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Abstract
In ontology-based data access (OBDA), the classical database is en-

hanced with an ontology in the form of logical assertions generating
new intensional knowledge. A powerful form of such logical asser-
tions is the tuple-generating dependencies (TGDs), also called existen-
tial rules, where Horn rules are extended by allowing existential quan-
tifiers to appear in the rule heads. In this paper we introduce a new

∗An extended abstract of this paper was published in KR-2018 [1].
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language called loop restricted (LR) TGDs (existential rules), which
are TGDs with certain restrictions on the loops embedded in the un-
derlying rule set. We study the complexity of this new language. We
show that the conjunctive query answering (CQA) under the LR TGDs
is decidable. In particular, we prove that this language satisfies the so-
called bounded derivation-depth property (BDDP), which implies that
the CQA is first-order rewritable, and its data complexity is in AC0. We
also prove that the combined complexity of the CQA is 2-EXPTIME

complete, while the language membership is PSPACE complete. Then
we extend the LR TGDs language to the generalised loop restricted
(GLR) TGDs language, and prove that this class of TGDs still remains
to be first-order rewritable and properly contains most of other first-
order rewritable TGDs classes discovered in the literature so far.

Keywords: knowledge representation and reasoning, logic program-
ming, ontological reasoning, query answering, complexity

1 Introduction
In ontology-based data access (OBDA), the classical database is enhanced
with an ontology in the form of logical assertions generating new intensional
knowledge, e.g., [2, 7, 17, 22, 26]. A powerful form of such logical assertions
is the tuple-generating dependencies (TGDs), also called existential rules.
Generally speaking, TGDs are Horn rules extended by allowing the occur-
rence of existential quantification in the rule head. With this extension, it
is able to reason about the existence of new or missing objects that are not
represented in the underlying database [4, 28].

Under the language of TGDs, queries are answered against an ontology
represented by a set of TGDs and an input database. In particular, given a
database instance D, a finite set Σ of TGDs, and a Boolean query q, we want
to decide whether D∪Σ |= q. However, this problem is undecidable generally,
due to the potential cyclic applications of TGDs in Σ [5, 16].

In recent years, considerable research has been carried out to identify vari-
ous expressive decidable classes of TGDs. So far several primary such classes
have been discovered: weakly-acyclic class [18]; guarded class [4, 9, 10];
frontier guarded class [4]; sticky sets class [11]; and Shy programs class [24].
By extending and combining these aforementioned classes, more decidable
classes can be derived,

Among all these decidable classes, some are of special interests for OBDA,
i.e., the classes of first-order rewritable TGDs, where conjunctive query an-
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swering can be reduced to the evaluation of a first-order query over the database.
As such, traditional database query techniques may be used for developing
efficient query answering systems in OBDA, as demonstrated in Description
Logics [12, 21]. So far, several useful first-order rewritable classes of TGDs
have been discovered: acyclic TGDs, aGRD TGDs, domain-restricted TGDs
[4], linear and multi-linear TGDs, sticky and sticky-join TGDs, while multi-
linear and sticky-join TGDs generalise linear TGDs and sticky TGDs, respec-
tively [10, 11].

Civili and Rosati [15] further identified another first-order rewritable class
called weakly recursive TGDs, and showed that by restricting to simple TGDs1,
weakly recursive class contains all other first-order rewritable classes. How-
ever, since the weakly recursive class is only defined for simple TGDs, the
acyclic, multi-linear and sticky-join classes remain to be incomparable first-
order rewritable classes for general TGDs [15]. On the other hand, their ex-
tended work in [14] uplifted the notion of weakly recursive TGDs from that
fragment of the so-called “simple” TGDs to arbitrary TGDs, resulting in a
class called labeled oblivious acyclic (LOA), which is a first-order rewritable
class strictly containing the classes of aGRD, multi-linear, sticky-join and
domain-restricted TGDs.

Nevertheless, there are still real life scenarios that are simple and intuitive
but not syntactically recognisable by any of the existing first-order rewritable
TGDs classes, as illustrated by the following example.

Example 1. Consider the set of TGDs ΣinCharge comprising of the following
two simple rules:

r1 : activeRole(X,W ) ∧ inCharge(X, Y ) ∧ inCharge(Y, Z) →
indInCharge(X,Z),

r2 : indInCharge(X,Z) → ∃U activeRole(X,U).

Here, activeRole(X,W ) encodes that “X” has an active role “W ”, and
inCharge(X, Y ) encodes that “X” is in charge of “Y ”. The rule r1 encodes
that: if “X” is in charge of “Y ” and “Y ” is in charge of “Z”, then “X”
is indirectly in charge of “Z”. On the other hand, the rule r2 encodes the
integrity constraint stating that: “X” indirectly in charge of “Z” implies that
X must have some active role.

Through a careful examination, it is not difficult to see that ΣinCharge is not
recognizable under the syntactic conditions of all currently known first-order
rewritable TGDs classes.

1A TGD is simple if there are no constant and repeated variable occurrences in each atom.
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On the other hand, by unfolding the derivations of atoms activeRole(X,W )
and indInCharge(X,Z) from ΣinCharge, it turns out that their derivations are
always bounded by a fixed length independent from any input database. That
is, the underlying ΣinCharge satisfies the so-called bounded derivation-depth
property (BDDP, see its formal definition in next section), from which we
know that the query answering under ΣinCharge is not only decidable, but also
first-order rewritable [8, 10].

Based on these ideas, the main contributions of this paper are summarised
as follows:

1. We define notations of derivation paths and derivation trees for query
answering over TGDs (existential rules), and provide a precise charac-
terisation for the traditional TGDs chase procedure through the corre-
sponding derivation tree.

2. Based on the concept of derivation paths, we introduce a new class
called loop restricted (LR) TGDs, which are TGDs with certain restric-
tions on the loops embedded in the underlying rule set.

3. Under our derivation tree framework, we show that the conjunctive
query answering (CQA) under LR TGDs satisfies a property called
bounded derivation tree depth property (BDTDP). We further prove
that BDTDP implies the well-known bounded derivation-depth prop-
erty (BDDP). This result implies that conjunctive query answering un-
der LR TGDs is not only decidable but also first-order rewritable.

4. We further extend LR TGDs to generalised loop restricted (GLR) TGDs,
and prove that the class of GLR TGDs is also first-order rewritable and
contains most of other first-order rewritable TGD classes discovered in
literature so far.

The rest of this paper is organised as follows. Section 2 presents necessary
preliminaries we will need through out this paper. Section 3 defines the con-
cepts of derivation paths and derivation trees, from which a characterisation
for the chase procedure is provided. By defining the notion of loop patterns,
section 4 then introduces the loop restricted (LR) TGDs, proves that this new
class of TGDs satisfies the BDTDP property, and provides the main complex-
ity results. Section 5 further generalises the class of LP TGDs to a class called
generalised loop restricted (GLR) TGDs and proves the important properties
of this class of TGDs. Section 6, on the other hand, investigates the relation-
ship between the class of GLR TGDs and other existing first-order rewritable
classes of TGDs. Finally, section 7 concludes the paper with some remarks.
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2 Preliminaries
Databases and queries. We define the following pairwise disjoint (countably
infinite) sets of symbols: a set Γ of constants, which constitute the domain of
databases, a set ΓN of labeled nulls that will be used as “fresh” Skolem terms
as placeholders for unknown values, and a set ΓV of regular variables. For
convenience, we usually use a, b, c, · · · to denote constants, n, n′, n′′ · · · to de-
note nulls, and X, Y, Z, · · · to denote variables2. Note that different nulls may
also represent the same value. We use X to denote a sequence of variables
X1, · · · , Xn, where n ≥ 0. Sometimes, we also represent such X as a n-ary
tuple of variables (X1, · · · , Xn). A similar notion also applies to nulls.

A relational schema R is a finite set of relation symbols (or predicates).
A term is a constant, null or variable. An atom has the form p(t1, · · · , tn),
where p is an n-ary predicate, and t1, . . . , tn are terms. Note that, here we
slightly extend the traditional notion of an atom to allow it containing nulls
for the sake of presentation simplicity . We denote by |p| and dom(p) as p’s
arity and the set of all its terms respectively. The latter notion is naturally
extended to sets of atoms and conjunctions of atoms. A conjunction of atoms
is often identified with the set of all its atoms.

A database D for a relational schema R is a finite set of atoms with pred-
icates from R and constants from Γ. That is, dom(D) ⊆ Γ. We also use
pred(D) to denote the set of all predicates occurring in D. An instance I for a
relational schema R is a (possibly infinite) set of atoms with predicates from
R and terms from Γ ∪ ΓN . Clearly, each database D for R may be viewed
as a special form of instance, and further, it can be extended to an instance I
such that D ⊆ I and pred(I) = R.

A homomorphism from a set of atoms A to a set of atoms A′ is a mapping
h : Γ ∪ ΓN ∪ ΓV → Γ ∪ ΓN ∪ ΓV , such that (i) if t ∈ Γ, then h(t) = t;
(ii) if t ∈ ΓN , then h(t) ∈ Γ ∪ ΓN ; and (iii) if p(t1, · · · , tn) ∈ A, then
p(h(t1), · · · , h(tn)) ∈ A′. Let T be the set of all terms occurring in A. The
restriction h′ of h to S ⊆ T, denoted as h′ = h|S, is simply the subset of h :
h′ = {t → h(t) | t ∈ S}. Here we also call h is an extension of h′ to T.

A conjunctive query (CQ) q of arity n over a schema R has the form
p(X) ← ∃Yϕ(X,Y), where ϕ(X,Y) is a conjunction of atoms with the
variables X and Y from ΓV and constants from Γ, but without nulls, and p is
an n-ary predicate not occurring in R. We allow ϕ(X,Y) to contain equalities
but no inequalities. When ϕ(X,Y) is just a single atom, then we say that the
CQ q is atomic. A Boolean Conjunctive Query (BCQ) over R is a CQ of zero

2Possibly these constants, nulls and variable are subscripted with indexes.
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arity. In this case, we can simply write a BCQ q as ∃Yϕ(Y). For simplicity,
we usually write a BCQ as the set of atoms with corresponding constants and
variables as the arguments, and omitting the quantifiers.

The CQ answering problem, or called CQA problem, is defined to be
the answer to a CQ q with n arity over an instance I , denoted as q(I), that
is the set of all n-tuples t ∈ Γn for which there exists a homomorphism
h : X ∪Y → Γ ∪ ΓV such that h(ϕ(X,Y)) ⊆ I and h(X) = t. The answer
to a BCQ is positive over I , denoted as I |= q, if 〈〉 ∈ q(I).

TGDs and conjunctive query answering (CQA). A tuple-generating depen-
dency (TGD) σ, also called existential rule, over a schema R is a first-order
formula of the form

σ : ∀XYϕ(X,Y) → ∃Zψ(X,Z), (1)

where X ∪ Y ∪ Z ⊂ Γ ∪ ΓV , ϕ and ψ are conjunctions of atoms over
R. When there is no confusion, we usually omit the universal quantifiers
from (1). In this case, we also use head(σ) and body(σ) to denote formulas
∃Zψ(X,Z) and ϕ(X,Y) respectively.

Let I be an instance over R. We say that σ is satisfied in I , denoted as I
|= σ, if whenever there is a homomorphism h such that h(ϕ(X,Y))⊆ I , then
there exits an extension h′ of h|X such that h′(ψ(X,Z)) ⊆ I .

Given a database D, a (finite) set Σ of TGDs and a CQ q of arity n over
schema R. The models of D with respect to Σ, denoted as mod(D,Σ), is the
set of all instances I such that I ⊇ D and I |= Σ.

Then the CQ answering problem, or called CQA problem, denoted as
〈R, D,Σ, q〉, is described as follows: the answer to q with respect to D and
Σ, denoted as ans(q,D,Σ), is the set of all tuples: {t | t ∈ q(I), for each
I ∈ mod(D,Σ)}. When q is a BCQ, the answer to q, denoted as BCQA, is
called positive if 〈〉 ∈ ans(q,D,Σ). It is well known that the CQA problem
and the problem of CQ containment under TGDs are LOGSPACE-equivalent,
and hence, in the rest of this paper, we will only focus on the BCQA problem,
because all complexity results can be carried over to other problems [11].

The chase. Consider an instance I and a TGD σ of the form (1). We say that
σ is applicable to I if:

1. there exists a homomorphism h such that h(ϕ(X,Y)) ⊆ I;

2. there does not exists an extension h′ of h↾XY such that:

(a) h′(ϕ(X,Y)) = h(ϕ(X,Y));
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(b) h′(ψ(X,Z)) ⊆ I .

Intuitively, 2(b) above is to restrict the unlimited application of “identical”
TGD rules in the sense that in the application of σ to I via a homomorphism
h, there already exists a homomorphism h′ such that h ↾XY = h′ ↾XY, i.e.,
applying σ to I again will be redundant.

The result of applying σ to I is an instance I ′ = I∪h′(ψ(X,Z)), where h′

is an extension of h↾XY such that for each Z ∈ Z, h′(Z) is a ”fresh” labeled
null of ΓN not occurring in I . Then the oblivious TGD chase algorithm for a
database D and a set Σ of TGDs consist of an exhaustive application of chase
steps, which leads to a collection of all instances I ′ generated from such chase
steps, denoted as chase(D,Σ). Note that each instance of chase(D,Σ) is a
model of D ∪ Σ.

The above procedure gives rise to the so-called chase sequence. A chase
sequence ζ:

I0
σ0, h0−−−→ I1, . . . , Ik

σk, hk−−−→ Ik+1 (2)

denotes the sequence of applications of the TGD chase rules such that:

1. I0 = D;

2. for each i ∈ {1, . . . , k}, Ii
σi, hi−−−→ Ii+1 denotes the instance Ii+1 = Ii ∪

{h′
i(head(σi))} such that, assuming σi = ϕ(X,Y)→∃Zψ(X,Z), then

h′
i is the extension of the homomorphism hi such that hi(ϕ(X,Y)) ⊆

Ii.

Then for k ≥ 1, we denote by chase
[k]
ζ (D,Σ) as the resulting instance Ik that

is the result of the chase sequence ζ: I0
σ0, h0−−−→ I1, . . ., Ik−1

σk−1, hk−1−−−−−−→ Ik.
Moreover, we say that a chase sequence ζ is fair if whenever a TGD rule of
the form (1) is applicable to an instance Ii through a homomorphism h, then
there exists some k > i and extension h′ of h↾XY such that h′(ψ(X,Z))⊆ Ik.

