
Polynomially Bounded Logic Programs with Function Symbols:
A New Decidable Class

Vernon Asuncion and Yan Zhang
Artificial Intelligence Research Group
Western Sydney University, Australia

Email:{v.asuncion, yan.zhang}@westernsydney.edu.au

Heng Zhang
School of Computer Science and Technology

Huazhong University of Science and Technology, China
Email: hengzhang@hust.edu.cn

Abstract
A logic program with function symbols is called finitely
ground if there is a finite propositional logic program whose
stable models are exactly the same as the stable models of
this program. Finite groundability is an important property
for logic programs with function symbols because it makes
feasible to compute such program’s stable models using tra-
ditional ASP solvers. In this paper, we introduce a new decid-
able class of finitely ground programs called POLY-bounded
programs, which, to the best of our knowledge, strictly con-
tains all decidable classes of finitely ground programs discov-
ered so far in the literature. We also study the related com-
plexity property for this class of programs. We prove that
deciding whether a program is POLY-bounded is EXPTIME-
complete.

Introduction
A logic program with function symbols Π is called finitely
ground if there is a finite propositional logic program Π ′

such that Π and Π′ have the same collection of stable mod-
els. Therefore, a finitely ground logic program will have a
finite number of stable models and each stable model is of a
finite size. Finite groundability is an important property for
programs with function symbols because this makes feasi-
ble to compute such programs’ stable models using tradi-
tional ASP solvers (Calimeri et al. 2008; Baselice, Bonatti,
and Criscuolo 2009a; Alviano, Faber, and Leone 2010).
Unfortunately, in general, checking whether a program

is finitely ground is undecidable. In recent years, several
decidable classes of finitely ground programs have been
discovered under the stable model semantics (Gelfond and
Lifschitz 1988): ω-restricted programs (Syrjänen 2001), λ-
restricted programs (Gebser, Schaub, and Thiele 2007), fi-
nite domain programs (Calimeri et al. 2008), argument-
restricted programs (Lierler and Lifschitz 2009), safe pro-
grams (Greco, Spezzano, and Trubitsyna 2012), Γ-acyclic
programs (Greco, Spezzano, and Trubitsyna 2012), and
what we refer as GMT-bounded programs, which has been
shown to be a proper superclass of all other previous classes
(Greco, Molinaro, and Trubitsyna 2013). More recently, an-
other decidable class of finitely ground programs called size-
restricted programs was further introduced in (Calautti et
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

al. 2015), in which it was shown that although this class
does not contain the argument-restricted and GMT-bounded
classes, the underlying technique may be combined with
other approaches and eventually to identify more finitely
ground programs (see next section of an overview on this).
However, it comes to our attention that some simple pro-

grams which are finitely ground but do not belong to ei-
ther of the class of GMT-bounded programs or size-restricted
programs. Let us consider a scenario of an online photo
gallery, where each paid member can view any image in
the gallery, but a restriction is imposed for guest members:
Although a guest member is allowed to view the gallery im-
ages, he/she can only view nomore than two images in either
large or thumbnail form each time. This may be expressed
by the following two rules:

r1 : viewLarge(X, Y) ∨ viewThumbnail
(
next(X), Y

)

← viewThumbnail(X, Y), guestMember(Y),
r2 : ⊥ ← viewThumbnail

(
next

(
next(X)

)
, Y

)
.

Let Π1 = {r1, r2}. Then it follows that program Π1 is
finitely ground because programΠ1∪D will only have finite
stable models for any given input databaseD.
Surprisingly, Π1 is not bounded under the definition

of (Greco, Molinaro, and Trubitsyna 2013), nor is size-
restricted as specified in (Calautti et al. 2015). Motivated
from this example, in this paper, we propose yet another de-
cidable class of logic programswith function symbols called
POLY-bounded programs, which strictly contains both GMT-
bounded and size restricted programs. The reason we are
able to obtain such a strict class is that we give explicit treat-
ments to “disjunctions”, “negations” and “constraints” in the
underlying programs.
The rest of the paper is organized as follows: Section

2 presents necessary terminologies and background knowl-
edge we will need throughout the paper. Section 3 defines
a fixpoint upper bound of all stable models for a given pro-
gramwith function symbols. Based on this upper bound def-
inition, Section 4 then specifies a new decidable class of pro-
grams called polynomially bounded programs, and proves
its main properties. Section 5 studies the complexity prop-
erty of this new decidable class of programs, and finally Sec-
tion 6 concludes the paper with some remarks.

Preliminaries
A disjunctive logic program (or simply called program)Π is
a finite set of rules r of the form:

A1 ∨ . . . ∨ Ak ← B1, . . . , Bl, notC1, . . . , notCm, (1)

whereAi, Bj , Ch are atoms for all 1 ≤ i ≤ k, 1 ≤ j ≤ l and
1 ≤ h ≤ m. We denote by Hd(r), Pos(r), andNeg(r) the
sets {A1, . . .,Ak}, {B1, . . .,Bl}, and {C1, . . ., Cm}, which
are called r’s head, positive body, and negative body, respec-
tively. Sometimes for convenience, we may simply denote
rule r byHd(r) ← Pos(r) ∧ ¬Neg(r). When k ≤ 1 for all
r ∈ Π,Π is called a normal program; if for a rule r, k = 0, r
is called a constraint and we denote its head by⊥; and when
Pos(r) ∪ Neg(r) = ∅, r is called a fact.
Given a predicate p of arity n, the i-th argument of p is an

