [2013b],
which generalizes Lobo et al.’s fixed point semantics [1992] by allowing default negations
and arbitrary structures.

Now, let us present the semantics. For convenience, two positive clauses that contain the
same set of atoms will be regarded as the same. Let Π be a propositional, possibly infinite
and plain disjunctive program. Let PC(υ(Π)) denote the set of all positive clauses of υ(Π)
and take Λ ⊆ PC(υ(Π)). We define ΓΠ(Λ) as the following positive clause set:H ∨ C1 ∨ · · · ∨ Ck

∣∣∣∣∣∣∣∣∣∣
k ≥ 0 & H,C1, . . . , Ck ∈ PC(υ(Π))

& ∃p1, . . . , pk ∈ υ(Π) s.t.[
p1 ∧ · · · ∧ pk → H ∈ Π &

C1 ∨ p1, . . . , Ck ∨ pk ∈ Λ

]
 . (14)

It is easy to check that ΓΠ is a monotone operator on PC(υ(Π)).
With this notation, a progression operator for first-order programs can be defined via the

first-order Gelfond-Lifschitz reduction. Given any disjunctive program Π and any υ(Π)-
structure A, we define ΓA

Π as the operator ΓΠA ; that is, let ΓA
Π (Λ) denote ΓΠA(Λ) for all

positive clause set Λ ⊆ PC(υ(ΠA)). Furthermore, we define

ΓA
Π ↑n =

{
∅ if n = 0;

ΓA
Π (ΓA

Π ↑n−1) if n > 0.
(15)

Finally, let ΓA
Π ↑ω denote the union of ΓA

Π ↑n for all integers n ≥ 0. To illustrate these
definitions, a simple example is given as follows.

EXAMPLE 7. Let Π be the disjunctive program consisting of the following rules:

S(x) ∨ T (x), (16)
T (x) ∧ E(x, y)→ T (y). (17)

Let υ = {E}, and let A be a structure of υ defined as follows:

(1) the domain A is the set {ai | i ∈ N} where N denotes the set of natural numbers;
(2) the predicate E is interpreted as the successor relation, i.e., {(ai, ai+1) | i ∈ N}.

Then, ΠA is a propositional disjunctive program consisting of the following rules:

S(ai) ∨ T (ai) (i ∈ N), (18)
T (ai)→ T (ai+1) (i ∈ N). (19)

Therefore, the progression of Π on A is then defined as follows:

ΓA
Π ↑0 = {},

ΓA
Π ↑1 = {S(ai) ∨ T (ai) | i ∈ N},
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...

ΓA
Π ↑n = {S(ai) ∨ T (aj) | i, j ∈ N& i ≤ j < i+ n},

...

ΓA
Π ↑ω = {S(ai) ∨ T (aj) | i, j ∈ N& i ≤ j}.

The following proposition shows that the general stable model semantics can be equiv-
alently redefined by the progression operator that we have defined.

THEOREM 1 (THEOREM 1 IN [ZHANG AND ZHANG 2013B]). Let Π be a disjunctive
program, τ be the set of intensional predicates of Π, and A be a structure of υ(Π). Then
A is a stable model of Π iff INS(A, τ) is a minimal model of ΓA

Π ↑ω .

REMARK 1. In the above theorem, if Π is a normal program, we have that A is a stable
model of Π if, and only if, INS(A, τ) = ΓA

Π ↑ω .

3. INFINITE STRUCTURES

Now we study the expressiveness of logic programs over infinite structures. We first pro-
pose a translation that reduces each disjunctive program to a normal program over infinite
structures. The main idea is to encode ground positive clauses by elements in the intended
domain. With the encoding, we then simulate the progression of the given disjunctive
program by the progression of a normal program.

We first show how to encode a positive clause by a domain element. Let A be an infinite
set. Every encoding function on A is an injective function from A× A into A. Let enc be
an encoding function on A and c an element in A such that c does not belong to the range
of enc. To simplify the statement, let enc(a1, . . . , ak; c) be short for the expression

enc(· · · enc(enc(c, a1), a2), · · · , ak) (20)

for any k ≥ 0 and any set of elements a1, . . . , ak ∈ A. In the above expression, the special
element c is used as a flag to indicate that the encoded tuple will be started after c, and we
call c the encoding flag of this encoding. Intuitively, by b = enc(~a; c) we means that b is
the encoding of ~a related to the encoding function enc and the encoding flag c.

Let A∗ denote the set of finite tuples of elements in A, and let

enc(A; c) = {b ∈ A | ∃~a ∈ A∗ s.t. b = enc(~a; c)} . (21)

The merging function mrg on A related to enc and c is then defined as the function from
enc(A; c)× enc(A; c) into enc(A; c) such that

mrg(enc(~a1; c), enc(~a2; c)) = enc(~a1~a2; c) (22)

for all tuples ~a1 and ~a2 in A∗. Suppose bi = enc(~ai; c) for 1 ≤ i ≤ k. Again, to simplify
the statement, we let mrg(b1, . . . , bk) be short for the expression

mrg(· · ·mrg(mrg(b1, b2), b3), · · · , bk). (23)

It is easy to see that the following holds:

mrg(b1, . . . , bk) = enc(~a1 · · ·~ak; c). (24)
8



In other words, if b = mrg(b1, . . . , bk), b is then an element that encodes the tuple obtained
by joining all the tuples encoded by b1, . . . , bk sequentially. Note that the merging function
mrg is unique if both the encoding function enc and the encoding flag c have been fixed.

EXAMPLE 8. Let A denote the set of all positive integers and assume that A is the
domain on which we will focus. Let P1, P2, P3 be three predicates of arities 2, 3, 1, respec-
tively. Now we show how to encode ground positive clauses by elements in A.

Let e : A×A→ A be a function such that

e(m,n) = 2m + 3n (25)

for all m,n ∈ A. It is easy to check that e is an encoding function on A, and integers
1, 2, 3, 4 are not in the range of e. For i ∈ {1, 2, 3}, fix i to be the encoding flag for the
encodings of atoms built from Pi. Then the ground atom P2(1, 3, 5) can be encoded by

e(1, 3, 5; 2) = e(e(e(2, 1), 3), 5) = 2155 + 35. (26)

Let 4 be the encoding flag for encodings of positive clauses. Then the positive clause

P2(1, 3, 5) ∨ P3(2) ∨ P1(2, 4) (27)

can be encoded by e(e(1, 3, 5; 2), e(2; 3), e(2, 4; 1); 4).

In classical logic, two positive clauses are equivalent if, and only if, they contain the
same set of atoms. Assume that c is the encoding flag for encodings of positive clauses
and enc is the encoding function. To capture the equivalence between two positive clauses,
some encoding relations related to enc and c are needed. We define them as follows:

in = {(enc(~a; c), b) | ~a ∈ A∗ ∧ b ∈ ELEM(~a)}, (28)

subc = {(enc(~a; c), enc(~b; c)) | ~a,~b ∈ A∗ ∧ ELEM(~a) ⊆ ELEM(~b)}, (29)

equ = {(enc(~a; c), enc(~b; c)) | ~a,~b ∈ A∗ ∧ ELEM(~a) = ELEM(~b)}, (30)

where ELEM(~a) and ELEM(~b) denote the sets of elements in ~a and ~b, respectively. Intu-
itively, in(a, b) asserts that the atom encoded by b appears in the positive clause encoded
by a; subc(a, b) asserts that the positive clause encoded by a is a subclause of that encoded
by b; and equ(a, b) asserts that the positive clauses encoded by a and b are equivalent.

With the above method for encoding, we can now define the translation. Let Π be a
disjunctive program. We first construct a class of normal programs related to Π as follows:

1. Let CΠ denote the set that consists of an individual constant cP for each predicate
constant P that occurs in Π, and an individual constant cε. Here, cε will be interpreted as
the encoding flag for positive clauses, and cP will be interpreted as the encoding flag for
atoms built from P . Let Π1 be the logic program that consists of the rule

Enc(x, y, c) → ⊥ (31)

for each individual constant c ∈ CΠ, and the following rules:

¬Enc(x, y, z) → Enc(x, y, z) (32)
¬Enc(x, y, z) → Enc(x, y, z) (33)

Enc(x, y, z) ∧ Enc(u, v, z) ∧ ¬x = u → ⊥ (34)
Enc(x, y, z) ∧ Enc(u, v, z) ∧ ¬y = v → ⊥ (35)
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Enc(x, y, z) → Defined(x, y) (36)
¬Defined(x, y) → Defined(x, y) (37)

Enc(x, y, z) ∧ Enc(x, y, u) ∧ ¬z = u → ⊥ (38)

Informally, rules (36)–(38) define thatEnc is the graph3 of a function; rules (34)–(35) state
that Enc is injective. Thus, Enc should be the graph of an encoding function. In addition,
the rule (31) assures that each c ∈ CΠ is not in the range of Enc.

