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Abstract

Existential rules, a.k.a. dependencies in databases,
and Datalog+/- in knowledge representation and
reasoning recently, are a family of important logical
languages widely used in computer science and ar-
tificial intelligence. Towards a deep understanding
of these languages in model theory, we establish
model-theoretic characterizations for a number of
existential rule languages such as (disjunctive) em-
bedded dependencies, tuple-generating dependen-
cies (TGDs), (frontier-)guarded TGDs and linear
TGDs. All these characterizations hold for the class
of arbitrary structures, and most of them also work
on the class of finite structures. As a natural appli-
cation of these results, complexity bounds for the
rewritability of above languages are also identified.

1 Introduction

Existential rule languages, a family of languages that extend
Datalog by allowing existential quantifiers in the rule head,
had been initially introduced in databases in 1970s to specify
the semantics of data stored in a database [Abiteboul et al.,
1995]. Since then, existential rule languages such as tuple-
generating dependencies (TGDs), embedded dependencies
and equality-generating dependencies have been extensively
studied. These languages have been recently rediscovered as
languages for data exchange [Fagin et al., 2005], data integra-
tion [Lenzerini, 2002] and ontology-mediated query answer-
ing [Cali er al., 2010]. Towards tractable reasoning, many
restricted classes of these languages have been proposed, in-
cluding linear and guarded TGDs [Cali et al., 2012], as well
as frontier-guarded TGDs [Baget et al., 2011]. As a family of
important logical languages, their model theory has not been
fully investigated yet. In this work we aim at characterizing
existential rule languages in a model-theoretic approach.
Model-theoretic characterizations, which assert that a sen-
tence in a language is definable in another language if, and
only if, it enjoys some semantic properties, play a key role in
the study of logic [Chang and Keisler, 1990]. We are inter-
ested in semantic properties that are simple and manageable.
Model-theoretic characterizations based on such properties
thus provide a natural tool for identifying the expressibility

of a language, i.e., determining which knowledge or ontol-
ogy can be expressed in the language.

Besides the major position in model theory and the key role
on understanding expressiveness, model-theoretic characteri-
zations also have many potential implications. For example,
model-theoretic characterizations provide a natural way for
developing algorithms to identify language rewritability, i.e.,
to decide whether a given theory or ontology can be rewritten
in a simpler language. Such algorithms may play important
roles in implementing systems for ontology-mediated query
answering. Moreover, we are also interested in understand-
ing why the guarded-based restrictions make existential rule
languages tractable. We hope our characterizations give an
alternative explanation on this question, which may provide a
new insight to exploit new tractable languages.

Model-theoretic characterizations over the class of finite
structures for full TGDs (i.e., TGDs without existential quan-
tifiers) and equality-generating dependencies had been stud-
ied in [Makowsky and Vardi, 1986], which are established by
involving infinite sets of dependencies. To remedy the finite
expressibility, some conditions had been proposed, including
Hull’s finite-rank notion [1984] and Makowsky and Vardi’s
locality [1986]. Yet both of them are not very natural. Over
finite structures, even for full TGDs, a natural model-theoretic
characterization remains open [ten Cate and Kolaitis, 2014].
For arbitrary structures, except for some simple classes of de-
pendencies such as full TGDs and negative constraints, to the
best of our knowledge, no model-theoretic characterization is
known for expressive existential rule languages such as TGDs
and its guarded-based restrictions.

In this work, we characterize existential rule languages by
some natural semantic properties. The addressed languages
consist of (disjunctive) embedded dependencies, TGDs, and
several important restricted classes of TGDs such as frontier-
guarded TGDs, guarded TGDs and linear TGDs, three of the
main languages for ontology-mediated query answering [Cali
et al., 2010]. All the semantic properties involved in our char-
acterizations are algebraic relationships among structures, in-
cuding variants of homomorphisms and unions, as well as di-
rect products. Interestingly, except the characterizations w.r.t.
first-order logic, all other characterizations hold for both fi-
nite structures and arbitrary structures. As a natural applica-
tion, we also use the obtained characterizations to identify the
complexity of rewritability among the above languages.



For proof details please refer to a long version of this paper,
which is available at https://arxiv.org/abs/2001.08688.