expression of the form p[i]. Throughout this paper, we de-
note by ARITY(p) as p’s arity, and refer to an argument as
p[i] for 1 ≤ i ≤ ARITY(p). We denote by ARG(Π) as the
set of all arguments of Π, PRED(Π) as the set of all pred-
icate symbols in Π, and ATOMS(Π) as the set of all atoms
mentioned in Π.
A programΠ is range restricted if for each rule, the vari-

ables occurring in the head or in the negative body also
appears in the positive body of that rule. As in (Greco,
Molinaro, and Trubitsyna 2013), in this paper, we assume
that all programs are range restricted. Given an atom α,
we denote by VAR(α) and CONST(α) as the sets of vari-
ables and constants occurring in α, respectively. Moreover,
we naturally extend this notion to a program Π (to a set
of atoms A) such that VAR(Π), CONST(Π) and ATOMS(Π)
(VAR(A), CONST(A) and ATOMS(A), resp.) denote the
set of variables, constants and atoms occurring in Π (A,
resp.), respectively. For convenience, we further denote by
VARCONST(Π) (VARCONST(A)) as the union VAR(Π) ∪
CONST(Π) (VAR(A) ∪ CONST(A), resp.).
Given two sets of atoms A1 and A2, we say that A1 is

embeddable into A2, denoted as A1) A2, if there exists
a mapping θ : VAR(A1) −→ VARCONST(A2) such that for
each atom a1 ∈ A1, there exists some atom a2 ∈ A2 such
that a1θ = a2

1.
Now for a given program Π, by HU(Π) and HB(Π), we

denote Π’s Herbrand universe and Herbrand base, respec-
tively. Specifically, HU(Π) is the set of all ground terms that
can be built using the constants and function symbols in Π
(if Π does not contain any constant, we introduce a constant
in Π’s domain), while HB(Π) is the set of all atoms that
can be built from terms in HU(Π) and predicate symbols of
Π. Clearly, both HU(Π) and HB(Π) can be infinite. We say
that a set of atoms I is an interpretation ofΠ iff I ⊆ HB(Π).
A rule r′ is a ground instance of r ∈ Π if r ′ is obtained from
r by substituting each variable in r by some ground term
from HU(Π). We use GROUND(r) to denote all ground in-
stances of r, and GROUND(Π) =

⋃
r∈Π GROUND(r) as the

grounding of the programΠ, which could be infinite. Given
an interpretation I and a ground rule r ′, we say that I satis-
fies r′, denoted as I |= r′, iff I ∩ Hd(r′) .= ∅ whenever I ⊆

1We slightly generalize the notion a1θ where θ maps the tuple
of variables in a1 to a corresponding tuple from VARCONST(A2).

Pos(r) and I ∩ Neg(r) = ∅ holds. Then we say that I is a
model of a ground programΠ ′, denoted as I |= Π, iff I |= r′

for all r′ ∈ Π′.
Given an interpretation I ⊆ HB(Π) and the groundingΠ ′

= GROUND(Π) of Π, we denote by (Π′)I as the reduced (or
reduct) of the (ground) programΠ ′ such that it is denoted as
the set of rules {Hd(r) ← Pos(r) | r ∈ Π′ and Neg(r) ∩
I = ∅}. Then we say that I is an stable model of Π iff I is
the minimal set that satisfies all the rules in (Π′)I (Gelfond
and Lifschitz 1988; 1991).
A program Π is in functional normal form if for each

p(t1, · · · , tk) ∈ ATOMS(Π), DEP(ti) ≤ 1 for all 1 ≤ i ≤ k,
where DEP(ti) denotes the greatest term depth of a com-
plex term in ti. It is obvious that for a given program
Π, by introducing new predicate symbols, we can always
rewrite Π to a model equivalent program in functional nor-
mal form. So as in (Greco, Molinaro, and Trubitsyna 2013;
Eiter and Simkus 2009), in the rest of this paper,we will only
consider programs in their functional normal form. Also, for
a given program Π, a finite set D of facts (D can be empty)
is called an input database of Π when we consider program
Π ∪ D.

GMT-bounded and Size-restricted Programs
Now we introduce the notions of GMT-bounded and size-
restricted programs as proposed in (Greco, Molinaro, and
Trubitsyna 2013) and (Calautti et al. 2015), respectively.
Generally speaking, for a given program Π, the GMT-

boundedness and size-restrictedness are defined through two
operators Ψ(GMT,Π) : 2ARG(Π) −→ 2ARG(Π) and Ψ(SR,Π) :
2ARG(Π) −→ 2ARG(Π), respectively, such that for a givenA⊆
ARG(Π), we say that Π is A-GMT-bounded

(
resp. A-size-

restricted
)
iff Ψ∞

(GMT,Π)(A) = ARG(Π)
(
resp. Ψ∞

(SR,Π)(A)
= ARG(Π)

)
, where for i ≥ 0, Ψi

(GMT,Π)(A) (Ψi
(SR,Π)(A),

resp.) is defined inductively as follows: (1) Ψ0
(GMT,Π)(A)

= A (Ψ0
(SR,Π)(A) = A ∪ RA(Π), where RA(Π) de-

notes the A-size-restricted arguments2 of Π, resp.); (2)
Ψi+1

(GMT,Π)(A) = Ψ(GMT,Π)

(
Ψi

(GMT,Π)(A)
)
(Ψi+1

(SR,Π)(A) =
Ψ(SR,Π)

(
Ψi

(SR,Π)(A))). Ψ∞
(GMT,Π)(A) (Ψ∞

(SR,Π)(A), resp.) de-
notes the fixpoint of Ψi

(GMT,Π)(A) (Ψi
(SR,Π)(A), resp.).