2. Let Π2 be the logic program that consists of the following rules:

y = cε → Mrg(x, y, x) (39)
Mrg(x, u, v) ∧ Enc(u,w, y) ∧ Enc(v, w, z) → Mrg(x, y, z) (40)

Enc(x, u, y) → In(y, u) (41)
Enc(x, z, y) ∧ In(x, u) → In(y, u) (42)

x = cε → Subc(x, y) (43)
Subc(u, y) ∧ Enc(u, v, x) ∧ In(y, v) → Subc(x, y) (44)

Subc(x, y) ∧ Subc(y, x) → Equ(x, y) (45)

Informally, rules (39)–(40) state that Mrg is the graph of the merging function related to
Enc and cε; rules (41)–(42) implement an inductive version of the definition presented in
(28); rules (43)–(44) implement an inductive version of the definition presented in (29); and
rules (41)–(45) then assert that Equ is the equivalence relation between positive clauses.

3. Let Π3 be the logic program that consists of the rule

True(x) ∧ Equ(x, y) → True(y) (46)

and the rule True(x1) ∧ · · · ∧ True(xk)∧
Enc(y1, dθ1e, x1) ∧ · · · ∧ Enc(yk, dθke, xk)

∧Mrg(dγHe, y1, . . . , yk, z) ∧ γB

 → True(z) (47)

for each rule γ ∈ Π, where:

(1) θ1, . . . , θk list all the intensional atoms that have strictly positive occurrences in the
body of γ for some k ≥ 0;

(2) γH is the head of γ, and γ−B is the conjunction of literals occurring in the body of γ but
not in the list θ1, . . . , θk;

(3) Enc(s1, dθe, s2) denotes the formula

ui0 = cP ∧ Enc(ui0, t1, ui1) ∧ · · · ∧ Enc(uim−1, tm, u
i
m) ∧ Enc(s1, u

i
m, s2) (48)

if s1, s2 are two terms, and θ is an atom of the form P (t1, . . . , tm) for some predicate
constant P that occurs in Π, where each uij is a fresh individual variable;

(4) Mrg(dγHe, y1, . . . , yk, z) denotes the formula

Enc(v0, dζ1e, v1) ∧ · · · ∧ Enc(vn−1, dζne, vn) ∧Mrg(w0, y1, w1) ∧ · · ·
∧Mrg(wk−1, yk, wk) ∧ v0 = cε ∧ w0 = vn ∧ z = wk

(49)

3Given a k-ary function f on some set A, the graph of f is defined as the relation {(~a, f(~a)) : ~a ∈ Ak}.
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if γH = ζ1 ∨ · · · ∨ ζn for some atoms ζ1, . . . , ζn and some integer n ≥ 0.

Intuitively, the rule (46) assures that the progression is closed under the equivalence of
positive clauses; the rule (47) simulates the progression operator for the original program.
As each positive clause is encoded by an element in the intended domain, the processes of
decoding and encoding should be carried out before and after the simulation, respectively.

EXAMPLE 9. Let γ denote the following rule:

P (v) ∧ ¬Q(v)→ R(v) ∨ S(v) (50)

and suppose P,Q,R, S are intensional w.r.t. the underlying program. Then, according to
the above translation, we can use the following normal rule (which is defined by (47), but
with a slight simplification) to simulate the rule γ:True(x1) ∧ Enc(cP , v, u1) ∧ Enc(y1, u1, x1)∧

Enc(cR, v, u2) ∧ Enc(cε, u2, w1) ∧ Enc(cS , v, u3)∧
Enc(w1, u3, w2) ∧Mrg(w2, y1, z) ∧ ¬Q(v)

→ True(z). (51)

4. Let Π4 be the logic program that consists of the rule

x = cε → False(x) (52)

and the rule

False(x) ∧ Enc(x, dθe, y) ∧ ¬θ → False(y) (53)

for every intensional atom θ of the form P (~zP ), where ~zP is a tuple of pairwise distinct
individual variables z1 · · · zkP that are different from x and y, and kP is the arity of P .

This program is intended to define the predicate False as follows: False(a) holds in the
intended structure if, and only if, a encodes a positive clause that is false in the structure.

REMARK 2. Suppose A is the intended structure. By the definition of Π3, if True(a)
is true in A, then a should be an element in A that encodes a positive clause, say C, in
ΓA

Π ↑ω . By the definition of ΓA
Π , it is not difficult to see that A |= C, which means that

False(a) will be false in this case. Thus, definitions of True and False are consistent.

5. Let Π5 be the logic program consisting of the rule

True(cε) → ⊥ (54)

and the following rule

True(x) ∧ Enc(y, dθe, x) ∧ False(y) → θ (55)

for each atom θ of the form same as that in Π4.
Informally, this program asserts that a ground atom is true in the intended structure if,

and only if, there is a positive clause containing this atom such that the clause is true and
all the other atoms in this clause are false in the intended structure.

Now, we let Π� denote the union of Π1, . . . ,Π5. This then completes the definition of
the translation. The soundness of this translation is assured by the following theorem.

THEOREM 2. Let Π be a disjunctive program. Then over infinite structures, SM(Π) is
equivalent to ∃πSM(Π�), where π is the set of constants occurring in Π� but not in Π.
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To prove this result, some notations and lemmas are needed. Let υi and τ be the sets of
intensional predicates of Πi and Π, respectively. Let σ = υ1∪υ2∪υ(Π). Given a structure
A of υ(Π), every encoding expansion of A is a σ-expansion B of A such that

(1) B interprets Enc as the graph of an encoding function enc on A such that no element
among cBε and cBP (for all P ∈ τ ) belongs to the range of enc, and interprets Enc as
the complement of the graph of enc, and interprets Defined as A×A;

(2) B interprets Mrg as the graph of the merging function related to enc and cBε , and
interprets In, Subc, Equ as the encoding relations in, subc, equ related to enc and
cBε , respectively.

In the rest of the proof for Theorem 2, unless otherwise mentioned, we assume A is
a structure of υ(Π), B is an encoding expansion of A, and enc is the encoding function
defined by the predicate Enc in the structure B. Furthermore, we define

[[P (a1, . . . , ak)]] = enc(a1, . . . , ak; cBP ), (56)

[[θ1 ∨ · · · ∨ θn]] = enc([[θ1]], . . . , [[θn]]; cBε ). (57)

Given a set Σ of ground positive clauses, let [[Σ]] be the set of elements [[C]] for all C ∈ Σ.
Let ∆n(B) be the set of elements a ∈ A such that True(a) ∈ ΓB

Π3
↑n.

LEMMA 1. [[ΓA
Π ↑ω]] =

⋃
n≥0 ∆n(B).

PROOF. “⊆”: By definition, it suffices to show that [[ΓA
Π ↑n]] ⊆ ∆2n(B) for all n ≥ 0.

We show this by an induction on n. The case for n = 0 is trivial. Let n > 0 and assume
that [[ΓA

Π ↑n−1]] ⊆ ∆2(n−1)(B). Now, our task is to show that [[ΓA
Π ↑n]] ⊆ ∆2n(B). Let

C ∈ ΓA
Π ↑n. By definition, there is a rule p1 ∧ · · · ∧ pk → H , denoted by γp, in ΠA, and a

sequence of clauses C1∨p1, . . . , Ck∨pk in ΓA
Π ↑n−1 such that C ≡ C ′, where C ′ denotes

the clause H ∨ C1 ∨ · · · ∨ Ck. Consequently, there is a rule γ in Π and an assignment α
in A such that α satisfies γ−B in A and that γ+[α] = γp. Let a denote [[C]], a′ denote [[C ′]],
and ai denote [[Ci ∨ pi]] for 1 ≤ i ≤ k. On the other hand, by the inductive assumption,
each ai should be an element in ∆2(n−1)(B), or equivalently True(ai) ∈ ΓB

Π3
↑2(n−1);

by definition, there exists a rule of the form (47) corresponding to γ in Π3. Consequently,
we have that True(a′) ∈ ΓB

Π3
↑2n−1. As Equ(a′, a) is clearly true in B, according to the

rule (46) we then have that True(a) ∈ ΓB
Π3
↑2n, which implies a ∈ ∆2n(B).

“⊇”: It suffices to show that [[ΓA
Π ↑n]] ⊇ ∆n(B) for all n ≥ 0. Similarly, we show it by

an induction on n. The case for n = 0 is trivial. Let n > 0 and assume that [[ΓA
Π ↑n−1]] ⊇

∆n−1(B). Let a ∈ ∆n(B). We then have True(a) ∈ ΓB
Π3
↑n. By definition, True(a)

must be generated by either rule (46) or rule (47). If the first case is true, there must exist
an element b ∈ ΓB

Π3
↑n−1 such that Equ(a, b) is true in B. By the inductive assumption,

there is a positive clause C such that [[C]] = b and C ∈ ΓA
Π ↑n−1. By the definition of equ,

it is also clear that a encodes a clause C0 that contains exactly the set of atoms in C. By
the definition of the progression operator, it is clear that C0 ∈ ΓA

Π ↑n−1⊆ ΓA
Π ↑n.