2 Preliminaries

2.1 Notations and Conventions

All signatures involved in this paper are relational, consisting
of a set of constant symbols and a set of relation symbols, each
of which is armed with a natural number, its arity. Each rerm
is either a variable or a constant symbol. Given a signature
T, atomic formulas, (first-order) formulas and sentences over
7 are defined as usual. An atomic formula is relational if it
is of the form R() where R is a relation symbol other than
the equality symbol =. Given a formula o, we write ¢(Z) if
every free variable of p appears in .

Fix 7 as a signature. Every structure A over T (or simply
T-structure) consists of a nonempty set A called its domain,
a relation RA C A" for each n-ary relation symbol R € T,
and a constant ¢ € A for each constant symbol ¢ € 7. A
structure is finite if its domain is finite, and infinite otherwise.

Let A be a 7-structure, and X a subset of A such that ¢ €
X for all constant symbols ¢ € 7. The substructure of A
induced by a set X C A, denoted A|x, is a 7-structure with
domain X which interprets each relation symbol R € 7 as
RA|x, and interprets each constant symbol ¢ € 7 as ¢, A
structure B is called a substructure of A, or equivalently, 4
is called an extension of B, if B = A|x for some set X C A.
Let v be a signature such that 7 C v. A v-structure B is
called a v-expansion of A if they have the same domain and
share the same interpretation on every symbol in 7. Suppose
ay,...,ar € A, by (A, aq,...,a;) we denote the expansion
of A that assigns each constant a; to a fresh constant symbol.

Let A and B be 7-structures. If .4 and B have the same
interpretations on constant symbols then let A U B denote the
union of A and B, which is a 7-structure with domain AU B,
interpreting R as R“* U R? for each relation symbol R € T,
and interpreting c as ¢ for each constant symbol ¢ € 7. We
say A is homomorphic to B, written A — B, if there is a
function h : A — B such that (i) h(c*) = B for all constant
symbols ¢ € 7, and (ii) h(R*) C R for all relation symbols
R € 7. We write A = B if both A — B and B — A hold.

Let A be a structure. An assignment in A is a function
from a set of variables to A. Given a tuple @ of constants in
A and a tuple & of variables of the same length, we let @/%
denote the assignment that maps the i-component of & to the
i-component of @ for 1 < i < |Z|, where |Z| denotes the
length of Z. Let s be an assignment in A and ¢(Z) be a first-
order formula. By A |= ¢[s] we mean that ¢ is satisfied by s
in A. In particular, if ¢ is a sentence, we simply write A = ¢,
and say ¢ is satisfied in A, or equivalently, A is a model of
. If the assignment @/ is clear from the context, we simply
use ¢|d] to denote p[d/Z]. Let X be a set of sentences, A is
a model of ¥ if A | ¢ for all ¢ € X. Given a sentence ),
we write Y F 9 (resp., 2 Fgy %) if every model (resp., finite
model) of ¥ is also a model of ).

2.2 Ecxistential Rule Languages
A generalized dependency (GD) is a sentence o of the form

VE(O(Z) = (W (Z,9) V- -V Pu(T, 7)) M

where n > 0, and ¢, 1, ..., %, are conjunctions of atomic
formulas. The left-hand (resp., right-hand) side of the impli-
cation is called the body (resp., head). Variables among & and
i are called universal, and existential, respectively. A fron-
tier variable is a universal variable that occurs in the head. In
particular, o is called nondisjunctive it n < 1, and called a
negative constraint if n = 0. In the latter case, we write ¢ as

VE(p(Z) — L). 2)

For simplicity, we will omit the universal quantifiers and the
brackets appearing outside the atoms if no confusion occurs.

Furthermore, a GD ¢ is called safe if every frontier vari-
able of ¢ has at least one occurrence in some relational atomic
formula in the body of o. Every disjunctive embedded depen-
dency (DED) is a safe generalized dependency which is not
a negative constraint. Every embedded dependency (ED) is
a nondisjunctive DED. In addition, an ED is called an tuple-
generating dependency (TGD) if it is equality-free.

We will also address several important classes of restricted
TGDs. A TGD o is called frontier-guarded (resp., guarded) it
there is a relational atomic formula « in its body that contains
all the frontier (resp., universal) variables of o. In either case,
« is called the guard of 0. Moreover, o is linear if the body of
o consists of exactly one conjunct. Note that all linear TGDs
are guarded and all guarded TGDs are frontier-guarded.