We say that a program Π is GMT-bounded iff
Ψ∞

(GMT,Π)

(
AR(Π)

)
= ARG(Π), where AR(Π) denotes the

set of restricted arguments (Lierler and Lifschitz 2009).
On the other hand, although size-restrictedness specified
in (Greco, Molinaro, and Trubitsyna 2013; Calautti et al.
2015) does not readily capture GMT-boundedness, it can
nevertheless be incorporated through an “adornment” pro-
cess achieved by making the set of input argument A in
Ψ∞

(SR,Π)(A) to be the GMT-bounded arguments. As such, in
this paper, when we say that a program Π is size-restricted,
we mean that Ψ∞

(SR,Π)(A) = ARG(Π) such that A is the
GMT-bounded arguments of Π. It can be showed that this

2We refer readers to (Calautti et al. 2015) for more details about
“A-size-restrictedness.”

simple program {p(f(X, X), Y, Z) ← p(X, g(Z), g(Y))}
is size-restricted (Calautti et al. 2015).

An Upper Bound of Progression
Our idea of discovering a new decidable class of programs
is described as follows: for a given programΠ, (1) we firstly
propose a progression based procedure to specify an approx-
imating upper bound Γ(Π) for all stable models S of pro-
gram Π ∪ D for all input database D; and (2) by imposing
a proper polynomial bound on Γ(Π), we eventually are able
to derive a new decidable class of programs with function
symbols which are finitely ground when the corresponding
bounds are met by these programs.
For a program Π, by ΠDEF , we denote the program ob-

tained from Π via the following transformation:{
Hd(r′) ← Pos(r′) ∧ ¬Neg(r′)
| r′ is a rule such that ∃r ∈ Π where:
(1)Hd(r′) ∈ Hd(r);
(2) Pos(r′) = Pos(r);
(3)Neg(r′) = Neg(r) ∪

(
Hd(r) \ {Hd(r′)}

) }
.

Intuitively, ΠDEF is the normal program obtained from Π by
“shifting” (Dix, Gottlob, and Marek 1996). That is, for each
rule of Π, only one atom occurring in the head of this rule,
while all the other head atoms are shifted to the negative
body of the new generated rule.
Now based on programs Π and ΠDEF , from the Herbrand

base of Π, we specify a procedure that computes the set of
all facts that must be true or false derived from Π.
Definition 1. [Deriving lower bound] Let Π be a program.
Then Kk(Π) (k ≥ 0) is inductively defined as follows:
K0(Π) =

{
〈α, +〉 | there exists a rule “α← 3” ∈ Π
and α is a ground atom

}
∪

{
〈αθ,−〉 | there exist a rule “⊥ ← α” ∈ Π
and a mapping θ : VAR(α) −→ VARCONST(Π)

}
;

(2)

Kk+1(Π) = Kk(Π)∪
{
〈α1θ1, +〉 | there exist rules “α1 ← β1, B̂d1”,

“α2 ← notβ2, B̂d2” ∈ ΠDEFand mappings θi(i = 1, 2) :

θi : VAR(αi) ∪ VAR(βi) −→ VARCONST(Kk(Π)) such that:
(1) α1θ1 = α2θ2 and (β1θ1 = β2θ2 or {β1, β2} = ∅);

(2) B̂d1θ1 ⊆ Kk(Π) and B̂d2θ2 ⊆ Kk(Π)
}
∪ (3)

{
〈α1θ1,−〉 | there exist rules “α′

1 ← α1, β1, B̂d1”,

“α′
2 ← α2, notβ2, B̂d2” ∈ ΠDEFand mappings θi(i = 1, 2) :

θi : VAR(αi) ∪ VAR(βi) −→ VARCONST(Kk(Π)) such that:
(1) α1θ1 = α2θ2 and (β1θ1 = β2θ2 or {β1, β2} = ∅);

(2) B̂d1θ1 ⊆ Kk(Π) and B̂d2θ2 ⊆ Kk(Π);

(3) α′
1θ1 ∈ Kk(Π)− and α′

2θ2 ∈ Kk(Π)−
}
, (4)

K∞(Π) =
∞⋃

i=0

Ki(Π).

Let 4 ∈ {+,−}, S ⊆ K∞(Π), and S% =
{
p(X) |

〈p(X),4〉 ∈ S
}
. In (3) and (4), B̂di (i = 1, 2) denotes

the remaining body atoms of the rules “α′
i ← αi, βi, B̂di”.