Finally, we denote by chaseζ(D,Σ) as the instance such that:

1. chaseζ(D,Σ) =
!i=∞

i=1 chase
[i]
ζ (D,Σ);

2. ζ is a fair chase sequence.

When it is clear from the context, we simply denote by chase(D,Σ) for
chaseζ(D,Σ) (i.e., omitting the “ζ” subscript) to assume that chase(D,Σ)
is obtained via some chase sequence ζ .

7



Given an atom p(t) such that t ∈ (Γ ∪ ΓN)
|t|, we say that chase(D,Σ)

entails p(t), denoted as chase(D,Σ) |= p(t), iff there exists some atom of the
same relational symbol p(t′) ∈ chase(D,Σ) and a homomorphism h : t −→
t′ such that h(p(t)) = p(t′).

The notion level in a chase under a chase sequence ζ is defined inductively
as follows [11]: (1) for an atom α ∈ D, we set LEVEL(α) = 0; (2) then in-
ductively, for an atom α ∈ chaseζ(D,Σ) obtained via some chase step Ik

σ, h−−→
Ik+1 of the chase sequence ζ , we set LEVEL(α) = MAX

"#
LEVEL(β) | β ∈

h(body(σ))}
$
+ 1. Then finally, for some given k ∈ N, we set chasekζ (D,Σ)

=
#
α | α ∈ chase(D,Σ) and LEVEL(α) ≤ k

%
. Intuitively, chasekζ (D,Σ) (or

simply chasek(D,Σ) when clear from the context) is the instance containing
atoms that can be derived in a less than or equal to k chase steps.

More technical discussions about the chase can be found from [6, 11].

Theorem 1. [11] Given a BCQ q over R, a database D for R and a set Σ of
TGDs over R, D ∪ Σ |= q iff chase(D,Σ) |= q.

Definition 1 (BDDP). A class C of TGDs satisfies the bounded derivation-
depth property (BDDP) if for each BCQ q over a schema R, for every in-
put database D for R and for every set Σ ∈ C over R, D ∪ Σ |= q im-
plies that there exists some k ≥ 0 which only depends on q and Σ such that
chasek(D,Σ) |= q.

It has been shown that the BDDP implies the first-order rewritability [10,
11]. Formally, the BCQA problem is first-order rewritable for a class C of
sets of TGDs if for each Σ ∈ C, and each BCQ q, there exists a first-order
query qΣ such that D∪Σ |= q iff D |= qΣ, for every input database D. In this
case, we also simply say that the class C of TGDs is first-order rewritable.

3 Derivation Paths and Derivation Trees
For a given set Σ of TGDs, by taking different input databases D, the chase
procedure chase(D,Σ) generates different results. However, it is not diffi-
cult to observe that atoms of chase(D,Σ) are actually generated by following
certain derivation pattens embedded in the rules of Σ, which, in some sense,
are independent from the input database D. In this section, we will provide a
characterization for this derivation property underlying every given Σ.

Firstly, to simplify our investigations, from now on, we will assume that
for any given set Σ of TGDs, each TGD σ in Σ is of a specific form: σ has
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only one atom in the head where each existentially quantified variable occurs
only once. That is, Σ consists of the following rule:

σ : ϕ(X,Y) → ∃Zp(X,Z). (3)

Theorem 2. Let q be a BCQ over R and Σ a set of TGDs over R. Then the
following results hold:

1. There exists a LOGSPACE construction of an atomic BCQ q′ and a set
of TGDs Σ

′
of schema R′ ⊇ R, where |head(σ′)| = 1 for each σ′ ∈ Σ′,

such that for all database D, D ∪ Σ |= q iff D ∪ Σ′ |= q′ [11].

2. If Σ′ satisfies BDDP then Σ also satisfies BDDP.

Under Theorem 2, it is clear that considering such special TGDs of the
form (3) as well as the atomic BCQ ∃Zp(Z) will be sufficient, in the sense
that all results related to these forms of TGDs and atomic BCQ can be carried
over to the general case. So in the rest of this paper, we will only focus on
these forms of TGDs and atomic BCQ in our study.

3.1 Comparability and derivation paths
Let t = (t1, · · · , tn) and t′ = (t′1, · · · , t′n) be two tuples of terms. We say
that t and t′ are type comparable if t and t′ satisfy the following conditions:
for each i (1 ≤ i ≤ n), (1) constant c ∈ Γ, ti = c iff t′i = c; (2) ti ∈ ΓV iff
t′i ∈ ΓV ; and (3) ti ∈ ΓN iff t′i ∈ ΓN . Intuitively, two tuples t and t′ are type
comparable if each position between the two tuples agrees on the type of term
they contain, i.e., constants are mapped to (the same) constants, variables to
variables and labeled nulls to labeled nulls.

Definition 2 (Position comparable tuples). Let t = (t1, · · · , tn) and t′ =
(t′1, · · · , t′n) be two tuples of terms with length n. We say that t and t′ are
position comparable (or simply called comparable), denoted as t ∼ t′, if t
and t′ satisfy the following conditions:

1. t and t′ are type comparable;

2. for each pair (i, j) (1 ≤ i < j ≤ n), ti = tj iff t′i = t′j;

3. for each t ∈
"
t ∩ t′

$
, ti = t iff t′i = t (1 ≤ i ≤ n);
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4. for each i (1 ≤ i ≤ n), ti ∈
"
t \ t′

$
∩
"
ΓV ∪ ΓN

$
iff t′i ∈

"
t′ \ t

$
∩"

ΓV ∪ ΓN

$
3.

We also use t1 ∕∼ t2 if it is not the case that t1 ∼ t2.

Under Definition 2, we have (X,X ′, n) ∼ (Z, Y, n′), but (n, n, n′, Z) ∕∼
(n, n′, n′,W ), because in the latter, the null patterns in the first three positions
of the two tuples are not “comparable”.

Let X be a variable from ΓV , and t a term from Γ ∪ ΓN ∪ ΓV . A binding
is an expression of the form X/t. In this case, we also say that t is a binding
of variable X . A substitution [X/t] is a finite set of bindings containing at
most one binding for each variable from X. For a given tuple of terms t, we
can apply a substitution θ to t and obtain a different tuple of terms, denoted
as tθ. For example, (X, Y, n,W )[X/n′, Y/Y,W/Z] = (n′, Y, n, Z). Naturally,
for a quantifier-free formula ϕ(X) and a substitution θ = [X/t], applying θ to
ϕ(X), i.e., ϕ(X)θ, will result in formula ϕ(t) which is obtained from ϕ(X)
by replacing each free variable X by its corresponding binding from ϕ(X).

Now we define how a substitution is applied to an existential rule σ. We
extend a substitution to existentially quantified variables. We say that substi-
tution θ = [X/t] is applicable to σ if the arities of X in θ match the arities
of the tuples of all universally and existentially quantified variables in σ, re-
spectively. We may write a substitution applicable to σ as the form: θ =
[X/t1,Y/t2,Z/n]. Then by applying θ to rule σ of the form (3), we will
obtain a rule of the following form:

σθ : ϕ(t1, t2) → p(t1,n). (4)

Note that in (4) existentially quantified variables are always substituted
by nulls.The motivation for extending a substitution to existentially quantified
variables is quite clear. For a given set Σ of TGDs, we want to represent the
underneath derivation of Σ in a generic form so that such derivation may be
instantiated by the chase procedure when a specific input database is taken
into account. For this purpose, through a substitution, we not only substitute
those universally quantified variables in σ, but also intentionally eliminate
existentially quantified variables in head(σ) by replacing them with proper
nulls. In this way, atom p(t1,n) may be used in triggering other rules of Σ
through further substitutions.

3Note that this condition can be implied from the previous conditions 1, 2 and 3. But for
clarity, we still keep this condition in definition.
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Definition 3 (Derivation path). Let Σ be a set of TGDs. A derivation path P
of Σ is a finite sequence of pairs (α, ρ) of an atom α and a rule ρ:

(α1, ρ1), · · · , (αn, ρn), (5)

such that

• for each 1 ≤ i ≤ n, αi = head(ρi);

• for each 1 ≤ i ≤ n, ρi = σiθi for some σi ∈ Σ and substitution θi;

• for each 1 ≤ i < n, αi+1 ∈ body(ρi);

• for each 1 ≤ i ≤ n, if a null n ∈ head(αi) is introduced due to the elim-
ination of existentially quantified variable, then this n must not occur in
ρj , for all j ∈ {i+ 1, . . . , n}.

The following example explains the intuition of derivation paths.

Example 2. Consider a set Σ of TGDs consisting of two rules:

σ1 : r(X, Y, Z) → s(Y,X),
σ2 : s(X, Y ) → ∃Z∃Wr(Y, Z,W ).

The following are three different derivation paths of Σ:

P1:
(s(n1, Y1), σ1[X/Y1, Y/n1, Z/n2]),
(r(Y1, n1, n2), σ2[X/X1, Y/Y1, Z/n1,W/n2]),
(s(X1, Y1), σ1[X/Y1, Y/X1, Z/Z1]),

P2:
(r(X2, n1, n2), σ2[X/n3, Y/X2, Z/n1,W/n2]),
(s(n3, X2), σ1[X/X2, Y/n3, Z/n4]),

P3:
(r(X2, n1, n2), σ2[X/n3, Y/X2, Z/n1,W/n2]),
(s(n3, X2), σ1[X/X2, Y/n3, Z/n4]),
(r(X2, n3, n4), σ2[X/X1, Y/X2, Z/n3,W/n4]).

Intuitively, P1 represents a pattern for deriving atom s(n1, Y1) from rules
σ1 and σ2. For a given database D, atom s(n1, t) will be derived following
the same pattern with different instantiations of free variables with constants
from D. Similarly, P2 and P3 represent two different derivation patterns for
atom r(X2, n1, n2), respectively. □
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Definition 4 (Generalising comparability relation). We generalise the com-
parability relation ∼ defined earlier as follows.

1. Let σ ∈ Σ, and θ = [X/t,Z/n] and θ′ = [X/t′,Z/n′] be two substitu-
tions applicable to σ. We say that σθ and σθ′ are comparable, denoted
as σθ ∼ σθ′, if tn ∼ t′n′.

2. Let P be a derivation path of Σ of the form (5), we use |P | to de-
note its length. Furthermore, suppose (αi, ρi) and (αj, ρj) are two el-
ements of P , we say that (αi, ρi) and (αj, ρj) are comparable, denoted
as (αi, ρi) ∼ (αj, ρj), if ρi ∼ ρj .

3. Let P = ((α1, ρ1), (α2, ρ2), · · · ) and P ′ = ((α′
1, ρ

′
1), (α

′
2, ρ

′
2), · · · ) be

two derivation paths of Σ. P and P ′ are comparable, denoted as P ∼
P ′, if |P | = |P ′| and for each i (1 ≤ i ≤ |P |), (αi, ρi) ∼ (α′

i, ρ
′
i).

It is easy to observe that ∼ defined in Definition 4 is an equivalence rela-
tion. In the rest of this paper, whenever we use symbol ∼, we always refer to
the comparability relation defined in Definition 4.

Although a derivation path may be infinitely long, the following result
ensures that for any derivation path, it is sufficient to only consider its finite
fragment.

Proposition 1 (Derivation path length bound). Let Σ be a set of TGDs.
There exists a natural number N such that for every derivation path P of
the form (5), if |P | > N then there exist i, j (1 ≤ i < j ≤ |P |) such that
(αi, ρi) ∼ (αj, ρj).

3.2 Derivation trees
Now we are ready to define a derivation tree which is a key concept for our
following investigations.

For the following, given a tree T = (N,E,λ) and node v ∈ N , we de-
note by subtreeT (v) as the subtree of T rooted at v and such that if there is
another subtree T ′ of T that is also rooted at v, then T ′ ⊆ subtreeT (v), i.e.,
subtreeT (v) is the maximal subtree of T that is rooted on v.

Definition 5 (Derivation tree). Given a set Σ of TGDs. A derivation tree of
Σ, denoted as T (Σ), is a finite tree (N,E,λ), with nodes N , edges E and
labelling function λ, such that:
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1. The nodes of T (Σ) have labels of the form (α, ρ), where ρ = σθ for
some σ ∈ Σ and θ a substitution, and head(ρ) = α;

2. For any node v labeled by (α, ρ) of T (Σ), let α1, · · · ,αn be atoms in
body(ρ), then (α, ρ) has n children v1, . . . , vn labeled with (α1, ρ1),
· · · , (αn, ρn), respectively, such that for each i ∈ {1, . . . , n}, ρi = σiθi
for some σi ∈ Σ and substitution θi, and head(ρi) = αi;

3. For any node v labeled with (α, ρ) in T (Σ), all “fresh” nulls ni occur-
ring in α, that are introduced through the substitutions in ρ, we have
that:

(a) ni must not occur in any labels of a descendant node of v;

(b) if v′ is another node labelled with (α′, ρ′) in T (Σ) such that ni is
also a “fresh” null in α′ (i.e., ni is introduced by both (α, ρ) and
(α′, ρ′)), then subtreeT (v

′) = subtreeT (v);

4. If node v labeled with (α, ρ) is a leaf of T (Σ), then there does not exist
any null n appearing in body(ρ).

A path P in T (Σ), denoted as P ∈ T (Σ), is a derivation path in T (Σ) starting
from the root and ending at a leaf. We define depth(T (Σ)) = max({|P | |
P ∈ T (Σ)} to be the depth of T (Σ). By root(T (Σ)), leafNodes(T (Σ)) and
nodes(T (Σ)), we denote the root node, the set of leaf nodes and the set of
all nodes of T (Σ), respectively. Also, given a node v of T (Σ), we denote by
childNodes(v, T (Σ)) (or just childNodes(v) when clear from the context) as
the set of children nodes of v under the tree T (Σ). Lastly, we use T (Σ) to
denote the set of all derivation trees of Σ.

According to Definition 5, each path of a derivation tree is a derivation
path. Also, since Σ can have an infinite number of possible derivation paths
due to possibly arbitrary number of repetitions of path fragments within a path
(i.e., a “loop”), T (Σ) may contain an infinite number of derivation trees.

By providing a specific database D, a derivation tree T (Σ) is then instan-
tiated, as the following defines.