3 Model-theoretic Characterizations

In this section, we address the model-theoretic characteriza-
tions of existential rule languages mentioned above.

3.1 Generalized Dependencies

We first give some notions. Let .4 and B be structures over
a signature 7. By a tuple on A we mean a finite sequence of
constants in A. We say that A is globally-homomorphic to B,
written A = B3, if there is a function 7 that maps each tuple
@ on A to a tuple (@) on B such that (A,d) = (B,n(d));
in this case, we call 7 a global homomorphism from A to B,
and call A a globally-homomorphic preimage of .

Given a first-order sentence ¢ over 7, we say that ¢ is pre-
served under globally-homomorphic preimages [in the finite]
if for all [finite] 7-structures .4 and B, if A is globally ho-
momorphic to B and 5 is a model ¢, then A is also a model
of ¢. Notice that every sentence preserved under globally-
homomorphic preimages is also preserved under globally-
homomorphic preimages in the finite, but not vice versa.

By a routine check, it is easy to prove the following:

Proposition 1. Every set of GDs is preserved under globally-
homomorphic preimages [in the finite].

To establish the desired characterization, we hope that the
preservation under globally-homomorphic preimages is not
too powerful. The following is a very simple example which
is slightly beyond the class of GDs but already not preserved
under globally-homomorphic preimages in the finite.

Example 2. Let ¢ denote 3x—Q(x) and 7 = {Q}. Let A
be a T-structure with A = {a,b} and Q* = {a}. Let B be
the substructure of A induced by {a}. Clearly, B is globally
homomorphic to A. It is also easy to see that A is a model of



1, but B is not, which implies that 1 is not preserved under
globally-homomorphic preimages even in the finite.

The following theorem establishes the desired characteri-
zations for the class of finite sets of GDs.

Theorem 3. A first-order sentence is equivalent to a finite set
of GDs iff it is preserved under globally-homomorphic preim-
ages.

To prove this theorem, we need some notions and lemmas.
Let A and B be structures over a signature 7. Given a class
C of sentences over 7, we write A < B if for all sentences
v € C, A | ¢ implies B = ¢. For simplicity, we simply
drop the subscript C if C is the class of all first-order sentences
over 7. We write A = B if both A < B and B < A hold.

We write I'(z) to denote a set of formulas with exactly one
free variable z. We say that I'(x) is realized in a structure A
if there is some a € A such that A = J[a/x] for all formulas
J(x) € T'(z). By Th(A) we denote the class of all first-order
sentences satisfied in A. We say that A is w-saturated if for
every finite set X C A, every set I'(x) of formulas consis-
tent with Th((A, a)eex) is realized in (A, a)qex. It is well-
known [Chang and Keisler, 1990] that for every structure A
there is an w-saturated structure 3 such that 4 = B.

Every existential-positive formula is a first-order formula
built on atomic formulas and negated atomic formulas by us-
ing connectives A, V and the quantifier 3. Let 3* denote the
class of existential-positive sentence. It is easy to prove:

Lemma 4. Let A and B be structures over the same signa-
ture. Then both of the following are true:

1. If A — Bthen A <3+ B.
2. If A <5+ Band B is w-saturated then A — B.

Let GD denote the class of finite sets fo generalized depen-
dencies. With Lemma 4, we are able to prove the following:

Lemma 5. Let A and B be w-saturated structures over the
same signature. If B <¢p A then A = B.

Proof. Assume B <¢p A. We need to prove A = 5. By
Lemma 4, it suffices to show that for each tuple @ on A there
is a tuple (@) such that (B, 7(d)) <ep (A,d). Note that,
by Proposition 5.1.1 in [Chang and Keisler, 19901, (B, 7(@))
and (A, @) are w-saturated; so Lemma 4 is applicable.