Now, it remains to consider the case that True(a) is generated by the rule (47). By
definition, there should be (i) a sequence of elements b1, . . . , bk ∈ B such that True(bi) ∈
ΓB

Π3
↑n−1 for 1 ≤ i ≤ k, (ii) a rule γ ∈ Π such that θ1, . . . , θk are the set of intensional

atoms positively appearing in the body, (iii) a sequence of elements a1, . . . , ak ∈ B, and
(iv) an assignment α in B such that Mrg([[H]], a1, . . . , ak, a) and all Enc(ai, [[pi]], bi) are
true in B, where pi = θi[α] and H denotes the clause γH[α]. By the inductive assumption,
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there exist a sequence of clauses C1∨p1, . . . , Ck∨pk in ΓA
Π ↑n−1 such that [[Ci∨pi]] = bi

and [[Ci]] = ai. Let C denote the clause H ∨ C1 ∨ · · · ∨ Ck. By definition, C should be in
ΓA

Π ↑n. It is also clear that a = [[C]], which implies a ∈ [[ΓA
Π ↑n]] as desired.

Again, unless otherwise mentioned, let us fix C as an υ(Π�)-expansion of B that inter-
prets True as the set [[ΓA

Π ↑ω]], and that interprets the predicate False as the set

{[[C]] | C ∈ GPC(τ,A) & INS(A, τ) |= ¬C} (58)

where GPC(τ,A) denotes the set of all ground positive clauses built from predicates in τ
and elements in A. Such a structure is also called a progression expansion of A.

LEMMA 2. INS(A, τ) is a minimal model of ΓA
Π ↑ω iff INS(C, τ) is a minimal model

of ΠC
5 .

Roughly speaking, the soundness of Lemma 2 is assured by the result that every head-
cycle-free disjunctive program is equivalent to a normal program obtained by shifting [Ben-
Eliyahu and Dechter 1994]. Note that every set of positive clauses is head-cycle-free, and
Π4 and Π5 are designed for the simulation of shifting. Now, let us present the proof.

PROOF OF LEMMA 2. We only show the direction “=⇒”. The converse can be proved
by a routine check in a similar way. Assume that INS(A, τ) is a minimal model of ΓA

Π ↑ω .
We first show that INS(C, τ) is a model of ΠC

5 . Let B denote the restriction of C to σ. It is
clear that B is an encoding expansion of A. By assumption, INS(A, τ) is a model of ΓA

Π .
So, we must have that⊥ 6∈ ΓA

Π ↑ω . By Lemma 1, the element cCε , which encodes the empty
clause ⊥, is then not in ∆n(B). Equivalently, True(cε) is false in C. This means that the
rule (54) is satisfied by C. Let γ be any rule of the form (55) and α an arbitrary assignment
in C such that α satisfies the body of γ in C. By definition, there should exist a clause
C ∈ ΓA

Π ↑ω such that α(x) = [[C]]. As Enc(y, dθe, x) is satisfied by α in C, by definition
there exists a subclause C0 of C such that α(y) = [[C0]] and C = C0 ∨ p where p denotes
θ[α]. Since α also satisfies False(y) in C and C interprets False as the relation (58), we
conclude that INS(A, τ) |= ¬C0. On the other hand, we have INS(A, τ) ∩C 6= ∅ because
INS(A, τ) satisfies C. Combining these conclusions, it must hold that p ∈ INS(A, τ),
which implies p ∈ INS(C, τ) immediately. Thus, INS(C, τ) is indeed a model of ΠC

5 .
Let π be the set of intensional propositional constants of ΠC

5 . Clearly, each intensional
propositional constant of ΠA is in π. Next, we want to show that INS(C, τ) is a π-minimal
model of ΠC

5 . Let M be any model of ΠC
5 such that M ⊆ INS(C, τ) and M \ π =

INS(C, τ) \ π. It suffices to show that M ∩ π ⊇ INS(C, τ) ∩ π. We claim that for each
atom p ∈ π ∩ INS(A, τ) there exists at least one clause, say Cp, in ΓA

Π ↑ω such that
Cp ∩ INS(A, τ) = {p}. Otherwise, let N = INS(A, τ) \ {p}; it is obvious that N is also
a model of ΓA

Π ↑ω , a contradiction. With this claim, for each atom p ∈ π ∩ INS(C, τ) =
π ∩ INS(A, τ) there should be a rule γ of the form (55) and an assignment α in C such
that θ[α] = p, α(x) = [[Cp]] and C |= Enc(y, dθe, x)[α]. It is clear that γ[α] ∈ ΠC

5 . Let
C0 be the clause obtained from Cp by removing p. By the definition of Cp, it is clear that
each atom in C0 should be false in A (so it is false in C too). As α(y) encodes C0, the
ground atom False(y)[α] should be in INS(C, τ) \ π = M \ π. It is also easy to check
that True(x)[α], Enc(y, dθe, x)[α] ∈ INS(C, τ) \ π = M \ π. Since M satisfies γ[α], we
must have that p = θ[α] ∈M . Thus, we can conclude that M ∩ π ⊇ INS(C, τ) ∩ π.

With these lemmas, we can then prove Theorem 2.
13



PROOF OF THEOREM 2. By Proposition 2, it suffices to show that

SM(Π) ≡INF ∃π(SM(Π1) ∧ · · · ∧ SM(Π5)). (59)

“=⇒”: Let A be an infinite model of SM(Π), and B be an encoding expansion of A. As
A is infinite, such an expansion always exists. It is easy to check that B is a stable model
of both Π1 and Π2. Let C be the progression expansion of A that is also an expansion
of B. By Theorem 1, INS(B, τ) = INS(A, τ) should be a minimal model of ΓA

Π ↑ω . By
Lemma 1 and definition, INS(B, τ) is also a minimal model of ΓB

Π3
↑ω . By Theorem 1

again, B is then a stable model of Π3, which implies that so is C. It is also easy to check
that C is a stable model of Π4. On the other hand, since INS(A, τ) is a minimal model of
ΓA

Π ↑ω , by Lemma 2, INS(C, τ) should be a minimal model of ΠC
5 , which means that C is

a stable model of Π5 by Proposition 1. Thus, A is a model of the right-hand side of (59).
“⇐=”: Let A be an infinite model of the right-hand side of (59). Then there exists an

υ(Π�)-expansion C of A such that C satisfies SM(Πi) for all i ∈ {1, . . . , 5}. Let B be the
restrictions of C to σ. Then, by a routine check, it is easy to show that B is an encoding
expansion of A. As C is a stable model of Π3, by Theorem 1, INS(C, υ3) is then a minimal
model of ΓC

Π3
↑ω = ΓB

Π3
↑ω . Furthermore, by Lemma 1 and the conclusion that C satisfies

SM(Π4), we then have that C is a progression expansion of A. On the other hand, since C
is also a stable model of Π5, by Proposition 1 we can conclude that INS(C, τ) is a minimal
model of ΠC

5 . Thus, by Lemma 2 we immediately have that INS(A, τ) is a minimal model
of ΓA

Π ↑ω . By Theorem 1, A must be a stable model of Π, which completes the proof.

REMARK 3. Note that, given any finite domain A, there is no injective function from
A×A intoA. Thus, we cannot expect that the above translation works on finite structures.

COROLLARY 1. DLP 'INF NLP.

Now, let us focus on the relationship between logic programs and second-order logic.
The following proposition says that, over infinite structures, normal programs are more ex-
pressive than the existential second-order logic, which then strengthens a result in [Asun-
cion et al. 2012] where such a separation over arbitrary structures was obtained.

PROPOSITION 3. NLP 6≤INF Σ1
1.

To show this, our main idea is to find a property that can be defined by a normal program
but not by any existential second-order sentence. A property that satisfies the mentioned
conditions is defined as follows. Let υR be the vocabulary consisting of a binary predicate
E and two individual constants c and d. Let Reachi be the class of infinite υR-structures
in each of which there is a finite path from c to d via edges in E. Now, we show the result.

PROOF OF PROPOSITION 3. We first show that Reachi is definable in NLP over infi-
nite structures. Let Π be a normal program that consists of the following rules:

P (c), (60)
P (x) ∧ E(x, y)→ P (y), (61)

¬P (d)→ ⊥. (62)

It is easy to see that ∃PSM(Π) defines the property Reachi over infinite structures.
Next, we prove that Reachi is undefinable in Σ1

1 over infinite structures. Towards a
contradiction, assume that there is a first-order sentence ϕ and a finite set τ of predicates
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such that ∃τϕ is in Σ1
1 and defines Reachi over infinite structures. Let R be a binary

predicate that has no occurrence in τ , and let ψ denote the formula

∀x∃yR(x, y) ∧ ∀x¬R(x, x) ∧ ∀x∀y∀z(R(x, y) ∧R(y, z)→ R(x, z)). (63)

Intuitively, it asserts that the relationR is transitive and irreflexive, and each element in the
domain has a successor w.r.t. R. It is obvious that such a relation exists iff the domain is
infinite. Thus, the formula ∃τϕ ∧ ∃Rψ defines Reachi over arbitrary structures.