Definition 6 (Derivation tree instantiation). Let Σ be a set of TGDs, D a
database over schema R, and T (Σ) = (N,E,λ) a derivation tree of Σ. Then
we obtain a tree T ′ = (N ′, E ′,λ′) from T (Σ), where N ⊆ N ′, as follows:

1. For each leaf node v in T (Σ), where λ(v) = (α, ρ), do:
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(a) Set λ′(v) = (α′, ρ′) in the tree T ′, where α′ = head(ρ′), ρ′ = ρθ
for some substitution θ, and body(ρ′) ⊆ D;

(b) For each atom β ∈ body(ρ′)⊆D with ρ′ as mentioned above, add
a node v′ in N ′ and set λ′(v′) = (β, β) and a corresponding edge
〈v, v′〉 in E ′ so that v′ is a leaf node (i.e., we make v be a non-leaf
node in T ′);

2. For a non-leaf node v in T (Σ), such that λ(v) = (α, ρ), and all labels
of its children have been replaced as in 1 above (i.e., through “λ′”), set
λ′(v) = (α′, ρ′), where ρ′ = ρθ′ for some substitution θ′ such that for
each atom p(t) ∈ body(ρ′), either p(t) ∈ D or there exists a child node
v′ of v such that λ′(v′) = (α∗, ρ∗), where p(t) = α∗;

3. Continue 2, until no node can be further relablled.

T ′ is called an instantiation of T (Σ) on D, denoted as T (D,Σ), if it does not
contain any variables occurring in T (Σ). Similarly to the case of derivation
tree, we use depth(T (D,Σ)) and root(T (D,Σ)) to denote the depth and root
node of T (D,Σ), respectively. Finally, by T (D,Σ), we denote the set of all
instantiations on D for all derivation trees in T (Σ).

By examining Definition 6, we can see that the intuition of derivation tree
instantiation T (D,Σ) is simply an extension of the derivation tree T (Σ) by
replacing all variables with some constants from D in a bottom-up manner.
After completing such process, the tree T (D,Σ) only contains constants from
D and nulls.

For convenience from now on and when it is clear from the context, we
will mostly refer to a node by its actual label, e.g., for a node v ∈ N where
λ(v) = (α, ρ), it is simply referred as (α, ρ).

We say that an atom p(t) is supported by T (D,Σ), denoted as T (D,Σ) |=
p(t), if λ(root(T (D,Σ))) = (α, ρ) where α = p(s), and there is a homomor-
phism h such that h(p(t)) = p(s). The following result reveals an important
relationship between the chase and derivation trees.

Theorem 3. Let Σ be a set of TGDs, D a database over schema R, and q
a BCQ query ∃Zp(Z). Then chase(D,Σ) |= q iff there exist an instantia-
tion T (D,Σ) for some derivation tree T (Σ) and a substitution θ, such that
T (D,Σ) |= p(t), where t is a tuple of terms from Γ of the same length as Z,
and tθ = Z.
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4 Loop Restricted (LR) TGDs
Theorem 3 shows that derivation trees provide a precise characterisation for
the chase procedure. Therefore, the query answering against a set of TGDs
together with an input database can be achieved by computing and checking
the corresponding instantiation of the underlying derivation tree. However,
since the derivation tree for a given set of TGDs may be of an arbitrary depth,
this process is generally undecidable.

In this section, we will define a new class of TGDs, named loop restricted
(LR) TGDs, such that the depth of all derivation trees for this type of TGDs
is always bounded in some sense. From this result, we will further prove that
LR TGDs satisfy the bounded derivation-depth property (BDDP) [11].

Definition 7 (Loop pattern). Let P = ((α1, ρ1), · · · , (αn, ρn)) be a derivation
path as defined in Definition 3. Then P is a loop pattern if (α1, ρ1)∼ (αn, ρn)
and (αi, ρi) ∕∼ (αj, ρj) for any other i, j (1 ≤ i, j ≤ n and i ∕= j).

Let L be a loop pattern as defined in Definition 7. For each pair (αi, ρi)
in L where 1 ≤ i < n, an atom β ∈ body(ρi) is called recursive atom if
β = αi+1 for (αi+1, ρi+1).

Example 3. Example 2 continued. It is easy to see that derivation paths P3

is a loop pattern, while P1 and P2 are not. Furthermore, P3 is the only loop
pattern of the given Σ, considering that for all other loop patterns P , it will be
P ∼ P3

4. □

Proposition 2. Given a finite set Σ of TGDs, Σ only has a finite number of
loop patterns under the equivalence relation ∼.

4.1 Restricted loop patterns
Example 4. Consider Example 1 in Introduction again, where ΣinCharge is
represented as the following set of TGDs Σ by renaming predicates:

σ1 : r(X,W ) ∧ t(X, Y ) ∧ t(Y, Z) → s(X,Z),
σ2 : s(X,Z) → ∃U r(X,U).

With a careful verification, we can see that Σ does not belong to any of cur-
rently known first-order rewritable TGDs classes.

4See Definition 4 for derivation path (loop pattern) comparability relation.
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Now we consider the derivation of atom r(X1, n1) from Σ. The following
is a derivation tree for r(X1, n1), which involves recursive calls to σ1 and σ2:

T :

w0 = (α0, ρ0)

=
"
r(X1, n1), [s(X1, Z1) → r(X1, n1)]

$
,

w1 = (α1, ρ1)

=
"
s(X1, Z1), [r(X1, n2) ∧ t(X1, Y1) ∧ t(Y1, Z1) → s(X1, Z1)]

$
,

w2 = (α2, ρ2)

=
"
r(X1, n2), [s(X1, Z2) → r(X1, n2)]

$
.

Intuitively, T simply contains one derivation path L = w0w1w2 which is
also a loop pattern. If we consider all other derivation trees for atom r(X1, n1),
it is not difficult to observe that all these trees are subsumed by T , in the
sense that derivations illustrated in T cover those illustrated in all other trees.
Informally, we say that a derivation tree T subsumes another derivation tree
T ′, if T and T ′ share the same tree root, and each derivation path of T is
contained by some derivation path presented in T ′. We need to mentioned that
in order to simplify the presentation, we intently delay our formal definition
of tree subsumption to the proof appendix (see Definition 11).

Σ presents an interesting case of satisfying the so-called bounded deriva-
tion tree depth property (BDTDP) (the definition will be given later). By
examining the loop pattern, we find that it can be split in such a way where
all variables in the recursive atoms are bounded by the variables occurring in
the heads of all corresponding rules. This will make the derived atom in each
derivation step from the corresponding derivation tree not rely on any new
variables in recursive atoms.

In more details, consider loop pattern L, for each pair (αi, ρi) (i = 0, 1, 2),
we can split the set body(ρi) of atoms in the body of ρ1i into two disjoint parts
bodyh(ρi) and bodyb(ρi), such that the common variables in {αi} ∪ bodyh(ρi)
and bodyb(ρi) are exactly the common variable occurring in all αi, which is
X1, whilst the underlying recursive atoms in the loop pattern only occur in
bodyb(ρi), i.e., αi+1 ∈ bodyb(ρi) for i = 0, 1. As will be showed next, it turns
out that a set Σ of TGDs having this feature always ensures BDTDP. □

Now we are ready to formally define the notion of loop restricted patterns.
Let A be a set of atoms, we use var(A) to denote the set of all variables
occurring in A.
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Definition 8 (Loop restricted (LR) patterns). Let Σ be a set of TGDs. Σ is
loop restricted (LR), if for each loop pattern L = (α1, ρ1) · · · (αn, ρn) of Σ, L
satisfies the following conditions: for each pair (αi, ρi) in L (1 ≤ i < n), the
set of atoms body(ρ) of the body of ρ can be separated into two disjoint parts
body(ρi) = bodyh(ρi) ∪ bodyb(ρi), such that

- bodyh(ρi) ∩ bodyb(ρi) = ∅,

- αi+1 ∈ bodyb(ρi),

- var({αi} ∪ bodyh(ρi)) ∩ var(bodyb(ρi)) =
&n

j=1 var(αj).

Example 5. Example 4 continued. It is easy to see that loop pattern L in Ex-
ample 4 satisfies the conditions of Definition 8. Furthermore, if we consider
the derivation of atom s(X,Z) from Σ, the underlying loop patterns deduced
from its derivations also satisfy the conditions of Definition 8. So Σ is loop
restricted. □

4.2 Main results
Now we study the main properties of the new class LR of TGDs. We first
define a property called bounded derivation tree depth property (BDTDP).

Definition 9 (BDTDP). A class C of TGDs satisfies the bounded derivation
tree depth property (BDTDP) if for each Σ ∈ C, there exists some k ≥ 0 such
that for every BCQ query ∃Zp(Z) and every database D, D ∪ Σ |= ∃Zp(Z)
iff T (D,Σ) |= p(n) for some instantiated derivation tree T (D,Σ) and atom
p(n), where depth(T (D,Σ)) ≤ k and h(Z) = n for some homomorphism h.

Basically, Definition 9 states that for any Σ ∈ C, BDTDP ensures that all
of its BCQ query answering problem can be always decided within a fixed
number k of derivation steps with respect to the corresponding instantiated
derivation trees. Note that this k is independent from the input database D
and the specific BCQ query q. Also note that BDTDP is different from the
previous BDDP, i.e., Definition 1, which is defined based on the chase proce-
dure.

Theorem 4. The class of LR TGDs satisfies BDTDP.

The following theorem reveals an important connection between BDTDP
and BDDP.

Theorem 5. If a class C of TGDs satisfies BDTDP then C also satisfies BDDP.
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According to Theorem 5 from [11], it is clear that the class of LR TGDs
is first-order rewritable.

Theorem 6. For the class of LR TGDs, the BCQA’s data complexity is in
AC0, and the combined complexity is 2-EXPTIME complete.

Theorem 7. Deciding whether a set of TGDs is loop restricted is PSPACE

complete.

5 Generalisation of Loop Restricted Patterns
As described in previous section, the notion of loop patterns provides a useful
means of defining the class LR of TGDs that is first-order rewritable. Now we
show that loop patterns can be employed as a unified notion to significantly
extend LR TGDs to a more general class of TGDs.

Definition 10 (Generalised loop restricted (GLR) patterns). Let Σ be a
set of TGDs. Σ is generalised loop restricted (GLR), if each loop pattern
L = (α1, ρ1) · · · (αn, ρn) of Σ falls into one of the following five types:

Type I For each pair (αi, ρi) in L (1 ≤ i < n), body(ρi) can be separated
into two disjoint parts body(ρi) = bodyh(ρi) ∪ bodyb(ρi) such that the
following three conditions holds:

1. bodyh(ρi) ∩ bodyb(ρi) = ∅,

2. αi+1 ∈ bodyb(ρi),

3. var
"
{αi} ∪ bodyh(ρi)

$
∩ var

"
bodyb(ρi)

$
=

&n
j=1 var(αj);

Type II There exists a pair (αi, ρi) in L (1 < i ≤ n) such that body(ρi) can
be separated into two disjoint parts body(ρi) = bodyh(ρi)∪ bodyb(ρi),
where the following three conditions hold:

1. bodyh(ρi) ∩ bodyb(ρi) = ∅,

2. αi+1 ∈ bodyb(ρi),

3. var
"
{αi} ∪ bodyh(ρi)

$
∩ var

"
bodyb(ρi)

$
= ∅;

Type III For each pair (αi, ρi) in L (1 ≤ i < n) and each β ∈ body(ρi),
var(ρi) ⊆ var(β);
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Type IV For each pair (αi, ρi) in L (1 ≤ i < n) and each β ∈ body(ρi) \
{αi+1},

"
var(αi+1) ∩ var(β)

$
∕= ∅ implies

"
var(αi+1) ∩ var(β)

$
⊆&i

j=1 var(αj);

Type V There exists a pair (αi, ρi) in L (1 ≤ i < n), such that body(ρi) can
be separated into two disjoint parts body(ρi) = bodyh(ρi) ∪ bodyb(ρi),
where the following three conditions hold:

1. bodyh(ρi) ∩ bodyb(ρi) = ∅;

2.
&n

j=i+1 bodyh(ρi) = ∅,

3. null
"
bodyh(ρi)

$
∕= ∅.

Let us take a closer look at Definition 10. Firstly, Type I simply specifies
LR TGDs, so the class of GLR TGDs properly contains the class of LR TGDs.
Type II looks similar to Type I, but it differs from Type I in the following way:
for the body part of ρi containing the recursive atom in the loop pattern, i.e.,
αi+1 ∈ bodyb(ρi), its variables are not in common with variables occurring
in the head αi and the other part of the body bodyh(ρi). This indicates that
recursion embedded in the underlying loop pattern will not actually happen
due to the lack of shared variables.

Type III, on the other hand, says that for each rule ρi in every loop pattern,
all variables occurring in ρi are guarded by each atom in ρi’s body. Type IV
concerns the shared variables occurring in both recursive and non-recursive
atoms in the body of rule ρi in a loop pattern, i.e., var(αi+1) ∩ var(β)5. It
requires that all such shared variables must be passed on to all following rules
in the loop pattern. Finally, Type V ensures that no cycle occurs in Σ’s graph
of rule dependencies.

Theorem 8. The class of GLR TGDs satisfies BDTDP.

According to Theorem 5, we know that the class of GLR TGDs satisfying
BDTDP also satisfies BDDP, and hence the following corollary holds.

Corollary 9. The class of GLR TGDs is first-order rewritable.

Theorem 10. Consider the BCQA problem for a given set of GLR TDGs.
Its data complexity is in AC0, and its combined complexity is 2-EXPTIME

complete.

Theorem 11. Deciding whether a set of TGDs is generalised loop restricted
is PSPACE complete.

5Remember that αi+1 ∈ body(ρi), and the derivation is backward from ρi+1 to ρi in loop
pattern L.
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6 Relationship to Other First-order Rewritable
Classes

Generalised loop restricted pattern defined in Definition 10 is a useful notion
and concept to capture a broader class of first-order rewritable TGDs. In fact,
as we will show in this section, the class of LR TGDs properly captures many
currently known such classes.

We first briefly introduce these existing TGDs classes, which are known
to be first-order rewritable. A TGD of the form (1):

σ : ∀XYϕ(X,Y) → ∃Zψ(X,Z),

is called linear if ϕ(X,Y) is an atom. σ is multi-linear if each atom in ϕ
contains all the universally quantified variables of σ [10]. A set Σ of TGDs is
linear or multi-linear if each TGD in Σ is linear or multi-linear, respectively.