The desired statement can be done by an induction on the
length of @. It is trivial for the case where |G| = 0. Assume
as induction hypothesis that the desired statement holds for
|@| = k > 0, we need to prove that it also holds for the case

where |G| = k + 1. Suppose @ = (dp,a). By inductive
hypothesis, there is a tuple by such that
(B.bo) Zep (A, o). 3)

Let T'(x) be the class of existential-positive formulas and their
negations such that (A, dp) = ¢[a/z] for all p(z) € T'(x).
To prove the existence of a constant b € B such that

(87 E(hb) jGD (A7 a:07a')7 (4)

by the w-saturatedness of B, it suffices to show that every fi-

nite subset of I'(z) is realized in (B, by). Let T'o(x) be any
finite subset of I'(x). Let ¢(z) denote the conjunction of all

formulas in T'g(z), and let » = =3z (z). Clearly, v is equiv-
alent to a finite set of GDs and (A, dy) £ . By the inductive

assumption (3), we know (B, 50) K 4, or equivalently, there
exists a constant b’ € B such that (B, by) = ¢[b’/z]. Conse-
quently, I'g(x) is realized in (B, by ), which is as desired. [

Now we are able to prove the desired theorem.

Proof of Theorem 3. (Only-if) By Proposition 1.

(If) We assume that ¢ is a first-order sentence preserved
under globally-homomorphic preimages. Let con(y) denote
the class of all GDs that are logical consequences of . We
want to show that con(y) is equivalent to ¢, which implies
the desire result by compactness. Let A be any model of
con(y). It suffices to show that A is also a model of . Let

Y={-:7eGD& A —}.

Now we prove the following property:
Claim. ¥ U {} is satisfiable.

Let 3¢ be an arbitrary finite subset of 2. To show the claim,
by compactness, it suffices to show that Yo U {¢} is satisfi-
able. Towards a contradiction, assume that this is not the case.
Suppose g = {—71, ..., n}, and let ¢ denote the formula
Y1 V -+ V 7,. Then we must have ¢ = 4. It is not difficult
to see that ¢ is equivalent to a GD (by renaming the individ-
ual variables and lifting the universal quantifiers, and then by
a routine transformation). Thus, A should be a model of .
This implies that there is some integer ¢ : 1 < ¢ < n such that
A E ~;, which contradicts with «; € 3 and the definition of
Y. So, we obtain the claim.

Applying the above claim, there is thus a model, say B, of
¥ U {¢}. Consequently, we have B <gp A. Let AT and B
be w-saturated structures such that A = A" and B = B™.
Then BT =<¢p AT is clearly true, and B+ is a model of (.
By Lemma 5, A" is then globally homomorphic to BT . Since
by assumption ¢ is preserved under globally-homomorphic
preimages, AT should be a model of ¢. So, A is also a model
of . This thus completes the proof of Theorem 3. O

Note that the above argument only works on the class of ar-
bitrary structures. Over finite structures, the characterization
is in general not true, as shown by the following proposition.

Theorem 6. There is a first-order sentence that is preserved
under globally-homomorphic preimages in the finite but is not
equivalent to any finite set of GDs over finite structures.

This can prove by constructing an example, which can be
done by a slight modification to Gurevich and Shelah’s coun-
terexample (see, e.g., Theorem 2.1.1 in [Rosen, 2002]).

3.2 Disjunctive Embedded Dependencies

According to the definition, DEDs are safe GDs that are not
negative constraints. So, to characterize DEDs, we need some
properties to assure the safeness and to avoid occurrences of
negative constraints. To do the latter, we use a technique
called trivial structure, which was used in [Makowsky and
Vardi, 1986] to characterize full TGDs.



We first recall the notion of trivial structure. A structure A
is called trivial if the domain of A consists of exactly one ele-
ment and every relation symbol in the signature is interpreted
by A as the full relation on the domain of a proper arity.

To capture the safeness of a DED, we propose a similar
notion. A structure A is called sharp if all the following hold:

e the domain of A consists of exactly two distinct con-
stants, say * and o;

e for each constant symbol c in the signature, A =x;

e for each relation symbol R in the signature, RA consists
of exactly a single tuple (x, ..., *) of a proper length.

The following example shows that the sharp models are
able to separate the class of DEDs from the class of GDs:

Example 7. Let o be a DED of the following form:
P(z) A R(z,y) = Q(y). Q)

Let 7 = {P,Q, R}, and let A be a T-structure with the do-
main {a, b}, interpreting both P and Q as {a}, and interpret-
ing R as {(a,a)}. Clearly, Ais a sharp model of o.

Let o denote the GD obtained from o by replacing R(z,y)
with R(x,x). Clearly, o is a GD that is not satisfied in A.

The following result can be shown by a routine check:
Proposition 8. Let 3 be a finite set of GDs. Then all the
following properties are equivalent:

1. Y is equivalent to a finite set of DEDs;

2. X is equivalent to a finite set of DEDs over finite struc-

tures;
3. X has both a trivial model and a sharp model.