By B̂diθi ⊆ Kk(Π), we mean that for all positive and neg-
ative atoms α′′

i θi and notβ′′
i θi in B̂diθi, α′′

i θi ∈ Kk(Π)+
and β′′

i θi ∈ Kk(Π)−.
Let us take a closer look at Definition 1. Generally speak-

ing, K∞(Π) induces two subsets of non-ground atoms of
Π whose types are known to be definitely true and false, as
contained inK∞(Π)+ andK∞(Π)−, respectively. The base
case (2) of the form 〈α, +〉 and 〈αθ,−〉 are derived from the
facts and atomic constraints in programΠ. Then sets (3) and
(4), specified in the inductive step, represent propagations of
positive and negative facts, respectively, based on previous
stages. Consider (3) for instance, the tuple 〈α1θ1, +〉 is de-
rived from rules “α1 ← β1, B̂d1”, “α2 ← β2, B̂d2” ∈ ΠDEF

and mappings θ1 and θ2, under two conditions (1) and (2) as
illustrated in the definition. This is because under these con-
ditions, the resolution rule can be used to derive fact α1θ1
from Π. A similar explanation applies to the derived nega-
tive fact specified as 〈α1θ1,−〉.
Example 1. Let Π be a program consisting of the following
rules:

r0: ⊥ ← q(X),
r1: ⊥ ← not p(X),
r2: p

(
f(X)

)
← p(X), r(X), not q(X),

r3: r(X) ← r
(
f(X)

)
,

r4: ⊥ ← r(X), p
(
g(X)

)
, not q(X),

r5: ⊥ ← r(Y), not p
(
g(Y)

)
, not q(Y).

Then according to Definition 1, we have:
K0(Π) = {〈 q(X),−〉, 〈 q(Y),−〉};
K1(Π) = K0(Π) ∪ {〈r(X),−〉, 〈 r(Y),−〉};
K2(Π) = K1(Π) ∪ {〈 r

(
f(X)

)
,−〉, 〈 r

(
f(Y)

)
,−〉};

K3(Π) = K2(Π). !

Now based on Definition 1, we define an upper bound for
a given programΠ as follows.
Definition 2. [Deriving upper bound] Let Π be a program
and S ⊆ K∞(Π). Then Γi

Π(S) (i ≥ 0) is inductively defined
as follows:

Γ0
Π(S) =

{
Hd(r)θ | ∃r ∈ ΠDEF and mapping
θ : VAR(r) −→ VARCONST(Π) such that:
(1) Pos(r)θ ∩ S− = ∅;
(2) Neg(r)θ ∩ S+ = ∅

}
; (5)

Γi+1
Π (S) =Γi

Π(S)∪
{
Hd(r)θ | ∃r ∈ ΠDEF and mapping
θ : VAR(r) −→ VARCONST(Π) such that:
(1) Pos(r)θ ⊆ Γi

Π(S);
(2) Pos(r)θ ∩ S− = ∅;
(3) Neg(r)θ ∩ S+ = ∅

}
. (6)

Finally, we define Γ∞
Π (S) =

⋃∞
i=0 Γi

Π(S) to be its fixpoint.
From (5) in Definition 2, we consider Hd(r) and map-

ping θ only for those rules whose negative or positive bod-
ies are not “defeated” yet by the sets S+ and S− (where S
⊆ K∞(Π)), respectively. Then inductively, we have that (6)
simply extends those derived “types” of atoms based on the
ones obtained from previous steps.
Theorem 1. [Upper bound for stable models] Let Π be a
program and S ⊆ K∞(Π). Then for every input databaseD
and stable model A of Π ∪ D, A) Γ∞

Π (S) 3.

Proof. For convenience, given a set of atoms S ′ ⊆ Γ∞
Π (S),

denote S ′ !CONST(Π∪D) as the set of ground atoms
{
αθ |

α ∈ S′ and θ : VAR(α) −→ CONST(Π ∪ D)
}
. Thus to

prove this result, it will be sufficient to show that A ⊆
Γ∞

Π (S)!CONST(Π∪D) for any stable model A of Π ∪ D, be-
cause it then follows that A) Γ∞

Π (S).
On the contrary, assume that A is a stable model of Π ′ =

GROUND(Π ∪ D) such that A .⊆ Γ∞
Π (S)!CONST(Π∪ D). Then

since A is a stable model of Π′, it follows that A is a mini-
mal model of (Π′)A

(
where (Π′)A denotes the reduct of Π′

on A
)
. Let A′ = A \ {a ∈ A | a /∈ Γ∞

Π (S)!CONST(Π∪D)},
i.e., A′ is the set obtained from A by deleting all the atoms
that are not mentioned in Γ∞

Π (S)!CONST(Π∪ D). Then since
A .⊆ Γ∞

Π (S)!CONST(Π∪D) (which implies that ∃a ∈ A such
that a /∈ Γ∞

Π (S)!CONST(Π∪D)), it follows that A′ ⊂ A where
A′ ⊆ Γ∞

Π (S)!CONST(Π∪D). Then we can prove the result: A′

|= (Π′)A (we omit the full proof of this result here due to a
space limit), from which and the fact that A ′ ⊂ A, we con-
clude a contradiction that A is a minimal model of (Π ′)A.

Polynomially Bounded Programs
According to Theorem 1, it is clear that if Γ∞

Π (S) (for
some S ⊆ K∞(Π)) is a finite set, then Π is finitely ground.
Also, from Definitions 1 and 2, we can see that if for each
atom in Γ∞

Π (S), its term depth is bounded by a fixed in-
teger, then Γ∞

Π (S) must be a finite set. For a given set A
of atoms, let DEP(A) denote the set of all maximum term
depths of all arguments p[i] mentioned in A. Now our at-
tempt is to impose a bound B on DEP

(
Γ∞

Π (S)
)
such that

DEP
(
ΓB

Π(S)
)

= DEP
(
Γ∞

Π (S)
)
. In this section, we will iden-

tify a new class of programs called polynomially bounded
programs by defining a term depth bound for ΓB

Π(S) to be a
polynomial in the size of programΠ.
Firstly, given a programΠ, we define