Σ is said to be acyclic if for each σ ∈ Σ, the hypergraph of the relations on
the left hand-side of σ is acyclic, as well as the hypergraph of the right hand-
side of σ, considering only existentially quantified variables Z. In particular,
let (V,E) be the hypergraph of σ’s left hand-side relations, where vertices in
V are the variables of X ∪Y, and edges in E are relation atoms of ϕ(X,Y).
The hypergraph (V ′, E ′) of σ’s right hand-side relations is defined in the same
way, except whose edges are the relation atoms of ψ(X,Z) containing at least
one variable from Z. Then σ is acyclic if both (V,E) and (V ′, E ′) are acyclic
[5, 29].

Rule σ of the form (1) is called domain-restricted if each atom of ψ(X,Z)
contains all or none of the variables in ϕ(X,Y) [4]. Moreover, we say that
σ is called proper domain-restricted if X ∕= ∅. As in practice, the case that
X = ∅ is of much less interest, from here on, unless stated otherwise, we will
assume that all mentions of domain-restricted are proper domain-restricted.
Then finally, we say that Σ is (proper) domain-restricted if each σ ∈ Σ is
(proper) domain-restricted.

Σ is said to have the sticky property if for each σ in Σ, all variables occur-
ring in body(σ) more than once also appear in head(σ), and furthermore, also
appear in every atom obtained from some chase derivation which involves
head(σ), that is, stick to all such atoms [11]. The sticky-join property, on the
other hand, is less restricted than sticky property, where it only requires to
stick certain variables occurring more than once in body(σ) based on certain
joinless condition. It has been showed that the sticky-join class captures both
the sticky and linear classes, but is incomparable with multi-linear class [11].
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Σ is aGRD if Σ’s rule dependency graph contains no cycle [3, 4].
Let us use LR, ML, AC, DR, SJ and aGRD to denote the classes of loop

restricted, mulit-linear acyclic, domain-restricted, sticky-join, aGRD, and do-
main restricted, respectively. Then we have the following result.

Proposition 3. Let GLR be the class of generalised loop restricted TGDs
defined in Definition 10. Then we have that: (1) RL ⊊ GLR; (2) ML ⊊ GLR;
(3) AC ⊊ GLR; (4) SJ ⊊ GLR; (5) aGRD ⊊ GLR; (6) DR ⊊ GLR.

Intuitively, in GLR class, the subclasses of Type I, II, III, IV and V prop-
erly contain LR class, AC class, ML class, SJ class, and aGRD class, respec-
tively, while class DR is properly contained by LR class and hence by Type I
subclass of GLR.

It has been shown in [14] that the LOA class captures all existing known
first-order rewritable classes. The following result, however, shows that LOA
and GLR are actually two incomparable first-order rewritable classes.

Proposition 4. We have that GLR ∕⊆ LOA and LOA ∕⊆ GLR.

Proof. (“GLR ∕⊆ LOA”) From the proof of Theorem 5 in [15], we consider a
set Σ of simple TGDs comprising of the following two rules:

s(X, Y, Z, V ) → r(X, Y, Z), (6)
t(X,W ) ∧ r(X,W, Y ) → ∃Z s(X, Y, Z,W ). (7)

Then we can show that Σ is not in the GLR class of simple TGDs.
(“LOA ∕⊆ GLR”) Consider again the set of TGDs ΣinCharge in Example 4:

σ1 : r(X,W ) ∧ t(X, Y ) ∧ t(Y, Z) → s(X,Z),
σ2 : s(X,Z) → ∃U r(X,U).

Then it can be checked that ΣinCharge is not LOA because we will have a cycle
〈σ1, σ2〉, 〈σ2, σ1〉 in the labeled oblivious STGD graph [14] of Σ and where
the edge 〈σ1, σ2〉 will have both an m and s labels. On the other hand, we
have that Σ is LR as we outlined in Example 5.

7 Concluding Remarks
Loops have been an important concept in the study for traditional Datalog pro-
grams, and then have been employed and extended in Answer Set Program-
ming research in recent years, e.g., [13, 25, 30, 31]. In this paper, through a
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series of novel definitions of derivation paths, derivation trees and loop pat-
terns, we are able to discover new decidable classes of TGDs for ontology
based query answering using a very different idea from previous approaches.

As we have showed, the class of GLR TGDs properly contains most of
other first-order rewritable TGDs classes, we believe that our results presented
in this paper will be useful in developing efficient OBDA systems for borader
application domains.
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A Proofs of Theorems

A.1 Proof of Theorem 2

Theorem 2 Let q be a BCQ over R and Σ a set of TGDs over R. Then the
following results hold:

1. There exists a LOGSPACE construction of an atomic BCQ q′ and a set
of TGDs Σ

′
of schema R′ ⊇ R, where |head(σ′)| = 1 for each σ′ ∈ Σ′,

such that for all database D, D ∪ Σ |= q iff D ∪ Σ′ |= q′ [11].

2. If Σ′ satisfies BDDP then Σ also satisfies BDDP.

Proof. We use similar ideas to the construction as to that used in the proof
of Lemma A.1 in [11]. Indeed, for the first step, we let q′ be an atomic
BCQ such that body(q′) = r∗(X1, . . . , Xn), where r∗ is a “fresh” predicate
symbol and {X1, . . . , Xn} coincides with var(q), i.e., assuming that q is the
BCQ ∃X1, . . . , Xn

̂body(q), where ̂body(q) is the conjunction of the atoms in
body(q), then q′ is the atomic BCQ ∃X1, . . . , Xn r

∗(X1, . . . , Xn). Then we
set Σ∗ = Σ ∪

#
r∗(X1, . . . , Xn) ← ̂body(q)

%
.

Then for the next step, we obtain Σ′ from Σ∗ by applying the following
procedure: for each TGD σ = ϕ(X) → ∃Yr1(Y), . . . , rk(Y) ∈ Σ∗, where k
> 1 and Y the set of variables mentioned in head(σ), replace σ with the set
of TGDs

#
ϕ(X) → rσ(Y)

%
∪
#
rσ(Y) → r1(Y)

%
∪
!

i∈{1,...,k−1}
#
rσ(Y) ∧

ri(Y) → ri+1(Y)
%

, where rσ is an |Y|-ary new relation symbol in R′. Then
it follows from [11] that D∪Σ |= q iff D∪Σ′ |= q′. In addition, since it follows
from the construction of Σ′ that for each i ≥ 0 there exists some j ≥ 0 such
that chase[i](D,Σ) ⊆ chase[i+j](D,Σ′), where j depends only on the size of
the introduced auxiliary predicates (i.e., only depends on the size of Σ), then
we further have that Σ′ satisfies BDDP implies Σ also satisfies BDDP.

Here, we note that our transformation Σ′ from Σ∗ is slightly different from
the one proposed in [11] in that we also add “ri(Y)” in the body of rules
“rσ(Y) → ri+1(Y)” (i.e., to get “rσ(Y)∧ ri(Y) → ri+1(Y)”) since this will
allow us to retain information about the conjunction in the heads as they are
considered in the loop pattern. It can be showed that the correctness of the
transformation is preserved.

A.2 Proof of Proposition 1

Proposition 1. Let Σ be a set of TGDs. There exists a natural number N such
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that for every derivation path P of the form (5), if |P | > N then there exist
i, j (1 ≤ i < j ≤ |P |) such that (αi, ρi) ∼ (αj, ρj).

Proof. Let K = max{ |XYZ| | there exists “ϕ(X,Y) → ∃Zψ(X,Z)” ∈ Σ }
· |Σ|. Now let ARGPRM(K) denote the set of (5K · |const(Σ)| − 1)-length
permutations of the set

{1 c
,1

V
,1

n
, |1,2

c
,2

V
,2

n
, . . . , |K−1,K

c
,K

V
,K

n |
c ∈ const(Σ)}.

Intuitively, the elements “i
x
” (1≤ i≤K) where x ∈ {c, V, n | c ∈ const(Σ)},

are the argument positions of the tuple of constants, variables and nulls of a
TGD in Σ. Here: (1) x ∈ const(Σ) denotes that the position i contains a
constant; (2) x = V denotes it contains a variable; and (3) x = n denotes it
contains a labeled null. We say that “x” is the type of the argument i

x
. The

elements “|i” act as a kind of “separator” such that if a tuple

i1
n |i2 |i3 . . . |ij ij+1

V
ij+2

V
ij+3

V |ij+4
. . . |i2k+1

is in ARGPRM(K), then we view the consecutive series of arguments
“ij+1

V
ij+2

V
ij+3

V
” as one group, and where we view arguments within a

group as being “equal.” Then by PROPARGPRM(K), denote the following set
of tuples:

#
e | there exists some e′ ∈ ARGPRM(K) such that e ⊆ e′

and :

(1) |e| = 2K − 1; (8)
(2) e[0] and e[|e|] is not equal to “|k”

( for k ∈ {1, . . . , K − 1} ); (9)
(3) If e[i] = |j ( for j ∈ {1, . . . , K − 1} ) then : (10)

(a) i > 0 implies e[i− 1] = k
x

(for k ∈ {1, . . . , K} and x ∈ {c, V, n} );
(b) i < K implies e[i+ 1] = k

x

(for k ∈ {1, . . . , K} and x ∈ {c, V, n} );
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(4) If e[i] = j
x
( for j ∈ {1, . . . , K} and x ∈ {c, V, n} )

then : (11)

(a) i > 0 and e[i− 1] = k
y
( for k ∈ {1, . . . , K}

and y ∈ {c, V, n} ) implies x = y;

(b) i < K and e[i+ 1] = k
y
( for k ∈ {1, . . . , K}

and y ∈ {c, V, n} ) implies x = y;

(5) For each i ∈ {1, . . . , K}, there exists some

j ∈ {1, . . . , |e|} s.t. e[j] = i
x

and x ∈ {c, V, n}
%
. (12)

Intuitively the proper argument permutation tuples, as denoted
“PROPARGPRM(K), ” captures the intended meaning of equivalence t1 ∼
t2 assuming that t1 ∩ t2 = ∅. Indeed, we have that (8) specifies that no
arguments are repeated on different groups; (9) specifies that the ends of the
tuple are not delimited by “|k”; (10) specifies that only one separator (i.e.,
the “|i” element) acts for each group; (11) specifies that each group are of
the same types; and lastly, (12) specifies that each position i ∈ {1, . . . , K} is
mentioned in at least some group. Clearly, we have that |PROPARGPRM(K)|
≤ |ARGPRM(K)| ≤ (5K · |const(Σ)|− 1)!.

With a slight abuse of notation, given some element e∈ PROPARGPRM(K)
and some K-length tuple t, we say that t is in the equivalence class of e, de-
noted t ∼ e, if for each i, j ∈ {1, . . . , K}, we have that t[i] = t[j] iff i

x
and

j
y

belongs to the same group in e. Thus, to extend to the case where t1 ∩ t2
∕= ∅, we define the mapping f : PROPARGPRM(K) −→ N such that for each
e ∈ PROPARGPRM(K), ι(e) denotes the size of the following set:

Se =
#
(t1, t2) | t1, t2 ∈ TK , t1 ∼ e, t2 ∼ e, t1 ∩ t2 ∕= ∅
and t1 ∕∼ t2

%
(13)

(i.e., f(e) = |Se|), and where T is the following set of distinct constants,
variables and labeled nulls: CONST(Σ) ∪ {X1, . . . , X2K} ∪ {n1, . . . , n2K}.
Clearly, we have that |Se| is clearly defined since Se is finite for each e ∈
PROPARGPRM(K). Then finally, we define N =

'
e∈PROPARGPRM(K) f(e).

Now on the contrary, assume that P is a derivation path (α1, ρ1), . . .,
(αN , ρN), (αN+1, ρN+1), . . ., (αN+k, ρN+k) such that k > 0 (i.e., |P | > N )
and (αi, ρi) ∕∼ (αj, ρj) for 1≤ i < j ≤N +k. Now consider (αN+i, ρN+i) for
some i ∈ {1, . . . , k}. Then since N > |PROPARGPRM(K)|, we have that for
some e ∈ |PROPARGPRM(K)| and j ∈ {1, . . . , N}, (αj, ρj)∼e (αN+i, ρN+i),
where assuming that ρj = σ[XYZ/T1T2T3] and ρN+i = σ[XYZ/T′

1T
′
2T

′
3]
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(for some σ ∈ Σ), (αj, ρj) ∼e (αN+i, ρN+i) denotes that T1T2T3 ∼ e and
T′

1T
′
2T

′
3 ∼ e. (Note that by the assumption that (αj, ρj) ∕∼ (αN+i, ρN+i), we

have that T1T2T3 ∕∼T′
1T

′
2T

′
3 as well.) Now there can only be one of the two

possibilities, either (1) T1T2T3 ∩T′
1T

′
2T

′
3 = ∅, or (2) T1T2T3 ∩T′

1T
′
2T

′
3

∕= ∅. If we assume the first case (1), then it contradicts the assumption that
T1T2T3 ∕∼T′

1T
′
2T

′
3 because (αj, ρj)∼e (αN+i, ρN+i). On the other hand, if

we consider the latter case (2), then since we have that N =
'

e∈PROPARGPRM(K)

f(e) with f(e) the size of the finite set (13), then this will be a contradiction
as well.

A.3 Proof of Theorem 3

Theorem 3. Let Σ be a set of TGDs, D a database over schema R, and q
a BCQ query ∃Zp(Z). Then chase(D,Σ) |= q iff there exist an instantia-
tion T (D,Σ) for some derivation tree T (Σ) and a substitution θ, such that
T (D,Σ) |= p(t), where t is a tuple of terms from Γ of the same length as Z,
and tθ = Z.

Proof. (“=⇒”) We prove this direction by first providing the following lemma.
Firstly, for the below proof, we just assume for convenience and readability
that chase[N ](D,Σ) is parameterized by some sequence ζ , i.e., “chase[N ](D,Σ)”
to mean “chase[N ]

ζ (D,Σ)” (please see Section 2).