Note that both “p has a trivial model” and “y has a sharp
model” can be regarded as trivial preservation properties.

3.3 Embedded Dependencies

To characterize EDs, we use the notion of direct products. Let
A and B be structures over a signature 7. The direct product
of A and B, denoted A x BB, is a 7-structure defined as follows:

e the domain of A x Bis A x B;

e for all constant symbols ¢ € 7, ¢**B = (¢4, cB);

o for all k-ary relation symbols R € 7, all tuples @ on A,
and all tuples b on B, ((a1,b1), ..., (ak, b)) € RAXE
if @ € R4 and b € RB, where a; and b; denote the i-th
component of @ and b, respectively.

We say a sentence ( is preserved under direct products [in
the finite] if, for any two [finite] models A and B of ¢, A x B
is also a model of .

The following can be shown by a routine check.
Proposition 9. Every set of EDs is preserved under direct
products [in the finite].

In general, the direct product preservation fails for DEDs.
A simple counterexample is given as follows:

Example 10. Let o denote the DED R — SV T where R, S
and 'T' are nullary relation symbols. Let T be the signature
{R,S,T}. Let A and B be T-structures such that

o Aand B have the same domain {a},
o RA=RB =84 =78 = true, SB = T4 = false.

Clearly, both A and B are models of o, but Ax B is not. Thus,
o is not preserved under direct products even in the finite.

The following result shows that the property of direct prod-
uct preservation exactly captures the class of DEDs in which
the disjunctions can be eliminated. This works over the class
of finite structures as well as the class of arbitrary structures.

Theorem 11. A finite set of DEDs is equivalent to a finite set
of EDs [over finite structures] iff it is preserved under direct
products [in the finite].

3.4 Tuple-generating Dependencies

Let A and B be structures over a signature 7. A strict homo-
morphism from A into (resp., onto) BB is a function h from A
into (resp., onto) B such that

e for every relation symbol R € 7 and every tuple @ on A
of a proper length, we have @ € R4 iff h(d@) € R5, and

o for every constant symbol ¢ € 7, we have h(c?) = 5.

If such a strict homomorphism exists, we say B is a strictly-

homomorphic image of A, and say A is, conversely, a strictly-

homomorphic preimage of B. A sentence ¢ is said to be pre-

served under strictly-homomorphic (pre)images [in the finite]

if, for every [finite] model A of ¢ and every [finite] strictly-

homomorphic (pre)image 5 of A, 5 is also a model of (.
The following gives us the desired characterazations:

Theorem 12. A finite set of EDs is equivalent to a finite set
of TGDs [over finite structures] iff it is preserved under both
strictly-homomorphic images and preimages [in the finite].

Interestingly, it is not difficult to show that, if no constant
symbol is involved, the strictly-homomorphic image preser-
vation can be removed from the characterization.

3.5 Frontier-guarded TGDs

To characterize frontier-guarded TGDs, we first define some
notations. Let A be a structure. We define {Ax : X C A} as
a family of structures over the same signature such that

e for all X C A, there is an isomorphism px from A to
Ax suchthat px(a) =aforalla € X;

e forall XY C A, Ax N Ay = X NY, where Ax and
Ay denote the domains of Ax and Ay, respectively.

Every guarded set of A is defined as a finite subset X of A
that contains all interpretations of constant symbols in A. A
sentence ¢ is said to be preserved under isomorphic unions
[in the finite] if, for all [finite] models A of ¢ and all finite
sets G of guarded sets of A, |y Ax is also a model of .

Example 13. Let 7 denote { R} where R is a binary relation
symbol. Let A be a T-structure defined as follows:

e the domain A consists of two distinct constants a and b;

o the relation symbol R is interpreted as A X A.

Let X ={a}, Y ={a,b}, and G = {X,Y}. Then Ax, Ay
and UZeG Ay are T-structures illustrated by Figure 1.

By a routine check, one can prove the following property:



A Ax Ay Ax U Ay

Figure 1: Isomorphic Union in Example 13

Proposition 14. Every set of frontier-guarded TGDs is pre-
served under isomorphic unions [in the finite].

Now, a natural question arises as to whether the isomorphic
union preservation is able to separate frontier-guarded TGDs
from TGDs. The following example shows that it is true.