I(Π) = N + N3, (7)

where N = |ΠDEF | · MAXART(Π) · MAXPOS(Π). Here
MAXPOS(Π) denotes the maximum number of atoms in the
positive body of a rule in Π, and MAXART(Π) denotes the
product of the maximum arities of a predicate and function
symbols occurring in Π, i.e., MAXART(Π) = m× n, where

3Recall from Section Preliminaries that given two sets of atoms
A1 and A2, A1 " A2 denotes that A1 is embeddable into A2.

m and n are the maximum arities of the predicates and func-
tion symbols occurring in Π, respectively.
Intuitively, I(Π), as defined via (7), gives an approxima-

tion of the minimum bound on the number of iterations of
Γk

Π(S) that has to be done in order to determine if an infinite
propagation of terms may actually take place. In a nutshell,
iterating through Γk

Π(S), for 1 ≤ k ≤ I(Π), considers all
the possible “transpositions” and ”propagations” of an argu-
ment, say p[i], within the program Π as we iterate through
each step.
At the same time, such iteration will compute the maxi-

mum possible depth of any restricted arguments, as well as
the possible “undoing” of these complex terms. (i.e., the fail-
ing cycles). Indeed, from the definition of I(Π) in (7), the
factor MAXART(Π) considers all the possible transpositions
of p[i] within the arities of predicates and functions. In ad-
dition, the number |ΠDEF | · MAXPOS(Π) also factors in the
possible transposition that can be propagated through each
positive atom in the program.
In fact, the number of iterative steps I(Π) does three

things: (1) the number N = |ΠDEF | · MAXART(Π) ·
MAXPOS(Π) considers the iterative steps required to gen-
erate the deepest term of a restricted argument because it
bounds the length of the greatest possible path that can de-
rive a complex term of a restricted argument; (2) the addi-
tional number N 3 further adds the additional steps that are
required to “undo” the complex terms compounded in the
restricted arguments from doing the aforementionedfirstN -
steps because it is the product of the number of the deepest
possible term (bounded by N) with that of the maximum
cycle length (also bounded by N) that can “undo” the com-
plexity of the term and where the one more factor of N
(which makes the term “cubed” in (7)) considers the pos-
sibility that each can take N -steps to exhaust each of the
possible positions of arguments in atoms; and (3) the fact
that doing I(Π)-steps considers all the possible transposi-
tions and propagations of an argument allows us to detect
any growing cycles corresponding to unlimited growth of
complex terms within the argument as well since it will also
allow us to detect recursive information about function ap-
plications.
Given a set A of atoms, we denote by DEPp[i]

(
A

)
as the

maximum term depth of the argument p[i] mentioned in A,
where we define DEPp[i]

(
S

)
= 0 if S = ∅. Now, given a

predicate p ∈ PRED(Π), denote by POLYLAp(Π) as the set
of arguments:{

p[i] | DEPp[i]

(
ΓI(Π)

Π (S)
)

= DEPp[i]

(
Γ 2·I(Π)+1

Π (S)
)}

,

where S = KI(Π)(Π), i.e., the set of arguments of the predi-
cate p that does not grow beyond the stage of iterations I(Π)
of Γk

Π(S) with S to be the set of non-ground atoms obtained
from KI(Π)(Π). More generally, we call the arguments in
the set

⋃
p∈ PRED(Π) POLYLAp(Π) as the POLY-limited ar-

guments of ARG(Π), which we denote by POLYLA(Π), i.e.,
just omitting the subscript of the particular predicate p.
Definition 3. [POLY-bounded programs] Given a program
Π, we say that Π is polynomially bounded, or simply called
POLY-bounded, iff POLYLA(Π) = ARG(Π).

Intuitively, Definition 3 says that if a program is POLY-
bounded, then we have that all arguments cannot grow be-
yond the number of 2 · I(Π) + 1 iterations of Γk

Π(S), where
S = KI(Π)(Π). Note that Definition 3 defines the polyno-
mial bound 2 · I(Π) + 1 for computing Γk

Π(S), instead of
I(Π) + 1. This is due to the possibility that the growth of
term depth in Π may run through multiple arguments, from
which we may only gain sufficient information to predict if
the iteration will continue or stop, by computing the second
run of iterations through all arguments.
Example 2. Consider program Π1 we discussed in Section
1. We first rewrite this program to its functional normal form
Π′

1 as follows:

r1 : viewLarge(X, Y) ∨ viewThumbnail
(
next(X), Y

)

← viewThumbnail(X, Y), guestMember(Y),
r3 : ⊥ ← viewThumbnail1

(
next(X), Y

)
,

r4 : viewThumbnail1(X, Y)
← viewThumbnail

(
next(X), Y

)
.

Then from r3 and r4 we can conclude that viewThumbnail1(
next(X), Y

)
, viewThumbnail

(
next (next (X)), Y

)

∈ S = KI(Π′
1) (Π′

1)−. Thus, it follows from Definitions
2 and 3 that the growth of the term in the argument
viewThumbnail[1] as propagated via rule r1 is bounded,
which implies POLYLA(Π′

1) = ARG(Π′
1). That is, Π′

1 is
POLY-bounded.!

Proposition 1. If Π is POLY-bounded, then for every input
database D (D can be empty), program Π ∪ D is finitely
ground.
Theorem 2. GMT-bounded! POLY-bounded, and

SR ! POLY-bounded,
where GMT-bounded, SR and POLY-bounded denote the
three classes of GMT-bounded, size-restricted and POLY-
bounded programs, respectively.