Moreover, let γ0(x, y) be x = y; for n > 0 let γn(x, y) denote the formula

∃zn(γn−1(x, zn) ∧ E(zn, y)), (64)

where each γn(x, y) asserts that there is a path of length n from x to y. Let Λ be the set of
sentences ¬γn(c, d) for all n ≥ 0. Now we prove a property as follows.
Claim. Λ ∪ {∃τϕ, ∃Rψ} is satisfiable.

To show this, it suffices to show that the first-order theory Λ ∪ {ϕ,ψ} is satisfiable. Let
Φ be a finite subset of Λ, and let n = max{m | ¬γm(c, d) ∈ Φ}. Let An be an infinite
model of ψ of the vocabulary υ(ϕ) ∪ υ(ψ) in which the minimal length of paths from c to
d via edges in E is greater than n. Then An is clearly a model of Φ ∪ {ϕ,ψ}. Due to the
arbitrariness of Φ, by the compactness we then have the desired claim.

Let A be any model of Λ∪{∃τϕ, ∃Rψ}. Then according to ∃Rψ, A should be infinite,
and by Λ, there is no path from c to d viaE in A. However, according to ∃τϕ, every infinite
model of it should be c-to-d reachable, a contradiction. Thus, the property Reachi is then
undefinable in Σ1

1 over infinite structures. This completes the proof immediately.

The following separation immediately follows from the proof of Theorem 4.1 in [Eiter
et al. 1996]. Although their statement refers to the whole class of arbitrary structures, the
proof still works if only infinite structures are considered.

PROPOSITION 4. Σ1
2 6≤INF DLP.

4. FINITE STRUCTURES

In this section we focus on the expressiveness of logic programs over finite structures. We
first consider the relationship between disjunctive and normal programs. Unfortunately, in
the general case, it is not hard to obtain the following result. Note that the direction “only
if” is already implicit in [Asuncion et al. 2012].

PROPOSITION 5. DLP 'FIN NLP iff NP = coNP.4

PROOF. By Fagin’s Theorem [Fagin 1974] and Stockmeyer’s logical characterization
of the polynomial-time hierarchy [Stockmeyer 1977],5 we have that Σ1

2 'FIN Σ1
1 iff Σp2 =

NP. By a routine complexity-theoretic argument, it is also true that Σp2 = NP iff NP =
coNP. On the other hand, by Proposition 7, Leivant’s normal form [Leivant 1989] and
the definition of SM, we can conclude that DLP 'FIN Σ1

2. By Proposition 6, it holds that
NLP 'FIN Σ1

1. Combining these conclusions, we then have the desired proposition.

4The proposition was first presented in an earlier version of this paper [Zhang and Zhang 2013a]. Recently, such
an equivalence was also observed by Zhou [2015]. For traditional logic programs under the query equivalence, a
similar result follows from the expressiveness results proved by [Eiter et al. 1997; Schlipf 1995].
5In their characterizations of complexity classes, no function constant of positive arity is allowed. However, this
restriction can be removed since functions can be easily simulated by predicates and first-order quantifiers.
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This result shows how difficult it is to separate normal programs from disjunctive pro-
grams over finite structures. To know more about the relationship, we will try to prove a
weaker separation between these two classes. To achieve this goal, we need to study the
relationship between logic programs and second-order logic.

For the class of normal programs, we have the following characterization:

PROPOSITION 6. NLPF
n 'FIN Σ1F

1,n[∀∗] for all n > 1.

To prove it, we have to develop a translation that turns normal programs to first-order
sentences. The main idea is to extend the Clark completion by simulating the progression.

Now, let us give the translation. Let Π be a normal program and n be the maximum
arity of intensional predicates of Π. Without loss of generality, assume the head of every
rule in Π is of the form P (~x), where P is a k-ary predicate for some k ≥ 0, and ~x is the
tuple of distinct individual variables x1, . . . , xk. Let ≺ be a new binary predicate and $
a universal first-order sentence asserting that ≺ is a strict linear order. Given two tuples ~s
and ~t of terms with the same length, let ~s ≺ ~t be a quantifier-free formula asserting that ~s
is less than ~t w.r.t. the lexicographic order extended from ≺ naturally. For example, if ~s
and ~t denote the tuples (s1, s2) and (t1, t2), respectively, then one can use the following
quantifier-free formula to express that ~s is less than ~t w.r.t. the extended strict linear order:

s1 ≺ t1 ∨ (s1 = t1 ∧ s2 ≺ t2). (65)

Let τ be the set of intensional predicates of Π. Let c be the least integer that is not less
than log2 |τ |+ n. We fix P as a k-ary predicate in τ and let λ = P (x1, . . . , xk). Suppose
γ1, . . . , γl list all rules in Π whose heads are λ, and suppose each γi is of the form

ηi ∧ θi1 ∧ · · · ∧ θimi
→ λ (66)

where θi1, . . . , θ
i
mi

list all positive intensional conjuncts in the body of γi, ηi is the con-
junction of other conjuncts that occur in the body of γi, mi ≥ 0, and ~yi is the tuple of all
individual variables that occur in γi but not in λ.

Next, we let ψP denote the following first-order sentence:

∀x1 · · · ∀xk

λ→ l∨
i=1

∃~yi

ηi ∧ mi∧
j=1

(
θij ∧DLess(θij , λ)

) (67)

where, for all intensional atoms θ and θ0, let ORD(θ) denote the tuple (ocQ(~t), · · · , o1
Q(~t)) if

θ is of the formQ(~t); let o1
Q, . . . , o

c
Q be fresh function constants whose arities are the same

as that of Q; and let DLess(θ, θ0) denote the quantifier-free formula ORD(θ) ≺ ORD(θ0).
Now we define ϕΠ as a conjunction of the sentences $ and Π̂, and ψP for all P ∈ τ .

Let σ denote the set of function constants osQ for all Q ∈ τ and all s ∈ {1, . . . , c}. Clearly,
∃σϕΠ is equivalent to a sentence in Σ1F

1,n[∀∗] by introducing Skolem functions if n (i.e.,
the maximum arity of intensional predicates of Π) is greater than 1.

EXAMPLE 10 (EXAMPLE 5 CONTINUED). Let Π denote the following normal program
which is obtained from the program presented in Example 5 by a normalization:

y = a→ P (y), (68)
P (x) ∧ E(x, y)→ P (y), (69)
y = b ∧ ¬P (b)→ P (y). (70)
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Clearly, the only intensional predicate constant is P . Let τ = {P}. Then we have that

c = log2 |τ |+ n = 0 + 1 = 1, (71)

where n denotes the maximum arity of predicate constants that occur in τ . According to
the translation defined above, ψP is the following first-order formula:

∀y(P (y)→ y = a ∨ ∃x(E(x, y) ∧ P (x) ∧ o(x) ≺ o(y)) ∨ (y = b ∧ ¬P (b))) (72)

where o is a fresh unary function. Moreover, ϕΠ is the formula$∧Π̂∧ψP . Clearly, ∃oϕΠ

is equivalent to the Σ1F
1,n[∀∗]-sentence ∃o∃f($ ∧ Π̂ ∧ ϑ), where ϑ denotes the formula

∀y(P (y)→y = a ∨ (E(f(y), y) ∧ P (f(y)) ∧ o(f(y))≺o(y)) ∨ (y = b ∧ ¬P (b))) (73)

and f is a unary Skolem function introduced to eliminate the existential quantifier ∃x.

Next, let us show the soundness of the presented translation:

LEMMA 3. Given any finite structure A of υ(Π) with at least two elements in the do-
main, we have A |= SM(Π) iff A |= ∃σϕΠ.

PROOF. “=⇒”: Let A be a finite stable model of Π with at least two elements in the
domain. Let N be the cardinality of A, τ be the set of intensional predicates of Π, n be
the maximum arity of intensional predicates in τ , and c be the least integer that is not less
than log2 |τ | + n. Without loss of generality, let us assume that A is the set of natural
numbers less than N . Note that every finite structure with domain size N is isomorphic to
a structure over this domain. Given any ground intensional atom p, we define

`(p) = max{m < N c | p 6∈ ΓA
Π ↑m}. (74)

Let B be an υ(ϕΠ)-expansion of A in which

(1) the predicate constant ≺ is interpreted as the relation {(a, b) ∈ A×A | a < b};
(2) for each predicate constant P ∈ τ of arity k ≥ 0 and each integer i ∈ {1, . . . , c}, the

function constant oiP is interpreted as a function g of arity k such that g(~a) = di for all
k-tuples ~a on A if (dc, . . . , d1) is the representation of `(P (~a)) in the base-N numeral
system. (For example, suppose N = 8, c = 3 and `(P (~a)) = 22; then the desired
representation of `(P (~a)) in the base-8 numeral system is (0, 2, 6).)