Example 15 (Example 13 cont.). Let o denote the TGD
R(z,y) A R(y, z) = R(z, 2) (6)

and let A be the structure defined in Example 13. Then it is
easy to see that A is a model of o but | J ;. Az is not. So, o
is not preserved under isomorphic unions even in the finite.

The following result provides the desired characterization.
Note that the characterization also holds over finite structures.

Theorem 16. A finite set of TGDs is equivalent to a finite
set of frontier-guarded TGDs [over finite structures] iff it is
preserved under isomorphic unions [in the finite].

Every conjunctive query (CQ) is a first-order formula of the
form 359 (Z, §) where 9 is a conjunction of relational atomic
formulas. Now we first present a lemma as follows:

Lemma 17. Let ¢(Z) be a CQ, T the signature T of ¢, A a
T-structure, @ a tuple on A with |d| = |Z|, and G a finite set
of guarded sets of A such that every constant in @ belongs to

some X € G. If Uy g Ax [ ¢ld] then A |= ¢lad].

Now we are in the position to prove the theorem.

Sketched Proof of Theorem 16. (Only-if) By Proposition 14.

(If) Only address arbitrary structures. A slight modification
to the following argument applies to finite structures.

Let X be a finite set of TGDs preserved under isomorphic
unions. We first show that X is equivalent to a set of diverse
dependencies, each of which is a sentence of the form

VI(Auna (L) A ¢(F) — G (Z, 7)) @)
where ¢ and 1) are conjunctions of relational atomic formulas,
and A\yna (%) denotes /\1§i<j§k: —t; = t; with t1,. ..ty be-

ing an enumeration (without repetition) of all constant sym-
bols and universal variables in ¢ and . It is easy to show

Claim 1. ¥ is equivalent to a finite set of diverse dependen-
cies.

To present the proof, more notions are needed. Let o be a
diverse dependency of the form (7). The graph of o is defined
as an undirected graph with each conjunct of v as a vertex and
with each pair of conjuncts of v that share some existential
variable as an edge. We say that o is quasi-frontier-guarded
if, for every connected component ¢ of the graph of o, the set

of variables that occurs in both § and Z (the tuple of universal
variables of o) co-occur in some atomic formula in ¢.

Let I' be a finite set of diverse dependencies that is equiva-
lent to 3. Take v € I as a diverse dependency of the form (7).
Let S, denote the set of substitutions, which only map exis-
tential variables to some terms in -, such that s(+) is a quasi-
frontier-guarded diverse dependency. Let v* denote

VE | Auna(@) A (@) = 35 \/ s()@D| @

s€8,

and let I'* be the set of v* for all ¥ € I'. We want to prove
that I'* is equivalent to X.. The direction I'* F X follows from
the definition of I'*. To show the converse, it suffices to prove

Claim 2. ¥ F v* forall v € T

Proof. Let A be a model of ¥ and @ a tuple on A such that
A = Auna[d] and A = ¢[d]. Let C be the set of all interpre-
tations of constant symbols in .A. Let G be the set of guarded
sets of A such that if X € G then all constants in X \ C
co-occur in an atomic formula in ¢(@). Let B = (Jx g Ax.
By definition we know B |= A\unal@] and B = ¢[d]. As &
is preserved under isomorphic unions, 3 must be a model
of 3. Consequently, B is a model of . We thus have that
B = 33p[@/ 1), i.e., there is a tuple b on B with B |= [, b).

Define a substitution s as follows: Given i = 1,..., ]3],
let 5(y;) = c if for some constant symbol ¢ with b; = ¢A; if
no such c then let s(y;) = z; for some j with b; = a;; if no
such j either then let s(y;) = y;, where a;, b;, z;,y; denote
the i-th components of @, 5, Z, 9, respectively. Clearly B =
s(3yy)[a/Z]. By Lemma 17, we have A | s(3yy)[a/T].
By a careful check, one can show s € S., i.e., s(7) is quasi-
frontier-guarded as desired. We omit the proof here. O

With Claim 2, we then have that I'* is equivalent to X. Take
v € I" and suppose v* is of the form (8). It is easy to see that
+* can be equivalently rewritten as a sentence y' of the form

Vi |o(@) — \/ Isw)v \/ mi=z;| ()

SES 1<i<j<k

where t1, . .., tx is an enumeration (without repetition) of all
terms in . Let I' consist of 4T for all v € T, and let A(v)
be a set that consists of the TGD

VE($(T) = 3ys(¢)) (10)

forall s € S, and A the union of A(vy) for all v € T". Let
con(I'") denote the set of TGDs o € A such that T'T F o. Tt is
easy to see that each TGD in con(I'") is equivalent to a finite
number of frontier-guarded TGDs. To complete the proof, it
is thus sufficient to show the following property:

Claim 3. con(T'") is equivalent to I'f.