Lemma 1. Given an instantiated derivation tree T (D,Σ) = (N,E,λ) with
nodes N , edges E and labeling function λ, of Σ under a database D, there
exists a homomorphism µ : nodes(T (D,Σ)) −→ chase[N ](D,Σ), where N ≤
|nodes(T (D,Σ))|− |leafNodes(T (D,Σ))|, such that the following conditions
are satisfied:

1. For each v ∈ leafNodes(T (D,Σ)) such that λ(v) = (α,α),

µ(v) = α ∈ D; (14)

2. For each v ∈ nodes(T (D,Σ)) such that λ(v) = (α, ρ),

child(v) = {v1, . . . , v1}, ρ = σθ for some substitution θ,

and σ = ϕ(X,Y) → ∃Zp(X,Z) ∈ Σ, there exists a
homorphism h such that h(ϕ(X,Y)) ⊆ {µ(v1), . . . , µ(vn)}
and extension h′ of h↾X where µ(v) = h′(p(X,Z)); (15)
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3. For each v ∈ nodes(T (D,Σ)) such that λ(v) = (α, ρ) and
α = p(t), if µ(v) = q(t′) then we have that p(t)θ = q(t′)

for some substitution θ. (16)

4. For each v1, v2 ∈ nodes(T (D,Σ)) such that λ(v1) = λ(v2)

(i.e., v1 and v2 have the same label), then we also have that
µ(v1) = µ(v2). (17)

Proof. We show the existence of such a homomorphism µ by induction on the
depth of the tree T (D,Σ) starting from the leaf nodes (i.e., the nodes labeld
by the database facts) going up to the root node labeled by (α, ρ). So towards
this purpose, for i ∈ {1, . . . , depth(T (D,Σ))}, denote by T i(D,Σ) as the
forest made up of the subtrees T ′ of T (D,Σ) that are rooted on some node
labeled (α′, ρ′) ∈ nodes(T (D,Σ)) such that depth(T ′) = i. In particular, we
note that T i(D,Σ) will be exactly T (D,Σ) when i= depth(T (D,Σ)). Lastly,
for some node v ∈ nodes(T (D,Σ)), denote by Tv as the subtree of T (D,Σ)
that is rooted in v.

Basis: When i = 1, then each nodes v ∈ ∈ nodes(T 1(D,Σ)) labeled with
(α, ρ) are such that ρ= α and α ∈D, i.e., α is database fact. Therefore,
we simply define µ : nodes(T 1(D,Σ))−→ chase(D,Σ) by setting µ(v)
= α ∈ D ⊆ chase(D,Σ), for each v ∈ nodes(T 1(D,Σ)). In particular,
we note that Conditions (14)-(17) above are already satisfied.

Inductive step: Assume there exists a homomorphism µ : nodes(T k(D,Σ))
−→ chase[N ](D,Σ), for some k ≥ 1 and N ≤ |nodes(T k(D,Σ)) \
leafNodes(T k(D,Σ))|, that satisfies Conditions (14), (15), (16) and (17)
above.

Now consider a node v ∈ nodes(T k+1(D,Σ)) \ nodes(T k(D,Σ)) such
that λ(v) = (α, ρ), body(ρ) = {α1, . . ., αn}, ρ = σθ and σ = ϕ(X,Y)
→ ∃Zp(X,Z). Then by the definition of the instantiated derivation
tree T (D,Σ), assume that child(v) = {v1, . . ., vn} such that λ(v1)
= (α1, ρ1), . . ., λ(vn) = (αn, ρn). Then further assuming that α1 =
p1(t1), . . ., αn = pn(tn) and µ(v1) = q1(t

′
1), . . ., µ(vn) = qn(t

′
n),

pi(ti)θi = qi(t
′
i) for some substitution θi (ind. hyp.), then we have that

{µ(v1), . . . , µ(vn)} ⊆ chase[N ](D,Σ) (ind. hyp.). Therefore, from the
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fact that homomorphism µ satisfies Condition (17) above, then it fol-
lows that we can define a homomorphism τ by setting τ = θ1 ∪ . . . ∪
θn, such that τ(body(ρ)) ⊆ {µ(v1), . . ., µ(vn)} ⊆ chase[N ](D,Σ). In
fact, because ρ = σθ, then we can “directly” define a homomorphism h
for σ by setting h = τ ◦ θ so that h(body(σ)) ⊆ {µ(v1), . . ., µ(vn)} ⊆
chase[N ](D,Σ). Then from the definition of chase[N ](D,Σ), it follows
that σ will be applicable to chase[N ](D,Σ) under the homomorphism
h, i.e., there exists some chase step Ii

σ,h−→ Ii+1 such that {λ(v1), . . .,
λ(vn)} ⊆ Ii, for some 0 ≤ i ≤ N . Then based on this fact, there will
exists some q(t′) ∈ chase[N+1](D,Σ) such that for some extension h′

of h ↾X, we have that q(t′) = h′(head(σ)). Therefore, we can define
µ for the node v ∈ nodes(T k+1(D,Σ)) \ nodes(T k(D,Σ)) by setting
µ(v) = q(t′). In particular, assuming that α = p(t) (i.e., recall that λ(v)
= (α, ρ)), then we note from the definition of the extension h′ of h↾X
that p(t)θ = q(t′) for some substitution θ. Therefore, it follows that µ
is a homomorphism that can be extended from nodes(T k+1(D,Σ)) to
chase[N+M ](D,Σ), where M = |nodes(T k+1(D,Σ)) \ nodes(T k(D,Σ))|
− |leafNodes(T (D,Σ))|.

Then from Lemma 1, since T (D,Σ) |= p(t), then assuming that
λ
"
root(T (D,Σ))

$
= (α, ρ) such that α = r(s), we have from the defini-

tion of “instantiated tree supportedness” of an atom that h(r(t)) = r(s) for
some homomorphism h : t −→ s. Then because we have that µ(r(s)) =
r(t′) for some atom r(t′) ∈ chase[N ](D,Σ), where N ≤ |nodes(T (D,Σ))| −
|leafNodes(T (D,Σ))| and µ : nodes(T (D,Σ)) −→ chase(D,Σ) the “bound-
ing number” and homomorphism defined in Lemma 1, respectively, then we
also have from Lemma 1 that r(s)θ = r(t′) for some substitution θ. There-
fore, with h′ = θ ◦ h, then we have that h′(p(t)) = q(t′) ∈ chase[N ](D,Σ),
which implies that chase[N ](D,Σ) |= p(t).

(“⇐=”) Assume chase[N ](D,Σ) |= p(t) for some atom p(t) and N ≥ 1.
Then by the definition of chase[N ](D,Σ) |= p(t), there exists some atom p(t′)
∈ chase[N ](D,Σ) and homomorphism h : t′ −→ t such that h(p(t)) = p(t′).
Thus, there exists some finite chase sequence I0

σ0,h0−−−→ I1, . . ., IN−1
σN ,hN−−−−→

IN such that p(t′) ∈ IN . Let us assume without loss of generality that for i ∈
{1, . . . , N−1}, there does not exists another atom p(t′′) ∈ Ii such that h(p(t))
= p(t′′). Then based on the sequences of TGDs σi and homomorphisms hi

that made σi applicable to Ii, we can construct an instantiated derivation tree
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T (D,Σ) as follows:

1. Let root(T (D,Σ)) be labeled with (p(t′), σNθN), where
θN is the corresponding substitution for hN and its extension h′

N ;

2. For each atom α ∈ chase[N ](D,Σ) either :
• add a node v with label (α,α), if α ∈ D, otherwise
• add a node v with label (α, ρ), where α = head(ρ),

ρ = σiθi and θi the corresponding substitution for hi

and its “extension” h′
i.

3. For each node v with label (α, ρ) such that ρ = σθ,

for some σ ∈ Σ and substitution θ, and body(ρ) =

{α1, . . . ,αn} then for i ∈ {1, . . . , n}, add an edge (v, vi)

such that either:

• vi is labled with (αi,αi), if αi ∈ D, otherwise
• vi is labled with (αi, ρi), such that αi = head(ρi),

ρi = σjθj, θj the corresponding subtitution for hj

(and corresponding extension h′
j) and Ij

σj ,hj−−−→ Ij+1

is the first chase step that derived αi.

Then it is not too difficult to see that the above construction for T (D,Σ) is
in fact an instantiated derivation tree and where N ≤ |nodes(T (D,Σ))| −
|leafNodes(T (D,Σ))|. (i.e., recall that p(t′) ∈ IN such that IN−1

σN ,hN−−−−→ IN
is the first chase step that derived p(t′)). Therefore, because h(p(t)) = p(t′)
for some homomorphism h : t −→ t′

"
i.e., recall that chase(D,Σ) |= p(t)

and p(t′) ∈ chase such that h(p(t)) = p(t′)
$

and since, assuming that (α, ρ)
= root(T (D,Σ)), we have that p(t′) = α from the construction of T (D,Σ),
then we clearly have that T (D,Σ) |= p(t) through the same “witnessing”
homomorphism h.
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A.4 Proof of Proposition 2

Proposition 2. Given a finite set Σ of TGDs, Σ only has a finite number of
loop patterns under the equivalence relation ∼.

Proof. From Proposition 1, there is a number N such that for any derivation
path P of the form (5), for each N+1 ≤ j ≤ |P |, there exists some 1 ≤ i ≤ N
such that (αi, ρi) ∼ (αj, ρj). Therefore, it follows that one only has to check
each derivation path P if it is a loop pattern.

A.5 Proof of Theorem 4

Theorem 4. The class of loop restricted TGDs satisfies the BDTDP.

Before proving Theorem 4, we first introduce the notion of subsumption be-
tween two derivation trees.

Definition 11 (Derivation tree subsumption). Let Σ be a set of TGDs, and
T1(Σ) and T2(Σ) be two derivation trees of Σ. Then we say that T2(Σ)
subsumes T1(Σ) if the following conditions are satisfied: (1) root(T2(Σ)) =
root(T1(Σ)); and (2) leafNodes(T2(Σ)) ⊂ leafNodes(T1(Σ)).

Proof. Given a set Σ of LR TGDs. Let T (Σ) be the set of all derivation trees
of Σ. We consider the set T(Σ) of all derivation trees that are distinct under ∼
and their tree depths are not larger than N , where N is the integer mentioned
in Proposition 16. Then it is clear that T(Σ) ⊆ T (Σ) and is a finite set. Now
we can prove the following important result:
Lemma 2. Let T (Σ) ∈ T (Σ) (note Σ is LR). Then for every database D and
every atom p(t), T (D,Σ) |= p(t) iff there exists some T ′(Σ) ∈ T(Σ) such
that T ′(D,Σ) |= p(t).

Then the theorem follows directly from Lemma 2, by setting the bound to
be the maximal depth of trees in T(Σ). The key idea of proving Lemma 2 is
based on the fact that for any tree T (Σ) in T (Σ), there is a corresponding tree
T ′(Σ) in T(Σ) which can replace T (Σ) without affecting T (Σ)’s derivations.
Without loss of generality, consider a tree T (Σ) in T (Σ), where a path P in
T (Σ) is longer than N . Then from Proposition 1, there must exist a loop pat-
tern L = (wi, · · · , wj) in path P , such that the depth of node wi is within the

6A complete proof of Proposition 1 is given in the full version of this paper, in which N
is presented.
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bound N , and the depth of node wj is beyond N . Since wi ∼ wj and L is loop
restricted and from the conditions presented in Definition 8, then using similar
ideas from [13], we can prove that the subtree underneath the node bodyb(ρi)
in T (Σ) can be replaced by the subtree underneath the node bodyb(ρj). That
is, the loop pattern fragment (wi, · · · , wj) in path P is replaced by a new node
w∗

i : (αi, [bodyb(ρj), bodyh(ρi) → αi]). According to Proposition 2, Σ only
has a finite number of loop patterns under ∼. So by doing this folding for
all paths in T (Σ), we eventually transform T (Σ) into a T ′(Σ) whose depth is
bounded by N , that is, T ′(Σ) ∈ T(Σ).

A.6 Proof of Theorem 5

Theorem 5. The class of LR TGDs satisfies BDDP.

Proof. If a set of TGDs Σ satisfies the BDTDP property, then there exists
some number K such that for every database D, we have that D ∪ Σ |=
∃Zp(Z) iff there exists some atom p(n), where n ∈ Γ

|n|
N , such that T (D,Σ)

|= p(n) and where depth(T (D,Σ)) ≤K. Then since by Theorem 3, we have
that chase[N ](D,Σ) |= p(n), where N is bounded by |nodes(T (D,Σ))|, then
it follows that Σ also satisfies the BDDP property.

A.7 Proof of Theorem 6

Theorem 6. Consider the BCQA problem for a given set of LR TDGs. Its data
complexity is in AC0, and its combined complexity is 2-EXPTIME-complete.

Proof. We only prove here the 2-EXPTIME-complete combined complexity
since the AC0 data complexity directly follows from Theorem 5 and from the
fact that first-order rewritable implies AC0 in data complexity [11].

(Membership) Let Σ be a LR set of TGDs. Then we have by Theorem 4
that Σ satisfies BDTDP. That is, there exists a number K such that for any
database D and query q = ∃Zp(Z) , we have that there exists a derivation tree
T (Σ) = (N,E,λ) such that T (Σ) |= p(t) and where:

• t is a tuple of terms from Γ of the same length as Z;

• tθ = Z;

• depth(T (D,Σ)) ≤ K.
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Then enumerating through all those derivation trees can be done in time
O(maxbody(Σ, q)K), where:

maxbody(Σ, q) = max
())body(σ)

)) | σ ∈ Σ
*
.

On the other hand, since the number K is sufficient to be of size

O(2p(|Σ|·maxart(Σ,q))),

for some polynomial function p(x) where maxart(Σ, q) denotes the maximum
arity of an atom in atoms(Σ ∪ {q}) (by Proposition 2 and Theorem 4), then
it follows that enumerating though all those utmost K-depth derivation trees
can be done in time

O(maxbody(Σ, q)2
p(|Σ|·maxart(Σ,q))

)

≤ O(2⌈log(maxbody(Σ,q)⌉·2p(|Σ|·maxart(Σ,q))

).

Then finally, further considering the checking if any of these utmost K-depth
derivation trees can be instantiated under the database D can be done in time:

O(|D| · 2⌈log(maxbody(Σ,q))⌉·2p(|Σ|·maxart(Σ,q))

)

≤ O(2⌈log(|D|)⌉+ ⌈log(maxbody(Σ,q))⌉·2p(|Σ|·maxart(Σ,q))

).