By a routine check, one can show that B is a model of ϕΠ. From this, we know that A is
indeed a model of ∃σϕΠ, which proves the desired direction.

“⇐=”: Let A be a finite model of ∃σϕΠ. We want to show that A is a stable model
of Π. By Theorem 1, it suffices to show that INS(A, τ) = ΓA

Π ↑ω . Clearly, there exists a
model B of ϕΠ that is an υ(ϕΠ)-expansion of A. By the formula $, we know that B must
interpret ≺ as a strict linear order on B. We first show that

(∗) ΓA
Π ↑s⊆ INS(A, τ) for all s ≥ 0.

This can be done by an induction on s. The case of s = 0 is trivial. Let s > 0 and assume
that ΓA

Π ↑s−1⊆ INS(A, τ). Our task is to show that ΓA
Π ↑s⊆ INS(A, τ). Let p be a ground

atom in ΓA
Π ↑s. By definition, there is a rule γi ∈ Π of the form (same as (66))

ηi ∧ θi1 ∧ · · · ∧ θimi
→ λ (75)

and an assignment α in A such that (i) λ[α] = p, (ii) α satisfies ηi in A (so equivalently, in
B), and (iii) for each atom θij , it holds that θij [α] ∈ ΓA

Π ↑s−1. By the inductive assumption,
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we have θij [α] ∈ INS(A, τ), which means that B |= θij [α]. As α clearly satisfies the rule
γi in B, we conclude that α satisfies λ in B, which implies that

p = λ[α] ∈ INS(B, τ) = INS(A, τ). (76)

So, the claim (∗) is true. From this, we obtain that ΓA
Π ↑ω⊆ INS(A, τ) as desired.

Now, it remains to show that INS(A, τ) ⊆ ΓA
Π ↑ω . Towards a contradiction, assume it is

not true. We then have that ΓA
Π ↑ω ( INS(A, τ) by the previous conclusion. For all ground

atoms p1 and p2 in INS(A, τ), we write p1 < p2 if DLess(p1, p2) is true in B. Let p be
a <-minimal atom in INS(A, τ) \ ΓA

Π ↑ω and suppose p = P (~a) for some P ∈ τ . Let α
be an assignment in B such that α(~x) = ~a. By definition, α should satisfy ψP (in which
λ[α] = p) in B. So, there is an integer i ∈ {1, . . . , l} and an assignment α0 in B such that

(1) α0(~x) = ~a,
(2) ηi[α0] is true in B, and
(3) for all integers j ∈ {1, . . . ,mi}, qj ∈ INS(B, τ) (or equivalently, qj ∈ INS(A, τ))

and qj < λ[α0], where qj denotes the ground atom θij [α0].

Since λ[α0] = λ[α] = p and p is a <-minimal atom in INS(A, τ) \ ΓA
Π ↑ω , we conclude

that qj ∈ ΓA
Π ↑ω for all integers j ∈ {1, . . . ,mi}. According to the definition of ψP , the

rule γi (of the form (66)) is in Π, which implies that

γ+
i [α0] = q1 ∧ · · · ∧ qmi

→ p ∈ ΠA. (77)

By definition, we have that p ∈ ΓA
Π ↑ω , a contradiction as desired.

REMARK 4. Let m denote the number of intensional predicates in Π, and let n denote
the maximal arity of intensional predicates in Π. The maximal arity of auxiliary constants
in our translation is only n, which is optimal if Conjecture 1 in [Durand et al. 2004]6 is
true. Note that the maximal arity of auxiliary constants of the ordered completion in [Asun-
cion et al. 2012] is 2n. Moreover, the number of auxiliary constants in our translation is
m · (dlog2me+ n), while that of the ordered completion is m2.

REMARK 5. Similar to the work in [Asuncion et al. 2012], one can develop an answer
set solver based on our translation by calling some SMT solver. From the theoretical
comparison given in the last remark, we believe that the approach proposed here is rather
promising. In addition, as a strict partial order is available in almost all the SMT solvers
(e.g., built-in arithmetic relations), our translation can be easily optimized.

Now we are in the position to prove Proposition 6.

PROOF OF PROPOSITION 6. “≥FIN”: Let ϕ be any sentence in Σ1F
1,n[∀∗]. It is obvious

that ϕ can be written as an equivalent sentence of the form ∃τ∀~x(η1 ∧ · · · ∧ ηk) for some
k ≥ 0, where each ηi is a disjunction of literals, i.e., atoms or negated atoms, and τ a
finite set of functions or predicates of arity ≤ n. Let Π be a logic program consisting of
the rule η̃i → ⊥ for each i ∈ {1, . . . , k}, where η̃i is obtained from ηi by substituting θ
for each negated atom ¬θ, followed by substituting ¬θ for each atom θ, and followed by
substituting ∧ for ∨. It is easy to check that ∃τSM(Π) is in NLPF

n and equivalent to ϕ.

6Conjecture 1 in [Durand et al. 2004] implies that ESOF
n[∀∗] 'FIN ESOF

n[∀n], where ESOF
n[∀n] denotes the

class of sentences in ESOF
n[∀∗] that involve at most n individual variables.
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“≤FIN”: Let C=1 (respectively, C>1) denote the class of finite structures with exactly
one (respectively, at least two) element(s) in the domain. Let Π be a normal program and
τ be a finite set of predicates and functions such that ∃τSM(Π) is in NLPF

n. It is trivial to
construct a sentence, say ζ, in Σ1F

1,n[∀∗] such that ∃τSM(Π) is equivalent to ζ over C=1.
(Note that, if the domain consists of only one element, a first-order logic program will
regress to a propositional one.) By Lemma 3, there is also a sentence ψ in Σ1F

1,n[∀∗] such
that ∃τSM(Π) is equivalent to ψ over C>1. Let ϕ denote the following sentence:

(∃x∀y(x = y) ∧ ζ) ∨ (∃x∃z(¬x = z) ∧ ψ) . (78)

Informally, the formula ϕ first test whether the intended domain is a singleton or not. ζ
will be activated if the answer is true, and ψ will be activated otherwise. Thus, it is easy to
show that ∃τSM(Π) is equivalent to ϕ over finite structures. It is also clear that ϕ can be
written to be an equivalent sentence in Σ1F

1,n[∀∗]. Note that every first-order quantifier can
be regarded as a second-order quantifier over a function variable of arity 0.

REMARK 6. Again, if one assumes Conjecture 1 in [Durand et al. 2004], by the main
result of [Grandjean 1985], NLPF

k then exactly captures the class of languages computable
in O(nk)-time (where n denotes the size of the input) in Nondeterministic Random Access
Machines (NRAMs), which implies that whether an extensional database can be expanded
to a stable model of a disjunctive program can be checked in O(nk)-time in an NRAM.

By Proposition 6 and the fact that functions can be simulated by introducing auxiliary
predicates in both logic programs and second-order logic, we have the following result:

COROLLARY 2. NLP 'FIN Σ1
1.

To establish the mentioned separation, we still need to investigate the translatability from
a fragment of second-order logic to disjunctive programs. For convenience, in the rest of
this paper, we fix Succ as a binary predicate, First and Last as two unary predicates,
and υS as the set that consists of these predicates. Unless otherwise mentioned, every logic
program or formula to be considered is always assumed to contains no predicate from υS.

A structure A is called a successor structure if all of the following hold:

(1) the vocabulary of A contains all the predicates in υS, and
(2) SuccA is a binary relation S on A such that the transitive closure of S is a strict linear

order, and that |{b |(a, b) ∈ S}| ≤ 1 and |{b |(b, a) ∈ S}| ≤ 1 for all a ∈ A, and
(3) FirstA (respectively, LastA) consists of the least element (respectively, the largest

element) in A w.r.t. the strict linear order defined by SuccA.

Note that, by definition, both the least and largest elements must exist in a successor struc-
ture. This means that every successor structure is always finite.

Let SUC denote the class of successor structures, and let Σ1
2,n[∀n∃∗] denote the class of

sentences in Σ1
2,n[∀∗∃∗] that involve at most n universal quantifiers. Now let us show that:

LEMMA 4. Σ1
2,n[∀n∃∗] ≤SUC DLPn for all n > 0.