This can be proved by combining the direct-product argu-
ment that proves Theorem 11 with the strictly-homomorphic
preimage preservation argument that proves Theorem 12. [



3.6 Guarded TGDs
We say that a sentence ¢ is preserved under disjoint unions
[in the finite] if, for each pair of [finite] models 4 and B of
®, AU B is also a model of ¢ if both the following hold: (i)
A and B have the same interpretations on constant symbols,
and (ii) if X = AN B and X # () then A|x = B|x.
Proposition 18. Every set of guarded TGD:s is preserved un-
der disjoint unions [in the finite].

The following example shows that the above property sep-
arates guarded TGDs from frontier-guarded TGDs.

Example 19. Let o be the following frontier-guarded TGD:
E(z,y) A E(y,z) = C(y) (1D
and let T = {C, E}. Let A and B be T-structures defined by:

o the domain of A is {a,b} and the domain of B is {b, c},

o CA=CB =10, BA={(a,b)}, and EB = {(b,c)}.
Let X = AN B = {b}. Clearly, A|x = B|x. By definition,
AU B is a T-structure with {a, b, c} as domain, interpreting
C as (), and interpreting E as {(a,b), (b, c)}. It is easy to see
that both A and BB are models of o, but AU B is not. So, o is
not preserved under disjoint unions even in the finite.

Now, let us present the desired characterization.

Theorem 20. A finite set of TGDs is equivalent to a finite
set of guarded TGDs [over finite structures] iff it is preserved
under disjoint unions [in the finite].

The general idea of proving the hard direction is as follows:
First show that every finite set of frontier-guarded TGDs pre-
served under disjoint unions [in the finite] is equivalent to a
finite set of guarded TGDs [over finite structures]. As the dis-
joint union preservation always implies the isomorphic union
preservation, by Theorem 16, we then have the desired result.

3.7 Linear TGDs

Every sentence ¢ is said to be preserved under unions [in the

finite] if, for all [finite] models 4 and B of ¢ with the same

interpretations on constant symbols, .4 U B is a model of .
The following theorem was obtained by ten Cate et al.:

Theorem 21 ([ten Cate et al., 2015]). A finite set of TGDs is
equivalent to a finite set of linear TGDs over finite structures
iff it is preserved under unions in the finite.

To separate the class of linear TGDs from guarded TGDs,
a simple example is presented as follows:

Example 22. Let o denote the following guarded TGD:

P(z) AQ(z) = R(x). (12)

Let T denote { P, Q, R}. Let A and B be T-structures with the

same domain {a} such that P* = QB = RA = R® = () and

= QA = {a}. Then it is obvious that both A and B are

models of 0. However, AU B does not satisfy o. Therefore, o
is not preserved under unions even in the finite.

It is worth noting that ten Cate et al.’s proof of Theorem 21
does not work over arbitrary structures. Fortunately, thanks to
Theorem 16 and the finite model property of frontier-guarded
TGDs, we are able to show the following characterization:

Theorem 23. A finite set of TGDs is equivalent to a finite set
of linear TGDis iff it is preserved under unions.

RE -C |n PTIME RE c
coRE -C in PTIME coRE Cc

incoRE | in RE
P PACE-h: 2EXPTIME- Q in coRE
GTGD FGTGD TGD
PSPACE hard 2EXPTIME-c in RE

Figure 2: Complexity of Rewritability

LTGD

4 Application: Complexity of Rewritability

As a direct application, we use the obtained model-theoretic
characterizations to identify complexity bounds of language
rewritability. Let PTIME (resp., PSPACE, 2EXPTIME) de-
note the class of languages accepted by some deterministic
Turing machine in polynomial time (resp., polynomial space,
double-exponential time). By [CO]RE we mean [the comple-
ment of] the class of recursively enumerable languages.