(Hardness) We reduce the CQA problem under weak-acyclic (WA) TGDs
into the CQA under LR TGDs. Here, we note that CQA under WA TGDs
known to be 2-ExpTime-complete [11]. So towards this purpose, for a given
database D, set of LR TGDs Σ, and BCQ q, we denote the transformation
LRD,Σ(Σ) such that LRD,Σ(Σ) is the following set of TGDs:
(

p∗1(t1,Y1) ∧ . . . ∧ p∗n(tn,Yn) → q∗(u,Z)

| “p1(t1) ∧ . . . ∧ pn(tn) → q(u)” ∈ Σ ∪ {q} and there exists a

number l such that :

(1) for each X ∈ {Y1, . . . ,Yn,Z} :

(a) |X| = MAXART(Σ) ·
+
log

" ))CONST(D)
))+

))ARG(Σ)
)) $
,
;

(2) Z = X1, . . . , Xl, 1, Xl+1, . . . , X|Z| and Yi,Yj ∈ {Y1, . . . ,Yn} :

(a) Yi = X1, . . . , Xl, 0, Xl+1, . . . , X|Yi|;

(b) Yj = X1, . . . , Xl, 0, Xl+1, . . . , X|Yj |

*
,
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and LRD,Σ(D) is the following set of atoms:

LRD,Σ(D) =
(
p∗(t,0) | p(t) ∈ D

*
,

where |0| = |0, . . . , 0| = MAXART(Σ) ·
+
log

" ))CONST(D)
)) +

))ARG(Σ)
)) $
,

.
In particular, we note that for each predicate symbol p ∈ Pred(Σ), we have
that p∗ is a new (auxiliary) predicate symbol. Then it follows that LRD,Σ(Σ)
is LR TGDs. Moreover, we have that:

chase(D,Σ) |= q iff chase
"

LRD,Σ(D), LRD,Σ(Σ)
$
|= LRD,Σ(q).

A.8 Proof of Theorem 7

Theorem 7. Deciding whether a set of TGDs is loop restricted is PSPACE-
complete.

Proof. (Membership) To show membership, we provide a non-deterministic
PSPACE algorithm called NOTLR, as we will described in Algorithm 1. There-
fore, since the complexity class PSPACE is closed under nondeterminism and
complementation (i.e., PSPACE, NPSPACE and coPSPACE and are all equiv-
alent complexity classes) then the result follows. Firstly, for the following
Algorithm 1, we assume without loss of generality that all the existentially
quantified variables in each head of a TGD in Σ has already been eliminated
via appropriate substitutions of labeled nulls from ΓN . Thus, we further as-
sume that σ1, σ2 ∈ Σ and σ1 ∕= σ2 implies varNull(σ1) ∩ varNull(σ2) = ∅, i.e.,
all the universally quantified variables and labeled nulls in each pair of unique
TGDs are pairwise disjoint.

Now we further define some necessary notions. Given an atom α, a TGD
σ such that varNull(α) ∩ varNull(σ) = ∅ and some atom β ∈ body(σ) (and
thus, varNull(α) ∩ varNull(β) = ∅ as well), we denote by θ〈β/α,σ〉 (as will
be used in Line 19 of Algorithm 1) as a substitution on σ that satisfies the
following properties:

• βθ〈β/α,σ〉 = α;

• for each t ∈ (varNull(σ) \ varNull(β)), we have that θ〈β/α,σ〉(t) = t, i.e.,
identity on terms not in varNull(β).
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Intuitively, given that varNull(α) ∩ varNull(σ) = ∅, we have that θ〈β/α,σ〉 is
the “minimal substitution” that is required to unify the atom α into the TGD
σ through the atom β ∈ body(σ). Given again a TGD σ and two finite sets
V1, V2 ⊂ (ΓV ∪ ΓN), we denote by ϑ[V1 *→V2] (which will be used in Line 31 of
Algorithm 1) as a renaming function ϑ[V1 *→V2] : varNull(σ) −→ V2 such that
the following properties are satisfied:

• t ∈ (V1 ∩ varNull(σ)) implies ϑ[V1 *→V2](t) ∈ V2;

• t1, t2 ∈ varNull(σ) implies t1 = t2 iff ϑ[V1 *→V2](t1) = ϑ[V1 *→V2](t2);

• t ∈ (varNull(σ) \ V1) or t ∈ (V1 ∩ V2) implies ϑ[V1 *→V2](t) = t.

Intuitively, ϑ[V1 *→V2] is an injective renaming function from the variables and
labeled nulls of σ mentioned in V1 into those in V2. Lastly, we also assume
the two finite sets SV and SN , where: (1) SV ⊂ ΓV and SN ⊂ ΓN ; (2) |SV | =
|SN | = maxArt(Σ); and (4) (SV ∪ SN) ∩ varNull(Σ) = ∅.

In Algorithm 1, we have that Line 1 nondeterministically guesses a triple
(α0, σ0, θ0) and two finite subsets V ⊂ ΓV and V ∗ ⊂ (ΓV ∪ ΓN) and where
V ⊆ V ∗. Here, σ0θ0, as obtained from the tuple (α0, σ0, θ0), denotes the “ini-
tial” part of our loop pattern, i.e., informally, if we assume a loop pattern P
= (α1, ρ1), . . ., (αn, ρn) then ρn would correspond to our initial σ0θ0. The
(boolean) variables “lp, ” and “lp II, ” as first mentioned in Lines 10-11, lets
us know if a derivation path (as will be produce via the while loop in Lines
14-32, which we will explain later) is a loop pattern or loop separable pat-
tern, respectively. The following Lines 12 and 13 is for the initialization of
the while loop of Lines 14-32. In particular, the number “n” in Line 13 is
nondeterministically a guess of a length of a possible loop pattern that will be
derived in the while loop and where the value of N is as specified in Proposi-
tion 1. Then finally in regards to the while loop (Lines 14-32), Line 16 non-
deterministically guesses a triple (α′, σ′, θ′) that satisfies the three Conditions
(1), (2) and (3) as specified in Lines 17, 18 and 19, respectively. Intuitively,
each iteration of the while loop extends our initial (one element) derivation
path (αN , σNθN) (corresponding to the initial triple “(α0, σ0, θ0)” as men-
tioned earlier) to add one more element corresponding to the triple (α′, σ′, θ′)
with properties as mentioned in Lines 17-19. Indeed, we note in particular
the condition in Line 18 which guarantees that α ∈ body(σ′θ′) so that each
added new (guessed) elements (α′, σ′θ′) into the derivation path is indeed still
a “derivation path.” Thus, after (say) k iterations, this would correspond to
a derivation path (say) P ′ = (αj, ρj), . . ., (αN , ρN) such that |P ′| = k and
where ρN = σ0θ0.
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Algorithm 1: NOTLR
Data: A set of TGDs Σ (with existentially quantified variables already

eliminated as mentioned above), number N from Proposition 1 and
the two sets SV and SN previously mentioned above.

Result: “accept” if not loop restricted and “reject” otherwise
1 let (α0,σ0, θ0) be a triple and V and V ∗ be two finite sets such that:
2 (1) σ0 ∈ Σ;
3 (2) θ0 an applicable substitution for σ0 that satisfies the following

conditions:
4 (a) for each t ∈ (var(σ0) \ var(head(σ0))), we have that θ0(t) ∈

(SV ∪ SN );
5 (b) for each t ∈ varNull(head(σ0)), we have that θ0(t) ∈ V ∗;
6 (2) α0 = head(σ0θ0);
7 (3) V ∗ = varNull(σ0θ0);
8 (4) V ⊆ var(V ∗);
9 (5) V ∗ ∩ (varNull(Σ) ∪ SV ∪ SN ) = ∅.

10 lp ←− false;
11 lp II ←− true;
12 ρ ←− σ0θ0;
13 let n ∈ {1, . . . , N + 1} and i ←− 1;
14 while i ≤ n and lp = false do
15 α ←− head(ρ);
16 let (α′,σ′, θ′) be a triple and β′ ∈ body(σ′) s.t. the following are

satisfied:
17 (1) σ′ ∈ Σ;
18 (2) θ′ = θ〈β′/α,σ′〉 a substitution;
19 (3) α′ = head(σ′θ′).
20 if there exists two sets bodyh and bodyb such that:
21 (1) bodyh ⊆ body(σ′θ′) and bodyb ⊆ body(σ′θ′);
22 (2) bodyh ∩ bodyb = ∅;
23 (3) α ∈ bodyb.
24 then
25 if lp II = true and var({α′} ∪ bodyh) ∩ var(bodyb) ∕= V then
26 lp II ←− false;

27 V ∗ ←− V ∗ ∩ varNull(α′);
28 ρ ←− ϑ[(varNull(σ′θ′)\V ∗) *→(SV ∪SN )](σ

′θ′);
29 if ρ ∼ σ0θ0 then
30 lp ←− true;
31 else
32 i ←− i + 1;

33 if ρ ∼ σ0θ0 then
34 if the following condition:
35 lp II = false and var(V ∗) = V ,
36 holds then
37 return accept;

38 return reject;
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A key thing to observe in the while loop (Lines 14-32) is that we do not
store each of the triples (α′, σ′, θ′) but are overwritten in the next iteration (see
Lines 15 and 30). As such, the space needed by Algorithm 1 will never go
beyond PSPACE although the actual length of the corresponding loop pattern
is exponential. In fact, the total space that will be used cannot be more than
O(|Σ|·|atoms(Σ)|·maxArt(Σ)). This is actually the reason for the application
of the relabeling function in Line 28 so that assignments are restricted only to
the variables and labeled nulls to the set varNull(Σ) ∪ SV ∪ SN ∪ V ∗. Most
importantly, the crucial information that we keep from each iteration are the
values of the (boolean) variables (or flags) “lp and “lp II which, as set in Lines
26 and 30, tells us when the derivation path is already a loop pattern (Line 30)
or loop separable pattern (Line 26). In regards to the loop separable pattern,
we note that our initial nondeterministic guess of the set (of variables) “V ” in
Line 1 is to denote the final intersection of the variables of all the αi’s in the
derivation path and so that a violation of loop separable pattern condition is
detected in Line 35 only if it is the case that var(V ∗) = V , and where V ∗ is the
actual computed intersection of the αi’s variables/nulls as computed on Line
27 of each iteration of the while loop. Finally, we have in Line 33 that if the
termination of the while loop of Lines 14-32 corresponded to a loop pattern,
then further satisfaction of the condition in Lines 35 tells us that the loop
pattern is not “loop separable,” in which case Algorithm 1 returns “accept. ”

Lemma 3. For a set of TGDs Σ, we have that Σ is not LR iff there exists some
computation of NOTLR(Σ) such that NOTLR(Σ) returns “accept.”

Proof. (“=⇒”) Then let P ′ = (α′
1, ρ

′
1), . . ., (α

′
n, ρ

′
n) be the loop pattern that

is not loop restricted. Then we can make each of the pair (α′
n−i, ρ

′
n−i) (for i ∈

{1, . . . , n−1}) correspond to each iterations of the while loop in Lines 14-32
of Algorithm 1. Moreover, the fact that P ′ is not loop restricted and the fact
that

&
i∈{1,...,n} var(α

′
i) = var(V ∗) further implies that we can make the entire

computation to be an accepting computation of NOTLR(Σ).
(“⇐=”) Assume without loss of generality that the (nondeterministic)

choice for n ∈ {1, . . . , N} in Line 13 of Algorithm 1 is k. Then we can
construct a loop pattern P ′ = (α′

1, ρ
′
1), . . ., (α

′
n, ρ

′
n) such that |P ′| = k + 1

inductively as follows (note that our induction will be from i = n to i = 1):

Basis: Let (α′
n, ρ

′
n) be the pair such that ρ′n = σ0θ0 with σ0θ0 the TGD and

assignment corresponding to the triple (α0, σ0, θ0) in Line 1 of Algo-
rithm 1. In addition, also let (α′

n−1, ρ
′
n−1) be the pair such that ρ′n−1

= σ′θ′ with σ′θ′ corresponding to the triple (α′, σ′, θ′) of the first iter-
ation (i.e., when i = 2 in the while loop of Lines 14-32) in Line 16
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of Algorithm 1. Moreover, about the assignment θ′ = θ〈β′/α,σ′〉 as set
in Line 18, we further assume that θ′(t) /∈ varNull(σ0θ0) for each t ∈
(var(σ′) \ var(β′)). Intuitively speaking, the extra assertions about the
assignment θ′ simply enforces the condition that the other variables not
mentioned in β′ is mapped by θ′ to a set disjoint from varNull(σ0θ0).
Note that the aforementioned condition about θ′ can possibly introduce
an exponential number of variables which we allow since we are now
constructing a “particular” loop pattern and not a membership problem.
Clearly, we have that α′

n ∈ body(ρ′n−1).

Inductive step: Assume that we had already defined (α′
n−i, ρ

′
n−i), . . ., (α

′
n, ρ

′
n)

for i ∈ {1, . . . , k} which corresponds to the first i-iterations of the while
loop of Lines 14-32 of Algorithm 1. In addition, also assume that α′

n−j

∈ body(ρ′n−(j+1)) for j ∈ {1, . . . , i− 1}.

Then we set (α′
n−(i+1), ρ

′
n−(i+1)) as the pair such that:

1. ρ′n−(i+1) = σ′θ∗, where:

(a) σ′ is the TGD corresponding to the (i + 1)th-iteration of the
while loop (Lines 14-32) as mentioned in Line 16;

(b) θ∗ is similar to θ′ = θ〈β′/α,σ′〉 as in Line 18 but where this
time, we also assume that θ∗(t) /∈ varNull(ρ′n−i) for each t ∈
(var(σ′) \ var(β′)) (similarly to the basis above) and where α
= α′

n−i and β′ ∈ body(σ′) (as in Line 16).

2. α′
n−(i+1) = head(ρ′n−(i+1)).

Lemma 4. With ρ as defined in Line 29 of Algorithm 1, we have that ρ
∼ σ0θ0 iff ρ′n−(i+1) ∼ ρ′n.