Computational Complexity
In this section, we study the complexity properties of POLY-
bounded programs. We are mainly interested in the com-
plexity of membership decision problem for this class of
programs. Firstly, we have proved the following result for
GMT-bounded and size-restricted programs.
Proposition 2. Deciding whether a program Π is GMT-
bounded or size-restricted is in PSPACE.
Theorem 3. Deciding whether a program Π is POLY-
bounded is EXPTIME-complete. The hardness holds even if
Π’s maximum function arity is 2.

Proof. (Sketch) The membership can be obtained by outlin-
ing a membership decision procedure based on Definitions
1, 2 and 3.
Here we provide the main idea and procedure of proving

the hardness. Let L be an arbitrary decision problem in EX-
PTIME. Then from the definition of complexity class EXP-
TIME (Papadimitriou 1994), there exists some deterministic
Turing machine M such that for any string s, s ∈ L iff M

accepts s in at most 2p(|s|) steps for some polynomial p(n).
Thus, assume the Turing machineM to be the tuple 〈Q, Γ,
!, Σ, δ, q0, F 〉 such that: (1) Q .= ∅ is a finite set of states;
(2) Γ .= ∅ is a finite set of alphabet symbols; (3)! ∈ Γ is the
“blank” symbol; (4)Σ⊆ Γ \ {!} is the set of input symbols;
(5) δ : (Q \ F) × Γ −→ Q × Γ × {L, R} is the transition
function; (6) q0 ∈ Q is the initial state; and lastly, (7) F ⊆
Q is the set of final/accepting states.
Now given a string s = a0 . . . a|s|−1 such that ai ∈ Σ

for 0 ≤ i < |s|, we construct a program4 ΠM(s) = ΠORD
M(s) ∪

ΠSTR
M(s) ∪ΠSTRASSOC

M(s) ∪ ΠEDGES
M(s) ∪ΠTRANS

M(s) ∪ΠACCEPT
M(s) ∪ΠBOUND

M(s) .
Program ΠORD

M(s) is to generate the linear ordering on
the p(|s|)-length tuples that will encode the computation
time/steps as well as the individual cell-positions in the tape.
Program ΠSTR

M(s) generates all possible strings of lengths
from 1 to |Γ|p(|s|) under the alphabets of Γ, as defined in the
following:

ΠSTR
M(s) =

{
s0
0(ai, i, i) ← 3 | 0 ≤ i ≤ n − 1

}
∪ (8)

{
s0
0(!,T,T) ← n− 1 < T

}
∪ (9)

{
sk
0(X ◦ Y,T1,T4) ← si

0(X,T1,T2), sj
0(Y,T3,T4),

T1 ≤ T2,T2 ≺ T3,T3 ≤ T4

| 0 ≤ i, j < k ≤ p(|s|)
}
∪ (10)

{
s0(a,T,T) ← num(T1), . . . , num(Tp(|s|))
| a ∈ Γ and T = T1 . . . Tp(|s|)

}
∪ (11)

{
sk(X ◦ Y,T1,T4) ← si(X,T1,T2), sj(Y,T3,T4),

T1 ≤ T2,T2 ≺ T3,T3 ≤ T4

| 0 ≤ i, j < k ≤ p(|s|)
}
∪ (12)

{
s0(X,T1,T2) ← si

0(X,T1,T2),

s(X,T1,T2) ← si(X,T1,T2) | 0 ≤ i ≤ p(|s|)
}
.
(13)

Without loss of generality, we assume |Γ| > 2, therefore,
it is sufficient to use strings of length from 1 to |Γ|p(|s|) to
encode all possible 2p(|s|) M(s) configurations. In program
ΠSTR

M(s), we define the function “◦” taking arguments of two
strings s1 and s2 so that s1 ◦ s2 denotes the concatenation of
s1 and s2. Then due to the transitivity rules (10) and (12), it
is observed that it would only takeO

(
p(|s|)

)
-steps to gener-

ate all such strings of lengths from 1 to |Γ|p(|s|).
Here predicate s0 is used to represent the input string on

the tape, and predicates si
0 (0 ≤ i ≤ p(|s|)) are used to

generate such initial string; while predicate s represents an
arbitrary string on the tape, which is generated from predi-
cates si (0 ≤ i ≤ p(|s|)).
The program ΠSTRASSOC

M(s) , on the other hand, encodes the
string associative property axioms that are needed by the
concatenation function “◦” (here we omit the definition of
this program).

4Due to a space limit, below we only provide the major program
definitions.

Programs ΠEDGES
M(s) and ΠTRANS

M(s) described below then en-
code the machine M(s)’s configuration changes based on
the corresponding state transitions in M(s), for that we
view that the input string s is accepted by machine M(s)
as the problem of reachability from the initial configuration
ofM(s) toM(s)’s final (accepting) configuration.