PROOF. Fix n > 0, and let ∃τ∀σϕ be a sentence in Σ1
2,n[∀n∃∗], where τ and σ are two

finite sets of predicates of arities ≤ n. It suffices to show that there is a disjunctive pro-
gram Π and a set π of auxiliary predicates such that ∀σϕ ≡SUC ∃πSM(Π) and ∃πSM(Π)
belongs to DLPn. Without loss of generality, let us assume that ϕ is of the form

∀~x∃~y(ϑ1(~x, ~y) ∨ · · · ∨ ϑm(~x, ~y)), (79)
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where m ≥ 0, each ϑi is a finite conjunction of literals, and the length of ~x is exactly n.
Before presenting the program Π, let us first define some notations. Suppose ~u and ~v are

two tuples of individual variables u1 · · ·uk and v1 · · · vk, respectively. LetFirst(~u) denote
the conjunction of First(ui) for all i ∈ {1, . . . , n}, and Last(~u) denote the conjunction of
Last(ui) for all i ∈ {1, . . . , n}. Given i ∈ {1, . . . , n}, let Succi(~u,~v) denote the formula

u1 = v1 ∧ · · · ∧ ui−1 = vi−1 ∧ Succ(ui, vi)
∧ Last(ui+1) ∧ First(vi+1) ∧ · · · ∧ Last(un) ∧ First(vn).

(80)

Now, by employing the well-known saturation technique (see, e.g., the proof of Theorem
6.3 in [Eiter et al. 1997]), we define the desired logic program Π as follows:

X(~z) ∨ X̃(~z) (X ∈ σ) (81)
Last(~x) ∧D(~x)→ X(~z) (X ∈ σ) (82)
Last(~x) ∧D(~x)→ X̃(~z) (X ∈ σ) (83)

First(~x) ∧ ϑ̃i(~x, ~y)→ D(~x) (1 ≤ i ≤ m) (84)
Succj(~v, ~x) ∧D(~v) ∧ ϑ̃i(~x, ~y)→ D(~x) (1 ≤ i ≤ m, 1 ≤ j ≤ n) (85)

Last(~x) ∧ ¬D(~x)→ ⊥ (86)

where D is an n-ary fresh predicate; for each predicate X ∈ σ of arity n ≥ 0, let X̃ be a
fresh predicate of arity n; and ϑ̃i is the formula obtained from ϑi by substituting X̃ for the
expression ¬X whenever X ∈ σ. Let π denote the predicate set

σ ∪ {D} ∪ {X̃ : X ∈ σ}. (87)

It is easy to see that ∃πSM(Π) belongs to DLPn. Next we show that ∃πSM(Π) ≡SUC ∀σϕ
by employing a similar idea used in the proof of Theorem 6.3 in [Eiter et al. 1997].

Let A be a successor structure of υ(∀τϕ) ∪ υS that satisfies ∀σϕ. Our task now is to
prove that A is a model of ∃πSM(Π). Let B be an υ(Π)-expansion of A in which each of
the predicates among D, X , X̃ (X ∈ σ) is interpreted as the full relation on A of a proper
arity. To obtain the desired conclusion, it is sufficient to show that B is a stable model of
Π. It is clear that B is a model of Π̂. Towards a contradiction, let us assume that B is not
a stable model of Π, which implies that there is some assignment β in B such that

B |= (π∗ < π)[β] & B |= Π̂∗[β], (88)

where both notations π∗ and Π̂∗ are defined in the same way as those in Section 2. It is not
difficult to see that there is some tuple ~a ∈ An such that ~a 6∈ β(D∗). Let~b be an arbitrary
tuple on A of length |~y|. According to rules (84)–(85) it must be true that

B |= (¬ϑ̃1(~a,~b) ∧ · · · ∧ ¬ϑ̃m(~a,~b))[β]. (89)

Let α be an assignment in A such that α(X) = β(X∗) for all X ∈ σ. We can infer that

A |= (¬ϑ1(~a,~b) ∧ · · · ∧ ¬ϑm(~a,~b))[α], (90)

which is impossible since we have that A |= ∀σϕ, a contradiction as desired.
For the converse, let us assume that A is a model of ∃πSM(Π). Towards a contradiction,

we also assume that A is not a model of ∀σϕ. By the former, we know that there is a stable
model B of Π that is an υ(Π)-expansion of A. By the definition of Π, it is easy to see that
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B interprets each predicate among D,X, X̃ (X ∈ σ) as the full relation on A of a proper
arity. By the assumption that A |= ¬∀σϕ, there is an assignment α in A such that

A |= ¬∀~x∃~y(ϑ1(~x, ~y) ∨ · · · ∨ ϑm(~x, ~y))[α]. (91)

With this conclusion, we know that there exists a tuple ~a ∈ An such that for all tuples~b on
A of length |~y| and all integers i ∈ {1, . . . ,m} we have that A |= ¬ϑi(~a,~b)[α]. Let β be
an assignment in B such that β(D∗) = An \ {~a} and that

β(X∗) = α(X) & β(X̃∗) = Ak \ α(X) (92)

for all predicates X ∈ σ of arity k. Then, it is a routine task to check that

B |= (π∗ < π)[β] & B |= Π̂∗[β]. (93)

From these, we conclude that B is not a model of SM(Π), a contradiction as desired.

Next, we show that this result can be generalized to finite structures. To do this, we need
a logic program to define the class of successor structures. Now we define it as follows.

Let ΠS denote the normal program that consists of the following rules.

¬Less(x, y)→ Less(x, y) (94)
¬Less(x, y)→ Less(x, y) (95)

Less(x, y) ∧ Less(y, z)→ Less(x, z) (96)
Less(x, y) ∧ Less(y, x)→ ⊥ (97)

¬Less(x, y) ∧ ¬Less(y, x) ∧ ¬x = y → ⊥ (98)
Less(x, y)→ First(y) (99)
¬First(x)→ First(x) (100)
Less(x, y)→ Last(x) (101)
¬Last(x)→ Last(x) (102)

Less(x, y) ∧ Less(y, z)→ Succ(x, z) (103)
¬Succ(x, y) ∧ Less(x, y)→ Succ(x, y) (104)

Informally, rules (94)–(95) are choice rules to guess a binary relation Less; rules (96), (97)
and (98) restrict Less to be transitive, antisymmetric, and total, respectively, so that Less
is a strict linear order; rules (99)–(100) and rules (101)–(102) then assert that First and
Last consist of the least and the last elements, respectively, if they indeed exist; and the
last two rules state that Succ defines the relation of immediate successors w.r.t. Less.

The following lemma, which can be proved by a routine check, asserts that the program
ΠS exactly defines the class of successor structures as we expect.

LEMMA 5. Let σ ⊇ υS be a vocabulary and A be a σ-structure. Then A is a successor
structure iff both A is finite and A is a model of ∃τSM(ΠS), where τ = υ(ΠS) \ υS.

Now we can then prove the following result:

PROPOSITION 7. Σ1
2,n[∀n∃∗] ≤FIN DLPn for all n > 1.

PROOF. Let n > 1 be an integer, and ϕ be a sentence in Σ1
2,n[∀n∃∗]. Let Π0 be the

disjunctive program constructed in the proof of Lemma 4 which expresses ϕ, and let σ be
the set of predicates that appear in Π0 but neither in υS nor in υ(ϕ). Let Π = Π0 ∪ΠS and
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let τ be the set of predicates that appear in ΠS but not in υS. Next, our task is to show that
ϕ is equivalent to ∃τ∃σSM(Π) over finite structures. By definition and Proposition 2, it
suffices to show that ϕ ≡FIN ψ, where ψ denotes the following formula:

∃υS(∃τSM(ΠS) ∧ ∃σSM(Π0)). (105)

Let υ denote the union of υ(ϕ) and υS. Now we prove the new statement as follows.
“=⇒”: Let A be a finite model of ϕ. Clearly, there exists an υ-expansion B of A such

that B is a successor structure. By Lemma 5, B should be a model of ∃τSM(ΠS), and by
the proof of Lemma 4, B is also a model of ∃σSM(Π0). Hence, A is a model of ψ.

“⇐=”: Let A be a finite model of ψ. Then there is an υ-expansion B of A such that
B satisfies both ∃τSM(ΠS) and ∃σSM(Π0). By Lemma 5, B is a successor structure, and
then by Lemma 4, B must be a model of ϕ. This means that A is a model of ϕ.

Fix υn as the vocabulary {Pn}, where Pn is an n-ary predicate constant. Let Parityn

denote the class of finite υn-structures in each of which Pn is interpreted as a set consisting
of an even number of n-tuples. The following result was proved by Ajtai.

THEOREM 3 (IMPLICIT BY THEOREM 2.1 IN [AJTAI 1983]). Let n be a positive in-
teger. Then Parityn is not definable in Σ1

1,n−1 over finite structures.

With all of the above results, we are now in the position to establish a weaker separation:

THEOREM 4. DLPn 6≤FIN NLPF
2n−1 for all n > 1.