Proof. (“=⇒”) First, the “renaming function” ϑ[(varNull(σ′θ′)\V ∗) *→(SV ∪SN )]

as invoked in Line 28 and the computation of the set V ∗ in Line 27
enforces varNull(ρ) ∩ varNull(σ0θ0) = V ∗. Therefore, we have that
ρ↾V ∗ ∼ σ0θ0 ↾V ∗ . Therefore, since this is congruent with the fact that
ρ′n−(i+1)↾V ′ ∼ ρ′n↾V ′ , where V ′ = varNull(ρ′n−(i+1)) ∩ varNull(ρ′n), then
it follows that ρ′n−(i+1) ∼ ρ′n as well.

(“⇐=”) This direction is similar to the previous one and follows from
the fact that ρ′n−(i+1) ↾V ′ ∼ ρ′n ↾V ′ (where V ′ = varNull(ρ′n−(i+1)) ∩
varNull(ρ′n)) is congruent to the fact that ρ↾V ∗ ∼ σ0θ0 ↾V ∗ with V ∗ as
computed in Line 27 of Algorithm 1.
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Therefore, it follows from Lemma 4 that P ′ is indeed a loop pattern. More-
over, since NOTLR(Σ) is an accepting computation and thus, satisfies the
condition in Lines 35 of Algorithm 1, then it follows that P ′ is a loop pattern
of Σ that is not loop restricted. This completes the proof of Lemma 3.

(Hardness) We prove hardness from “first principles.” Thus, let L be an
arbitrary decision problem in PSPACE. Then from the definition of complex-
ity class PSPACE [27], there exists some deterministic Turing machine M
such that for any string s, s ∈ L iff M accepts s in at most p(|s|)-space. Thus,
assume the Turing machine M to be the tuple 〈Q, Γ, □, Σ, δ, q0, F 〉 such that:
(1) Q ∕= ∅ is a finite set of states; (2) Γ ∕= ∅ is a finite set of alphabet symbols;
(3) □ ∈ Γ is the “blank” symbol; (4) Σ⊆ Γ \ {□} is the set of input symbols;
(5) δ : (Q \ F ) × Γ −→ Q × Γ × {L,R} is the transition function; (6) q0 ∈
Q is the initial state; and lastly, (7) F ⊆ Q is the set of final/accepting states.

Now before proceeding to our actual reduction, we first introduce the fol-
lowing helpful notions, let V0 = XXY and V1 = Y XX . Intuitively, V0

encodes the digit 0 and V1 the digit 1. For example, under the said no-
tions, we have that V0V0V1 stands for the tuple XXYXXY Y XX since
XXY- ./ 0

V0

XXY- ./ 0
V0

Y XX- ./ 0
V1

. Intuitively, such an encoding scheme will allow us to

encode bit-patterns (e.g., as in “00100011,” “00100010,” “00100110,” etc.) to
represent both the linear ordering and the current tape cell contents of the
Turing machine M and where it also enjoys the propert V0 ∕∼ V1. By Z, we
denote the three times repetition of the variable Z, i.e., Z = ZZZ. As will be
seen later on, this will allow us to determine when a final state is reached.

Let s= a0 . . . a|s| ∈ Γ|s| be the input string to the machine M . Then define
ΣMOVE

M(s) as the set of TGDs such that:

ΣMOVE
M(s)

=
#
cf

"
T〈i〉, stt(q), num(k),X1, . . . ,Xk−1, alp(a),Xk+1, . . . ,Xp(|s|)

$

→ cf
"
T〈i〉 + 1, stt(q′), num(k + 1),

X1, . . . ,Xk−1, alp(b),Xk+1, . . . ,Xp(|s|)
$

| δ(q, a) = (q′, b, R) and i ∈ {1, . . . , n− 1}, where

n =
1
p(|s|) · log(|Γ|)

2
and k ∈ {1, . . . , p(|s|)}

%
(18)
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∪#
cf

"
T〈i〉, stt(q), num(k),X1, . . . ,Xk−1, alp(a),Xk+1, . . . ,Xp(|s|)

$

→ cf
"
T〈i〉 + 1, stt(q′), num(k − 1),

X1, . . . ,Xk−1, alp(b),Xk+1, . . . ,Xp(|s|)
$

| δ(q, a) = (q′, b, L) and i ∈ {1, . . . , n− 1}, where

n =
1
p(|s|) · log(|Γ|)

2
and k ∈ {1, . . . , p(|s|)}

%
, (19)

where:

• T〈i〉
"
for i ∈ {1, . . . , n − 1} where n =

1
p(|s|) · log(|Γ|)

2$
is a tuple

of variable triples such that T〈i〉 = T1 . . .TiV0V1 . . .V1- ./ 0
n-times

and Tj =

Tj1Tj2Tj3 for j ∈ {1, . . . , i}. In particular, we note that |T〈i〉| = 3 · n
for any i ∈ {1, . . . , n− 1} (with n as previously defined above);

• With T〈i〉 as previously defined above, T〈i〉+1=T1 . . .TiV1V0 . . .V0- ./ 0
n-times

,

(i.e., loosely speaking, T〈i〉+1 is the successor of T〈i〉 under the binary
representation);

• stt : Q −→ {V0,V1,Z}n, where n = ⌈log(|Q|)⌉, such that assuming
an ordering Q \ F = {q1, . . . , q|Q|} of the states in Q \ F , then we have
that for each i ∈ {1, . . . , |Q|}, if b0 . . . bn is the n-length binary string
representation of the number i, then stt(si) =Vb0 . . .Vbn . On the other
hand, we have that stt(q) = Z . . .Z- ./ 0

n-times
for each q ∈ F ;

• num : {1, . . . , 2p(|s|)} −→ {V0,V1}n, where n = p(|s|), and so that if
the n-length binary string representation of some number k ∈ {1, . . . , 2p(|s|)}
is b0 . . . bn

"
i.e., bi ∈ {1, 0} for i∈ {1, . . . , n}

$
, then num(k) =Vb0 . . .Vbn ;

• alp : Γ −→ {V0,V1}n, where n = ⌈log(|Γ|)⌉, such that assuming an
ordering Γ = {a′1, . . . , a′|Γ|} of the alphabets Γ, we have that for each
i ∈ {1, . . . , |Γ|}, if b0 . . . bn is the n-length binary string representation
of the number i, then alp(a′i) = Vb0 . . .Vbn ;

• For i ∈ {1, . . . , k−1, k+1, . . . , p(|s|)}, Xi =Xi1 . . . Xi n is an n-length
tuple of distinct variables, where (as above) n = ⌈log(|Γ|)⌉.
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Intuitively, the set of TGDs ΣMOVE
M(s) as previously described above simulates the

right and left movements of the head of the machine M . Here, the relational
symbol cf (i.e., “cf” for configuration) as mentioned in (18) and (19), is of
arity:

3 ·
1
p(|s|) · log(|Γ|)

2
+ ⌈log(|Q|)⌉+ p(|s|)⌈log(|Γ|)⌉+ p(|s|) · ⌈log(|Γ|)⌉,

and where the arguments of cf is explained via the following illustration:

cf
"
T〈i〉-./0

time/step

, stt(q)- ./ 0
current state

,

current head tape position
/ 0- .
num(k), X1, . . . ,Xk−1,

character in cell k/ 0- .
alp(a), Xk+1, . . . ,Xp(|s|)- ./ 0

current tape configuration

$
.

Additionally, to also incorporate the starting and accepting configurations
of the machine M on the input string s, we further define the set of TGDs
ΣINIT

M(s) as follows:

ΣINIT
M(s) =
#
r(X,Z)

→ cf
"
T0, stt(q0), num(0), alp(a0), . . . , alp(a|s|), alp(□), . . . , alp(□)

$
,

(20)

cf
"
T0, stt(q0), num(0), alp(a0), . . . , alp(a|s|), alp(□), . . . , alp(□)

$

→ cf
"
T0 + 1, stt(q), num(1), alp(b), . . . , alp(a|s|), alp(□), . . . , alp(□)

$

(21)

| δ(q0, a0) = (q, b, R)
%
,

where T0 = V0 . . .V0V0- ./ 0
|T|-times

and T0 + 1 = V0 . . .V0V1- ./ 0
|T|-times

. In particular, we note

from the previous notions that all the variables mentioned in the rule (20) will
only be from the set {X, Y } since they are simply combinations of the tuples
V0 =XXY and V1 = Y XX . Then finally to complete our encoding, further
define ΣACCEPT

M(s) as follows:

ΣACCEPT
M(s) =

#
cf

"
T〈i〉, stt(q), num(k),X1, . . . ,Xk−1, alp(a),Xk+1, . . . ,Xp(|s|)

$

→ r(X,Z) (22)

| q ∈ F and i ∈ {1, . . . , n− 1}, where n =
1
p(|s|) · log(|Γ|)

2
,

k ∈ {1, . . . , p(|s|)} and a ∈ Γ
%
.
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Lastly, for the rest of the proof, we set ΣM(s) = ΣINIT
M(s) ∪ ΣMOVE

M(s) ∪ ΣACCEPT
M(s) .

Lemma 5. M accepts s iff ΣM(s) is not LR.

Proof. (“=⇒”) Then we can construct a loop pattern of ΣM(s) that is not loop
separable. Indeed, such a k-steps accepting computation of M(s) corresponds
to a sequence:

cf(num(0), stt(q0), num(0),X0), . . . , cf(num(k), stt(q), num(nk),Xk),

where q ∈ F (i.e., the set of accepting states) and each of the Xi (for i ∈
{1, . . . , k}) corresponds to the tape configuration of the machine M at the ith-
step. Then we can map such a sequence into a derivation path P = (α1, ρ1),
(α2, ρ2), . . ., (αn, ρn) such that:

• (αn, ρn) is a pair such that αn = cf(num(0), stt(q0), num(0),X0) and
ρn the rule (20), i.e.,

ρn = r(X,Z) → cf
"
T0, stt(q0), num(0),

alp(a0), . . . , alp(a|s|), alp(□), . . . , alp(□)
$
;

• (α2, ρ2) is a pair such that α2 = r(X,Z) and ρ2 the rule (22), i.e.,

ρ2 = cf
"
T〈i〉, stt(q), num(k),X1, . . . ,Xk−1, alp(a),Xk+1, . . . ,Xp(|s|)

$

→ r(X,Z),

for some i∈ {1, . . . ,
1
p(|s|)·log(|Γ|)

2
} and q ∈ F (the accepting states);

• and lastly, (α1, ρ1) is a pair such that α1 = cf(num(0), stt(q0), num(0),X0)
and ρ1 the rule (20) again, i.e.,

ρ1 = r(X,Z) → cf
"
T0, stt(q0), num(0),

alp(a0), . . . , alp(a|s|), alp(□), . . . , alp(□)
$
. (23)

Then since we have that

(num(i), num(q), num(i),Xi) ∕∼ (num(j), num(q′), num(j),Xj)

for any i ∕= j since num(i) ∕∼ num(j), then we also have that (αi, ρi) ∕∼
(αj, ρj). Therefore, since we clearly have that (α1, ρ1) ∼ (αn, ρn), then it
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follows that P is in fact a loop pattern. Thus, it is only left for us to show
that P is in fact not loop separable. Indeed, since it follows from a simple
induction that

&
i∈{0,...,n−1} var(αn−i) = {X} while var(ρn−i) = var(αn−i) =

{X, Y } for i ∈ {1, . . . , n − 3}, then since for ρ2 we have that bodyh(ρ2) =
∅, bodyb(ρ2) = {α3}, and α2 = r(X,Z), then since var({α2}∪ bodyh(ρ2)) ∩
bodyb(ρ2)) = {X,Z} ∕=

&
i∈{1,...,n} var(αi) = {X}

"
where in particular, we

note that since q ∈ F , then Z ∈ var(bodyb(ρ2)) because stt(q) = Z . . .Z- ./ 0
⌈log |Q|⌉-times$

, then it follows that P is not loop separable.
(“⇐=”) Firstly, we observe from the construction of ΣM(s) = ΣINIT

M(s) ∪
ΣMOVE

M(s) ∪ ΣACCEPT
M(s) that due to the linear ordering as enforced by the time argu-

ment of cf (i.e., the first tuples T〈i〉 and T〈i〉 + 1 mentioned in the rules (18),
(19), (20) and (22)) that any loop pattern P = 〈α1, ρ1〉, . . ., 〈αn, ρn〉 of ΣM(s),
where ρ1 = σ1θ1 and ρn = σnθn, implies that both σ1 and σn are of the rule
(20). This also follows from the fact that assuming αi = cf(Ti, si,pi, tpi)
such that Ti, si, pi and tpi are the “time, ” “state, ” “tape position” and cur-
rent “tape configuration, ” respectively, then we will have that Ti ∕∼ Tj for
each i, j ∈ {1, . . . , n− 1} and i < j, but where we have that T1 ∼ Tn. Thus,
using similar arguments above, if we assume that P = (α1, ρ1), . . ., (αn, ρn)
is a loop pattern of ΣM(s) that is not loop restricted, then it follows that the
sequence (α2, ρ2), . . ., (αn, ρn) corresponds to an accepting computation of
M(s).

A.9 Proof of Proposition 3

Proposition 3. With GLR the class of generalized loop restricted TGDs as
defined in Definition 10, we have that the following holds:

• LR ⊊ GLR;

• AC ⊊ GLR;

• ML ⊊ GLR;

• SJ ⊊ GLR;

• aGRD ⊊ GLR;

• DR ⊊ GLR.
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Proof. We prove by considering the individual cases as follows:

(“LR ⊊ GLR”): This follows from the fact that the loop pattern Type I of
Definition 10 is actually the loop pattern of Definition 8.

(“AC ⊊ GLR”): On the contrary, assume that there exists some Σ ∈ AC
such that Σ /∈ GLR. Then by Definition 10, there exists some loop pat-
tern L = (α1, ρ1) · · · (αn, ρn) such that it is neither of the Types I-V as
described in Definition 10. In particular, we have that L is not of the
Type II. Then this implies that for all (αi, ρi) (1 < i ≤ n), we have that
body(ρi) separated into two disjoint body parts body(ρi) = bodyh(ρi)
∪ bodyb(ρi) implies that for all j (1 ≤ j < i), one of the following
conditions holds:

1. bodyh(ρi) ∩ bodyb(ρi) ∕= ∅, or

2. var
"
{αj} ∪ bodyh(ρi)

$
∩ var

"
bodyb(ρi)

$
∕= ∅.