ΠEDGES
M(s) =

{
cf

(
Xt, q, X ◦ a,0,Xtp ‖ c ◦ Y,Ytp,N

)

: cf
(
Yt, q

′, X ◦ b ◦ c,0,Ytp ‖ Y,Ztp,N
)

← Xt ≺ Yt,Xtp ≺ Ytp,Ytp ≺ Ztp,

s(X ◦ a,0,Xtp), s(c ◦ Y,Ytp,N),

s(X ◦ b ◦ c,0,Ytp), s(Y,Ztp,N),

| δ(q, a) = (q′, b, R), c ∈ Γ andN = |Γ|p(|s|) }
∪ (14)

{
cf

(
Xt, q, X ◦ c ◦ a,0,Xtp ‖ Y,Ytp,N

)

: cf
(
Yt, q

′, X ◦ c,0,Ztp ‖ b ◦ Y,Xtp,N
)

← Xt ≺ Yt,Ztp ≺ Xtp,Xtp ≺ Ytp,

s(X ◦ c ◦ a,0,Xtp), s(Y,Ytp,N),

s(X ◦ c,0,Ztp), s(b ◦ Y,Xtp,N),

| δ(q, a) = (q′, b, L), c ∈ Γ andN = |Γ|p(|s|) }
; (15)

ΠTRANS
M(s) =

{
cf(X) " cf(Y) ← cf(X) : cf(Y),

cf(X) " cf(Z) ← cf(X) " cf(Y),

cf(Y) " cf(Z)
}
; (16)

Here notation “cf
(
Xt, q, V,0,Xtp ‖W,Ytp,N

)
” men-

tioned in (14), and denoted as “cf(X)” in (16), represents
the machine’s configuration. For a space reason, we omit the
detailed explanation on this encoding. The expression

“cf
(
Xt, q, V,0,Xtp ‖W,Ytp,N

)

: cf
(
Yt, q

′, X,0,Ytp ‖ Y,Ztp,N
)
”, (17)

denotes a relation encoding a configuration change, for a
given state transition δ(q, a) = (q ′, b, R) in M(s). The ex-
pression “cf(X) " cf(Y)” in (16) encodes the transitive
extension of “:”, for which it is read: configuration “cf(Y)”
is reached from configuration “cf(X)”.
What program ΠEDGES

M(s) does is to establish the ini-
tial connections between any two configurations based
on the input state transitions from M(s), which we call
edges. For instance, suppose M(s) accepts string s in
2p(|s|) steps, through the sequence of configuration changes:
cf0, cf1, · · · , cf2p(|s|)−1, then ΠEDGES

M(s) will establish edges
cf0 : cf1, cf1 : cf2, · · · , cf2p(|s|)−2 : cf2p(|s|)−1.
Then the transitive closure of", which is defined based on

: through transitive rules inΠTRANS
M(s) , is derived by the follow-

ing manner: firstly, the reachability between any two config-
urations within two steps is derived: cf0 " cf2, cf1 " cf3,

cf2 " cf4, · · · , cf2p(|s|)−3 " cf2p(|s|)−1, then in the sec-
ond run of the evaluation, the reachability between any two
configurations within four steps are derived: cf0 " cf4,
cf1 " cf5, · · · , cf2p(|s|)−5 " cf2p(|s|)−1. This process
continues until the reachability from cf0 to cf2p(|s|)−1. i.e.,
cf0 " cf2p(|s|)−1, is derived . As we will prove in Lemma 1,
cf0 " cf2p(|s|)−1 will be derived within polynomial steps iff
M(s) accepts s in 2p(|s|) steps.
Finally, we have
ΠACCEPT

M(s) =
{

accept ← cf
(
0, q0, a0,0,0 ‖ a1 ◦ X,1,N

)

" cf
(
Xt, q, Y,0,Xtp ‖Z,Ytp,N

)
,

0 < Xt, Xtp ≺ Ytp,

s0(a0,0,0), s0(a1 ◦ X,1,N),

s(Y,0,Xtp), s(Z,Ytp,N)

| q ∈ F andN = |Γ|p(|s|)}; (18)

ΠBOUND
M(s) =

{
r
(
f(X)

)
← r(X), not accept

}
, (19)

where ΠACCEPT
M(s) simply derives the propositional atom “ac-

cept” if a configuration at an accepting state in F ⊆ Q can be
reached from the initial configuration under the input string
represented via predicate s0; otherwise, program ΠBOUND

M(s)

will make the entire program ΠM(s) unbounded. Then we
can prove the following lemma:

Lemma 1. M accepts s iff ΓI(ΠM(s))(S) =
Γ2·I(ΠM(s))+1(S), i.e., ΠM(s) is POLY-bounded, where
I(ΠM(s)) = O(p(|s|10)), and S = KI(ΠM(s)).

According to Theorem 3, we can see that compared to
other decidable classes, the membership of POLY-bounded
programs requires extra computations, which is consistent
with the fact that this class of programs strictly contains all
previous decidable classes.

Concluding Remarks
The problem of logic program termination has been ex-
tensively studied under the top-down evaluation approach
over the years: (Schreye and Decorte 1994; Voets and Schr-
eye 2011; Marchiori 1996; Ohlebusch 2001; Genaim and
Codish 2005; Serebrenik and Schreye 2005; Nishida and
Vidal 2010; Schneider-Kamp, Giesl, and Nguyen 2009;
Schneider-Kamp et al. 2009; 2010; Nguyen et al. 2007;
Bruynooghe et al. 2007; Bonatti 2004; Baselice, Bonatti, and
Criscuolo 2009b; Zhang, Zhang, and You 2015). However,
as pointed by Greco, et al. (2013), under the stable model se-
mantics, these methods are not generally applicable to iden-
tify finitely ground programs.
In this paper, by proposing the stable model polynomial

upper bound for logic programs, we discovered a new decid-
able class of finitely ground programs, which strictly con-
tains the other newly identified decidable classes named
GMT-bounded and size-restricted programs (Greco, Moli-
naro, and Trubitsyna 2013; Calautti et al. 2015).