PROOF. Fix n > 1. Now, let us show that Parity2n is definable in DLPn over finite
structures. We first show that Parity2n is definable in Σ1

2,n[∀n∃∗] over successor structures.
Let First, Last and Succi be defined the same on term tuples as those in the proof of
Lemma 4, and let Succ(~s,~t) denote the disjunction of Succi(~s,~t) for all i ∈ {1, . . . , n} if
~s and ~t are n-tuples. Let X,Y be predicate variables of arity n, and ϕ1 be the formula[

∀~z(First(~z)→ (Y (~z)↔ P2n(~x, ~z)))∧
∀~y~z(Succ(~y, ~z)→ (P2n(~x, ~z)↔ Y (~y)⊕ Y (~z)))

]
→ ∃~z(Last(~z) ∧ (X(~x)↔ Y (~z))),

(106)
where ψ⊕χ denotes the formula (ψ ↔ ¬χ) if ψ and χ are formulas. Intuitively, ϕ1 asserts
that X(~a) is true iff the cardinality of {~b | (~a,~b) ∈ P2n} is odd. Let ϕ2 denote the formula[

∀~z(First(~z)→ (X(~z)↔ Y (~z)))∧
∀~y~z(Succ(~y, ~z)→ (X(~z)↔ Y (~y)⊕ Y (~z)))

]
→ ∃~z(Last(~z) ∧ ¬Y (~z)). (107)

Intuitively, ϕ2 states thatX consists of an even number of n-tuples on the intended domain.
Now, let ϕ = ∃X∀Y ∀~x(ϕ1∧ϕ2). Obviously, ϕ can be rewritten as an equivalent sentence
in Σ1

2,n[∀n∃∗]. By a routine check, it is not hard to see that, for every successor structure
A of υ(ϕ), the restriction of A to υ2n belongs to Parity2n iff A is a model of ϕ.

According to the proof of Lemma 4, there exists a disjunctive program Π0 and a finite
set τ of predicates of arities ≤ n such that ∃τSM(Π0) is equivalent to ϕ over successor
structures and no predicate in υS is intensional w.r.t. Π0. Let Π be the union of ΠS and Π0.
Let σ be the set of predicates in υ(Π) \ υ2n. It is easy to show that, over finite structures,
Parity2n is defined by ∃σSM(Π), so it is definable in DLPn.

Next, we show that Parity2n is not definable in NLPF
2n−1 over finite structures, which

yields the desired theorem immediately. By Proposition 6, it sufficies to prove that Parity2n
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is not definable in Σ1F
1,2n−1 over finite structures. Towards a contradiction, assume it is not

true. By a proof similar to Theorem 3.9 (a) in [Durand et al. 1998], it is easy to prove:

Claim. Let m ≥ 1 and suppose the property Paritym is definable in Σ1F
1,m−1 over finite

structures. Then the property Parity2m is definable in Σ1F
1,2m−2 over finite structures.

With the above claim, we can now conclude that Parity4n is definable in Σ1F
1,4n−2 over

finite structures. Since every function variable of arity k ≥ 0 can always be simulated
by a predicate variable of arity k + 1, Parity4n should be definable in Σ1

1,4n−1 over finite
structures, which contradicts with Theorem 3. This completes the proof.

5. ARBITRARY STRUCTURES

Based on the results presented in the previous two sections, we can then compare the
expressiveness of disjunctive programs and normal programs over arbitrary structures.

THEOREM 5. DLP ' NLP iff DLP 'FIN NLP.

PROOF. The direction “=⇒” is trivial. Now let us consider the converse. Assume that
DLP 'FIN NLP, and let Π be a disjunctive program. Then there exists a normal program
Π? such that SM(Π) ≡FIN ∃σSM(Π?), where σ is the set of predicates that occur in Π? but
not in Π. By Theorem 2, there is a normal program Π� such that SM(Π) ≡INF ∃τSM(Π�).
Without loss of generality, we assume that σ∩τ = ∅. To show DLP ' NLP, our idea is to
design a normal program testing whether the intended structure is finite. We let Π? work
if it is true, and let Π� work otherwise. To do this, we introduce a new predicate Finite of
arity 0, and let ΠT be the union of ΠS (see Section 4) and the set of rules as follows:

First(x) → Num(x), (108)
Num(x) ∧ Succ(x, y) → Num(y), (109)
Num(x) ∧ Last(x) → Finite. (110)

Let π = υ(ΠT) \ {Finite}. Now let us present a property as follows.

Claim. Suppose A |= ∃πSM(ΠT). Then A is finite iff A |= Finite.

The direction “=⇒” of this claim follows from Lemma 5. So, it remains to show the
converse. Suppose A satisfies Finite. Let υ0 denote the union of υ(ΠT) and the vocabu-
lary of A. Then, there exists an υ0-expansion B of A such that B is a stable model of ΠT.
Hence, LessB should be a strict linear order on A; the element in FirstB (respectively,
LastB), if it exists, should be the least (respectively, largest) element in A w.r.t. LessB;
and SuccB should be the relation defining the direct successors w.r.t. LessB. As Finite
is true in A, there must exist an integer n ≥ 0 and n elements a1, . . . , an from A such
that First(a1), Last(an) and each Succ(ai, ai+1) are true in B. We assert that, for each
a ∈ A there exists some index i ∈ {1, . . . , n} such that a = ai. If not, let b be one of such
elements. As LessB is a strict linear order, there exists j ∈ {1, . . . , n− 1} such that both
Less(aj , b) and Less(b, aj+1) are true in B. But this is impossible since Succ(aj , aj+1)
is true in B. So, we have A = {a1, . . . , an}. This implies that A is finite as desired.

Next, let us construct the desired program. Let Π?
0 (respectively, Π�0) denote the program

obtained from Π? (respectively, Π�) by adding Finite (respectively, ¬Finite) to the body
of each rule as a conjunct. Let Π† = Π?

0 ∪ Π�0 ∪ ΠT. Let ν = υ(Π†) \ υ(Π). Now, we
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show that ∃νSM(Π†) is equivalent to SM(Π) over arbitrary structures. By definition and
Proposition 2, it suffices to show that SM(Π) is equivalent to the formula

∃Finite(∃σSM(Π?
0) ∧ ∃τSM(Π�0) ∧ ∃πSM(ΠT)). (111)

Let A be a structure of υ(Π). As a strict total order always exists on domain A, we can
construct an υ(Π) ∪ υ(ΠT)-expansion B of A such that B is a stable model of ΠT. By
the above claim, B |= Finite if, and only if, A is finite. Let us first assume that A is
finite. By definition, it is clear that ∃σSM(Π?

0) is satisfied by B if, and only if, ∃σSM(Π?)
is satisfied by A, and ∃σSM(Π�0) is always true in B. This means that ∃νSM(Π†) is
equivalent to SM(Π) over finite structures. By a symmetrical argument, we can show that
the equivalence also holds over infinite structures. This then completes the proof.

REMARK 7. In classical logic, it is well-known that separating languages over arbi-
trary structures is usually easier than that over finite structures [Ebbinghaus and Flum
1999]. In logic programming, it also seems that arbitrary structures are better-behaved
than finite structures. For example, there are some preservation theorems that work on
arbitrary structures, but not on finite structures [Ajtai and Gurevich 1994]. Therefore, an
interesting question then arises as whether it is possible to develop some techniques on
arbitrary structures so that stronger separations of DLP from NLP are achievable.

COROLLARY 3. DLP ' NLP iff NP = coNP.

Next, we give a characterization for disjunctive programs.

PROPOSITION 8. DLP ' Σ1
2[∀∗∃∗].

PROOF. The direction “≤” trivially follows from the second-order definition of stable
model semantics. So, we only need to show the converse. To do this, it suffices to prove
that, for every second-order sentence ϕ that is of the following form:

∀σ∀~x∃~y(ϑ1(~x, ~y) ∨ · · · ∨ ϑm(~x, ~y)), (112)

there is a disjunctive program Π and a set τ of auxiliary predicates such that ϕ is equivalent
to ∃τSM(Π), where σ is a finite set of predicates; ~x and ~y are two finite tuples of individual
variables; and each ϑi is a conjunction of atoms or negated atoms. Notice that, if ϕ is
equivalent to ∃τSM(Π), then any Σ1

2[∀∗∃∗]-sentence of the form ∃πϕ (where π is a set of
predicates) is equivalent to ∃π∃τSM(Π), which proves the desired proposition.