Let FO denote the class of all first-order sentences. Let GD
(resp., DED, ED, TGD, FGTGD, GTGD and LTGD) denote
the class of all finite sets of GDs (resp., DEDs, EDs, TGDs,
frontier-guarded TGDs, guarded TGDs and linear TGDs).

Suppose C and C’ are classes of first-order sentences, and
IC a complexity class. A sentence ¢ € C is called rewritable
to C' [in the finite] if there is a sentence 1 € C’ such that
© is equivalent to v [over finite strutures]. We say that the
rewritability of C to C’ [in the finite] is in K if there is a Turing
machine M in K such that, given a sentence ¢ € C as input,
M accepts ¢ if and only if ¢ is rewritable to C’ [in the finite].

Theorem 24. The complexity of rewritability for the above
existential rule languages is illustrated in Figure 2, where,
along each arrow, the bound without underline indicates the
complexity over arbitrary structures, and the bound with un-
derline indicates the complexity over finite structures.

To prove the above theorem, we only explain the idea of
proving the 2EXPTIME-completeness of the rewritability of
FGTGD to GTGD. By Theorem 20, it suffices to prove that
recognizing the preservation of FGT GD under disjoint unions
is 2EXPTIME-complete, which is proved in Statement 6 of
Theorem 25. So, it remains to prove the following theorem:

Theorem 25. . Determining whether a given first-order
sentence is preserved under globally-homomorphic
preimages [in the finite] is [coJRE-complete.

2. Determining whether a given finite set of GDs has both
a trivial model and a sharp model is in PTIME.

3. Determining whether a given finite set of DEDs is pre-
served under direct products [in the finite] is [co]RE-
complete.

4. Determining whether a given finite set of EDs is pre-
served under both strictly-homomorphic images and
preimages [in the finite] is in [co]RE.

5. Determining whether a given finite set of EDs is pre-
served under isomorphic unions [in the finite] is in
[co]RE.

6. Determine whether a given finite set of frontier-guarded
TGD:s is preserved under disjoint unions [in the finite] is
2EXPTIME-complete.



7. Determining whether a given finite set of GTGDs is pre-
served under unions [in the finite] is PSPACE-hard.

Sketched proof. Only explain the general idea of proving the
2EXPTIME-membership for the complexity in Statement 6.
To yield the desired membership, it suffices to prove that de-
termining whether a given set X of frontier-guarded TGDs
is preserved under disjoint unions [in the finite] is in 2EX-
PTIME. We implement this by constructing a first-order sen-
tence wy such that X is preserved under disjoint unions [in the
finite] iff (ox; is unsatisfiable [over finite structures]. Thanks to
the simplicity of the disjoint-union-preservation property, ¢s;
can be expressed in the guarded negation logic, a fragment of
first-order logic whose [finite] satisfiability problem is proved
to be 2EXPTIME-complete [Bérany et al., 2015]. O

5 Conclusion and Related Work

We have established model-theoretic characterizations for
several important classes of existential rules. Very interest-
ingly, our characterizations show that the guarded-based no-
tions are exactly captured by union-like preservations. Since
union-like preservations can be regarded as modular proper-
ties in a certain sense, this work also provides alternative per-
spective on why guarded-based existential rule languages en-
joy good computational properties. We believe this may shed
new insight on identifying new tractable languages.

There have been a number of earlier works related to ours.
Over finite structures, Makowsky and Vardi [1986] estab-
lished several characterizations for full TGDs (i.e., TGDs
without existential quantifiers) and equality-generating de-
pendencies; ten Cate er al. [2015] observed that the union
preservation captures the definability of TGDs by linear
TGDs. Over arbitrary structures, Lutz et al. [2011] estab-
lished characterizations for description logics ££ and DL-
Liteporn. Note that both ££ and DL-Litey,,,, are sublan-
guages of existential rule languages. Bdrany er al. [2013]
proved that every TGDs-defined first-order sentence in the
guarded negation fragment is definable by frontier-guarded
TGDs. Moreover, in the setting of schema mapping, ten Cate
and Kolaitis [2010] estashlished a number of characteriza-
tions for source-to-target TGDs (a class of acyclic TGDs) and
its subclasses; in the setting of ontology-mediated query an-
swering, Zhang et al. [2016] characterizes the class of DEDs
by using both complexity- and model-theoretic properties.
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