References
Alviano, M.; Faber, W.; and Leone, N. 2010. Disjunctive
ASP with functions: Decidable queries and effective com-
putation. Theory and Practice of Logic Programming 10(4-
6):497–512.
Baselice, S.; Bonatti, P.; and Criscuolo, G. 2009a. On
finitely recursive programs. Theory and Practice of Logic
Programming 9(2):213–238.
Baselice, S.; Bonatti, P. A.; and Criscuolo, G. 2009b. On
finitely recursive programs. TPLP 9(2):213–238.
Bonatti, P. A. 2004. Reasoning with infinite stable models.
Artif. Intell. 156(1):75–111.
Bruynooghe, M.; Codish, M.; Gallagher, J. P.; Genaim, S.;
and Vanhoof, W. 2007. Termination analysis of logic pro-
grams through combination of type-based norms. ACM
Trans. Program. Lang. Syst. 29(2).
Calautti, M.; Greco, S.; Molinaro, C.; and Trubitsyna, I.
2015. logic program termination analysis using atom sizes.
In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (IJCAI- 2015), 2833–
2839.
Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2008. Com-
putable functions in ASP: theory and implementation. In
Logic Programming, 24th International Conference, ICLP
2008, Udine, Italy, December 9-13 2008, Proceedings, 407–
424.
Dix, J.; Gottlob, G.; andMarek,W. 1996. Reducing disjunc-
tive to non-disunctive semantics by shift-operations. Funda-
menta Informaticae 28(12):87–100.
Eiter, T., and Simkus, M. 2009. Fdnc: Decidable non-
monotonic disjunctive logic programs with function sym-
bols. ACM Transactions on Computational Logic 9:1–45.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo : A new
grounder for answer set programming. In Logic Program-
ming and Nonmonotonic Reasoning, 9th International Con-
ference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007,
Proceedings, 266–271.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proceedings of
ICLP/SLP 1988, 1070–1080.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programming and disjunctive databases. New Genera-
tion Computing 9:365–386.
Genaim, S., and Codish,M. 2005. Inferring termination con-
ditions for logic programs using backwards analysis. TPLP
5(1-2):75–91.
Greco, S.; Molinaro, C.; and Trubitsyna, I. 2013. Bounded
programs: A new decidable class of logic programs with
function symbols. In Proceedings of IJCAI-2013, 926–913.
Greco, S.; Spezzano, F.; and Trubitsyna, I. 2012. On the ter-
mination of logic programs with function symbols. In Tech-
nical Communications of the 28th International Conference
on Logic Programming, ICLP 2012, September 4-8, 2012,
Budapest, Hungary, 323–333.

Lierler, Y., and Lifschitz, V. 2009. One more decidable
class of finitely ground programs. In Logic Programming,
25th International Conference, ICLP 2009, Pasadena, CA,
USA, July 14-17, 2009. Proceedings, 489–493.
Marchiori, M. 1996. Proving existential termination of nor-
mal logic programs. InAlgebraicMethodology and Software
Technology, 5th International Conference, AMAST ’96, Mu-
nich, Germany, July 1-5, 1996, Proceedings, 375–390.
Nguyen, M. T.; Giesl, J.; Schneider-Kamp, P.; and Schreye,
D. D. 2007. Termination analysis of logic programs based
on dependency graphs. In Logic-Based Program Synthesis
and Transformation, 17th International Symposium, LOP-
STR 2007, Kongens Lyngby, Denmark, August 23-24, 2007,
Revised Selected Papers, 8–22.
Nishida, N., and Vidal, G. 2010. Termination of narrowing
via termination of rewriting. Appl. Algebra Eng. Commun.
Comput. 21(3):177–225.
Ohlebusch, E. 2001. Termination of logic programs: Trans-
formational methods revisited. Appl. Algebra Eng. Com-
mun. Comput. 12(1/2):73–116.
Papadimitriou, C. H. 1994. Computational Complexity. Ad-
dison Wesley.
Schneider-Kamp, P.; Giesl, J.; Serebrenik, A.; and Thie-
mann, R. 2009. Automated termination proofs for logic pro-
grams by term rewriting. ACM Trans. Comput. Log. 11(1).
Schneider-Kamp, P.; Giesl, J.; Ströder, T.; Serebrenik, A.;
and Thiemann, R. 2010. Automated termination analysis
for logic programs with cut. TPLP 10(4-6):365–381.
Schneider-Kamp, P.; Giesl, J.; and Nguyen, M. T. 2009.
The dependency triple framework for termination of logic
programs. In Logic-Based Program Synthesis and Trans-
formation, 19th International Symposium, LOPSTR 2009,
Coimbra, Portugal, September 2009, Revised Selected Pa-
pers, 37–51.
Schreye, D. D., and Decorte, S. 1994. Termination of
logic programs: The never-ending story. J. Log. Program.
19/20:199–260.
Serebrenik, A., and Schreye, D. D. 2005. On termination of
meta-programs. TPLP 5(3):355–390.
Syrjänen, T. 2001. Omega-restricted logic programs.
In Logic Programming and Nonmonotonic Reasoning, 6th
International Conference, LPNMR 2001, Vienna, Austria,
September 17-19, 2001, Proceedings, 267–279.
Voets, D., and Schreye, D. D. 2011. Non-termination anal-
ysis of logic programs with integer arithmetics. TPLP 11(4-
5):521–536.
Zhang, H.; Zhang, Y.; and You, J.-H. 2015. Existential rule
languages with finite chase: Complexity and expressiveness.
In Proceedings of AAAI-2015, 691–697.