In particular, if we take bodyh(ρi) = ∅ and bodyb(ρi) = body(ρi), for
each i ∈ {1, . . . , n}, then since L is a loop pattern (and thus, αi+1 ∈
body(ρi) = bodyb(ρi)) then we have that Conditions 1 and 2 cannot
hold. Therefore, we must have that Condition 3 holds for each (αi, ρi)
(1 ≤ i < n) (i.e., if we take bodyh(ρi) = ∅ and bodyb(ρi) = body(ρi)).
Then this contradicts the assumption that Σ ∈ aGRD because this im-
plies a cycle in the “firing graph” [3].

(“ML ⊊ GLR”): On the contrary, assume that there exists some Σ ∈ ML
such that Σ /∈ GLR. Then again by Definition 10, there exists some
loop pattern L = (α1, ρ1) · · · (αn, ρn) such that it is neither of the Types
I-V as described in Definition 10. In particular, we have that L is not
of the Type III. Then this implies that there exists some (αi, ρi) (1 ≤
i < n) such that var(ρi) ∕⊆ var(β), for some β ∈ body(ρi). Therefore,
since ρi = σiθi, for some σi ∈ Σ and assignment θi, then it follows that
there exists some β′ ∈ body(σi) such that var(σi) ∕⊆ var(β′). Then this
contradicts the assumption that Σ ∈ ML.

(“SJ ⊊ GLR”): On the contrary, assume that there exists some Σ ∈ SJ such
that Σ /∈ GLR. Then again by Definition 10, there exists some loop
pattern L = (α1, ρ1) · · · (αn, ρn) such that it is neither of the Types I-
V as described in Definition 10. In particular, we have that L is not
of the Type IV. Then this implies that there exists some pair (αi, ρi)
in L (1 ≤ i < n) such that

"
var(αi) ∩ var(β)

$
∕⊆

&n
j=i+1 var(αj), for
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some β ∈ body(ρi+1)\{αi}. Then this again contradicts the assumption
that Σ ∈ SJ since the “expansion” of Σ [11] (which correspond to the
loop pattern) will contain a marked variable that occurs in two different
atoms;

(“aGRD ⊊ GLR”): On the contrary, assume that there exists some Σ ∈
aGRD and Σ /∈ GLR. Then again by Definition 10, there exists some
loop pattern L = (α1, ρ1) · · · (αn, ρn) such that it is neither of the Types
I-V as described in Definition 10. In particular, we have that L is not of
the Type V. Then we have from the definition of loop restricted Type V
that Σ will have cycle in the rule dependency graph, which contradicts
the assumption that Σ ∈ aGRD;

(“DR ⊊ GLR”). This follows from the definition of domain restricted TGDs
that for each rule σ we have that:

var(body(σ)
$
⊆ var

"
head(σ)

$
. (24)

Now let Σ ∈ DR and let L = (α1, ρ1) · · · (αn, ρn) be a loop pattern
of Σ. Then we have that L is of the loop pattern of Type I of Def-
inition 10. Indeed, we will show that for each i = 1 to i = n, we
have that body(ρi) can be separated into two disjoint parts body(ρi) =
bodyh(ρi) ∪ bodyb(ρi) such that the following conditions holds:

1. bodyh(ρi) ∩ bodyb(ρi) = ∅,

2. αi+1 ∈ bodyb(ρi),

3. var
"
{αi} ∪ bodyh(ρi)

$
∩ var

"
bodyb(ρi)

$
=

&n
j=1 var(αj) ∅.

Indeed, for each i, we partition body(ρi) into two sets bodyh(ρi) and
bodyb(ρi) such that:

bodyh(ρi) = ∅; (25)
bodyb(ρi) = body(ρi), (26)

i.e., we set bodyb(ρi) to be all the body atoms of ρi while we set bodyh(ρi)
to be empty. Then it is not too difficult to see that bodyh(ρi) and
bodyb(ρi) is clearly a partition of body(ρi). Moreover, because of Con-
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dition (24), we further have that:

var
"
{αi} ∪ bodyh(ρi)

$
∩ var

"
bodyb(ρi)

$

= var({αi}) ∩ var
"
bodyb(ρi)

$
(i.e., since we set bodyh = ∅)

=
n3

j=1

var(αj).

A.10 Proof of Theorem 8

Theorem 8. The class of generalized loop restricted patterns satisfies BDTDP.

Proof. (“Types I, II and V”): The proof follows similarly to that as in Propo-
sition 11 and Proposition 12 of [13].

(“Type IV”): Consider a loop pattern L = (w1, . . . , wn) of Type IV (as de-
fined in Definition 10). Then by the definition of a loop pattern (see
Definition 7), we have that w1 ∼ wn and wi ∕∼ wj for any other i, j
(1 ≤ i, j ≤ n). Then assuming that wi = (αθi, σθi), for each i ∈
{1, . . . , n}, let us consider the following two only possibilities:

Case 1: ∃β1θ1, β2θ1 ∈ body(σθ1), where β1θ1 ∕= β2θ1, s.t.
"
var(β1θ1)∩

var(β2θ1)
$
∕= ∅:

Then we can assume without loss of generality that the loop pat-
tern L = (w1, . . . , wn) is such that:

w1 =
"
αθ1, “βθ1, 4Bbθ1, 4Bhθ1 → αθ1”

$
; (27)

w2 =
"
α2θ2, σ2θ2

$
; (28)

...

wn−1 =
"
αn−1θn−1, σn−1θn−1

$
; (29)

wn =
"
αθn, “βθn, 4Bbθn, 4Bhθn → αθn”

$
, (30)

where:

• σ = “β,5Bb,5Bh → α” is some TGD rule of Σ, where body(σ)

= {β} ∪ Bb ∪ Bh, β /∈
"
Bb ∪ Bh

$
and 5Bb and 5Bh denotes the

conjunctions of the atoms in Bb and Bh, respectively;
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• θ1 and θn are assignments on the rule σ ∈ Σ;
• β′θn ∈ Bbθn implies

"
var(βθn) ∩ var(β′θn)

$
∕= ∅;

• β′θn ∈ Bhθn implies
"
var(βθn) ∩ var(β′θn)

$
= ∅;

• α2θ2 = βθ1 ∈ body(σθ1).

Then since the loop pattern L = (w1, . . . , wn) is of Type IV, then
we have that

6

β′θn∈Bbθn

"
var(βθn) ∩ var(β′θn)

$
⊆

i=n3

i=1

var(αiθi). (31)

Now let us define the assignment θ′ : var(σnθn) −→ var(σ1θ1) as
follows:

θ′ =
#
θn(X) :→ θn(X) |X ∈ var(σ) and θn(X) ∈

i=n3

i=1

var(αiθi)
%

∪
#
θn(X) :→ θ1(X) |X ∈ var(σ) and θn(X) /∈

i=n3

i=1

var(αiθi)
%
.

(32)

Then since σθ1 ∼ σθn and by Condition (31), then it follows that
with w∗

n =
"
αθ∗, “βθ∗, 4Bbθ∗, 4Bhθ∗ → αθ∗ ”

$
, where θ∗ = θ′ ◦ θn,

we have that w∗
n = w1. Therefore, using the same argument as to

the proof of Proposition 12 in [13], we have that any occurrence
of the loop pattern L = (w1, . . . , wn) in a derivation tree T (Σ)
implies another derivation tree T ′(Σ) such that T (Σ) subsumes
T ′(Σ) by “replacing” the derivation path L = (w1, . . . , wn) by the
singleton w∗ =

"
αθ1, “βθ

∗, 4Bbθ1, 4Bhθ1 → αθ1”
$

(see Fig. 2 in the
proof of Proposition 12 of [13]).

Case 2: ∀β1θ1, β2θ1 ∈ body(σθ1) such that β1θ1 ∕= β2θ1 implies that"
var(β1θ1) ∩ var(β2θ1)

$
= ∅:

The key to proving this case is similar to the ideas of the previ-
ous case above. Indeed, let us assume again a loop pattern L =
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(w1, . . . , wn) such that:

w1 =
"
αθ1, “βθ1,4Bθ1 → αθ1”

$
; (33)

w2 =
"
α2θ2, σ2θ2

$
; (34)

...

wn−1 =
"
αn−1θn−1, σn−1θn−1

$
; (35)

wn =
"
αθn, “βθn,4Bθn → αθn”

$
, (36)

where:

• σ = “β, 7B → α” is some TGD rule of Σ, where body(σ) =

{β} ∪ B, β /∈ B and 7B denotes the conjunctions of the atoms
in B;

• θ1 and θn are assignments on the rule σ ∈ Σ;
• β′θn ∈ Bθn implies

"
var(βθn) ∩ var(β′θn)

$
= ∅;

• α2θ2 = βθ1 ∈ body(σθ1).

Then we also define the assignment θ′ : var(σnθn) −→ var(σ1θ1)
as follows:

θ′ =
#
θn(X) :→ θn(X) |X ∈ var(σ) and θn(X) ∈

i=n3

i=1

var(αiθi)
%

∪
#
θn(X) :→ θ1(X) |X ∈ var(σ) and θn(X) /∈

i=n3

i=1

var(αiθi)
%
.

(37)

Then similarly to the previous case above, because σθ1 ∼ σθn,
then it follows that with w∗

n =
"
αθ∗, “βθ∗,4Bθ∗ → αθ∗ ”

$
, where

θ∗ = θ′ ◦ θn, we have that w∗
n = w1. Therefore, using again the

same argument as to the proof of Proposition 12 in [13], we have
that any occurrence of the loop pattern L = (w1, . . . , wn) in a
derivation tree T (Σ) implies another derivation tree T ′(Σ) such
that T (Σ) subsumes T ′(Σ) by “replacing” the derivation path L

= (w1, . . . , wn) by the singleton w∗ =
"
αθ1, “βθ

∗,4Bθ1 → αθ1”
$

(see Fig. 2 in the proof of Proposition 12 of [13]).
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(“Type III”): The key to proving this case is also similar to the ideas of
the previous two cases above. Let us now assume a loop pattern L =
(w1, . . . , wn) of Type III such that:

w1 =
"
αθ1, “βθ1,4Bθ1 → αθ1”

$
; (38)

w2 =
"
α2θ2, σ2θ2

$
; (39)

...

wn−1 =
"
αn−1θn−1, σn−1θn−1

$
; (40)

wn =
"
αθn, “βθn,4Bθn → αθn”

$
, (41)

where:

• σ = “β, 7B→ α” is some TGD rule of Σ, where body(σ) = {β} ∪
B, β /∈ B and 7B denotes the conjunctions of the atoms in B;

• θ1 and θn are assignments on the rule σ ∈ Σ;

• α2θ2 = βθ1 ∈ body(σθ1).

Then we again define the assignment θ′ : var(σnθn) −→ var(σ1θ1) as
follows:

θ′ =
#
θn(X) :→ θn(X) |X ∈ var(σ) and θn(X) ∈

i=n3

i=1

var(αiθi)
%

∪
#
θn(X) :→ θ1(X) |X ∈ var(σ) and θn(X) /∈

i=n3

i=1

var(αiθi)
%
.

(42)

Then similarly to the previous two case above, because σθ1 ∼ σθn, then
it follows that with w∗

n =
"
αθ∗, “βθ∗,4Bθ∗ → αθ∗ ”

$
, where θ∗ = θ′◦θn,

we have that w∗
n = w1. Therefore, using again the same argument as to

the proof of Proposition 12 in [13], we have that any occurrence of
the loop pattern L = (w1, . . . , wn) in a derivation tree T (Σ) implies
another derivation tree T ′(Σ) such that T (Σ) subsumes T ′(Σ) by “re-
placing” the derivation path L = (w1, . . . , wn) by the singleton w∗ ="
αθ1, “βθ

∗,4Bθ1 → αθ1”
$

(see Fig. 2 in the proof of Proposition 12 of
[13]).
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Finally, we conclude the proof by showing how a combination of loop
pattern Types I-V can be made to “contract” under some derivation path of a
derivation tree. Indeed, using again similar ideas from [13], let

P = (w11, . . . , w1k1 , w
′
11, . . . , w

′
1l- ./ 0

L1

, w21, . . . , w2k2 , w
′
21, . . . , w

′
2l- ./ 0

L2

, w31, . . . , w3k3)

be a derivation path and assume that L1 = (w′
11, . . . , w

′
1l) and L2 = (w′

21, . . . , w
′
2l)

are loop patterns such that L1 ∼ L2 and both L1 and L2 are of Types II and V,
i.e., loop patterns L1 and L2 are of either Types II or V occurring more than
once. Then there exists some i ∈ {1, . . . , l} , such that assuming

w′
li =

"
αiθli, “ ̂bodyb(σiθli), ̂bodyh(σiθli) → αiθli”

$

"
for l ∈ {1, 2}

$
, we have that

1. bodyh(σiθli) ∩ bodyb(σiθli) = ∅;

2. αi+1θli+1 ∈ bodyb(σiθli);

3. var
"
{αiθli} ∪ bodyh(σiθli)

$
∩ var

"
bodyb(σiθli)

$
= ∅.

Then we have that there exists some assignment θ∗ such that

w′
1i =

"
αiθ1i, “ ̂bodyb(σiθ2i)θ

∗, ̂bodyh(σiθ1i) → αiθ1i”
$

i.e., bodyb(σiθ2i)θ
∗ = bodyb(σiθ1i). Then it follows that we can replace the

derivation path P with the derivation path

P ∗ = (w11, . . . , w1k1 , w
′
11, . . . , w

′
1i−1w

∗
i , w

′
2i+1, . . . , w

′
2l, w31, . . . , w3k3),

where

w∗
i =

"
αiθ1i, “ ̂bodyb(σiθ2i)θ

∗, ̂bodyh(σiθ1i) → αiθ1i”
$
.

On the other hand, if we have a derivation path

P = (w11, . . . , w1k1 , w
′
1, . . . , w

′
l- ./ 0

L

, w1, . . . , w2k2)

such that L = (w′
1, . . . , w

′
l) is a loop pattern of either Types I, III or IV. Then

as we have seen for the cases of “Type I, ” “Type IV, ” and “Type III” above,
if follows that the derivation path P can be replaced with a derivation path

P ∗ = (w11, . . . , w1k1 , w
∗, w1, . . . , w2k2),
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which is obtained from P by replacing the loop L = (w′
1, . . . , w

′
l) with the

singleton w∗.
Finally, because we have from Proposition 2 that there are only a finite

number of loop patterns (up to equivalence “∼”), then it follows that GLR
TGDs can be characterized by only a finite number of derivation trees of
bounded length.
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