Now, let us prove the equivalence between ϕ and ∃τSM(Π). Let n denote the length
of ~x. Again by employing the saturation technique (see, e.g., the proof of Theorem 6.3
in [Eiter et al. 1997]), we can construct a logic program Π as follows:

TX(~x, ~z) ∨ FX(~x, ~z) (X ∈ σ) (113)
D(~x)→ FX(~x, ~z) (X ∈ σ) (114)
D(~x)→ TX(~x, ~z) (X ∈ σ) (115)
ϑ̃i(~x, ~y)→ D(~x) (1 ≤ i ≤ m) (116)
¬D(~x)→ ⊥ (117)

where, for each X ∈ σ, TX and FX are two distinct fresh predicates of arity (n + k) if k
denotes the arity of X; each ϑ̃i is the formula obtained from ϑi by substituting FX(~x,~t)
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for ¬X(~t) and followed by substituting TX(~x,~t) forX(~t) wheneverX ∈ σ and ~t is a tuple
of terms of a proper length; and D is a fresh predicate of arity n. Let τ denote the set

σ ∪ {D} ∪
⋃
X∈σ
{TX , FX}. (118)

Clearly, ∃τSM(Π) belongs to DLP. It remains to show that ∃τSM(Π) is equivalent to ϕ.
Let A be a model of ϕ, and take α as an arbitrary assignment in A. Now our task is to

show that A is a model of ∃τSM(Π). Let B be an υ(Π)-expansion of A that interpretes
each predicate among D,TX , FX(X ∈ σ) as the full relation of a proper arity. To obtain
the desired conclusion, it suffices to prove that B is a stable model of Π. It is easy to check
that B is a model of Π̂. Towards a contradiction, let us assume that B is not a stable model
of Π, which implies that there exists an assignment β in B such that

B |= (π∗ < π)[β] & B |= Π̂∗[β], (119)

where denotes the set τ \ σ, and both notations π∗ and Π̂∗ are defined in the same way as
those in Section 2. From these conclusions, we know that there is some n-tuple on A, say
~a, such that ~a 6∈ β(D)∗. From the conclusion that B |= Π̂∗[β], we can infer that

B |=
m∧
i=1

¬∃~yϑ̃∗i (~a, ~y)[β], (120)

where ϑ̃∗i denotes the formula obtained from ϑ̃i by substituting P ∗ for P whenever

P ∈
⋃
X∈σ
{TX , FX}. (121)

Let α be an assignment in A such that α(X) = β(T ∗X) for all predicatesX ∈ σ. According
to the definition of ϑ̃, it is not difficult to see that

A |=
m∧
i=1

¬∃~yϑi(~a, ~y)[α], (122)

which implies that A is not a model of ϕ, a contradiction as desired.
For the converse, let us assume that A is a model of ∃πSM(Π). Towards a contradiction,

we also assume that A is not a model of ϕ. By the former, we know that there is a stable
model B of Π that is an υ(Π)-expansion of A. By the definition of Π, it is easy to see
that B interprets each predicate among D,TX , FX (X ∈ σ) as the full relation on A of a
proper arity. By the assumption that A |= ¬ϕ, there is an assignment α in A such that

A |= ¬∃~y(ϑ1(~x, ~y) ∨ · · · ∨ ϑm(~x, ~y))[α]. (123)

With this, we can infer that there exists an index i ∈ {1, . . . ,m} such that

A |= ¬∃~yϑi(~x, ~y)[α]. (124)

Let ~a = α(~x), and let β be an assignment in B such that β(D∗) = An \ {~a} and that

β(T ∗X) = {(~a,~b) | ~b ∈ α(X)} ∪ {(~a0,~b) | ~a0 ∈ An \ {~a}&~b ∈ Ak}, (125)

β(F ∗X) = {(~a,~b) | ~b ∈ Ak \ α(X)} ∪ {(~a0,~b) | ~a0 ∈ An \ {~a}&~b ∈ Ak} (126)

for all predicates X ∈ σ of arity k. Then, it is a routine task to check that

B |= (π∗ < π)[β] & B |= Π̂∗[β], (127)
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where π denotes the set of predicates D and TX , FX for all X ∈ σ, and both notations π∗

and Π̂∗ are defined in the same way as those in Section 2. From this, we then conclude that
B is not a model of SM(Π), i.e., a stable model of Π, a contradiction as desired.

6. CONCLUSION AND RELATED WORK

We have undertaken a comprehensive study on the expressiveness of logic programs under
the general stable model semantics. From the results we proved in this paper and other ex-
isting results, now we can draw an almost complete picture for the expressiveness of logic
programs and some related fragments of second-order logic. As shown in Figure 1, the
expressiveness hierarchy in each table is related to a structure class, while the syntactical
classes in a same block is proved to be of the same expressiveness over the corresponding
structure class. The closer a block is to the top, the more expressive the classes in the
block are. In addition, a dashed line between two blocks indicates that the corresponding
separation is true if, and only if, the complexity class NP is not closed under complement.

Σ1F
1 [∀∗]

Σ1
1

NLP

DLP

Σ1
2[∀∗∃∗]

Σ1
2

Infinite Structures

Σ1F
1 [∀∗]

Σ1
1 = NP

NLP

DLP

Σ1
2[∀∗∃∗]

Σ1
2 = Σp

2

Finite Structures

Σ1F
1 [∀∗]

Σ1
1

NLP

DLP

Σ1
2[∀∗∃∗]

Σ1
2

Arbitrary Structures

Fig. 1. Expressiveness Hierarchies Related to Logic Programs

Without involving the well-known conjecture in Complexity Theory, we established the
intranslatability from disjunctive programs to normal programs over finite structures if the
arities of auxiliary predicate and function symbols are bounded in a certain sense. This
can be regarded as a strong evidence that disjunctive programs are more expressive than
normal programs over finite structures. As a byproduct, we also developed a succinct
translation from normal logic programs to first-order sentences. This may be viewed as
an alternative to the work of the ordered completion for translating a normal program into
a first-order sentence over finite structures proposed in [Asuncion et al. 2012]. It is also
worth noting that both the number and the maximum arity of auxiliary symbols involving
in our translation are significantly smaller than those in the ordered completion.

There are also several previous works that contribute to Figure 1, which are listed as
follows. The translatability from Σ1

1 to Σ1F
1 [∀∗] follows from the well-known existence of

Skolem’s normal form. The translatability from Σ1
2 to Σ1

2[∀∗∃∗] over finite structures is
due to [Leivant 1989]. The separation of Σ1

2 from Σ1
2[∀∗∃∗] (on both arbitrary and infinite

structures) is implicit in [Eiter et al. 1996]. The translatability from DLP to Σ1
2[∀∗∃∗]

over arbitrary structures (so also over infinite structures and over finite structures) directly
follows from the second-order transformation [Ferraris et al. 2011]. The intranslatability
from NLP to Σ1

1 over arbitrary structures is due to [Asuncion et al. 2012].
Over Herbrand structures, [Schlipf 1995; Eiter and Gottlob 1997] proved that normal

programs, disjunctive programs and universal second-order logic are of the same expres-
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siveness under the query equivalence. Their proofs employ an approach from Computabil-
ity Theory. However, this approach seems difficult to be applied to general infinite struc-
tures. In the propositional case, there have been a lot of works on the translatability and ex-
pressiveness of logic programs, e.g., [Eiter et al. 2004; Janhunen 2006]. It should be noted
that the picture of expressiveness and translatability in there is quite different from that in
the first-order case. For example, it is not difficult to show that every boolean function can
be defined by a normal program if auxiliary propositional symbols are allowed, and thus
developing a translation from propositional disjunctive programs to propositional normal
programs is always possible if we do not consider the succinctness. There have been also
some works (see, e.g., [Eiter et al. 2013]) that focus on translatability between classes of
propositional logic programs under the strong equivalence and uniform equivalence. As a
future work, it would be interesting to generalize our work to these equivalence.

Translations from logic programs into first-order theories had been also investigated in
several earlier works. Chen et al. [2006] proved that, over finite structures, every nor-
mal program with variables can be equivalently translated to a possibly infinite first-order
theory. This result was later extended to disjunctive programs [Lee and Meng 2011]. In
addition, Lee and Meng [2011] identified the intranslatability from logic programs into
possibly infinite first-order theories over arbitrary structures, and proposed some sufficient
conditions which assure the translatability over arbitrary structures. Instead of using pos-
sibly infinite theories, translations in this paper only involve finite theories. The translata-
bility between logic programs and first-order theories was also considered in [Zhang et al.
2011], but first-order theories there are equipped with the general stable model semantics.

It is also worth mentioning some related works that focus on identifying sufficient con-
ditions for the translatability between first-order logic programs and first-order theories.
A possibly incomplete list is as follows. Ferraris et al. [2011] showed that every tight
logic program is equivalent to a first-order sentence. Chen et al. [2011] proposed a no-
tion called loop-separability that assures the first-order definability over finite structures.
Zhang and Zhang [2013b] established some semantic characterizations for the first-order
expressibility of negation-free disjunctive programs over arbitrary structures. Ben-Eliyahu
and Dechter [1994] proved that every head-cycle-free disjunctive program is equivalent to
a normal program. Very recently, Zhou [2015] proposed a semantic notion called choice-
boundedness that assures the translatability from disjunctive programs to normal programs.
All these results provide another view to understand the expressiveness of logic programs.
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